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Adaptive Control of a Two-Link Robot Using Batch
Least-Square Identifier

Mostafa Bagheri, lasson Karafyllis, Peiman Naseradinmousavi, and Miroslav Krsti¢, Fellow, [EEE

Abstract—We design a regulation-triggered adaptive controller
for robot manipulators to efficiently estimate unknown
parameters and to achieve asymptotic stability in the presence of
coupled uncertainties. Robot manipulators are widely used in
telemanipulation systems where they are subject to model and
environmental uncertainties. Using conventional control
algorithms on such systems can cause not only poor control
performance, but also expensive computational costs and
catastrophic instabilities. Therefore, system uncertainties need to
be estimated through designing a computationally efficient
adaptive control law. We focus on robot manipulators as an
example of a highly nonlinear system. As a case study, a 2-DOF
manipulator subject to four parametric uncertainties is
investigated. First, the dynamic equations of the manipulator are
derived, and the corresponding regressor matrix is constructed
for the unknown parameters. For a general nonlinear system, a
theorem is presented to guarantee the asymptotic stability of the
system and the convergence of parameters’ estimations. Finally,
simulation results are discussed for a two-link manipulator, and
the performance of the proposed scheme is thoroughly evaluated.

Index Terms—Backstepping, least-square identifier, robot manipu-
lators, trigger-based adaptive control.

I. INTRODUCTION

OBOT manipulators are widely wused in various
Rapplications to track desired trajectories on account of
their reliable, fast, and precise motions in executing tasks such
as moving debris and turning valves [1], [2], while, as
expected, consuming a significant amount of lumped energy
[3]. Remote manipulators provide the capability of executing
tasks safely and autonomously at dangerous or unreachable
locations. However, they inevitably operate within different
environments subject to numerous uncertainties or large time
delays [4]. These uncertainties include the length, mass, and
inertia of the links, as well as the manipulator payloads, are
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some of the mentioned uncertainties. The detrimental impact
of uncertainties is well-established, which plays the most
significant role in degrading remote perception, manipulation,
and destabilizing systems. Adaptive control is an effective
approach to control these highly nonlinear systems under
parametric uncertainties.

Considerable research efforts have been devoted to the
adaptive control of linear and nonlinear finite-dimensional
systems, see [5]-[7]. Adaptive controllers are designed to
compensate for the detrimental effects of system uncertainties
in addition to enabling the system to follow the desired
trajectory [8]. Developing adaptive control schemes for robots
has received much attention in the last three decades [9]-[12].
Using the algorithm formulated by Slotine and Li [13], Spong
[14] presented the adaptive control results for flexible joint
robot manipulators under the assumption of weak joint
elasticity, while adaptive motion control for rigid robots was
studied by Ortega and Spong in [15].

The adaptive control scheme derived in [16] requires the
joints’ accelerations for its implementation, through estimating
the acceleration from the measured velocity, which inevitably
needs sufficient encoder resolution and fast sampling. Slotine
and Li [17] presented a combinatorial adaptive controller for
robot manipulators, and the parameter adaptation is driven by
both tracking and prediction errors. These very sophisticated
schemes need the calculation of many complicated analytical
expressions at each iteration leading to a considerable
computational time.

The event-triggered approach has been utilized to deal with
various control problems [18], [19]. Note that the closed-loop
system subject to an event-triggered controller is a hybrid
dynamical system. The most important advantage of the
event-triggered direct adaptive control scheme [19], unlike
other approaches (gradient, Lyapunov, etc.), is that it does not
depend on the persistence of excitation condition to guarantee
the convergence of parameter estimation. Through the
proposed scheme, a novel regulation-triggered identifier is
formulated, allowing us to use -certainty-equivalence
controllers without slowing adaptation. The following main
ideas are implemented into the proposed control design: 1)
Utilizing piecewise-constant parameter estimates between the
event-based triggers. This idea omits the crucial issue of
disturbing the effect of rapidly changing estimates [20], [21],
and 2) The parameter estimation is regulated by error, but
there is no error-based estimation leading to the parameter
updating rate.

The rest of the paper is organized as follows. We derive the
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model of a Euler-Lagrangian system (e.g., a robot
manipulator) for employing the adaptive certainty-equivalence
control law using the batch least-square identifier (BaLSI)
[22]. Then, we reveal that the closed-loop system is globally
asymptotically stable, subject to all necessary assumptions.
Finally, as a benchmark, we utilize the proposed method for a
two-link robot in the presence of four uncertainties, to reveal
the performance and significance of the proposed scheme.

II. PROBLEM STATEMENT

A. Mathematical Model

The nonlinear and coupled second-order differential
equation for an n degrees-of-freedom manipulator is as
follows,

M(q,0)+C(q.4,0)q+G(q.0) =T @)
where, geR", geR", and §eR" are angles, angular
velocities, and angular accelerations of joints, respectively,
7€ R" indicates the vector of joints’ driving torques, and
6eRP is the vector of system’s parameters. Also,
M(q,0) e R™" C(q,q,0) € R™", and G(q,60) € R" are the mass,
Coriolis, and gravitational matrices, respectively, which we
symbolically derived using the Euler-Lagrange equation
[23]-[25]. Note that the inertia matrix M(g,6) is symmetric,
positive definite, and consequently invertible. This property is
used in the subsequent development.

B. Control Objective

We control a nonlinear system having interconnected
parametric uncertainties. Therefore, a highly computationally
efficient adaptive controller needs to be designed guaranteeing
perfect tracking. We formulate a Batch Least-Squares
Identifier (BaLSI) adaptive controller along with revealing its
convergence. As a case study, the controller is formulated for
a robotic manipulator — one of the examples of nonlinear
systems with coupled uncertainties and nonlinearities.

III. DESIGNING BALSI ADAPTIVE CONTROL LAW

In this section, we formulate the adaptive control law to
efficiently estimate unknown parameters along with
guaranteeing perfect tracking. We design a certainty-
equivalence controller combined with the Batch Least-Squares
Identifier in order to have a certainty-equivalence adaptive
controller along with the event-triggered identifier.

Therefore, we need to derive the dynamic equations of the
system including some parametric uncertainties, and then
design the controller to stabilize the error dynamics making
the origin asymptotically stable. The system (1) can be
rewritten as follows,

x=F(,x,0,u) 2

where, x = (g1, ,qn. 41, -+, gu]’ € R¥" is the vector of states,
qgi and ¢; are angle and angular velocity of the joints,
respectively, and u = 7 € R".

Consider the general form of (2) where x € R” and u e R™.
In the case of having parametric uncertainties in the system,
(2) can be written in the general form of

X = f(t,x,u)+g(t,x,u)d 3)
where, both the f:RsoxR*xR" — R>" and the regressor
matrix g:Rso xR xR” — R¥” xR” are smooth mappings
with  f(£,0,0)=0, g(0,00=0 hold for all t>0 and
6 e ® cR? is a vector of unknown constant parameters: p is
the number of unknown parameters taking values in a closed
convex set ©.

A. Designing Certainty-Equivalence Controller

We assume that there exists a smooth mapping
kR0 X ® XR" — R™ with «(¢,6,0) = 0 holds for all > 0 and
0 € ® for which the following stabilizability and “uniform”
coercivity property assumptions hold for V(6,.) € C' (R";Rs0),
a class of positive definite, radially unbounded, and
continuously differentiable functions on compact sets of ©.

Assumption 1: For each 6€®, the origin is uniformly
globally asymptotically stable for the closed-loop system,

X = f(t,x,x(t,0,x)) + g(t, x,k(t,6,x)) 6 4)

More specifically, the following inequality holds for all
0e®, xeR" andt >0,

vV, x)(f(t,x,«(t,6,x))+g(t, x,k(t,0, x))0)
< -20V(0,x) )
where o > 0 is a constant.

Assumption 1 is a common stabilizability assumption,
which is necessary for all possible adaptive control design
approaches.  Note  that knowing the  functions
K:RyoXxO®XR" - R" and V: ®XR" — R is not a demanding
requirement, since for the design of a globally stabilizing
controller, a control Lyapunov function is typically utilized.

Assumption 2: For every non-empty and compact set ® C O,
the following property holds: “for every M >0 there exists
R >0 such that the implication V(6,x) < M,0€® — |x| <R
holds”.

Assumption 2 reveals the “uniform” coercivity property for
V(6,-) on the compact set ® C R”, which holds for functions in
the following form,

V(,x) =a;(6, x)x%

n
+Zai(9,x)(xi—¢i—1(9,)61,"' X)) (6)
i=2
where a; (i=1,---,n) are positive continuous functions and
#; :®@xR! — R are continuous functions with ¢;(6,0) =0 for
all@e@®andi=1,---,n.

Let 7o >0 be the initial time and x(#) = xo be the given
initial condition. Note that the parameter estimation & € R? is
kept constant within the interval between two consecutive
events. Consequently, we have the following feedback control
law and regulation-triggered parameter update law for i € Z,

u(?) = k(t,00t)),x())  t€[ti,Tir1) (7

ot =0x)  telr,tin) (3)
where 7; >0 is the time of ith event, when the following
equations satisfy for 7 > 0 and r; > 7,

Tip1 =min(r; + T, r;) forieZsg 9
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It is worth mentioning that r;>7; is a time instant
determined by the event-trigger, as the smallest value of time
t > 1;, for which

To = 1p.

V(0. x(1) = V (B(ri). x(1)) + a(x(1y) (11)
where a: R" — Ry is a continuous positive-definite function
(another tunable parameter in the proposed scheme) and x(r)
denotes the solution of (3) with the certainty-equivalence
controller u(?) = K(t, 9(7'5),x(t)). Note that defining r; prevents
states and consequently V(6,.) from becoming too large.
Therefore, the distance of time 7; —7;,+; will be less than 7 if
the state increases too fast.

B. Batch Least-Squares Identifier (BaLSI)

Along with designing the controller, in order to estimate the
unknown vector 6 € ®, we formulate the Batch Least-Squares
Identifier (BaLSI). Based on (3), we notice that, for every
s,t > to, the following equation holds:

x()-x(s) = [ £ x0),u07) dr

N (Lf 0, x(P), u(r) dr) 6. (12)
Considering,
p5) =30 -x)- [ frxuer)dr - (13)
t
4(t,5) = | g(rx(r),u(r)) dr (14)

leads to p(t,s) = q(t, s)0 for every s,t > ty. We define h; : RP —
R* as follows,

) _ Ti+1 Ti+1 _ 2
hz(ﬁ)—ﬁo LO p(t.5)—q(t. )0 dsdt. (15

The function #;(¢) has a global minimum at ¥ =6 with
hi(0) = 0. Consequently, we get, from the Fermat's theorem
for extrema, that the following equation holds:

Z(tiv1) = G(ti41)0 (16)

where
Z(t) = fto L 0 ¢' (6, 5)p(t, ) ds dt (17)
G(r)) = L 0 L 0 g7 (1, 9)q(t, 5) ds dt. (18)

Note that G(r;) € RP*P is a symmetric and positive
semidefinite matrix, and it is invertible providing
det(G(7i+1)) # 0. Therefore, in the case of a positive definite
G(ti41) (det(G(ti+1) > 0), the vector of unknown parameters
can be calculated as

6= (G(rir1) ™ Z(Tis). (19)

However, G(7;+1) is not necessarily positive definite and

(19) does not always hold. Therefore, the following convex

optimization problem with linear equality constraints has a
unique solution,

. A2
%161(51 |19 - 9(T,-)|
Subject to: Z(7i41) = G(1i41)0. (20)
Finally, the following parameter update law, the batch least-

increment least-squares parameter update law, can be defined
as:

9(7',-+1) = argm;n{|ﬁ—9(7i)|2 9 €0,

Z(tiv) = G(Ti+1)19}- 2y

The parameter update law (21) is the key difference of the
proposed adaptive control scheme, however, in practice, it is
better to avoid the implementation of (21) because of potential
modeling and measurement errors. Therefore, there is no
guarantee that the following set is non-empty.

(#€©: Z(ti1) = Grin)d). (22)

Consequently, we may need to relax the minimization
problem (21) as follows,

O(riv1) = argmﬁin{ |9 é(Ti)|2

+Y1Z(Ti1) = G(Ti )P 1 0 € 9}' (23)

We consider the plant (3) with the controller (7)—(10) and
the parameter estimator (23). The main result guarantees
global convergence of all states of error system to zero.

The following theorem is a direct extension of Theorem 4.1
in [22] and its proof is omitted.

Theorem 1: Consider the following control system subject
to Assumptions 1 and 2,

X = f(t,x,k(2,0,x)) + g(t, x,k(1,6, x))0 (24)
where «(-) is the proper controller verifying Assumption 1. Let
T > 0 be a positive constant and a : R” — Ry be a continuous
positive definite function. Then, there exists a mapping
wyp € KL parameterized by 6,0€® such that for every
10 >0, 0,0 €®, and x(z9) = xo € R", the solution of the closed-
loop system (24) with the update law (23) is defined for all
t > ty and satisfies,

IX(D)] < wp g, (Ix0l, 1 = 10). (25)
Moreover, there exist 7 >0 and 65 € ® (both depending on

6,60, to, and xo) such that A(r) = 6, for all 1> 1y+7 and the
following equation holds for all # > #g

8, x(0), u(1))(0 - 6) = 0. (26)

Note that Theorem 1 guarantees that there is a finite settling

time 7>0 for the parameter estimate. Also, the proof of

Theorem 4.1 in [22] shows that at most p switchings of the

value of the parameter estimate 6(f) can occur. It is important

to notice that no assumption for persistency of excitation is
made in Theorem 1.

C. Error System Development

The control objective includes converging joint position and
velocity errors to zero implying the generalized coordinates
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track the desired time-varying joint trajectories, gges(f) € R”. A
state-space model for the tracking error is formulated based on
the following equations,

€1 =q—qdes 27)

€2 = q —{des (28)
where the following assumption is held for the desired joint
trajectories.

Assumption 3: The desired joint trajectories gges(f) € R” and
their derivatives gges(f), Gaes(f) € R” exist and are bounded for
all ¢ > 1.

Then a controller is formulated to improve tracking
performance indices, converging errors to zero, subject to the
assumption of knowing the system’s dynamics, as mentioned
earlier.

A state-space model, based on the tracking error, is
formulated through premultiplying the inertia matrix by the
time derivative of (28) while (1) is substituted,

M(q)ér +C(q,@)ez + M(q)Gdes + C(q,@)qaes + G(@) =T (29)
which yields,

é1=ep (30)

2 = ~Gges — M (Cgges + G+ Ce) + M~ 'z (31)

Therefore, the state-space model of error dynamics
becomes,
€2
=| . L _ 32
~Gjdes =M™ (Caes + G+ Cer) + M(g) ™' (2)

where E = [elT el'1T e R' is the vector of error states.

As mentioned in Theorem 1, the nominal controller «(z, E)
should asymptotically stabilize the closed-loop system, and
the uniform coercivity property for Control Lyapunov
Function (CLF) should be established. Since the dynamics of
system (1) is known, the controller is formulated based on
(31). In order to design a nominal controller (k) to
asymptotically stabilize the systems around the origin, we
employ the backstepping approach. We implement
ey =¢(e1) = —ae; which is asymptotically stabilizing (30)
since

74T
51

1 .
Vi(ey) = Ee{el — Vi(e)) = —ej ae (33)

where a € R™" is a constant positive definite matrix. Now, we
define a new variable z=e;—¢ = ey +ae;. Therefore, the
error dynamics is rewritten based on e; and 7 as follows,

é1=-ae|+z (34)
t=az-ae)-h+M 'z (35)
where
h = Gaes + M (Caes + G +C(z = aey)). (36)
The Lyapunov function candidate for new system is
L ¢ L ¢
Viei,z) = Eelel + 52 z (37

and the derivative of new CLF is

V=el(-ae; +2)+z2" (a(z—ael) —h+M_1T)
= —elTa/el + esz
+2(a(z - ae)) - h(g,q) + M~ 7). (38)

The derivative of Lyapunov function would be negative
definite for E € R"—-{0} with the following input for the
system,

T:M(h—el —ﬁz—a(z—ael)) 39)
(40)

where BeR™" is a constant positive definite matrix.
Therefore, the following feedback law asymptotically
stabilizes the system,

: T T
—>V=-eae —z Bz

T=M(h—Lyxn +Ba)e; — (@ +pB)er). 41)
Hence, the certainty-equivalence controller u is
() = M(g,0) (h(q.4.0) ~ U +B)e1 = (@ +Pez) . (42)

It is worth mentioning that finding regressor matrix g(z, x, u)
in (3) is analytically and computationally cumbersome.
Therefore, we implement the proposed approach for the
adaptive control of a two-link robot.

IV. RESULTS

We study a two-link manipulator with the following mass,
Coriolis, and gravitational matrices,

Mi1(q.0) Mi2(q.0)
M(q,0) = 43
(4.9) Mi2(q,0) M>; (43)
. —q2Cn(q,8)  —(g1+¢2)Ci(q,0)
Clq,q,0)=| . 44
4.4.) [ ¢1Cn(q,0) 0 “9)
_| —(miley + mely)gcos(qr) — meglee cos(qr +q2)
Glg) = e
e8lee cOS(q1 +q2)
(45)
a
0=| 2 a (46)
asday
where,

M11(g,0) = a1 +2a3cos(q2) +2a4 sin(g2)
M2(q,0) = az + az cos(q2) + a4 sin(qa)
My =a;
Cn(g,0) = a3 sin(qa) — as cos(q2)
ay =1, +mll§1 +1, +melfe +mgl%
a=1,+ melfe
az = melilee cos(de)
as = melylee sin(8,).

Therefore,

—-ay
as+ap

as+ap

M(g.0)" = —2as—a

" den

where,
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den = ag —ajax +a§
as = az cos(q2) +as sin(ga)
and M(q,6)"'C(q,¢) is defined in (47).

Finally, by having four unknown parameters (aj, az, a% - ai,
and azaq), (3) can be rewritten as (49) such that f(z,x,u),
g(t,x,u), and 6 are defined in (50), (51), and (52),
respectively.

M(q,0)"'C(q,9) =

e —ae(asq1 +az (g1 +¢2)) —axas (41 +¢2)
den | a6 (as(2q1 + g2) +(a1g1 +a242))  as(as +ax)(q1 +q2)
“47)
where
ag = a4cos(q) — az sin(qz) (48)
X = f(t,x,u)+ g(t, x,u)0,
x=le,er,e1,e]T €RY, u=7eR? geR? (49)
e
Tads
t,x,u) = den . 50
flt%u) e (50)
(t1-212)as
den
0 T — 11 +a6(q1 +§2)?
_ den
t,x,u) = . o .
$(t 510  Tatasdi  Ti—aeqa(qa+241)
den den
O2><4
47 sin(2q2) g1 c0s(2q2)
) 2den ) den )
sin(2g2) (@1 +2)* +43)  c0s(2g2) (g1 +G2)* + )
2den den
(51
ai
ap
=\ 2la | (52)
asdy

For a general Euler-Lagrangian system we formulated the
control law (41), which asymptotically stabilizes the system.
Note that since M(g,0) is a function of the estimated
parameters, 4(q, ¢, 0) is subsequently a function of 6.

For the two-link manipulator shown in Fig. 1, we
investigate the performance of designed controller stabilizing
the system at the fully extended unstable equilibrium point
including four unknown parameters (a, az, a% - ai, and azay).
First of all, we simulate the control law (41) without any
estimation update, 6 = @. The following values are chosen for
the simulation,

m1:1, l1=1, l61=0.5, 1120.12
me=2, l.=06, I,=025 6,=0.
Therefore, the actual values of parameters are as follows,
o=[334 097 14 0]

."fo
??;ﬁﬁfﬂff.-'xf?;;,{f?

Fig. I. A two-link manipulator.

while, by underestimating the mass, length, and moment of
inertia of the links, the following initial guesses for the
parameters are taken,

fo=[ 2338 0201 072 02 ]T

with the following initial conditions,

qo, =0, go, =—0.4rad/s

T
q0, = 5 Go, = —0.1rad/s.

Here we investigate the identifier (23) with the following

parameters, along with the controller, to stabilize the
manipulator at the fully extended unstable equilibrium point,

T=50s
1 2 2
Vie)=5 (lerf +2.5leal?)

a(e) = 0.8(|e1 P+ |e2|2).

As can be seen in Fig. 2, the first event-triggered parameter
adaptation happens at r=144s<7T due to the dramatic
growing of the Lyapunov function, although the second one
happens 5s after the first one (since 7 =5s). After two
estimations, the parameters converge to their actual ones, and
the controller properly stabilizes the system.

aé—ad

a,

a, asa,

0 5 10 15 20 25
Time (s)

Fig. 2. The parameter estimation process.

Figs. 3 and 8 present the performance of the proposed
adaptive scheme and also stability of the two-link robot at the
fully extended unstable equilibrium point. Fig. 8 illustrates
that the tracking errors and their time derivatives
asymptotically converge to zero.



BAGHERI ef al.: ADAPTIVE CONTROL OF A TWO-LINK ROBOT USING BATCH LEAST-SQUARE IDENTIFIER 91

150 F

100

50

q (deg.)

-50

—-100

—-150

0 5 10 15 20 25
Time (s)

Fig. 3. The joints’ angles in the case of having parameter estimation update.

0 5 10 15 20 25
Time (s)
Fig. 4. The control torques of the joints in the case of having parameter
estimation update.

The control torques of the joints are also illustrated in Fig. 4,
indicating that the system becomes stable at the equilibrium
point, and the control torques converge to zero.

To demonstrate the importance of parameter estimation,
both the phase portrait and value of Lyapunov function for
both the cases (with and without parameter estimation) are
shown.

Fig. 5 presents the phase portrait of tracking error and its
time derivative for link 1 when there is an identifier along
with the controller (blue line), and there is not an identifier
(red dashed line). As can be seen, the trajectory with batch
parameter estimation converges to zero (blue) while the
trajectory without batch parameter estimation does not (red).
Fig. 6 presents the phase portrait of tracking error and its time
derivative for link 2, again for both the cases.

The phase portraits shown in Figs. 5 and 6 demonstrate the
importance of parameter estimation in the stability of closed-
loop system. As expected, the phase portraits of the nominal
closed-loop system asymptotically converge to the origin,
although in the presence of uncertainty and without any
parameter estimation, the phase portraits never converge to
the origin. Figs. 5 and 6 reveal that, in the case of having
parameter estimation, the phase portraits converge to the
nominal closed-loop ones, after the first parameter adaptation,

125
75+
251
9
53" 25+
gy
775 -
nominal closed-loop
—125 | — — with parameter est.
—-—* w/o parameter est.
_175 1 1 I
—250 —150 =50 50
e, (deg)
Fig. 5. The projection on the e; vs. ¢; plane solution of the closed-loop

system with the proposed controller.

150
/'/./-’ '''''' \.\.\
sl /‘,._.7-7"" ''''''' RN e ——
g [ SEEREN \(X// \'\ \.\
Coy S & )
N \ \ ~. P/ e
50} ~. . \.\ ~d=C._. -
2 = ~eeT
& N /
S, "~ 7
s . /
—150 F \,\.\-‘./.
nominal closed-loop
=250 1 .
—-— with parameter est.
— = w/0 parameter est.
=350 . . -
—250 -150 =50 50 150
e, (deg.)

Fig. 6. The projection on the e, vs. &, plane solution of the closed-loop
system with the proposed controller.

and then asymptotically converge to the origin. Also, the
values of the Lyapunov function can be seen in Fig. 7,
indicating that the inequality (11) is satisfied at 7= 1.44s
while the first parameter adaptation, as expected, happens at
that time.

f — with parameter est.
30000 /-I ——* w/o parameter est.
' /.J'
7/
/
20000/
S ]
< /
/
10000 -
0 -
0 5 10 15 20 25
Time (s)
Fig. 7. The values of Lyapunov function for the closed-loop system with

the proposed controller.
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It is worth mentioning that, in the control law (42), selecting
small @ and B8 matrices would yield a more effective role for
the model relevant part of the control scheme.

V. CONCLUSIONS

Throughout this paper, we designed a trigger-based adaptive
controller for robot manipulators to estimate the unknown
parameters and also to achieve asymptotic stability in the
presence of uncertainties. We studied a 2-DOF manipulator
(Fig. 1) with four unknown parameters and stabilized the
system at the fully extended unstable equilibrium point along
with efficiently estimating the unknown parameters.

To this end, we rewrote the manipulator equations in the
general form of (3) and extracted the unknown parameters in
addition to designing the proper nominal controller. Toward
designing the controller, we formulated the proper Lyapunov
candidate function using the backstepping approach and then
designed the nominal controller to asymptotically stabilize the
system without any uncertainties. The simulation results
revealed that the controller, in the presence of parametric
uncertainties, makes the robot manipulator asymptomatically
stable and also efficiently estimates the unknown parameters.
Fig. 8 illustrates the convergence of tracking errors and their
time derivatives to zero. Also, the parameter estimation
process using the proposed scheme was shown in Fig. 2.
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The (a) tracking errors and (b) tracking errors’ time derivatives with
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