
Rast: Resource-Aware Session Types with

Arithmetic Refinements

Ankush Das
Carnegie Mellon University, Pittsburgh, PA, USA
https://www.cs.cmu.edu/~ankushd/
ankushd@cs.cmu.edu

Frank Pfenning
Carnegie Mellon University, Pittsburgh, PA, USA
https://www.cs.cmu.edu/~fp/
fp@cs.cmu.edu

Abstract

Traditional session types prescribe bidirectional communication protocols for concurrent compu-
tations, where well-typed programs are guaranteed to adhere to the protocols. Recent work has
extended session types with refinements from linear arithmetic, capturing intrinsic properties of
processes and data. These refinements then play a central role in describing sequential and parallel
complexity bounds on session-typed programs.

The Rast language and system provide an open-source implementation of session-typed concurrent
programs extended with arithmetic refinements as well as ergometric and temporal types to capture
work and span of program execution. Type checking relies on Cooper’s algorithm for quantifier
elimination in Presburger arithmetic with a few significant optimizations, and a heuristic extension
to nonlinear constraints. Rast furthermore includes a reconstruction engine so that most program
constructs pertaining the layers of refinements and resources are inserted automatically. We provide
a variety of examples to demonstrate the expressivity of the language.

2012 ACM Subject Classification Theory of computation æ Process calculi; Theory of computation
æ Linear logic; Theory of computation æ Logic and verification; Computing methodologies æ
Concurrent programming languages; Theory of computation æ Type theory

Keywords and phrases Session Types, Resource Analysis, Refinement Types

Digital Object Identifier 10.4230/LIPIcs.FSCD.2020.33

Category System Description

Supplementary Material https://bitbucket.org/fpfenning/rast/src/master/rast/

Funding This material is based upon work supported by the National Science Foundation under
Grant No. 1718276.

Acknowledgements We would like to thank Farzaneh Derakhshan for contributions to the imple-
mentation and the anonymous reviewers for suggestions on an earlier version of this paper.

1 Introduction

Session types [13, 14, 17] provide a structured way of statically prescribing communication
protocols in message-passing programs. In this system description we introduce the Rast
programming language and implementation which is based on binary session types governing
the interaction of two processes along a single channel, rather than multi-party session
types [15] which take a more global view of computation. Nevertheless, during the execution
of a Rast program complex networks of interacting processes arise. Recent work has placed
binary session types without general recursion on a strong logical foundation by exhibiting
a Curry-Howard isomorphism with linear logic [1, 18, 2]. Moreover, the cut reduction
properties of linear logic entail type safety of session typed processes and guarantee freedom
from deadlocks (global progress) and session fidelity (type preservation) ensuring adherence
to the communication protocols at runtime.

© Ankush Das and Frank Pfenning;
licensed under Creative Commons License CC-BY

5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020).
Editor: Zena M. Ariola; Article No. 33; pp. 33:1–33:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

33:2 Rast: Resource-Aware Session Types

The Rast programming language is based on session types derived from intuitionistic linear
logic, extended with equirecursive types and recursive process definitions. It furthermore
supports arithmetic type refinements as well as ergometric and temporal types to measure
the total work and span of Rast programs. The repository also contains a number of
illustrative examples that highlight various language features, some of which we briefly
sketch in this system description. The theory underlying Rast has been developed in
several papers, starting with the Curry-Howard interpretation of linear logic as session-
typed processes [1, 2], the treatment of general equirecursive types and type equality [10],
asynchronous communication [11, 9], ergometric types [6], temporal types [5], indexed types
and indexed type equality [12, 7].

We begin with motivation and a brief overview of the main features of the language using
a concurrent queue data structure as a running example. The following type specifies the
interface to a queue server in the system of basic recursive session types supporting the
operations of insert (enqueue) and delete (dequeue).

queueA = N{ins : A (queueA,

del : ü{none : 1,

some : A ¢ queueA}}

The external choice operator N dictates that the process providing this data structure
accepts either one of two messages: the labels ins or del. In the case of ins, it receives an
element of type A denoted by the (operator, and then the type recurses back to queueA.
On receiving a del request, the process can respond with one of two labels (none or some),
indicated by the internal choice operator ü. If the queue is empty, it responds with none
and then terminates (indicated by 1). If the queue is nonempty, it responds with some
followed by the element of type A (expressed with the ¢ operator) and recurses. However,
the simple session type does not express the conditions under which the none and some
branches must be chosen, which requires tracking the length of the queue.

Rast extends session types with arithmetic refinements [7] which can be used to express
the length of a queue. The more precise type

queueA[n] = N{ins : A (queueA[n + 1],
del : ü{none : ?{n = 0}. 1,

some : ?{n > 0}. A ¢ queueA[n ≠ 1]}}

uses the index refinement n to indicate the number of elements in the queue. In addition,
the type constraint ?{„}. A read as “there exists a proof of „” is analogous to the assertion
of „ in imperative languages. Conceptually, the process providing the queue must provide a
proof of n = 0 after sending none, and a proof of n > 0 after sending some respectively.
It is therefore constrained in its choice between the two branches based on the value of the
index n. Since the constraint domain is decidable and the actual form of a proof is irrelevant
to the outcome of a computation, in the implementation no proof is actually sent.

As is standard in session types, the dual constraint to ?{„}. A is !{„}. A (for all proofs of
„, analogous to the assumption of „). We also add explicit quantifiers ÷n. A and ’n. A that
send and receive natural numbers, respectively.

Arithmetic refinements are instrumental in expressing sequential and parallel complexity
bounds. These are captured with ergometric [6, 4] and temporal session types [5]. They rely on
index refinements to express, for example, the size of lists, stacks, and queue data structures,
or the height of trees and express work and time bounds as a function of these indices. Rast
largely follows and extends prior work on session types with arithmetic refinements [7].

A. Das and F. Pfenning 33:3

Revisiting the queue example, consider an implementation where each element in the
queue corresponds to a process. Then insertion acts like a bucket brigade, passing the new
element one by one to the end of the queue. Among multiple cost models provided by Rast is
one where each send operation requires 1 unit of work (erg). In this cost model, such a bucket
brigade requires 2n ergs because each process has to send ins and then the new element. On
the other hand, responding to the del request requires only 2 ergs: we respond with none
and close the channel, or some followed by the element. This gives us the following type

queueA[n] = N{ins : Ù2n(A (queueA[n + 1]),
del : Ù2 ü {none : ?{n = 0}. 1,

some : ?{n > 0}. A ¢ queueA[n ≠ 1]}}

which expresses that the client has to send 2n ergs to insert an element (Ù2n), and 2 ergs
to delete an element (Ù2). The ergometric type system (described in Section 4) verifies this
work bound using the potential operators as described in the type.

Temporal session types [5] capture the time complexity of session-typed programs assuming
maximal parallelism on unboundedly many processors, often called the span. How does this
work out in our example? We adopt a cost model where each send and receive action takes
one unit of time (tick). First, we note that a use of a queue is at the client’s discretion, so
should be available at any point in the future, expressed by the type constructor ⇤. Secondly,
the queue does not interact at all with the elements it contains, so they have to be of type
⇤A for an arbitrary A. Since each interaction takes 1 tick, the next interaction requires at
least 1 tick to elapse, captured by the next-time operator •. During insertion, we need more
time than this: a process needs 2 ticks to pass the element down the queue, so it takes 3
ticks overall until it can receive the next insert or delete request after an insertion. This
reasoning yields the following temporal type:

queueA[n] = ⇤ N {ins : •(⇤A (•3queueA[n + 1]),
del : • ü {none : • ?{n = 0}. 1,

some : • ?{n > 0}.⇤A ¢ •queueA[n ≠ 1]}}

We see that even though the bucket brigade requires much work for every insertion (linear
in the length of the queue), it has a lot of parallelism because there are only a constant
number of required delays between consecutive insertions or deletions.

Rast follows the design principle that bases an explicit language directly on the correspon-
dence with the sequent calculus for the underlying logic (such as linear logic, or temporal or
ergometric linear logic), extended with recursively defined types and processes. Programming
in this fully explicit form tends to be unnecessarily verbose, so Rast also provides an implicit
language in which most constructs related to index refinements and amortized work anal-
ysis are omitted. Explicit programs are then recovered by a proof-theoretically motivated
algorithm for reconstruction which is sound and complete on valid implicit programs.

Rast is implemented in SML, and allows the user to choose explicit or implicit syntax and
the exact cost models for work and time analysis. The implementation consists of a lexer,
parser, type checker, reconstruction engines, and an interpreter, with particular attention to
providing precise error messages.

To summarize, our implementation makes the following contributions.
(i) A session-typed programming language with arithmetic refinements applied to ergomet-

ric and temporal types for parallel complexity analysis.
(ii) A type equality algorithm that works well in practice despite its theoretical undecid-

ability [7] and uses Cooper’s algorithm [3] with some small improvements to decide
constraints in Presburger arithmetic (and heuristics for nonlinear constraints).

FSCD 2020

33:4 Rast: Resource-Aware Session Types

1 type queue{n} = &{ ins : A -o queue{n+1},
2 del : +{ none : ?{n = 0}. 1,
3 some : ?{n > 0}. A * queue{n -1}}}
4 decl empty : . |- (q : queue {0})
5 decl elem{n} : (x : A) (t : queue{n}) |- (q : queue{n+1})
6
7 proc q <- empty =
8 case q (% receive a label along q
9 ins => x <- recv q ; % if ’ins ’ receive a channel x along q

10 e <- empty ; % spawn a new empty process
11 q <- elem {0} x e % continue as an elem holding x
12 | del => q.none ; % if ’del ’, respond with label ’none ’
13 assert q {0=0} ; % assert that (n = 0)[0/n]
14 close q) % terminate by closing q
15
16 proc q <- elem{n} x t =
17 case q (% receive a label along q
18 ins => y <- recv q ; % if ’ins ’ receive a channel y along q
19 t.ins ; % send label ’ins ’ along t
20 send t y ; % send the channel y along t
21 q <- elem{n+1} x t % recurse
22 | del => q.some ; % if ’del ’, respond with label ’some ’
23 assert q {n+1 >0} ; % assert that (n > 0)[n+1/n]
24 send q x ; % send x along q
25 q <-> t) % identify q with t and terminate

Listing 1 Declaration and definition of queue processes, file examples/list.rast

(iii) A type checking algorithm that is sound and complete relative to type equality.
(iv) A sound and complete reconstruction algorithm for a process language where most

index and ergometric constructs remain implicit.
(v) An interpreter for executing session-typed programs using the recently proposed shared

memory semantics [16].

2 Example: An Implementation of Queues

We use the implementation of queues as sketched in the introduction as a first example
program, starting with the indexed version. The concrete syntax of types is a straightforward
rendering of their abstract syntax (Table 3), except that all arithmetic expressions are
enclosed in braces to make them visually easily discernible.

type queue{n} = &{ ins : A -o queue{n+1},
del : +{ none : ?{n = 0}. 1,

some : ?{n > 0}. A * queue{n -1}}}

Each channel has exactly two endpoints: a provider and a client. Session fidelity ensures that
provider and client always agree on the type of the channel and carry out complementary
actions. The type of the channel evolves during communication, since it has to track where
the processes are in the protocol as they exchange messages.

In our example, we need two kinds of processes: an empty process at the end of the
queue, and an elem process that holds an element x. The empty process provides an empty
queue, that is, a service of type queue{0} along a channel named q. It does not use any
other services (indicated by ’.’), so its type is declared with

A. Das and F. Pfenning 33:5

decl empty : . |- (q : queue {0})

An elem process provides a service of type queue{n+1} along a channel named q and uses a
queue of type queue{n} along a channel named t. In addition, it holds (“owns”) an element
x of type A.

decl elem{n} : (x : A) (t : queue{n}) |- (q : queue{n+1})

The turnstile ‘|-’ separates the channels used from the channel that is provided (which is
always exactly one, roughly analogous to a value returned by a function). The notation
elem{n} indicates that the natural number n is a parameter of this process.

Listing 1 shows the implementation of the two forms of processes in Rast. Comments,
starting with a % character and extending to the end of the line, provide a brief explanation
for the actions of each line of code. This code is in explicit form and contains two instances
of assert to match the constraints ?{n = 0} and ?{n > 0} in the two possible responses
to a delete request. These two lines would be omitted in implicit form since they can be
read off the type at the corresponding place in the protocol. Of course, the type checker
verifies that the assertion is justified and fails with an error message if it is not, whether the
construct is explicit or implicit.

3 Basic and Refined Session Types

We present the basic system of session types and its arithmetic refinement, postponing
ergometric and temporal types to Section 4.

Types A ::= ü{¸ : A}¸œL | N{¸ : A}¸œL | A ¢ A | A (A | 1 | V [e]
| ?{„}. A | !{„}. A | ÷n. A | ’n. A

Arith. Exps. e ::= i | e + e | e ≠ e | e ◊ e | n

Arith. Props. „ ::= e < e | e Æ e | e = e | e Ø e | e > e | „ · „ | „ ‚ „ | ¬„ | „ ∏ „

Here, i stands for a natural number, n for an arithmetic variable, L for a finite set of labels, V

for a type identifier, and [e] for a sequence of arithmetic expressions. Arithmetic propositions
could contain quantifiers, but at present the implementation only supports them at the
level of types. Arithmetic expressions may be nonlinear, although a definitive outcome of
type-checking is only guaranteed if they are lie within Presburger arithmetic.

Our implementation does not support type polymorphism which is convenient in some of
the examples. We therefore allow definitions such as queueA[n] = . . . and interpret them as
a family of definitions, one for each possible type A.

We review a few basic session type operators before introducing the quantified type
constructors. Table 1 overviews the session types with their continuations, their associated
process terms and operational description.

The complete typing judgment for process expressions has the form of a sequent

V ; C ; ∆ „
q

� P :: (x : A)

where V are index variables n, C are constraints over these variables expressed as a single
proposition, ∆ are the linear antecedents xi : Ai, P is a process expression, and x : A is the
linear succedent. The potential q is explained in Section 4. We propose and maintain that
the xi and x are all distinct, and that all free index variables in C, ∆, P , and A are contained
among V. Finally, Σ is a fixed signature containing type and process definitions (explained

FSCD 2020

33:6 Rast: Resource-Aware Session Types

Table 1 Basic session types with operational description.

Type Cont. Process Term Cont. Description

c : ü{¸ : A¸}¸œL c : Ak c.k ; P P provider sends label k along c

case c (¸ ∆ Q¸)¸œL Qk client receives label k along c

c : N{¸ : A¸}¸œL c : Ak case c (¸ ∆ P¸)¸œL Pk provider receives label k along c

c.k ; Q Q client sends label k along c

c : A ¢ B c : B send c w ; P P provider sends chan. w : A along c

y Ω recv c ; Q Q[w/y] client receives chan. w : A along c

c : A (B c : B y Ω recv c ; P P [w/y] provider receives w : A along c

send c w ; Q Q client sends w : A along c

c : 1 — close c — provider sends close along c

wait c ; Q Q client receives close along c

in Section 3.1). Because it is fixed, we elide it from the presentation of the rules. In addition
we write V ; C ✏ „ for semantic entailment („ is true assuming C) in the constraint domain
where V contains all arithmetic variables in C and „.

3.1 Basic Session Types

External and Internal Choice

The external choice type constructor N{¸ : A¸}¸œL is an n-ary labeled generalization of the
additive conjunction A N B. Operationally, it requires the provider of x : N{¸ : A¸}¸œL to
branch based on the label k œ L it receives from the client and continue to provide type Ak.
The corresponding process term is written as case x (¸ ∆ P)¸œL. Dually, the client must
send one of the labels k œ L using the process term (x.k ; Q) where Q is the continuation.
The internal choice constructor ü{¸ : A¸}¸œL is the dual of external choice requiring the
provider to send one of the labels k œ L that the client must branch on.

Channel Passing

The tensor operator A ¢ B prescribes that the provider of x : A ¢ B sends a channel w of
type A and continues to provide type B. The corresponding process term is send x w ; P

where P is the continuation. Correspondingly, its client must receive a channel using the
term y Ω recv x ; Q, binding it to variable y and continuing to execute Q. The dual operator
A (B allows the provider to receive a channel of type A and continue to provide type B.
Finally, the type 1 indicates termination, operationally denoting that the provider sends a
close message and terminates the communication.

A process x ¡ y identifies the channels x and y so that any further communication along
either x or y will be along the unified channel. Its typing rule corresponds to the logical rule
of identity. Operationally, we refer to it as forwarding.

A. Das and F. Pfenning 33:7

Table 2 Refined session types with operational description.

Type Cont. Process Term Cont. Description

c : ÷n. A c : A[i/n] send c {e} ; P P provider sends the value i of e along c

{n} Ω recv c ; Q Q[i/n] client receives number i along c

c : ’n. A c : A[i/n] {n} Ω recv c ; P P [i/n] provider receives number i along c

send c {e} ; Q Q client sends value i of e along c

c : ?{„}. A c : A assert c {„} ; P P provider asserts „ on channel c

assume c {„} ; Q Q client assumes „ on c

c : !{„}. A c : A assume c {„} ; P P provider assumes „ on channel c

assert c {„} ; Q Q client asserts „ on c

Process and Type Definitions

Process definitions (possibly mutually recursive) have the form ∆ „q f [n] = P :: (x : A)
where f is the name of the process and P its definition. In addition, n is a sequence of
arithmetic variables that ∆, q, P , and A can refer to. Note that in the implementation a
typed definition is split up into a declaration and a simple definition

decl f{n1}...{nk} : (x1 : A1) ... (xm : Am) |- (x : A)
proc x <- f{n1}...{nk} x1 ... xm = P

A new instance of a defined process f can be spawned with the expression x Ω f [e] y ; Q

where y is a sequence of channels matching the antecedents ∆ and [e] is a sequence of
arithmetic expressions matching the variables [n]. The newly spawned process will use all
variables in y and provide x to the continuation Q. The declaration of f is looked up in the
signature Σ, and e is substituted for n and y for ∆. Sometimes a process invocation is a tail
call, written without a continuation as x Ω f [e] y.

We allow (possibly mutually recursive) type definitions V [n] = A, or, in concrete syntax

type v{n1}...{nk} = A

in the signature Σ. Here, [n] again denotes a sequence of arithmetic variables. We also require
A to be contractive [10] meaning A should not itself be a type name. Our type definitions are
equirecursive so we can silently replace type names V [e] indexed with arithmetic refinements
by A[e/n] during type checking.

All types in a signature must be valid which requires that all free arithmetic variables of
C and A are contained in V, and that for each arithmetic expression e in A we can prove
V Õ ; CÕ „ e : nat for the constraints CÕ known at the occurrence of e (implying e Ø 0).

3.2 The Refinement Layer

We now describe quantifiers (÷n. A, ’n. A) and constraints (?{„}. A, !{„}. A). An overview
of the types, process expressions, and their operational meaning can be found in Table 2.

Quantification

The provider of (c : ÷n. A) should send a witness e along channel c and then continue as
A[e/n]. From the typing perspective, we just need to check that the expression e denotes a
natural number, using only the permitted variables in V.

FSCD 2020

33:8 Rast: Resource-Aware Session Types

V ; C „ e : natV ; C ; ∆ „q P :: (x : A[e/n])
V ; C ; ∆ „q send x {e} ; P :: (x : ÷n. A)

÷R

V, n ; C ; ∆, (x : A) „q Qn :: (z : C) (n fresh)
V ; C ; ∆, (x : ÷n. A) „q {n} Ω recv x ; Qn :: (z : C)

÷L

The dual type ’n. A reverses the role of the provider and client. The client sends (the value
of) an arithmetic expression e which the provider receives and binds to n.

Constraints

Refined session types also allow constraints over index variables. From the message-passing
perspective, the provider of (c : ?{„}. A) should send a proof of „ along c and the client
should receive such a proof. Statically, it is the provider’s responsibility to ensure that „

holds, while the client is permitted to assume that „ is true. The dual operator !{„}. A

reverses the role of provider and client. The provider of c : !{„}. A may assume the truth of
„, while the client must verify it. The typing rules for the ? type constructor are

V ; C ✏ „ V ; C ; ∆ „q P :: (x : A)
V ; C ; ∆ „q assert x {„} ; P :: (x : ?{„}. A)

?R

V ; C · „ ; ∆, (x : A) „q Q :: (z : C)
V ; C ; ∆, (x : ?{„}. A) „q assume x {„} ; Q :: (z : C)

?L

The remaining issue is how to type-check a branch that is impossible due to unsatisfiable
constraints. A special impossibility construct is used to handle this situation (dead branches).

V ; C ✏ ‹
V ; C ; ∆ „q impossible :: (x : A)

unsat

There is no operational rule for this scenario since in well-typed configurations the process
expression “impossible” is dead code and can never be reached. In practice, we almost never
write this construct since reconstruction will fill in missing branches, whose impossibility is
then verified by the type checker.

Example: Binary Numbers

As a second example consider natural numbers in binary representation. The idea is that,
for example, the number 13 in binary (1101)2 form is represented as a sequence of labels
b1, b0, b1, b1, e, close sent or received on a given channel with the least significant bit first.
Here e represents 0 (the empty sequence of bits), while b0 and b1 represent bits 0 and 1,
respectively. Because (linear) arithmetic contains no division operator, we express the type
bin[n] of binary numbers with value n using existential quantification, with the concrete
syntax ?k. A for ÷k. A.

type bin{n} = +{ b0 : ?{n > 0}. ?k. ?{n = 2*k}. bin{k},
b1 : ?{n > 0}. ?k. ?{n = 2*k+1}. bin{k},
e : ?{n = 0}. 1 }

The constraint that n > 0 in the case of b0 ensures the representation is unique and there are
no leading zeros; the same constraint for b1 is in fact redundant. The examples/arith.rast
contains several examples of processes over binary numbers like addition, multiplication,
predecessor, equality and conversion to and from numbers in unary form.

A. Das and F. Pfenning 33:9

4 Ergometric and Temporal Session Types

An important application of refinement types is complexity analysis. Prior work on resource-
aware session types [6, 5, 4] crucially rely on arithmetic refinements to express work and time
bounds. In this section, we review these type systems. The design principle we followed is
that they should be conservative over the basic and indexed session types, so that previously
defined programs and type-checking rules do not change.

4.1 Ergometric Types

The key idea is that processes store potential and messages carry potential. This potential
can either be consumed to perform work or exchanged using special messages. The type
system provides the programmer with the flexibility to specify what constitutes work. Thus,
the programmer can choose to count the resource they are interested in, and the type system
provides the corresponding upper bound. Our current examples assign unit cost to message
sending operations (exempting those for index objects or potentials themselves) effectively
counting the total number of “real” messages exchanged during a computation.

Two dual type constructors ÛrA and ÙrA are used to exchange potential. The provider
of x : ÛrA must pay r units of potential along x using process term (pay x {r} ; P), and
continue to provide A by executing P . These r units are deducted from the potential stored
inside the sender. Dually, the client must receive the r units of potential using the term
(get x {r} ; Q) and add this to its internal stored potential. Finally, since processes are
allowed to store potential, the typing judgment records the potential available to a process
above the turnstile V ; C ; ∆ „

q

� P :: (x : A). We allow potential q to refer to index variables
in V to capture variable potential. The typing rules for ÛrA are

V ; C ✏ q Ø r1 = r2 V ; C ; ∆ „q≠r1
P :: (x : A)

V ; C ; ∆ „q pay x {r1} ; P :: (x : Ûr2A)
ÛR

V ; C ✏ r1 = r2 V ; C ; ∆, (x : A) „q+r1
Q :: (z : C)

V ; C ; ∆, (x : Ûr2A) „q get x {r1} ; Q :: (z : C)
ÛL

In both cases, we check that the exchanged potential in the expression and type matches
(r1 = r2), and while paying, we ensure that the sender has sufficient potential to pay. The
dual type ÙrA enables the provider to receive potential that is sent by its client. Since the
sent or received potential must match the one prescribed by the type, our reconstruction
algorithm can insert the pay and get actions in a sound and complete way (get as soon as
possible and pay as late as possible).

We use a special expression work {r} ; P to perform work. Usually, work actions are
inserted by the Rast compiler based on a cost model selected by the programmer, such as
paying one erg just before every send operation. The programmer can also select a model
where all operations are free and manually insert calls to work {r}. An example of this is
given in the file linlam-reds.rast that counts the number of reductions necessary for the
evaluation of an expression in the linear ⁄-calculus.

V ; C ✏ q Ø r V ; C ; ∆ „q≠r
P :: (x : A)

V ; C ; ∆ „q work {r} ; P :: (x : A)
work

Work is precise, that is, before terminating a process must have 0 potential, which can be
achieved by explicitly consuming any remaining potential.

FSCD 2020

33:10 Rast: Resource-Aware Session Types

Example: Queue Revisited

We have already seen the ergometric types of queues as a bucket brigade in the introduction.
We show it now in concrete syntax, where <{p}| receives potential p.

type queue{n} = &{ ins : <{2*n}| A -o queue{n+1},
del : <{2}| +{ none : ?{n = 0}. 1,

some : ?{n > 0}. A * queue{n -1}}}

decl empty : . |- (q : queue {0})
decl elem{n} : (x : A) (r : queue{n}) |- (q : queue{n+1})

Interestingly, the exact code of Listing 1 will check against this more informative type (see
file examples/list-work.rast). The cost model will insert the appropriate work {r} action
and reconstruction will insert the actions to pay and get potential.

For a queue implemented internally as two stacks we can perform an amortized analysis.
Briefly, the queue process maintains two lists: one (in) to store messages when they are
enqueued, and a reversed list (out) from which they are dequeued. When the client wishes
to dequeue an element and the out list is empty, the provider reverses the in list to serve as
the new out list. A careful analysis shows that if this data structure is used linearly, both
insert and delete have constant amortized time. More specifically we obtain the type

type queue{n} = &{ enq : <{6}| nat -o queue{n+1},
deq : <{4}| +{ none : ?{n = 0}. 1,

some : ?{n > 0}. nat * queue{n -1}}}

The program can be found in the file list-work.rast in the repository.

4.2 Temporal Types

Rast also supports temporal modalities next (•A), always (⇤A), and eventually (⌃A),
interpreted over a linear model of time. To model computation time, we use the syntactic
form delay which advances time by one tick. A particular cost semantics is specified by
taking an ordinary, non-temporal program and adding delays capturing the intended cost.
For example, if only the blocking operations should cost one unit of time, a delay is added
before the continuation of every receiving construct. For type checking, the delay construct
subtracts one • operator from every channel it refers to. We denote consuming r units on
the left of the context using [A]tL, and on the right by [A]tR. Briefly, [•tA]≠t

L = [•tA]≠t
R = A.

V ; C ✏ t Ø 0V ; C ; [∆]≠t
L „q Q :: (x : [A]≠t

R)
V ; C ; ∆ „q delay (t) ; P :: (x : A)

•LR

Always A

A process providing x : ⇤A promises to be available at any time in the future, including now.
When the client would like to use this provider it (conceptually) sends a message now! along
x and then continues to interact according to type A.

A process P providing x : ⇤A must be able to wait indefinitely. But this is only possible
if all the channels that P uses can also wait indefinitely. This is enforced in the rule by the
condition ∆ delayed⇤ which requires each antecedent to have the form yi : •ni ⇤Bi.

∆ delayed⇤ ∆ „ P :: (x : A)
∆ „ (when? (x) ; P) :: (x : ⇤A) ⇤R

∆, x : A „ Q :: (z : C)
∆, x : ⇤A „ (now! (x) ; Q) :: (z : C) ⇤L

A. Das and F. Pfenning 33:11

Rast also has its dual modality ⌃A, which communicates at some indeterminate future time.
This is used when the time (span) of a computation is unpredictable or not expressible within
the constraints of the language (more details in prior work [5]).

Example: Queue Revisited

We have already foreshadowed the temporal type of a queue, implemented as a bucket brigade.
We show it now in concrete syntax, where () is the • modality and [] represents ⇤. We
also show the types of the empty and elem processes (see file examples/time.rast).

type queue{n} = [] {enq : () A -o ()()() queue{n+1},
deq : ()+{ none: () ?{n = 0}. 1,

some: () ?{n > 0}. A * () queue{n -1}}}
decl empty : . |- (q : ()() queue {0})
decl elem{n} : (x : A) (r : ()() queue{n}) |- (q : queue{n+1})

Because Rast currently does not have reconstruction for time we have to update the
program with the five temporal actions presented in this section (two instances of delay, two
of when, and one of now). A key observation here is that in the case of elem the process r

does not need to be ready instantaneously, but can be ready after a delay of 2 ticks, because
that is how long it takes to receive the ins label and the element along q. This slack is also
reflected in the type of empty because it becomes then back of a new element when the end
of the queue is reached.

5 Implementation

We have implemented a prototype for Rast in Standard ML (6700 lines of code). This
implementation contains a lexer and parser (1355 lines), an arithmetic solver (1083 lines), a
type checker (2852 lines), pretty printer (375 lines), reconstruction engine (880 lines), and
interpreter (155 lines). The source code is well-documented and available open-source.

Syntax

Table 3 describes the syntax for Rast programs. Each row presents the abstract and concrete
representation of a session type, and its corresponding providing expression. A program
contains a series of mutually recursive type and process declarations and definitions.

type v{n} = A
decl f : (x1 : A1) ... (xn : An) |- (x : A)
proc x <- f x1 ... xn = P

Listing 2 Top-Level Declarations
The first line is a type definition, where v is the name with index variable n and A is its
definition. The second line is a process declaration, where f is the process name, (x1 :
A1) . . . (xn : An) are the used channels and corresponding types, while the offered channel is
x of type A. Finally, the last line is a process definition for the same process f defined using
the process expression P . We use a hand-written lexer and shift-reduce parser to read an
input file and generate the corresponding abstract syntax tree of the program. The reason to
use a hand-written parser instead of a parser generator is to anticipate the most common
syntax errors that programmers make and respond with the best possible error messages.

FSCD 2020

33:12 Rast: Resource-Aware Session Types

Table 3 Abstract and Corresponding Concrete Syntax for Types and Expressions.

Abstract Types Concrete Types Abstract Syntax Concrete Syntax

ü{l : A, . . .} +{l : A, ...} x.k x.k
N{l : A, . . .} &{l : A, ...} case x (¸ ∆ P)¸œL case x (l => P | ...)
A ¢ B A * B send x w send x w
A (B A -o B y Ω recv x y <- recv x
1 1 close x close x

wait x wait x
÷n. A ?n. A send x {e} send x {e}
’n. A !n. A {n} Ω recv x {n} <- recv x
?{n = 0}. A ?{n = 0}. A assert x {n = 0} assert x {n = 0}
!{n = 0}. A !{n = 0}. A assume x {n = 0} assume x {n = 0}
ÛrA |{r}> A pay x {r} pay x {r}
ÙrA <{r}| A get x {r} get x {r}
•tA ({t}) A delay t delay {t}
⇤A [] A when x when x
⌃A <> A now x now x
V [e] V{e1}...{ek} x ¡ y x <-> y

x Ω f x1 . . . xn x <- f x1 ... xn

Validity Checking

Once the program is parsed and its abstract syntax tree is extracted, we perform a validity
check on it. We check that all index refinements, potentials, and delay operators are non-
negative. We also check that all index expressions are closed with respect to the the index
variables in scope. To simplify and improve the efficiency of the type equality algorithm,
we also assign internal names to type subexpressions parameterized over their free index
variables. These internal names are not visible to the programmer.

Cost Model

The cost model defines the execution cost of each construct. Since our type system is
parametric in the cost model, we allow programmers to specify the cost model they want
to use. Although programmers can create their own cost model (by inserting work or delay
expressions in the process expressions), we provide three custom cost models: send, recv, and
recvsend. If we are analyzing work (resp. time), the send cost model inserts a work{1} (resp.
delay{1}) before (resp. after) each send operation. Similarly, recv model assigns a cost of
1 to each receive operation. The recvsend cost model assigns a cost of 1 to each send and
receive operation.

Reconstruction and Type Checking

The programmer can use a flag in the program file to indicate whether they are using
explicit or implicit syntax. If the syntax is explicit, the reconstruction engine performs no
program transformation. However, if the syntax is implicit, we use the implicit type system
to approximately type-check the program. Once completed, we use the forcing calculus,
introduced in prior work [7] to insert assert, assume, pay, get and work constructs. The core
idea here is simple: insert assume or get constructs eagerly, i.e., as soon as available on a

A. Das and F. Pfenning 33:13

channel, and insert assert and pay lazily, i.e., just before communicating on that channel.
The forcing calculus proves that this reconstruction technique is sound and complete in the
absence of certain forms of quantifier alternations (which are checked before reconstruction
is performed). We only perform reconstruction for proof constraints and ergometric types,
leaving reconstruction of quantifiers and temporal constructs to future work.

The implementation takes some care to provide good error messages, in particular
as session types (not to mention arithmetic refinements, ergometric types, and temporal
types) are likely to be unfamiliar. One technique is staging: first check approximate type
correctness, ignoring index, ergometric, and temporal types, and only if that check passes
perform reconstruction and strict checking of type. Another particularly helpful technique
has been type compression. Whenever the type checker expands a type V [e] with V [n] = A

to A[e/n] we record a reverse mapping from A[e/n] to V [e]. When printing types for error
messages this mapping is consulted, and complex types may be compressed to much simpler
forms, greatly aiding readability of error messages.

Type Equality

At the core of type checking lies type equality, defined coinductively [10]. With arithmetic
refinements this equality is undecidable, but have found what seems to be a practical
approximation [7], incrementally constructing a bisimulation closed under reflexivity. This
algorithm always terminates, but may fail to establish an equality if the coinductive invariant
is not general enough. Rast therefore allows the programmer to assert an arbitrary number
of additional type equalities with the construct

eqtype V{e1}...{en} = V’{e1’}...{ek’}

These are then checked one by one, assuming all other asserted equalities. The default
construction of the bisimulation is currently strong enough so that this feature has not been
needed for any of our standard examples.

Arithmetic Solver

To determine the validity of arithmetic propositions that is used by our refinement layer,
we use a straightforward implementation of Cooper’s decision procedure [3] for Presburger
arithmetic. We found a small number of optimizations were necessary, but the resulting
algorithm has been quite efficient and robust.

(i) We eliminate constraints of the form x = e (where x does not occur in e) by substituting
e for x in all other constraints to reduce the total number of variables.

(ii) We exploit that we are working over natural numbers so all solutions have a natural
lower bound, i.e., 0.

We also extend our solver to handle non-linear constraints. Since non-linear arithmetic is
undecidable, in general, we use a normalizer which collects coefficients of each term in the
multinomial expression.

(i) To check e1 = e2, we normalize e1 ≠ e2 and check that each coefficient of the normal
form is 0.

(ii) To check e1 Ø e2, we normalize e1 ≠ e2 and check that each coefficient is non-negative.
(iii) If we know that x Ø c, we substitute y + c for x in the constraint that we are checking

with the knowledge that the fresh y Ø 0.
(iv) We try to find a quick counterexample to validity by plugging in 0 and 1 for the index

variables (which can be improved in the future).

FSCD 2020

33:14 Rast: Resource-Aware Session Types

If the constraint does not fall in the above two categories, we print the constraint and trust
that it holds. A user can then view these constraints manually and confirm their validity. At
present, all of our examples pass without having to trust unsolvable constraints with our
current set of heuristics beyond Presburger arithmetic.

Interpreter

The current version of the interpreter pursues a sequential schedule following a prior pro-
posal [16]. We only execute programs that have no free index variables and only one externally
visible channel, namely the one provided. When the computation finishes, the messages
that were asynchronously sent along this distinguished channel are shown, while running
processes waiting for input are displayed simply as a dash ’-’.

The interpreter is surprisingly fast. For example, using a linear prime sieve to compute
the status (prime or composite) or all number in the range [2, 257] takes 27.172 milliseconds
using MLton during our experiments (see machine specifications below).

6 Examples

We present several different kinds of examples from varying domains illustrating different
features of the type system and algorithms. Table 4 describes the results: iLOC describes the
lines of source code in implicit syntax, eLOC describes the lines of code after reconstruction
(which inserts implicit constructs), #Defs shows the number of process definitions, R (ms)
and T (ms) show the reconstruction and type-checking time in milliseconds respectively.
Note that reconstruction is faster than type-checking since reconstruction does not involve
solving any arithmetic propositions. The experiments were run on an Intel Core i5 2.7 GHz
processor with 16 GB 1867 MHz DDR3 memory.

(i) arithmetic: natural numbers in unary and binary representation indexed by their
value and processes implementing standard arithmetic operations.

(ii) integers: an integer counter represented using two indices x and y with value x ≠ y.
(iii) linlam: expressions in the linear ⁄-calculus indexed by their size.
(iv) list: lists indexed by their size, and some standard operations such as append, reverse,

map, fold, etc. Also provides and implementation of stacks and queues using lists.
(v) primes: the sieve of Eratosthenes to classify numbers as prime or composite.
(vi) segments: type seg[n] = ’k.list[k] (list[n + k] representing partial lists with constant-

work append operation.
(vii) ternary: natural numbers and integers represented in balanced ternary form with

digits 0, 1, ≠1, indexed by their value, and a few standard operations on them.
(viii) theorems: processes representing valid circular [8] proofs of simple theorems such as

n(k + 1) = nk + n, n + 0 = n, n ú 0 = 0, etc.
(ix) tries: a trie data structure to store multisets of binary numbers, with constant amortized

work insertion and deletion verified with ergometric types.
We highlight interesting examples from some case studies showcasing the invariants that can
be proved using arithmetic refinements.

Linear ⁄-Calculus

We demonstrate an implementation of the (untyped) linear ⁄-calculus, including evaluation,
in which the index objects track the size of the expression. Type-checking verifies that the
result of evaluating a linear ⁄-term is no larger than the original term. Our representation
uses linear higher-order abstract syntax (see file examples/linlam-size.rast).

A. Das and F. Pfenning 33:15

Table 4 Case Studies.

Module iLOC eLOC #Defs R (ms) T (ms)

arithmetic 395 619 29 0.959 5.732
integers 90 125 8 0.488 0.659
linlam 88 112 10 0.549 1.072
list 341 642 37 3.164 4.637
primes 118 164 11 0.289 4.580
segments 48 76 8 0.183 0.225
ternary 270 406 20 0.947 140.765
theorems 79 156 13 0.182 1.095
tries 243 520 13 2.122 6.408

Total 1672 2820 149 8.883 165.173

type exp{n} = +{ lam : ?{n > 0}. !n1.exp{n1} -o exp{n1+n-1},
app : ?n1. ?n2. ?{n = n1+n2 +1}. exp{n1} * exp{n2} }

type val{n} = +{ lam : ?{n > 0}. !n1.exp{n1} -o exp{n1+n -1} }
decl eval{n} : (e : exp{n}) |- (v : ?k. ?{k <= n}. val{k})

An expression of size n is either a ⁄ (the label lam) or an application (label app). In case
of lam, after proving n > 0, it expects an expression of size n1 as an argument and then
behaves like the body of the ⁄-abstraction of size n1 + n ≠ 1. In case of app, it sends two
expressions of size n1 and n2 such that n = n1 + n2 + 1.

Interestingly, the result type of evaluation contains an existential quantifier since we do
not know the precise size of the value –we just know it is bounded by n. Also, as exemplified
in the type of val{n}, a value can only be a ⁄-expression (label app missing).

Trie Data Structure

We illustrate the data structure of a trie to maintain multisets of binary numbers. There is a
fair amount of parallelism since consecutive requests to insert numbers into the trie can be
carried out concurrently. We also obtain a good characterization of the necessary work –the
data structure is quite efficient (in theoretical terms). We start with binary numbers where
each bit carries potential p.

type bin{n}{p} = +{ b0 : ?{n > 0}. ?k. ?{n = 2*k}. |{p}> bin{k}{p},
b1 : ?{n > 0}. ?k. ?{n = 2*k+1}. |{p}> bin{k}{p},
e : ?{n = 0}. 1 }

A trie is represented by the type trie[n] where n is the number of elements in the current
multiset. When inserting a number it updates to trie[n + 1]. When we delete a number x

from the trie we delete all copies of x and return its multiplicity. If m is the multiplicity
of the number, then after deletion the trie will have trie[n ≠ m] elements. This requires
the constraint that m Æ n: the multiplicity of an element cannot be greater than the total
number of elements in the multiset.

When inserting a binary number into the trie that number can be of any value. Therefore,
we must pass the index k representing that value, which is represented by a universal
quantifier in the type. Conversely, when responding we need to return the unique binary
number m which is of course not known statically and therefore is an existential quantifier.

FSCD 2020

33:16 Rast: Resource-Aware Session Types

The way we insert the binary number is starting at the root with the least significant bit
and recursively insert the number into the left or right subtrie, depending on whether the bit
is b0 or b1. When we reach the end of the sequence of bits (e) we increase the multiplicity
at the leaf we have reached. As we traverse the trie, we need to construct new intermediate
nodes in case we encounter a leaf. These operations require 4 messages per bit, so the input
number should have potential of 4 per bit. For deletion, we need one more because we need
to communicate the answer back to the client, so 5 units per bit. For simplicity, we therefore
uniformly require 5 units of potential per bit when adding a number to the trie and “burn”
the extra unit during insertion.

type trie{n} =
&{ ins: <{4}| !k. bin{k}{5} -o trie{n+1},

del: <{5}| !k. bin{k}{5} -o ?m. ?{m<=n}. bin{m}{0} * trie{n-m}}

We have two kinds of nodes: leaf nodes (process leaf[0]) not holding any elements and
element nodes (process nodes[n0, m, n1]) representing an element of multiplicity m with
n0 and n1 elements in the left and right subtries, respectively. A node therefore has type
trie[n0 + m + n1]. Neither process carries any potential.

decl leaf : . |- (t : trie {0})
decl node{n0}{m}{n1} :

(l : trie{n0}) (c : ctr{m}) (r : trie{n1}) |- (t : trie{n0+m+n1})

The source code is available at examples/trie-work.rast.

7 Conclusion

This paper describes the Rast programming language. In particular, we focused on the
concrete syntax, type checker and equality, the refinement layer [7], and its applicability
to work [6] and time analysis [5]. The refinements rely on an arithmetic solver based on
Cooper’s algorithm [3]. The interpreter uses the shared memory semantics introduced in
recent work [16]. We concluded with several examples demonstrating the efficacy of the
refined type system in expressing and verifying properties about data structure sizes and
values. We also illustrated the work and time bounds for several examples, all of which have
been verified with our system, and are available in an open-source repository.

References

1 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
Proceedings of the 21st International Conference on Concurrency Theory, CONCUR’10, pages
222–236, Berlin, Heidelberg, 2010. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?
id=1887654.1887670.

2 Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session
types. Mathematical Structures in Computer Science, 760, November 2014. doi:10.1017/
S0960129514000218.

3 David C Cooper. Theorem proving in arithmetic without multiplication. Machine intelligence,
7(91-99):300, 1972.

4 Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar. Resource-
aware session types for digital contracts, 2019. arXiv:1902.06056.

5 Ankush Das, Jan Hoffmann, and Frank Pfenning. Parallel complexity analysis with temporal
session types. Proc. ACM Program. Lang., 2(ICFP):91:1–91:30, July 2018. doi:10.1145/
3236786.

A. Das and F. Pfenning 33:17

6 Ankush Das, Jan Hoffmann, and Frank Pfenning. Work analysis with resource-aware session
types. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’18, pages 305–314, New York, NY, USA, 2018. ACM. doi:10.1145/3209108.3209146.

7 Ankush Das and Frank Pfenning. Session types with arithmetic refinements and their applica-
tion to work analysis, 2020. arXiv:2001.04439.

8 Farzaneh Derakhshan and Frank Pfenning. Circular Proofs as Session-Typed Processes: A Local
Validity Condition. arXiv e-prints, page arXiv:1908.01909, August 2019. arXiv:1908.01909.

9 Henry DeYoung, Luís Caires, Frank Pfenning, and Bernardo Toninho. Cut reduction in linear
logic as asynchronous session-typed communication. In P. Cégielski and A. Durand, editors,
Proceedings of the 21st Annual Conference on Computer Science Logic (CSL 2012), pages
228–242, Fontainebleau, France, September 2012. LIPIcs 16.

10 Simon Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta Informatica,
42(2):191–225, November 2005. doi:10.1007/s00236-005-0177-z.

11 Simon J. Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous session types.
Journal of Functional Programming, 20(1):19–50, January 2010.

12 Dennis Griffith and Elsa L. Gunter. Liquidpi: Inferrable dependent session types. In Guillaume
Brat, Neha Rungta, and Arnaud Venet, editors, NASA Formal Methods, pages 185–197, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

13 Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR’93, pages 509–523,
Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

14 Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type discipline
for structured communication-based programming. In Chris Hankin, editor, Programming

Languages and Systems, pages 122–138, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.
15 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.

In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’08, pages 273–284, New York, NY, USA, 2008. ACM.
doi:10.1145/1328438.1328472.

16 Klaas Pruiksma and Frank Pfenning. A shared-memory semantics for mixed linear and
non-linear session types. unpublished, 2018.

17 Vasco T. Vasconcelos. Fundamentals of session types. Information and Computation, 217:52–70,
2012. doi:10.1016/j.ic.2012.05.002.

18 Philip Wadler. Propositions as sessions. SIGPLAN Not., 47(9):273–286, September 2012.
doi:10.1145/2398856.2364568.

FSCD 2020

