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ABSTRACT

We present a system of linear session types that integrates several
features aimed at verification of different properties of concurrent
programs, specifically types indexed with arithmetic expressions,
linear constraints and quantification. We prove the standard type
safety properties of session fidelity and deadlock freedom. In order
to control the verbosity of programs we introduce implicit syntax
and an algorithm for reconstruction, which is complete under some
mild assumptions on the structure of types. We then illustrate the
expressive power of our language (called Rast) with a variety of ex-
amples, including normalization for the linear A-calculus, balanced
ternary arithmetic, binary counters and tries.
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1 INTRODUCTION

Session types [20-22, 33] provide a structured way of prescribing
communication protocols of message-passing systems. This paper
focuses on binary session types governing the interactions along
channels with two endpoints. Binary session types without general
recursion exhibit a Curry-Howard isomorphism with linear logic
[5, 6, 34] and are therefore of particular foundational significance.
Moreover, type safety derives from properties of cut reduction and
guarantees deadlock freedom (global progress) and session fidelity
(type preservation) ensuring that at runtime the sender and receiver
exchange messages conforming to the channel’s type.

However, even in the presence of recursive types, the kinds
of protocols that can be specified are limited, which has led to
a number of extensions, such as context-free session types [1, 28],
label-dependent session types [29], and general dependent session
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types [17, 24, 30, 31]. In prior work, we have proposed arithmeti-
cally refined session types [12] and have investigated their properties
independently of any specific programming language. With arith-
metically refined types we can, for example, express a protocol that
sends a natural number n and then a sequence of messages exactly
of length n, and many more complex protocols (for additional exam-
ples, see Section 6). We found that type equality, naturally defined
via a bisimulation between observable communication behaviors,
is undecidable, but also proposed a simple and practical algorithm.
In this paper we present the design, theory, and pragmatics of a
programming language for processes in which type checking guar-
antees compliance with arithmetically refined session types. Here,
type checking is defined over a language where constructs related
to arithmetic constraints have explicit communication counterparts.

We observe, however, that many programs in this explicit lan-
guage are unnecessarily verbose and therefore tedious for the pro-
grammer to write, because the process constructs pertaining to
the refinement layer contribute only to verifying its properties,
but not its observable computational outcomes. As is common for
refinement types, we therefore also designed an implicit language
for processes where most constructs related to index refinements
are omitted. The problem of reconstruction is then to map such an
implicit program to an explicit one. We provide an algorithm for
reconstruction that is complete (if there is a reconstruction, it can
be found). This algorithm exploits proof-theoretic properties of the
sequent calculus akin to focusing [2] to avoid backtracking and
consequently provides precise error messages that we have found
to be helpful.

Thus, our main results are the following:

(1) The design of an explicit language with a bidirectional type-
checking algorithm that is sound and complete relative to
an oracle for type equality.

(2) A type soundness theorem that establishes session fidelity
(type preservation) and deadlock freedom (global progress)
for well-typed programs.

(3) The design of a significantly more compact implicit syntax
and a reconstruction algorithm producing explicit programs.
Reconstruction is complete under some mild conditions on
the language of types.

(4) Several case studies that explore the possibilities and lim-
itations of program properties that can be captured with
arithmetic refinements.

We have already reported on the implementation of the design
and theory presented here in a system description that overviews
the Rast programming language [11]. All examples in this paper
have been type-checked and executed in Rast and are publicly
available [27]. Due to space constraints, there is an important aspect
of Rast that we do not cover in this paper: it provides ergometric [10]
and temporal [9] types to measure and verify (amortized) work and
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span of concurrently executing session-typed programs. The above-
cited prior works manually compute and check complexity bounds
at an informal metalevel. The arithmetic refinements in the Rast
language allow us to internally express these bounds and, for the
first time, verify them automatically.

The rest of the paper is organized as follows: Section 2 overviews
the Rast language with an illustrative queue data structure. Sec-
tion 3 formalizes the type system, semantics and type safety of Rast;
Section 4 presents the reconstruction algorithm. Section 5 describes
the implementation and Section 6 highlights some interesting ex-
amples with their key properties verified in Rast. Finally, Section 7
describes related work and Section 8 concludes.

2 OVERVIEW OF REFINED SESSION TYPES

Basic session types have limited expressivity. As a simple example,
consider the session type provided by a queue data structure storing
elements of type A
queuey = &{ins : A —o queuey,
del : ®{none : 1,
some : A® queue, }}

This type describes a queue interface supporting insertion and
deletion. The external choice operator & dictates that the process
providing this data structure accepts either one of two messages:
the labels ins or del. In the case of the label ins, it then receives an
element of type A denoted by the —o operator, and then the type
recurses back to queue . On receiving a del request, the process
can respond with one of two labels (none or some), indicated by
the internal choice operator . It responds with none and then
terminates (indicated by 1) if the queue is empty, or with some
followed by the element of type A (expressed with the ® operator)
and recurses if the queue is nonempty. However, the simple session
type does not express the conditions under which the none and
some branches must be chosen, which requires tracking the length
of the queue in the type.

We enhance the session type with a simple arithmetic refinement.
The more precise type
queuey[n] = &{ins : A — queue4[n + 1],

del : @{none : ?{n = 0}. 1,
some : ?{n > 0}. A® queuey[n —1]}}

uses the index refinement n to indicate the size of the queue. In
addition, the refined type uses a type constraint ?{¢}. A which can
be read as “there exists a proof of ¢”. Here, the process providing the
queue must (conceptually) send a proof of n = 0 after it sends none,
and a proof of n > 0 after it sends some. It is therefore constrained
in its choice between the two branches based on the value of the
index n. Because the index domain from which the propositions ¢
are drawn is Presburger arithmetic and hence decidable, no proof of
¢ will actually be sent, but we can nevertheless verify the constraint
statically. The dual to ?{¢}. A is the type constraint !{¢}. A to be
interpreted as “for all proofs of ¢”. The refinement type system also
supports explicit quantifiers In. A and Vn. A that send and receive
natural numbers, respectively. Because intrinsic properties of data
structures (such as the number of elements) must be nonnegative
we work over the natural numbers 0, 1, ... rather than general
integers. This includes a static validity check for types to ensure
that all index refinements are nonnegative. For example, while
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i : queue[0] @ c2 : queue[l]
Cemper) e

@ ci : queue[0] @ c2 :queue[2]
<+ ins —

@ o : queue[0] @ ci :queue[l] - c2 :queue[2]

Figure 1: Inserting an element into the queue

. o : queue[0] . ci :queue[l] . c2 : queue[2]
< del —

. o : queue[0] . ci :queue[l] . c2 1 queue[2]
— some, X2 =

@ o : queue[0] @ ci :queue[l]

Figure 2: Deleting an element from the queue

checking the validity of queue 4[n], we encounter the constraint
n > 0 in the some branch, so we assume it and then verify that
n—1> 0, ensuring the validity of queue4[n — 1].

Our language design is based on two key dual principles: the type
?{¢}. A corresponds to an assertion of ¢, whereas the type !{¢}. A
corresponds to an assumption of ¢. Consequently, we introduce dual
process terms: (i) assert x {¢} to assert constraint ¢ on channel
x, and dually, (ii) assume x {¢} to assume ¢ on x. Following the
same principle, we observe that 3n. A requires the provider to send
a natural number and Vn. A mandates the provider to receive a
natural number. Thus, we introduce (i) send x {e} to send an
arithmetic expression e on channel x and (ii) {n} <« recv x to
receive a natural number on channel x and bind it to variable n.

One parallel implementation of such a queue data structure is a
sequence of elem processes, each storing an element of the queue,
terminated by an empty process, representing the empty queue.
Figures 1 and 2 describe the sequence diagrams for insertion and
deletion w.r.t. this implementation of queues. In Figure 1, the initial
queue (of size 1) consists of an empty process that provides along c; :
queue 4[0] (indicated by e between empty and c1) and does not use
any channels, and an elem process that uses c1 : queue 4[0], and an
element of type A (not shown) and provides c; : queue 4[1]. The ins
message is first received on ¢z, then passed on to c¢1, which spawns a
new empty process offering on ¢y : queue 4[0]. The original process
offering on ¢; then transitions to elem. In Figure 2, the del message
is received on ¢y, which replies with the some label and an element
xo stored inside (not shown) the offering elem process. The process
then terminates by forwarding channel ¢z onto cj. As demonstrated
by Figures 1 and 2, insertions take place at the tail of the queue
while deletions occur at the head of the queue.
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1: -+ empty = (s : queue4[0])

2 s« empty=

3: case s (

4: ins = x < recvs; % (x: A) F (s : quy(1])
5: e «— empty; % (x : A), (e : qu4[0]) F (s : qu4[1])
6: s « elem[0] x e

7: | del = s.none ; % -F(s:?2{0=0}.1)
8: assert s {0 =0} ; % -+ (s:1)
9: close s)

10: (x : A), (t : queuey[n]) + elem[n] :: (s : queuey[n + 1])
11: s « elem[n] x,t =

12: case s (

13: ins =y < recvs;

14: t.ins ;

15: sendty; % (x:A),(t:quuln+1])r(s:quyln+2])
16: s«—elemn+1] xt

17: | del = s.some ;

18: assert s {n+1> 0} ;

19: send s x ; % (¢ : qugyln]) + (s : quy[n])
20: s e t)

Figure 3: Implementations for the empty and elem processes.

Formally, the empty process offers type queue4[0] while the
elem[n] process (indexed by arithmetic variable n) uses channels
of type queue4[n] and A and offers type queue,[n + 1]. In our
notation, the process declarations will be written as (used channels
on the left and provided channel on the right)

F empty = (s : queue4[0])
(x : A) (t : queuey[n]) + elem[n] :: (s : queuey[n + 1])

Figure 3 presents the implementation of empty and elem pro-
cesses along with their derivations on the right (type queue4[n]
abbreviated to qu4[n]). Upon receiving the ins label and element
x : A(line 4), the empty process spawns a new empty process (line 5),
binds it to channel e, and tail calls elem[0] (line 6). On inputting the
del label, the empty process takes the none branch (line 7) since
it stores no elements. Therefore, it needs to send a proof of n = 0,
and since it provides queue 4[0], it sends the trivial proof of 0 = 0
(line 8), and closes the channel terminating communication (line 9).
The elem process receives the ins label and element y : A (line 13),
passes on these two messages on the tail ¢ (lines 14,15), and recurses
with elem[n + 1] (line 16). The type expected by elem[n + 1] indeed
matches the type of the input and output channels, as confirmed by
the process declaration. On receiving the del label, the elem process
replies with the some label (line 17) and the proof of n +1 > 0
(line 18), again trivial since n is a natural number. It terminates with
forwarding s along ¢ (line 20). This forwarding is valid since the
types of s and ¢ exactly match as described by the id rule in Sec-
tion 3.1 (corresponds to identity). The programmer is not burdened
with writing the asserts (in blue) as they are automatically inserted
by our reconstruction algorithm (Section 4).

At runtime, each arithmetic proposition will be closed, so if it
has no quantifiers it can simply be evaluated. In the presence of
quantifiers, a decision procedure for Presburger arithmetic can be
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applied dynamically (if desired, or if a provider or client may not
be trusted), but no actual proof object needs to be transmitted.
An interesting corner case would be, say, if a process with one
element (n = 1) responded with none to the del request. It would
have to follow up with a proof that 1 = 0, which is of course
impossible. Therefore, our refinements guarantee that no further
communication along this channel could take place.

3 BASIC AND REFINED SESSION TYPES

This section presents the basic system of session types and its
arithmetic refinement along with corresponding process terms and
typing rules. The underlying base system of session types is de-
rived from a Curry-Howard interpretation [5, 6] of intuitionistic
linear logic [16]. The key idea is that an intuitionistic linear sequent
A1,A, ..., Ay + Ais interpreted as the interface to a process ex-
pression P. We label each of the antecedents with a channel name
x; and the succedent with channel name z. The x;’s are channels
used by P and z is the channel provided by P.

x1:A1,x2:A2,...,xn:Apr P (2:C)

The resulting judgment formally states that process P provides a
service of session type C along channel z, while using the services
of session types Ay, ...,A, provided along channels x1,...,xp
respectively. We abbreviate the antecedent of the sequent by A.

In addition to the type constructors arising from the connectives
of intuitionistic linear logic (®, &, ®, 1 —), we have type names,
indexed by a sequence of arithmetic expressions V[e], existential
and universal quantification over natural numbers (3n. A, Vn. A)
and existential and universal constraints (?{@}. A, 1{¢}. A). We write
i for constant and n for variable natural numbers.

Types AB u= @{C:Arteer | 8&{€: Ar}eer

| A®B|A—oB|1]|V]e]

| ¢t A| {4} A|Tn.A|Vn. A
Arith. Exps. e u= ile+ele—e|iXe|n

Arith. Props. [0)

e=ele>e|T|L|pAQ
¢VP|=¢|3n.g|Vn.¢

= x.k; P|casex (I = P

| sendxy; P|ly<«recvx; P
| close x | wait x ; P
|

|

|

Procs P,Q

xeoylxe—fysP
assert x {¢} ; P | assume x {¢} ; P
send x {e}; P|{n} < recvx; P

Our implementation does not support type polymorphism but it
is convenient in some of the examples. We therefore allow defini-
tions such as queue,[n] = ... and interpret them as a family of
definitions, one for each possible type A.

The typing judgment has the form of a sequent

V;,C; Arg Pi(x:A)

where V are index variables n, C are constraints over these vari-
ables expressed as a single proposition, A are the linear antecedents
x; : Aj, P is a process expression, and x : A is the linear succedent.
We propose and maintain that the x;’s and x are all distinct, and
that all free index variables in C, A, P, and A are contained among
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Table 1: Basic session types with operational description

Type Continuation Process Term Continuation Description
c:®{C:Ar}rer c:Ag ck; P P provider sends label k along ¢
case ¢ ({ = Qp)eer Ok client receives label k along ¢
c: &{l:Ap}rer c: A case ¢ ({ = Pp)eer P provider receives label k along ¢
ck; Q Q client sends label k along ¢
c:A®B c:B sendcw; P P provider sends channel w : A along ¢
Yy recvc; Qy Qylw/y] client receives channel w : A along ¢
c:A—oB c:B ye—recve; Py Py[w/y] provider receives channel w : A along ¢
sendcw; Q Q client sends channel w : A along ¢
c:1 — close ¢ — provider sends close along ¢
wait ¢; Q Q client receives close along ¢

V. Finally, X is a fixed signature containing type and process defini-
tions (explained in Section 3.1) Because it is fixed, we elide it from
the presentation of the rules. In addition we write V ; C £ ¢ for
semantic entailment (proving ¢ assuming C) in the constraint do-
main where V contains all arithmetic variables in C and ¢. Table 1
overviews the session types their associated process terms, their
continuation (both in types and terms) and operational description.

We formalize the operational semantics as a system of multiset
rewriting rules [7]. We introduce semantic objects proc(c, P) and
msg(c, M) which mean that process P or message M provide along
channel c. A process configuration is a multiset of such objects,
where any two channels provided are distinct (formally described
in Section 3.3).

3.1 Basic Session Types

In this subsection, we review the syntax and semantics for the basic
session type operators (&, @, ®, —o and 1). A summary of the cor-
responding process terms and intuitive explanation for semantics
is provided in Table 1.

External Choice. The external choice type constructor &{¢ :
Ar}eer is an n-ary labeled generalization of the additive conjunc-
tion A & B. Operationally, it requires the provider of x : &{¢ :
Ap¢}per to branch based on the label k € L it receives from the
client and continue to provide type Ag. The corresponding process
term is written as case x ({ = P)g¢r. Dually, the client must send
one of the labels k € L using the process term (x.k ; Q) where Q is
the continuation.

Veel) V;C; ArPp:(x:Ap) 2
Vi, C; Arcasex (€ = Pplper = (x: &{l : A¢}eer)

R

(kel) V;C; A(x:A)FQ:=(z:0)
V;C; A(x:8{C:Ap}per) F (x.k; Q) (z:0)

&L

Communication is asynchronous, so that the client c.k ; Q sends
a message k along c¢ and continues as Q without waiting for it
to be received. As a technical device to ensure that consecutive
messages on a channel arrive in order, the sender also creates a
fresh continuation channel ¢’ so that the message k is actually

represented as (c.k ; ¢ <> ¢’) (read: send k along ¢ and continue
along ¢’). When the message k is received along ¢, we select branch
k and also substitute the continuation channel ¢’ for c. Rules &S
and &C below describe the operational behavior of the provider
and client respectively (¢’ fresh).
(&S) : proc(d,c.k ; Q) +— msg(c’,c.k; ¢’ « c),proc(d, Q[c’/c])
(&C) : proc(c,case ¢ (£ = Q¢)eer)s

msg(c’,c.k ; ¢’ «¢) — proc(c’, Qxlc’/c])

The internal choice constructor &{¢ : Ag}eer is the dual of
external choice requiring the provider to send one of the labels
k € L that the client must branch on.

(kelL) V;C;ArP:(x:Ay)
V;C; Ar(xk; P)u(x:0{€:Ar}rer)

Veel) V;C;AXx:Ap)FQpu(z:0)
Vi C; A (x:d{l:Ap}per) F case x (€ = Qp)ger 2 (z: C)

oL

This dual constructor reverses the role of the provider and client.
The provider (x.k ; P) of x : ®{€ : Ap}rer) sends the label k along
x and continues to provide x : Ag. Correspondingly, the client
branches on the label received using channel x : Ay in branch ¢
with process term Q. The rules of operational semantics (&S, ®C)
are exact dual of &S and &C and omitted for brevity.

Channel Passing. The tensor operator A ® B prescribes that
the provider of x : A® B sends a channel y of type A and continues
to provide type B. The corresponding process term is send x y ; P
where P is the continuation. Correspondingly, its client must re-
ceives a channel using the term y < recv x ; Q, binding it to
variable y and continuing to execute Q.

V;C; ArP:(x:B)
V;C; A(y:A)r(sendxy; P):(x: A® B) ®

R

V,C;AYy:A),x:B)rQ:=(z:0)
V,C; A(x:A®B)F(y—recvx; Q) (z:C)

®L

Operationally, the provider send ¢ d ; P sends the channel d and
the continuation channel ¢’ along c as a message and continues with
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executing P. The client receives the channel d and continuation
channel ¢’ and substitutes d for x and ¢’ for c.
(®S) : proc(c,send ¢ d ; P) — proc(c’, P[c"[c]),
msg(c,send ¢ d ; ¢ « ¢’)

(®C) : msg(c,send ¢ d ; ¢ « ¢’),

proc(e,x < recv c; Q) — proc(e, Q[¢’,d/c,x])
The dual operator A — B allows the provider to receive a channel
of type A and continue to provide type B. The client of A — B, on
the other hand, sends the channel of type A and continues to use B.

V;C; A(y:A)rP:u(x:B) R
V;C; Ar(ye—recvx; P):(x:A— B) -

V;C; A,(x:B)rFQ:u(z:0)

V;C; A(x:A—-B),(y:A)r(sendxy; Q):(z:C) —l

Termination. The type 1, the multiplicative unit of linear logic,
indicates termination requiring that the provider send a close mes-
sage followed by terminating the communication. Linearity en-
forces that the provider not use any channels.

V;C; -F(close x) = (x:1) 1R

V;C; ArQ:(z:0)
V;C; A(x:1)F(waitx; Q)= (z:0)

1L

Operationally, the provider waits for the closing message, which
has no continuation channel since the provider terminates.

(1S) : proc(c, close ¢) — msg(c,close ¢)

(1C) : msg(c, close c), proc(d, wait ¢ ; Q) +— proc(d, Q)

Forwarding. A process x <> y identifies the channels x and y
so that any further communication along either x or y will be along
the unified channel. Its typing rule corresponds to the logical rule
of identity.

V;C;y:Ar(x o y)=(x: A id

Operationally, a process ¢ <> d forwards any message M that ar-
rives on d to ¢ and vice-versa. Since channels are used linearly, the
forwarding process can then terminate, ensuring proper renaming,
as exemplified in the rules below.

(id*C) : msg(d, M), proc(c,c < d) +— msg(c, [c/d|M)

(id=C) : proc(c, ¢ < d), msg(e, M(c)) +— msg(e, [d/c]M(c))

We write M(c) to indicate that ¢ must occur in message M ensuring
that M is the sole client of c.

Process Definitions. Process definitions have the form A +
fln] = P = (x : A) where f is the name of the process and P
its definition. In addition, 7 is a sequence of arithmetic variables
that A, P and A can refer to. All definitions are collected in a fixed
global signature X. For a well-formed signature, we require that
n; T; ArP:u(x:A)for every definition, thereby allowing defini-
tions to be mutually recursive. A new instance of a defined process
f can be spawned with the expression x « f[e] y ; Q wherey
is a sequence of channels matching the antecedents A and [e] is a
sequence of arithmetic expression matching the variables [n]. The
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newly spawned process will use all variables in y and provide x to
the continuation Q.

Yy’ :BF f[7] =Pr= (x':A)ex
A = (y : B)[e/n] ViC;A(x:Ale/n))rQ:=(z:0) dof

V;C; AN F(x— fle]ly; Q) (z:C)

The declaration of f is looked up in the signature X (first premise),
and e is substituted for n while matching the types in A’ and y
(second premise). Similarly, the freshly created channel x has type
A from the signature with e substituted for n. The corresponding
semantics rule also performs a similar substitution

(a fresh).

(defC) : proc(c, x « f[Elg; Q)
proc(a, Pr[a/x,d/y’,€/n]), proc(c, Qa/x])

wherey’ : BF f[n] = Pru(x’:A) ez

Sometimes a process invocation is a tail call, written without
a continuation as x « f[e] y. This is a short-hand for x” «
flel y; x & x’ for a fresh variable x’, that is, we create a fresh
channel and immediately identify it with x.

Type Definitions. As our queue example already showed, ses-
sion types can be defined recursively, departing from a strict Curry-
Howard interpretation of linear logic, analogous to the way pure
ML or Haskell depart from a pure interpretation of intuitionistic
logic. For this purpose we allow (possibly mutually recursive) type
definitions V[n] = A in the signature 3. Here, 11 denotes a sequence
of arithmetic variables. Again, for a well-formed signature, we re-
quire A to be contractive [15] meaning A should not itself be a type
name. Our type definitions are equirecursive so we can silently
replace type names V[e] indexed with arithmetic refinements by
Ale/n] during type checking, and no explicit rules for recursive
types are needed.

All types in a signature must be valid, formally denoted with the
judgment V ; C + A valid, which requires that all free arithmetic
variables of C and A are contained in “V, and that for each arithmetic
expression e in A we can prove V'’ ; C’ + e : nat for the constraints
C’ known at the occurrence of e (implicitly proving that e > 0).

3.2 The Refinement Layer

We now describe quantifiers (3n. A, Vn. A) and constraints (?{¢}. A,
{¢}. A) [12]. An overview of the types, process expressions, and
their operational meaning can be found in Table 2.

Quantification. The provider of (c : 3n. A) should send a wit-
ness i along channel ¢ and then continue as A[i/n]. The witness
is specified by an arithmetic expression e which, since it must be
closed at runtime, can be evaluated to a number i (following stan-
dard evaluation rules of arithmetic). From the typing perspective,
we just need to check that the expression e denotes a natural num-
ber, using only the permitted variables in V. This is represented
with the auxiliary judgment V ; C + e : nat (implicitly proving
that e > 0 under constraint C).
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Table 2: Refined session types with operational description

Type Continuation Process Term Continuation Description

c:dn. A c:Ali/n] send ¢ {e}; P P provider sends the value i of e along ¢
{n} «—recvc; Q OQli/n] client receives number i along c

c:Vn. A c: Ali/n] {n} «<recvc; P Pli/n] provider receives number i along c
send ¢ {e}; O Q client sends value i of e along ¢

c:{p}t.A c:A assert ¢ {¢}; P P provider asserts ¢ on channel ¢
assumec {¢}; QO O client assumes ¢ on ¢

c: ¢} A ¢:A assumec {¢}; P P provider assumes ¢ on channel ¢
assert ¢ {¢p}; Q Q client asserts ¢ on ¢

YV, Cre:nat V,;C; ArP:(x:Ale/n))
V;C; Arsendx {e}; P:(x:3n. A

V,n; C; A(x:ArQ:(z:C) (nfresh)
V;C; A(x:3nA)r{n} —recvx; Q= (z:C)

Statically, the client adds n to V' to ensure that Q and A are closed
w.r.t. V. Operationally, the provider sends the arithmetic expression
with the continuation channel as a message that the client receives
and appropriately substitutes.
(3S) : proc(c,send ¢ {e} ; P) —

proc(c’, P[c’/c]), msg(c,send ¢ {e} ; ¢ &> ¢’)
(3C) : msg(c,send ¢ {e} ; ¢ & '),

proc(d, {n} « recvc; Q) +— proc(d,Qle/n][c’/c])

The dual type Vn. A reverses the role of the provider and client.

The client sends (the value of) an arithmetic expression e which
the provider receives and binds to n.

V.n; C; Ar Py u(x:A)
V;C; A+{n} «—recvx; P, (x:Vn. A

VR

V; Ctre:nat Vi A(x:Ale/n)rQ:(z:0)
V,C; A(x:Vn.A)rsendx {e}; Q:(z:0)
(VS) : proc(d,send ¢ {e} ; P) +—
msg(c’,send ¢ {e} ; ¢’ & ¢), proc(d, [c¢’/c]P)
(VC) : proc(d, {n} < recvc; Q),
msg(c’,send ¢ {e}; ¢’ < ¢) — proc(d, [e/n][c’/c]Q)

VL

Constraints. Refined session types also allow constraints over
index variables. As we have already seen in the examples, these
critically govern permissible messages. From the message-passing
perspective, the provider of (¢ : ?{¢}. A) should send a proof of
¢ along c¢ and the client should receive such a proof. However,
since the index domain is decidable and future computation cannot
depend on the form of the proof (what is known in type theory as
proofirrelevance) such messages are not actually exchanged. Instead,
it is the provider’s responsibility to ensure that ¢ holds, while the
client is permitted to assume that ¢ is true. Therefore, and in an
analogy with imperative languages, we write assert ¢ {¢} ; P for
a process that asserts ¢ for channel ¢ and continues with P, while
assume ¢ {¢} ; Q assumes ¢ and continues with Q.

Thus, the typing rules for this new type constructor are

V;Ced V;C;A+rP:(x:A) )
V; C; Arassert x {¢}; P (x:?2{¢}. A) R

V;CA¢; A(x:A)rQ:(z:0) oL
Vi C; A (x:?2{p}. A) Fassume x {¢p}; Q= (z:C) ~

Notice how the provider must verify the truth of ¢ given the cur-
rently known constraints C (the premise V ; C k ¢), while the
client assumes ¢ by adding it to C.
Operationally, the provider creates a message containing the
constraint that is received by the client (¢’ fresh).
(?S) : proc(c, assert ¢ {¢} ; P) +—
proc(c’, [¢”/c]P), msg(c,assert ¢ {¢}; ¢ & )
(?C) : msg(c, assert ¢ {¢} ; ¢ & ),
proc(d, assume ¢ {¢’} ; Q) — proc(d,[c’/c]QO)
In well-typed configurations (which arise from executing well-
typed processes) the constraint ¢ in these rules will always be
closed and true so there is no need to check this explicitly.
The dual operator !{#}. A reverses the role of provider and client.
The provider of x : !{¢}. A may assume the truth of ¢, while the
client must verify it. The dual rules are

V,CA¢p; ArP:(x:A) \
V., C; Arassume x {¢}; P (x:!{p}. A) 'R

V;Ced V;C; ANx:ArQ:(z:0) "
V,C; A(x: ¢} A rassertx {¢}; Q= (z:C) ~
The remaining issue is how to type-check a branch that is im-
possible due to unsatisfiable constraints. For example, if a client

sends a del request to a provider along ¢ : queue 4[0], the type then
becomes

¢ : ®{none : ?{0=0}. 1, some : ?{0>0}. A ® queue 4, [0—1]}

The client would have to branch on the label received and then
assume the constraint asserted by the provider
case ¢ (none = assume ¢ {0 =0} ; Py

| some = assume ¢ {0 > 0} ; P;)

but what could we write for Py in the some branch? Intuitively,
computation should never get there because the provider can not
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mp A1 - Sl i Ap Ay - Sz A3 comp

Al I+ (81,82) i A3

Alr(:)=A ¢

3 T3 ArPu(x:A)
A I proc(x, P) = (x : A)

S T3 ARM:a(x: A
proc msg
A+ msg(x, M) :: (x : A)

Figure 4: Typing rules for a configuration

assert 0 > 0. Formally, we use the process expression ‘impossible’
to indicate that computation can never reach this spot:
case ¢ (none = assume ¢ {0 =0} ; P;

| some = assume ¢ {0 > 0} ; impossible)
In implicit syntax (see Section 4) we could omit the some branch
altogether and it would be reconstructed in the form shown above.
Abstracting away from this example, the typing rule for impossibil-
ity simply checks that the constraints are indeed unsatisfiable

V,CkeL
YV C; Arimpossible :: (x : A)

unsat

There is no operational rule for this scenario since in well-typed
configurations the process expression ‘impossible’ is dead code and
can never be reached.

Type Equality. At the core of an algorithm for type checking is
type equality. Informally, two types are equal if they permit exactly
the same communication behaviors. This is captured in the recently
proposed type equality algorithm [12] that takes two types as input,
and attempts to create a bisimulation between them. Despite the
incompleteness of the algorithm (since the problem is undecidable),
we found the algorithm to be sufficient for all our examples.

3.3 Type Safety

The main theorems that establish the deep connection between
our refined type system and operational semantics are the usual
type preservation and progress, also referred as session fidelity and
deadlock freedom. At runtime, a program is represented using a set
of semantic objects, i.e. processes and messages together defined
as a configuration.

S == | 8,8 | proc(c, P) | msg(c, M)

We say that proc(c, P) (or msg(c, M)) provide channel c. We stipulate
that no two distinct semantic objects provide the same channel.

Type Preservation. A key question then is how to type configu-
rations? We define a well-typed configuration using the judgment
A1 Iy S :: Az denoting that configuration S uses channels Aq
and provides channels Ay. The rules for typing a configuration
are defined in Figure 4. A configuration is always typed w.r.t. a
well-formed signature ¥, requiring that all (i) all type definitions are
valid and contractive, and (ii) all process definitions are well-typed.
Since the signature X is fixed, we elide it from the presentation.

The rule emp defines that an empty configuration provides all
the channels A that it uses. The comp rule composes two configura-
tions 87 and Sy; S; provides channels A, while S uses channels
Az. The rule proc creates a configuration out of a single process.
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V;Ce¢d V;C;AirP:(x:A)
Vi, C; AjrPu(x:?{p}. A)

V;CAp; A(x:A)iFQ:(z:0)
V,C; A(x:Hp}. A irQ::(z:C)

V,CAp; AjrP:(x: A ’
ViC:AwrPs:grA) R

V;Ce¢d V;C;Ax:A)i+rQ:(z:0)
V;,C; A(x: 9} A)ir Q= (z:0)

1L

Figure 5: Implicit Typing Rules

Configurations only exist at runtime where all arithmetic expres-
sions in process terms are closed, i.e. they do not refer to any free
variables. Hence, we use V = - and C = T when typing process
P (premise in proc rule). Similar to proc, the rule msg creates a
configuration out of a single message (where a message is also
represented as a process).

Global Progress. To state progress, we need the notion of a
poised process [25]. A process proc(c, P) is poised if it is trying to
receive a message on c. Dually, a message msg(c, M) is poised if it
is sending along c. A configuration is poised if every message or
process in the configuration is poised. Conceptually, this means
that the configuration is trying to communicate externally along
one of the channels it uses or provides.

THEOREM 1 (TYPE SAFETY). For a well-typed configuration A; Iy
S Ay

(i) (Preservation) IfS — S’, then A1 ks S = Ay

(i) (Progress) Either S is poised, or S — S’.

Proor. The proof of preservation proceeds by case analysis on
the rules of operational semantics, applying inversion to the given
typing derivation of S, and then assembling a new derivation of S”.
Progress is proved by induction on the right-to-left typing of S so
that either S is empty (and therefore poised) or S = (D, proc(c, P))
or S = (D, msg(c, M)). By induction hypothesis, D can either take
a step (and then so can S), or D is poised. In the latter case, we
analyze the cases for P and M, applying multiple steps of inversion
to show that in each case either S can take a step or is poised. O

4 CONSTRAINT RECONSTRUCTION

The process expressions introduced so far in the language follow
simple syntax-directed typing rules. This means they are immedi-
ately amenable to be interpreted as an algorithm for type-checking,
calling upon a decision procedure where arithmetic entailments
and type equalities need to be verified. However, this requires the
programmer to write a significant number of explicit process con-
structs pertaining to the refinement layer in their code. Relatedly,
this hinders reuse: we are unable to provide multiple types to the
same program so that it can be used in different contexts.

This section introduces an implicit type system in which the
source program never contains the assume and assert expressions,
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i.e. constructs corresponding to proof constraints. Moreover, impos-
sible branches may be omitted from case expressions. The missing
branches and other constructs are restored by a type-directed pro-
cess of reconstruction.

Interestingly, the nature of Presburger arithmetic makes full re-
construction impossible. For example, the proposition Vn. 3k. (n =
2kVn = 2k+1) is true but the witness for k as a Skolem function of n
(namely | n/2]) cannot be expressed in Presburger arithmetic. Since
witnesses are critical for establishing correctness of programs, we
require that type quantifiers Vn. A and 3n. A have explicit witnesses
in processes and we do not reconstruct them.

In the first phase, a case expression with a missing branch for
label ¢ is transformed into a branch ¢ = impossible so that type
checking later verifies that the omitted branch is indeed impossible.
Then assumes and asserts are inserted according to a reconstruction
algorithm described in this section.

Following branch reconstruction, the resulting process expres-
sion is checked with the implicit typing judgment V' ; C; A ;- P =:
(x : A). The implicit system differs from the explicit system in only
one way: for the implicit constructs related to constraints (R, !L, ?R,
?L), the process expression does not change on application of these
rules. Selected typing rules are described in Figure 5 and illustrate
that expressions P and Q are unchanged in the premise and con-
clusion. For the remaining rules pertaining to base session types
(Section 3.1) and quantifiers (3R, 3L, VR, VL), no reconstruction is
involved and the implicit rules exactly match the explicit rules.

The implicit rules are sound and complete with respect to the
explicit system, since from an implicit typing derivation we can
read off the corresponding explicit process expression and vice
versa. The rules are also manifestly decidable since the types in the
premise are smaller than the conclusion for all the rules presented.

However, the implicit type system is highly nondeterministic.
Since the process expressions do not change on the application of
implicit rules in Figure 5, they can be applied in many different
orders. And each valid order corresponds to a different explicit pro-
gram, intuitively changing the order in which constraints are sent
and received. Thus, an implicit source program may correspond
to many different explicit programs. The necessary backtracking
would greatly complicate error messages and would also be expo-
nential and severely inefficient.

To solve this problem, we introduce a novel forcing calculus
which enforces an order among these implicit constructs. The core
idea of this calculus is to follow the structure of each type, but
within that assume should be inserted as early as possible, and assert
should be inserted as late as possible. This reasoning is sound since
the constraints obey a monotonicity property: if a constraint is true
at a program point, it will always be true later in the program.
Thus, eagerly assuming and lazily asserting constraints is sound:
if a constraint can be proved now, it can be proved later. It is also
complete under the mild assumption that the types can be polarized
(explained below). Logically, the IR, ?L rules are invertible, and are
applied eagerly while their dual rules are applied lazily.

This strategy is formally realized in the forcing calculus using
the judgment V ; C; A; QF P:: (x: A). The context is split into
two: the linear context A contains stable propositions on which the
invertible left rules have been applied, while the ordered context
Q stores channels on which invertible rules can possibly still be
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applied to. First, we assign polarities to the type operators with
implicit expressions, a notion borrowed from focusing [2] with
a similar function here. Type definitions are unfolded in order
to determine their polarity, which is always possible since type
definitions are contractive. The types that involve communication
are called structural and represented by S.

AT u= S| ?2{¢} AT

A” u= S| Yo} A

A == AT|A

S u= @€ Alper | &{€:Alpe |A®A|1|A— A
| 3n.A|Vn. A

Not all types can be polarized in this manner, particularly types
containing alternating proof constraints e.g., '{¢}. ?{y/}. A. When
checking the validity of types before performing reconstruction
we reject such types with alternating polarities. We also require
that all process declarations contain only structural types at the
top-level. Both these restrictions turn out to be mild in practice and
can be resolved by introducing additional communications.

Thus, the ? operator is positive, while ! is negative. The structural
types, denoted by S are considered neutral. In the forcing calculus,
the invertible rules are applied first.

V;CAp; Am; QrPu(x:A7) '
ViCiA;QrPa(x:HgrAa) R

V;CAp; A5 Q- (x: AN P (2:C)
V;C; A Q- (x: gAY FP:(z:CY)

If a negative type is encountered in the ordered context, it is con-
sidered stable (invertible rules applied) and moved to A™.

V;C; A, (x:A7); QrP:(z:CY)
V;C; A ; Q- (x:A)rPu(z:Ch)

move

The ordered context Q imposes an order on the channels on which
these invertible rules are applied.

Once all the invertible rules are applied, we reach a stable sequent
ofthe formV ; C; A™; -+ P (x: AY), i.e, the ordered context
is empty and the provided type A% is positive. A stable sequent
implies that all constraints have been received. We send a constraint
lazily, i.e., just before communicating on that channel. We realize
this by forcing the channel just before communicating on it. As an
example, while sending (or receiving) a label on channel x, we force
it effectively sending any pending constraints.

V;C; A ;- Fxk; Pufx:At]
V,C; A ;- kxk; P:(x:A")

@®FR

ViC;A[x:A];-Fcase x (£ = Qp)per, = (z:CT)
V;C;A(x:A7); rcasex (€ = Qp)eer = (z:CY)

@OFT,

The square brackets [-] indicates that the channel is forced, indi-
cating that a communication is about to happen on it. If there are
assert constructs pending on the forced channel, they are applied
now.



Verified Linear Session-Typed Concurrent Programming

V;Ckr¢ V;C; A ;- rPufx: AT
V;C; A ;- Pufx:?{¢}. AT]

?R

V;,Cke¢ (V;C;A_,[x:A_];-I—P::(z:C+)'
V;C; A, [x:{¢}.AT]; -+ Pu(z:C")
Finally, if a forced channel has a structural type, we apply the

corresponding structural rule and lose the forcing. Again, as an
example, we consider the internal choice operator.

(keL) V;C; A ;- -+P:(x:Ag)
V;,C; A -k(xk; P)ulx:o{€: Ap}rer]

DORy

(VeeLl) V;C;A; (x:Ap)FQp:(z:Ch)
ViCiA[x:a{€:Ap}] ;- Fcase x (£ = Qp):(z:C)

In either case, applying the structural rule creates a possibly unsta-
ble sequent, thereby restarting the inversion phase.

Remarkably, the forcing calculus is sound and complete with respect
to the implicit type system, assuming types can be polarized. Since
every rule in the forcing calculus is also present in the implicit
system, it is trivially sound. Moreover, applying assume eagerly, and
assert lazily also turns out to be complete due to the monotonicity
property of constraints.

THEOREM 2 (SOUNDNESS AND COMPLETENESS). For (valid) polar-
ized types A and contexts A we have:

W IfV;C; AirPu(x:A),thenV; C; -5 ArP:(x:A).

@ IfV;C;-;ArP:(x:A),thenV; C; Aj-P:(x:A).

ProoF. Part (1) of Theorem 2 corresponds to soundness. The
proof of soundness follows by induction on the implicit typing judg-
ment. Intuitively, soundness follows from the simple observation
that every rule in the forcing calculus is also valid in the implicit
typing judgment. Theorem 2 part (2) corresponds to completeness
whose proof proceeds by induction on the forcing judgment. The
proof relies on two key lemmas: (i) the rules !R and ?L are invertible,
and (i) if V; C; A" ; QF (x: AY)and V ; C E ¢, then
Vi C; A QF (x:?{¢}. A"), i.e. asserting a constraint ¢ on a
channel can be done at any program point where ¢ holds assuming
C, and thus, can be delayed. O

If a process is well-typed in the implicit system, it is well-typed
using the forcing calculus. Once the typing derivation, i.e., ordering
of the typing rules is fixed by the forcing calculus, a unique explicit
program is constructed by applying the explicit typing rules to the
derivation. Thus, if a reconstruction is possible, the forcing calculus
will find it! We use this calculus to reconstruct the explicit program,
which is then typechecked using the explicit typing system.

5 IMPLEMENTATION

We have implemented a prototype for the language in Standard
ML (about 6500 lines of code) available open-source that closely
adheres to the theory presented here. Command line options deter-
mine whether to use explicit or implicit syntax, and the result of
reconstruction can be displayed if desired. We use a straightforward
implementation of Cooper’s algorithm [8] to decide Presburger
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Table 3: Abstract and Corresponding Concrete Syntax

Abstract Type Concrete Type Concrete Syntax

o{l:A,..} 1 : A, ...} x.k
&{l:A,...} &{1 : A, ...} casex (L =P |)

A®B A*B send x w

A— B A-08B y <- recv x

1 1 close x

dn. A . A send x {e}

Vn. A I'n. A {n} <- recv x
2{n=0}A 2{n = 0}. A assert x {n = 0}
H{n=0}A '{n =0} A assume x {n = 0}
Vel V{el}...{ek}

arithmetic with two small but significant optimizations. First, we
leverage the fact that we are working over natural numbers rather
than integers which bounds possible solutions from below, and the
second is to eliminate constraints of the form x = e by substituting e
for x in order to reduce the number of variables. After checking the
validity of types, the implementation reconstructs missing branches
and then constraints. Verifying constraints is postponed to the final
pass of type-checking the reconstructed process expression.

Syntax. So far, we have described the types and process terms
in an abstract syntax. Our Rast implementation, however, uses a
concrete syntax. Table 3 describes the abstract syntax of each type
operator, its corresponding concrete type, and the concrete syntax
of the process term of a provider of that type. More details about
the Rast implementation are presented in a system description [11].

A program contains a series of mutually recursive type and
process declarations and definitions.

type v{nl1}...{nk} = A
decl f : (x1 : A1) ... (xn : An) |- (x : A)
proc x <- f x1 ... xn =P

The first line is a type definition, where v is the name with index
variables n; and A is its definition. The second line is a process
declaration, where f is the process name, (x1 : A1)...(xp : Ap)
are the used channels and corresponding types, while the provided
channel is x of type A. Finally, the last line is a process definition
for the same process f defined using the process expression P.
We use a hand-written lexer and shift-reduce parser to read an
input file and generate the corresponding abstract syntax tree of
the program. The reason to use a hand-written parser instead of a
parser generator is to anticipate the most common syntax errors
that programmers make and respond with the best possible error
messages.

We describe the results for 9 representative case studies in Ta-
ble 4. We present the module name (Module), the lines of code in
implicit syntax before reconstruction (iLOC), the lines of code after
reconstruction (eLOC), and the time taken by the reconstruction
engine (R (ms)). The experiments were run on an Intel Core i5 2.7
GHz processor with 16 GB 1867 MHz DDR3 memory. We briefly de-
scribe each case study: arithmetic: natural numbers in unary (Sec-
tion 6.1) and binary (Section 6.2) representation; integers: standard
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Table 4: Case Studies

Module iLOC eLOC R (ms)

arithmetic 69 143 0.353
integers 90 114 0.200
linlam 54 67 0.734
list 244 441 1.534
primes 90 118 0.196
segments 48 65 0.239
ternary 156 235 0.550
theorems 79 141 0.361
tries 147 308 1.113
Total 977 1632 5.280

operations on an integer counter; linlam: the linear A-calculus im-
plementation (Section 6.4); list: lists indexed by their size; primes:
prime sieve of Eratosthenes; segments: partial lists with constant-
work append operation; ternary: natural numbers represented in
balanced 6.3; theorems: circular [13] proofs of simple arithmetic
theorems; tries: a trie data structure to store multisets of binary
numbers 6.6. More details about each module can be found in the
Rast system description [11] or the open-source repository [27].

The two main observations from Table 4 are (i) reconstruction
reduces a significant amount of programmer overhead. The recon-
structed code is almost twice in size compared to the implicit code,
and (ii) reconstruction is very efficient. The forcing calculus com-
pletely eliminates any backtracking in the reconstruction process,
thus converting an exponential task to a linear one. Moreover, the
forcing calculus does not even need to solve arithmetic constraints
to reconstruct the refinement constructs, further improving its
efficiency.

6 EXAMPLES

We draw some representative examples from our case studies and
study their key properties. In particular, we describe how our arith-
metic refinements can help in lightweight verification and complexity
analysis of standard concurrent programs.

6.1 Unary Natural Numbers

As a first simple example consider natural numbers in unary form,
as usually defined in Peano arithmetic.

type nat = +{ zero : 1, succ : nat }
A process P :: (c : nat) is required to send a stream of succ labels,
possibly followed by zero and close. Except for the infinite stream
of succ labels, every such stream represents a natural number. We
can force finiteness and also track the value of the natural number
by indexing the type.
type nat{n} = +{ zero : ?{n = 0}. 1,
succ : ?{n > @}. nat{n-1} }

A process P :: (c : nat[i]) will now send exactly i succ labels
followed by zero and close.

We can use indexing to verify the correctness of some simple
processes. We start with “constructor” processes zero and succ that
correspond to the given labels.
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decl zero : . |- (x : nat{@})
decl succ{n} : (y : nat{n}) |- (x : nat{n+1})
proc x <- zero = x.zero ; close x
proc x <- succ{n} y = x.succ ; x <>y
The type of succ ensures that it definitely increments the value
of the input. Slightly more interesting is a half process which is
constrained to take an even number of value 2 * n and output a
number of value n.
decl half{n} : (y : nat{2*n}) |- (x :
proc x <- half{n} y =
case y ( zero => wait y ; x.zero ; close x
| succ => case y ( % no branch for zero
succ => x.succ ; x <= half{n-1}y) )

nat{n})

Since y : nat[2 = n] initially, in the succ branch, the type of y
becomes nat[2#n—1], thus guaranteeing that the inner zero branch
is now impossible since 2 * n — 1 # 0. Reconstruction will fill in the
branch for zero in the inner case and mark it as impossible, which
is then verified by the type checker. Again, type-checking verifies
correctness of this implementation.

6.2 Binary Natural Numbers

Representing natural numbers in binary form is somewhat more
complicated. We represent a number by a stream of bits b0 and b1,
terminated by e. The least significant bit comes first so that, for
example, the number 6 = (110); is represented by the sequence of
labels b0 ; b1 ; b1 ; e.
type bin = +{ b@ : bin, b1 : bin, e : 1 }
To capture the value of the number, we note that if ¢ : bin[n] then
after sending b0 along c, the channel should now have type bin[n/2]
(and n would have to have been even). However, the integer division
operator is not directly part of Presburger arithmetic, but can be
expressed using an existential quantifier: if b0 is sent along c : bin[n]
then there exists a k such that n = 2 * k and the remaining stream
has type bin[k]. In addition, we would like to rule out leading zeros
(which are actually “trailing” in this representation) and we achieve
this by requiring that n > 0 in the case of b0.
type bin{n} = +{b0 : ?{n > 0}. ?k. ?{n = 2xk}. bin{k},
b1 : ?k. ?{n = 2xk+1}. bin{k},
e : {n=203}. 1}
Recall that ?k is concrete syntax for k.

Now the successor process will have to implement the carry
familiar from binary addition. That’s done by a recursive call to the
successor process on the remaining bit sequence. Again, the types
guarantee the correctness of the code.

bin{0})
bin{n}) |- (y :

decl bzero : . |- (x :
decl bsucc{n} : (x : bin{n+1})
proc x <- bzero = x.e ; close x

proc y <- bsucc{n} x =
case x ( bo => {k} <- recv x ;
y.b1 ; send y {k} ;
y <> X
| b1 => {k} <- recv x ;
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y.bo ; send y {k+1} ;
y <- bsucc{k} x

| e =>y.bl ; send y {0} ;
y.e ; wait x ; close y )

Because the quantifiers require explicit witnesses (rather than being
reconstructed), this process has to send and receive a suitable k
in each branch. If we know that the witness is computationally
irrelevant (currently the case in Rast), no actual k has to be sent or
received when the program executes.

6.3 Balanced Ternary Representation

We can represented integers (not just natural numbers) in balanced
ternary form which is defined using three digits: —1, 0, and +1. If
we disallow leading zeros, this representation of integers is unique.
Here, we face the difficulty that our index domain consists of natural
numbers, not arbitrary integers, so we index each ternary number
by two values a and b where tern[a, b] represents an integer with
value a — b. If we don’t bother preventing leading zeros, we get the
following type

type tern{a}{b} =

+{ ml : ?c. ?2d. ?{a+3%d+1 = 3*c+b}. tern{c}{d},
z@ : ?c. ?d. ?{at+t3xd = 3%c+b}. tern{c}{d},
pl : ?c. ?2d. ?{a+3xd = 3xctb+1}. tern{c}{d},

e : Ma=Db}. 173}

where m1 represents digit —1, z0 represents digit 0, and p1 rep-
resents digit +1. Looking at the first line, for example, balanced
ternary means the digit —1 (m1) implies a—b = 3% (c—d)— 1, which
we normalize to the constraint a+ 3% d +1 = 3 ¢ + b to avoid side
conditions on the natural numbers a and b. Similar calculations
apply for the other digits. The empty sequence e represents the
number 0, thatisa —b = 0.

As an example, we define the predecessor process, which is quite
simple, except that we have to send and receive the witnesses ¢ and
d. The carry occurs only in the case of m1.

decl pred{a}{b} : (x : tern{a}{b}) |- (y : tern{a}{b+1})
proc y <- pred{a}{b} x =
case x ( ml => {c} <- recv x ; {d} <- recv x ;
y.pl ; send y {c} ; send y {d+1} ;
y <= pred{c}d} x
| z0 => {c} <- recv x ; {d} <- recv x ;
y.ml ; send y {c} ; send y {d} ;
y <-> X
| p1 => {c} <- recv x ; {d} <- recv x ;
y.z0 ; send y {c} ; send y {d} ;
y <-> X
| e=>y.ml ; send y {0} ; send y {0} ;
y.e ; wait x ; close y

)

Note that once again, type checking verifies the correctness of this
implementation because a — (b + 1) = (a — b) — 1.

We have the property that tern[a, b] = tern[a+ x, b + x], and our
type equality algorithm [12] recognizes and exploits this equality
while type checking. This is different from functional languages
with indexed or dependent types, where recursively defined types
are usually nominal.
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6.4 Linear A-Calculus

An example along entirely different lines is an implementation of
the linear A-calculus and evaluation (weak head normalization) of
terms. It illustrates a number of different techniques from the other
examples in paper. We use higher-order abstract syntax, represent-
ing linear abstraction in the object language by a process receiving
a message corresponding to its argument.
type exp = +{ lam : exp -o exp,
app : exp * exp }

We would like evaluation to return a value (a A-abstraction), so we
take advantage of the structural nature of types (allowing us to
reuse the label lam) to define the value type.
type val = +{ lam : exp -0 exp }
We have that val is a subtype of exp, but we actually to not take
advantage of this fact (the current implementation of Rast does not
support subtyping). We can derive straightforward constructors
apply for expressions and lambda for values (we do not need the
corresponding constructor for expressions).
decl apply : (el : exp) (e2 : exp) |- (e : exp)
proc e <- apply el e2 =

e.app ; send e el ; e <-> e2

decl lambda : (f : exp -o exp) |- (v : val)
proc v <- lambda f = v.lam ; v <-> f

As a simple example, here is the representation of a combinator to
swap the arguments to a function.
(x swap = \f. \x. \y. (f y) x *)
decl swap : . |- (e : exp)
proc e <- swap =
e.lam ; f <- recv e ;
e.lam ; x <- recv e ;
e.lam ; y <- recv e ;
fy <= apply f y ;
e <- apply fy x
Evaluation is now the following very simple process.

decl eval : (e : exp) |- (v : val)
proc v <- eval e =
case e ( lam => v <- lambda e
| app => el <-recve ; %e=e2
vl <- eval el ;
case vl ( lam => send v1 e ;
v <- eval vl ) )

If e sends a lam label, we just rebuild the expression as a value.
If e sends an app label then e represents a linear application e; ey
and the continuation has type exp ® exp. This means we receive a
channel representing e; and the continuation (still called e) behaves
like e2. We note this with a comment in the source. We then evaluate
e; which exposes a A-expression along the channel v;. We send
e along vy, carrying out the reduction via communication. The
result of this (still called v;) is evaluated to yield the final value v.
This particular call-by-name strategy has practically no parallelism;
modeling parallel evaluation requires a small modification of the
representation with lam : val —o exp and an inclusion of values in
expressions. We would now like to prove that the value of a linear
A-expression is smaller than or equal to the original expression. At
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the same time we would like to rule out a class of so-called exotic
terms in the representation, which are possible due to the presence
of recursion in the metalanguage. We achieve this by indexing the
types exp and val with their size. For an application, this is easy:
the size is one more than the sum of the sizes of the subterms.
type exp{n} = +{ lam :
app : ?n1. ?n2. ?{n = n1+n2+1}. exp{nl1} * exp{n2} }
The size ny + 1 of a A-expression is one more than the size ny of
its body, but what is that in our higher-order representation? The
body is a linear function takes an expression of size n and then
behaves like an expression of size n1 + ny. Solving for ny then gives
use the following type definitions and types for the constructor
processes.
type exp{n} =
+{lam : ?{n > 0}. !nl.exp{n1} -o exp{nl+n-1},
app : ?n1. ?n2. ?{n = n1+n2+1}. exp{n1} * exp{n2}}

type val{n} =
+{ lam : ?{n > 0}. !nl.exp{n1} -o exp{ni+n-1} }

decl apply{n1}{n2} :

(el : exp{nl1}) (e2 :
decl lambda{n2} :

(f : Inl. exp{n1} -0 exp{n1+n2}) |- (v : val{n2+1})
The universal quantification over nj in the type of lam is important,
because a linear A-expression may be applied to an argument of any
size. We also cannot predict the size of the result of evaluation, so
we have to use existential quantification: The value of an expression
of size n will have size k for some k < n.

decl eval{n} : (e : exp{n}) |- (v : ?k. ?{k <= n}. val{k})

Because witnesses for quantiﬁers are not reconstructed, the evalua-
tion process has to send and receive suitable sizes.

exp{n2}) |- (e : exp{n1+n2+1})

proc v <- eval{n} e =
case e ( lam => send v {n} ;
v <- lambda{n-1} e
| app => {n1} <- recv e ;
{n2} <- recv e ;
el <- recv e ;
vl <- eval{n1} el ;
{k2} <- recv vi1 ;
case vl ( lam => send v1 {n2} ;
send vl e ;
v2 <- eval{n2+k2-1} v1 ;
{1} <- recv v2 ;
send v {1} ; v <> v2))
Type-checking now verifies that if evaluation terminates, the re-
sulting value is smaller than the expression (or of equal size). This
comes down to deciding certain chains of linear inequalities.

For readers familiar with ergometric types [10], we show how we
can bound the number of reductions using an amortized analysis
of work. For this, we assign 1 erg (unit of potential) to each A-
expression. Our cost model is that all operations are free, except the
equivalent of a f-reduction which costs 1 erg. Because transfer of
potential is reconstructed, the program is very close to the original,
size-free program.
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type exp = +{ lam : |> exp -o exp,
app : exp * exp }

+{ lam : |> exp -0 exp }

type val

decl apply : (el : exp) (e2 : exp) |- (e : exp)
proc e <- apply el e2 =
e.app ; send e el ; e <-> e2

decl lambda : (f : exp -o exp) |[{1}- (v : val)
proc v <- lambda f =
v.lam ; v <> f
decl eval : (e : exp) |- (v : val)
proc v <- eval e =
case e ( lam => v <- lambda e
| app => el <-recve ; %e=e2
vl <- eval el ;
case vl ( lam => work ;
send vl e ; % beta
v <= eval vl ) )

Type-checking here verifies that the reduction of a given expres-
sion with n A-abstractions to a value performs at most k < n f-
reductions, with a potential of n—k for further reductions remaining
in the value. This means that there are exactly n — k A-abstractions
remaining in the result.

As a final variation on the theme of the linear A-calculus we
show an implementation suitable for parallel evaluation of terms.
Because we would like to evaluate the body of a A-abstraction in
parallel with the argument, we have to pass a channel promising a
value to an abstraction. These considerations yield the type

type exp = +{ app : exp * exp ,
val : val }

type val = +{ lam : val -o exp }

Here, the constructor val implements the inclusion of a value in

an arbitrary expression. From this basic observation, the code for
evaluation follows the previous pattern.

decl eval : (e : exp) |- (v : val)
proc v <- eval e =
case e (val => v <> e
| app => el <-recve ; %e=¢e2
vl <- eval el ;
v2 <- eval e ;
case vl ( lam => send v1 v2 ;
v <- eval vl ) )

The key point is that the evaluation of e with destination v (which
represents the argument to the function) is started early and pro-
ceeds in parallel with the evaluation of e; and, once that is finished,
the body of the function (v, in the final tail call). This version can
also be annotated to track size and other information in a manner
that is analogous to the more sequential versions of eval.
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6.5 A Binary Counter

A binary counter has an internal value of n and an interface with
two operations: increment (inc message) and obtain the value (val
message). Due to linearity, obtaining the value turns the counter
into a number in binary form as introduced in Section 6.2.

type ctr{n} = &{ inc : ctr{n+1},
val : bin{n} }

We represent a counter as a chain of processes, each holding one
bit, where the least significant bit faces the client. bit0[n] represents
a bit 0, where the whole counter has value 2 * n. To prevent leading
zeros, we require n > 0. Similarly bit1[n] represent a bit 1, where
the whole counter has value 2 * n + 1. Finally, empty represents the
number 0 (an empty sequence of bits).

decl empty : . |- (c : ctr{o})
decl bit@{n|n > @} : (d : ctr{n}) |- (c : ctr{2*n})
decl bit1{n} :(d :octr{n}) |- (c : ctr{2*n+1})

The implementation of counters is entirely straightforward.

proc ¢ <- empty =
case ¢ ( inc => c@ <- empty ;
c <- bit1{0} c0
| val => c.e ; close c )

proc ¢ <- bite{n}
case ¢ ( inc =>
| val =>

<- bit1{n} d
.b@ ; send c¢ {n};
val ; c<->d)

proc ¢ <- bit1{n} d
case ¢ ( inc => d.inc ;
c <- bito{n+1} d
c.bl ; send ¢ {n} ;
d.val ; c <->d)

| val =>

The type checker verifies several properties, including that sending
an inc message to the counter will indeed increment its value, and
that requesting its value with the val message will return a binary
number with the correct value.

6.6 A Trie for Multisets of Natural Numbers

We now implement multisets of natural numbers (in binary form).
One of the key questions is how to maintain linearity in the design
of the data structure and interface. For example, should we be able
to delete an element from the trie, not knowing a priori if it is
even in the trie? To avoid exceedingly complex types to account for
these situations, the process maintaining a trie offers an interface
with two operations: insert (label ins) and delete (label del). We
index the type trie[n] with the number of elements in the trie,
so inserting an element always increases n by 1. If the element
is already present, we just add 1 to its multiplicity. Deleting an
element actually removes all copies of it and returns its multiplicity
m. If the element is not in the trie, we just return a multiplicity of
m = 0. In either case, the trie contains n — m elements afterwards.

type trie{n} =
&{ins : !'k. bin{k} -o trie{n+1},
del : !'k. bin{k} -o ?m. ?{m <= n}. bin{m} * trie{n-m}}
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This type requires universal quantification over k, (written !k)
which is the value of the number inserted into or deleted from the
trie on each interaction (which is arbitrary).

The basic idea of the implementation is that each bit in the
number x : bin[k] addresses a subtrie: if it is b0 we descend into
the left subtrie, if it is b1 we descent into the right subtrie. If it
is e we have found (or constructed) the node corresponding to x
and we either increase its multiplicity (for insert), or respond with
its multiplicity and set the new multiplicity to zero (for delete).
We have two forms of processes: a leaf with zero elements and
an interior node with ng + m + ny elements (where ng and n; and
the number of elements in the left and right subtries, and m is the
multiplicity of the number corresponding to this node in the trie).

decl leaf : . |- (t : trie{0})
decl node{n@}{m}{n1} :
(1 : trie{n@}) (c : ctr{m}) (r : trie{n1})

|- (t : trie{n@+m+n1})

The code is somewhat repetitive, so we only show the code for
inserting an element into an interior node.

proc t <- node{n0}{m}{nl1} 1l cr =
case t ( ins => {k} <- recv t ;
X <- recv t ;
case x ( bo =>
{k'} <= recv x ;
l.ins ; send 1 {k'} ; send 1 x ;
t <- node{n@+1}{m}{n1} 1 c r
| b1 =>
{k'} <- recv x ;
r.ins ; send r {k'} ; send r x ;
t <- node{n@}{m}{n1+1} 1 c r
| e =>
wait x ;
c.inc ;
t <- node{n@}{m+1}{n1} 1 cr )
| del => ...)

What does type-checking verify in this case? It shows that the
number of elements in the trie increases and decreases as expected
for each insert and delete operation. On the other hand, it does not
verify that the correct multiplicities are incremented or decremented,
which is beyond the reach of the current type system.

7 FURTHER RELATED WORK

Languages with index refinements such as Zenger’s [37], DML [36]
or, more recently, Granule [23] (to name just three of them) were
developed in the realm of functional languages. Bidirectional type
checking was developed in part to tame the complexity of type
checking in DML, which, as a functional language, exhibited an
analogy to natural deduction. As this paper demonstrates, matters
are simpler in some respects when the underlying language is
based on the sequent calculus: type checking is very naturally
bidirectional and therefore robust under refinement. On the other
hand, session types are generally structural rather than nominal,
and that complicates matters to the extent that the underlying type
equality becomes undecidable [12], even if we restrict ourselves
to universal prefix quantifiers. Fortunately, our experience shows
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that the algorithm for type equality we proposed in prior work and
implemented in Rast [11] is quite robust.

Label-dependent session types [29] also integrate session types
indexed by natural numbers. However, they use a fixed schema of
iteration and specific unfolding equality on types, which seems to
apply only in a small number of our examples.

LiquidPi [19] also refines a language of session types, but limits it-
self to refining basic data types rather than equirecursively defined
session types. As a result, in their language even full type inference
is decidable (under some assumptions on the constraint domain),
but it cannot express many of our motivating examples. A similar re-
finement system designed for dynamic monitoring rather than static
checking has been proposed by Gommerstadt et al. [17, 18]. Also re-
lated is a system by Wu and Xi [35], which only mentions recursive
session types as a possible extension, but does not investigate its
properties. Zhou et al. [38, 39] refine types with arithmetic expres-
sion in the context of multiparty session types. In this recursion-free
setting, they obtain a decidable notion of typing. Another session
typed language with refinements is SePi [3, 14], where refinements
represent capabilities and are therefore quite different from ours.

A step in a different direction is to integrate fully dependent
types, which has also been considered with different aims and
technical realizations [17, 24, 30, 32]. Generally, the theory of type
equality and type checking in these languages has not yet been
developed and, in any case, is likely to be quite different from an
algorithm rooted in the decidability of Presburger arithmetic. Also,
generally speaking, such languages require proof objects to be
communicated (with some specific exceptions [17, 24]).

8 CONCLUSION

In this paper we have shown how to construct a concurrent pro-
gramming language over arithmetically indexed binary session
types. The message-passing semantics of this language is based on
the natural polarity of the quantifiers and associated constraints in
linear logic, and thereby follows similar proof-theoretically moti-
vated designs and admits an effective bidirectional type-checking
algorithm. The language is quite verbose, which is addressed to
some extent by our implicit syntax and reconstruction algorithm
which is complete for a large class of types. We have probed the
expressive power of our language with several examples, all of
which easily check in our implementation.

While the general idea of reconstruction easily extends to er-
gometric types for expressing amortized complexity, our language
for temporal types [9] for expressing parallel complexity has so
far resisted a similar analysis, in essence because the next-time
operator affects multiple channels at once and its proof-theoretic
properties are not as uniform as those for the types treated here.
We would like to explore if a similar reconstruction algorithm can
nevertheless be devised.

Other natural generalizations we intend to pursue are richer con-
straint domains and mixed linear/nonlinear languages [4], perhaps
all the way to adjoint session types [25, 26]. These would open up
a whole new class of examples that are difficult or impossible to
express in a purely linear language such as Rast is at present.
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