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   Abstract—We design a regulation-triggered adaptive controller
for  robot  manipulators  to  efficiently  estimate  unknown
parameters and to achieve asymptotic stability in the presence of
coupled  uncertainties.  Robot  manipulators  are  widely  used  in
telemanipulation  systems  where  they  are  subject  to  model  and
environmental  uncertainties.  Using  conventional  control
algorithms  on  such  systems  can  cause  not  only  poor  control
performance,  but  also  expensive  computational  costs  and
catastrophic  instabilities.  Therefore,  system uncertainties  need to
be  estimated  through  designing  a  computationally  efficient
adaptive  control  law.  We  focus  on  robot  manipulators  as  an
example of  a highly nonlinear system. As a case study,  a 2-DOF
manipulator  subject  to  four  parametric  uncertainties  is
investigated. First, the dynamic equations of the manipulator are
derived,  and  the  corresponding  regressor  matrix  is  constructed
for  the  unknown parameters.  For  a  general  nonlinear  system,  a
theorem is  presented to guarantee the asymptotic stability of  the
system  and  the  convergence  of  parameters’ estimations.  Finally,
simulation  results  are  discussed  for  a  two-link  manipulator,  and
the performance of the proposed scheme is thoroughly evaluated.
    Index Terms—Backstepping,  least-square identifier,  robot  manipu-
lators, trigger-based adaptive control.
 

I.  Introduction

ROBOT  manipulators  are  widely  used  in  various
applications  to  track  desired  trajectories  on  account  of

their reliable, fast, and precise motions in executing tasks such
as  moving  debris  and  turning  valves  [1],  [2],  while,  as
expected,  consuming  a  significant  amount  of  lumped  energy
[3].  Remote manipulators  provide the capability  of  executing
tasks  safely  and  autonomously  at  dangerous  or  unreachable
locations.  However,  they  inevitably  operate  within  different
environments subject  to numerous uncertainties or  large time
delays  [4].  These  uncertainties  include  the  length,  mass,  and
inertia  of  the  links,  as  well  as  the  manipulator  payloads,  are

some of  the  mentioned  uncertainties.  The  detrimental  impact
of  uncertainties  is  well-established,  which  plays  the  most
significant role in degrading remote perception, manipulation,
and  destabilizing  systems.  Adaptive  control  is  an  effective
approach  to  control  these  highly  nonlinear  systems  under
parametric uncertainties.

Considerable  research  efforts  have  been  devoted  to  the
adaptive  control  of  linear  and  nonlinear  finite-dimensional
systems,  see  [5]–[7].  Adaptive  controllers  are  designed  to
compensate for the detrimental effects of system uncertainties
in  addition  to  enabling  the  system  to  follow  the  desired
trajectory [8]. Developing adaptive control schemes for robots
has received much attention in the last three decades [9]–[12].
Using the algorithm formulated by Slotine and Li [13], Spong
[14]  presented  the  adaptive  control  results  for  flexible  joint
robot  manipulators  under  the  assumption  of  weak  joint
elasticity,  while  adaptive  motion  control  for  rigid  robots  was
studied by Ortega and Spong in [15].

The  adaptive  control  scheme  derived  in  [16]  requires  the
joints’ accelerations for its implementation, through estimating
the acceleration from the measured velocity, which inevitably
needs sufficient encoder resolution and fast sampling. Slotine
and Li  [17]  presented  a  combinatorial  adaptive  controller  for
robot manipulators, and the parameter adaptation is driven by
both  tracking  and  prediction  errors.  These  very  sophisticated
schemes need the calculation of  many complicated analytical
expressions  at  each  iteration  leading  to  a  considerable
computational time.

The event-triggered approach has been utilized to deal with
various control problems [18], [19]. Note that the closed-loop
system  subject  to  an  event-triggered  controller  is  a  hybrid
dynamical  system.  The  most  important  advantage  of  the
event-triggered  direct  adaptive  control  scheme  [19],  unlike
other approaches (gradient, Lyapunov, etc.), is that it does not
depend on the persistence of excitation condition to guarantee
the  convergence  of  parameter  estimation.  Through  the
proposed  scheme,  a  novel  regulation-triggered  identifier  is
formulated,  allowing  us  to  use  certainty-equivalence
controllers  without  slowing  adaptation.  The  following  main
ideas  are  implemented  into  the  proposed  control  design:  1)
Utilizing piecewise-constant parameter estimates between the
event-based  triggers.  This  idea  omits  the  crucial  issue  of
disturbing the effect of rapidly changing estimates [20], [21],
and  2)  The  parameter  estimation  is  regulated  by  error,  but
there  is  no  error-based  estimation  leading  to  the  parameter
updating rate.

The rest of the paper is organized as follows. We derive the
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model  of  a  Euler-Lagrangian  system  (e.g.,  a  robot
manipulator) for employing the adaptive certainty-equivalence
control  law  using  the  batch  least-square  identifier  (BaLSI)
[22].  Then,  we reveal  that  the  closed-loop system is  globally
asymptotically  stable,  subject  to  all  necessary  assumptions.
Finally, as a benchmark, we utilize the proposed method for a
two-link robot in the presence of four uncertainties,  to reveal
the performance and significance of the proposed scheme. 

II.  Problem Statement
 

A.  Mathematical Model

n
The  nonlinear  and  coupled  second-order  differential

equation  for  an  degrees-of-freedom  manipulator  is  as
follows,
 

M(q, θ)q̈+C(q, q̇, θ)q̇+G(q, θ) = τ (1)
q ∈ Rn q̇ ∈ Rn q̈ ∈ Rn

τ ∈ Rn
θ ∈ Rp

M(q, θ) ∈ Rn×n C(q, q̇, θ) ∈ Rn×n G(q, θ) ∈ Rn

M(q, θ)

where, , ,  and  are  angles,  angular
velocities,  and  angular  accelerations  of  joints,  respectively,

 indicates  the  vector  of  joints’ driving  torques,  and
 is  the  vector  of  system’s  parameters.  Also,

, , and  are the mass,
Coriolis,  and  gravitational  matrices,  respectively,  which  we
symbolically  derived  using  the  Euler-Lagrange  equation
[23]–[25].  Note  that  the  inertia  matrix  is  symmetric,
positive definite, and consequently invertible. This property is
used in the subsequent development. 

B.  Control Objective
We  control  a  nonlinear  system  having  interconnected

parametric  uncertainties.  Therefore,  a  highly  computationally
efficient adaptive controller needs to be designed guaranteeing
perfect  tracking.  We  formulate  a  Batch  Least-Squares
Identifier (BaLSI) adaptive controller along with revealing its
convergence. As a case study, the controller is formulated for
a  robotic  manipulator – one  of  the  examples  of  nonlinear
systems with coupled uncertainties and nonlinearities. 

III.  Designing balsi Adaptive Control Law

In  this  section,  we  formulate  the  adaptive  control  law  to
efficiently  estimate  unknown  parameters  along  with
guaranteeing  perfect  tracking.  We  design  a  certainty-
equivalence controller combined with the Batch Least-Squares
Identifier  in  order  to  have  a  certainty-equivalence  adaptive
controller along with the event-triggered identifier.

Therefore,  we need to  derive  the  dynamic  equations  of  the
system  including  some  parametric  uncertainties,  and  then
design  the  controller  to  stabilize  the  error  dynamics  making
the  origin  asymptotically  stable.  The  system  (1)  can  be
rewritten as follows,
 

ẋ = F(t, x, θ,u) (2)

x = [q1, · · · ,qn, q̇1, · · · , q̇n]T ∈ R2n
qi q̇i

u = τ ∈ Rn

where,  is the vector of states,
 and  are  angle  and  angular  velocity  of  the  joints,

respectively, and .
x ∈ Rn u ∈ RmConsider  the  general  form of  (2)  where  and .

In  the  case  of  having  parametric  uncertainties  in  the  system,
(2) can be written in the general form of

 

ẋ = f (t, x,u)+g(t, x,u)θ (3)
f : R≥0×R2n×Rn→ R2n

g : R≥0×R2n×Rn→ R2n×Rp

f (t,0,0) = 0 g(t,0,0) = 0 t ≥ 0
θ ∈ Θ ⊂ Rp p

Θ

where,  both  the  and  the  regressor
matrix  are  smooth  mappings
with ,  hold  for  all  and

 is  a  vector  of  unknown  constant  parameters:  is
the number of unknown parameters taking values in a closed
convex set . 

A.  Designing Certainty-Equivalence Controller

κ : R≥0×Θ×Rn→ Rm κ(t, θ,0) = 0 t ≥ 0
θ ∈ Θ

V(θ, .) ∈C1 (Rn;R≥0)

Θ

We  assume  that  there  exists  a  smooth  mapping
 with  holds for all  and

 for  which  the  following  stabilizability  and “uniform”
coercivity property assumptions hold for ,
a  class  of  positive  definite,  radially  unbounded,  and
continuously differentiable functions on compact sets of .

θ ∈ ΘAssumption  1: For  each ,  the  origin  is  uniformly
globally asymptotically stable for the closed-loop system,
 

ẋ = f (t, x, κ(t, θ, x))+g(t, x, κ(t, θ, x))θ (4)

θ ∈ Θ x ∈ Rn t ≥ 0
More  specifically,  the  following  inequality  holds  for  all

, , and ,
 

∇V(θ, x)( f (t, x, κ(t, θ, x))+g(t, x, κ(t, θ, x))θ)
≤ −2σV(θ, x) (5)

σ > 0where  is a constant.

κ : R≥0×Θ×Rn→ Rm V : Θ×Rn→ R

Assumption  1  is  a  common  stabilizability  assumption,
which  is  necessary  for  all  possible  adaptive  control  design
approaches.  Note  that  knowing  the  functions

 and  is not a demanding
requirement,  since  for  the  design  of  a  globally  stabilizing
controller, a control Lyapunov function is typically utilized.

Θ̄ ⊂ Θ
M ≥ 0

R > 0 V(θ, x) ≤ M, θ ∈ Θ̄→ |x| < R

Assumption 2: For every non-empty and compact set ,
the  following  property  holds: “for  every  there  exists

 such  that  the  implication 
holds”.

V(θ, ·) Θ ⊂ Rp
Assumption 2 reveals the “uniform” coercivity property for

 on the compact set , which holds for functions in
the following form,
 

V(θ, x) =a1(θ, x)x21

+

n∑
i=2

ai(θ, x) (xi−ϕi−1 (θ, x1, · · · , xi−1))2 (6)

ai (i = 1, · · · ,n)
ϕi : Θ×Ri→ R ϕi(θ,0) = 0
θ ∈ Θ i = 1, · · · ,n

where  are  positive  continuous  functions  and
 are  continuous  functions  with  for

all  and .
t0 ≥ 0 x(t0) = x0

θ̂ ∈ Rp

i ∈ Z≥0

Let  be  the  initial  time  and  be  the  given
initial  condition.  Note that  the parameter  estimation  is
kept  constant  within  the  interval  between  two  consecutive
events. Consequently, we have the following feedback control
law and regulation-triggered parameter update law for ,
 

u(t) = κ(t, θ̂(τi), x(t)) t ∈ [τi, τi+1) (7)
 

θ̂(t) = θ̂(τi) t ∈ [τi, τi+1) (8)
τi ≥ 0 ith

T > 0 ri > τi
where  is  the  time  of  event,  when  the  following
equations satisfy for  and ,
 

τi+1 =min(τi+T, ri) for i ∈ Z≥0 (9)
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τ0 = t0. (10)
ri > τi

t > τi

It  is  worth  mentioning  that  is  a  time  instant
determined by the event-trigger, as the smallest value of time

, for which
 

V
(
θ̂(τi), x(t)

)
= V
(
θ̂(τi), x(τi)

)
+a (x(τi)) (11)

a : Rn→ R≥0
x(t)

u(t) = κ
(
t, θ̂(τi), x(t)

)
ri

V(θ, .)
τi−τi+1 T

where  is  a  continuous positive-definite  function
(another  tunable  parameter  in  the  proposed  scheme)  and 
denotes  the  solution  of  (3)  with  the  certainty-equivalence
controller .  Note  that  defining  prevents
states  and  consequently  from  becoming  too  large.
Therefore, the distance of time  will  be less than  if
the state increases too fast.
 

B.  Batch Least-Squares Identifier (BaLSI)

θ ∈ Θ,

s, t ≥ t0

Along with designing the controller, in order to estimate the
unknown vector  we formulate the Batch Least-Squares
Identifier  (BaLSI).  Based  on  (3),  we  notice  that,  for  every

, the following equation holds:
 

x(t)− x(s) =
w t

s
f (r, x(r),u(r)) dr

+

(w t

s
g(r, x(r),u(r)) dr

)
θ. (12)

Considering,
 

p(t, s) = x(t)− x(s)−
w t

s
f (r, x(r),u(r)) dr (13)

 

q(t, s) =
w t

s
g(r, x(r),u(r)) dr (14)

p(t, s) = q(t, s)θ s, t ≥ t0 hi : Rp→
R+
leads to  for every . We define 

 as follows,
 

hi(ϑ) =
w τi+1
t0

w τi+1
t0
|p(t, s)−q(t, s)ϑ|2 ds dt. (15)

hi(ϑ) ϑ = θ

hi(θ) = 0
The  function  has  a  global  minimum  at  with

.  Consequently,  we  get,  from  the  Fermat's  theorem
for extrema, that the following equation holds:
 

Z(τi+1) =G(τi+1)θ (16)
where
 

Z(τi) =
w τi
t0

w τi
t0
qT (t, s)p(t, s) ds dt (17)

 

G(τi) =
w τi
t0

w τi
t0
qT (t, s)q(t, s) ds dt. (18)

G(τi) ∈ Rp×p

det(G(τi+1)) , 0
G(τi+1) det(G(τi+1) > 0

Note  that  is  a  symmetric  and  positive
semidefinite  matrix,  and  it  is  invertible  providing

.  Therefore,  in  the  case  of  a  positive  definite
 ( ),  the  vector  of  unknown  parameters

can be calculated as
 

θ = (G(τi+1))−1Z(τi+1). (19)
G(τi+1)However,  is  not  necessarily  positive  definite  and

(19)  does  not  always  hold.  Therefore,  the  following  convex
optimization  problem  with  linear  equality  constraints  has  a
unique solution,
 

min
ϑ∈Θ

∣∣∣ϑ− θ̂(τi)∣∣∣2
Subject to : Z(τi+1) =G(τi+1)ϑ. (20)

Finally, the following parameter update law, the batch least-
increment least-squares parameter update law, can be defined
as:
 

θ̂(τi+1) = argmin
ϑ

{∣∣∣ϑ− θ̂(τi)∣∣∣2 : ϑ ∈ Θ,
Z(τi+1) =G(τi+1)ϑ

}
. (21)

The parameter  update  law (21)  is  the  key difference of  the
proposed  adaptive  control  scheme,  however,  in  practice,  it  is
better to avoid the implementation of (21) because of potential
modeling  and  measurement  errors.  Therefore,  there  is  no
guarantee that the following set is non-empty.
 {

ϑ ∈ Θ : Z(τi+1) =G(τi+1)ϑ
}
. (22)

Consequently,  we  may  need  to  relax  the  minimization
problem (21) as follows,
 

θ̂(τi+1) = argmin
ϑ

{∣∣∣ϑ− θ̂(τi)∣∣∣2
+γ |Z(τi+1)−G(τi+1)ϑ|2 : ϑ ∈ Θ

}
. (23)

We  consider  the  plant  (3)  with  the  controller  (7)–(10)  and
the  parameter  estimator  (23).  The  main  result  guarantees
global convergence of all states of error system to zero.

The following theorem is a direct extension of Theorem 4.1
in [22] and its proof is omitted.

Theorem  1: Consider  the  following  control  system  subject
to Assumptions 1 and 2,
 

ẋ = f (t, x, κ(t, θ, x))+g(t, x, κ(t, θ, x))θ (24)
κ(·)

T ≥ 0 a : Rn→ R≥0

ωθ,θ̂ ∈ KL θ, θ̂ ∈ Θ
t0 ≥ 0 θ, θ̂ ∈ Θ x(t0) = x0 ∈ Rn

t ≥ t0

where  is the proper controller verifying Assumption 1. Let
 be a positive constant and  be a continuous

positive  definite  function.  Then,  there  exists  a  mapping
 parameterized  by  such  that  for  every

, , and , the solution of the closed-
loop  system  (24)  with  the  update  law  (23)  is  defined  for  all

 and satisfies,
 

|x(t)| ≤ ωθ,θ̂0 (|x0|, t− t0). (25)

τ ≥ 0 θs ∈ Θ
θ, θ̂0 t0 x0 θ̂(t) = θs t ≥ t0+τ

t ≥ t0

Moreover,  there  exist  and  (both  depending on
, ,  and )  such  that  for  all  and  the

following equation holds for all 
 

g(t, x(t),u(t))(θ− θs) = 0. (26)

τ ≥ 0
p

θ̂(t)

Note that Theorem 1 guarantees that there is a finite settling
time  for  the  parameter  estimate.  Also,  the  proof  of
Theorem  4.1  in  [22]  shows  that  at  most  switchings  of  the
value of the parameter estimate  can occur. It is important
to  notice  that  no  assumption  for  persistency  of  excitation  is
made in Theorem 1. 

C.  Error System Development
The control objective includes converging joint position and

velocity  errors  to  zero  implying  the  generalized  coordinates
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qdes(t) ∈ Rntrack the desired time-varying joint trajectories, . A
state-space model for the tracking error is formulated based on
the following equations,
 

e1 = q−qdes (27)
 

e2 = q̇− q̇des (28)
where  the  following  assumption  is  held  for  the  desired  joint
trajectories.

qdes(t) ∈ Rn
q̇des(t) q̈des(t) ∈ Rn

t ≥ t0

Assumption 3: The desired joint trajectories  and
their derivatives ,  exist and are bounded for
all .

Then  a  controller  is  formulated  to  improve  tracking
performance indices, converging errors to zero, subject to the
assumption of knowing the system’s dynamics,  as mentioned
earlier.

A  state-space  model,  based  on  the  tracking  error,  is
formulated  through  premultiplying  the  inertia  matrix  by  the
time derivative of (28) while (1) is substituted,
 

M(q)ė2+C(q, q̇)e2+M(q)q̈des+C(q, q̇)q̇des+G(q) = τ (29)
which yields,
 

ė1 = e2 (30)
 

ė2 = −q̈des−M−1(Cq̇des+G+Ce2)+M−1τ. (31)
Therefore,  the  state-space  model  of  error  dynamics

becomes,
 

Ė =
[

e2
−q̈des−M−1(Cq̇des+G+Ce2)+M(q)−1τ

]
(32)

E = [eT1 eT2 ]
T ∈ R14where  is the vector of error states.

κ(t,E)

κ

e2 =ϕ(e1) = −αe1

As  mentioned  in  Theorem  1,  the  nominal  controller 
should  asymptotically  stabilize  the  closed-loop  system,  and
the  uniform  coercivity  property  for  Control  Lyapunov
Function (CLF) should be established. Since the dynamics of
system  (1)  is  known,  the  controller  is  formulated  based  on
(31).  In  order  to  design  a  nominal  controller  ( )  to
asymptotically  stabilize  the  systems  around  the  origin,  we
employ  the  backstepping  approach.  We  implement

 which  is  asymptotically  stabilizing  (30)
since
 

V1(e1) =
1
2
eT1e1→ V̇1(e1) = −eT1αe1 (33)

α ∈ Rn×n
z = e2−ϕ = e2+αe1

e1 z

where  is a constant positive definite matrix. Now, we
define  a  new  variable .  Therefore,  the
error dynamics is rewritten based on  and  as follows,
 

ė1 = −αe1+ z (34)
 

ż = α(z−αe1)−h+M−1τ (35)
where
 

h = q̈des+M−1
(
Cq̇des+G+C(z−αe1)

)
. (36)

The Lyapunov function candidate for new system is
 

V(e1,z) =
1
2
eT1e1+

1
2
zTz (37)

and the derivative of new CLF is 

V̇ = eT1 (−αe1+ z)+ zT
(
α(z−αe1)−h+M−1τ

)
= −eT1αe1+ eT1 z
+ zT
(
α(z−αe1)−h(q, q̇)+M−1τ

)
. (38)

E ∈ Rn−{0}
The  derivative  of  Lyapunov  function  would  be  negative

definite  for  with  the  following  input  for  the
system,
 

τ = M
(
h− e1−βz−α(z−αe1)

)
(39)

 

→ V̇ = −eT1αe1− zTβz (40)
β ∈ Rn×nwhere  is  a  constant  positive  definite  matrix.

Therefore,  the  following  feedback  law  asymptotically
stabilizes the system,
 

τ = M
(
h− (In×n+βα)e1− (α+β)e2

)
. (41)

uHence, the certainty-equivalence controller  is
 

u(t) = M(q, θ̂)
(
h(q, q̇, θ̂)− (In×n+βα)e1− (α+β)e2

)
. (42)

g(t, x,u)It is worth mentioning that finding regressor matrix 
in  (3)  is  analytically  and  computationally  cumbersome.
Therefore,  we  implement  the  proposed  approach  for  the
adaptive control of a two-link robot. 

IV.  Results

We study  a  two-link  manipulator  with  the  following  mass,
Coriolis, and gravitational matrices,
 

M(q, θ) =
[
M11(q, θ) M12(q, θ)
M12(q, θ) M22

]
(43)

 

C(q, q̇, θ) =
[
−q̇2Ch(q, θ) −(q̇1+ q̇2)Ch(q, θ)
q̇1Ch(q, θ) 0

]
(44)

 

G(q) =
[
−(m1lc1+mel1)gcos(q1)−meglce cos(q1+q2)

−meglce cos(q1+q2)

]
(45)

 

θ =


a1
a2

a23−a24
a3a4

 (46)

where,
 

M11(q, θ) = a1+2a3 cos(q2)+2a4 sin(q2)
M12(q, θ) = a2+a3 cos(q2)+a4 sin(q2)

M22 = a2
Ch(q, θ) = a3 sin(q2)−a4 cos(q2)

a1 = I1+m1l2c1+ Ie+mel2ce+mel21
a2 = Ie+mel2ce
a3 = mel1lce cos(δe)
a4 = mel1lce sin(δe).

Therefore,
 

M(q, θ)−1 =
1
den

[
−a2 a5+a2

a5+a2 −2a5−a1

]
where, 
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den = a25−a1a2+a
2
2

a5 = a3 cos(q2)+a4 sin(q2)

M(q, θ)−1C(q, q̇)and  is defined in (47).
a1 a2 a23−a24

a3a4 f (t, x,u)
g(t, x,u) θ

Finally, by having four unknown parameters ( , , ,
and ),  (3)  can  be  rewritten  as  (49)  such  that ,

,  and  are  defined  in  (50),  (51),  and  (52),
respectively.
 

M(q, θ)−1C(q, q̇) =

1
den

[
−a6(a5q̇1+a2 (q̇1+ q̇2)) −a2a6 (q̇1+ q̇2)

a6 (a5(2q̇1+ q̇2)+ (a1q̇1+a2q̇2)) a6(a5+a2)(q̇1+ q̇2)

]
(47)

where
 

a6 = a4 cos(q2)−a3 sin(q2) (48)
 

ẋ = f (t, x,u)+g(t, x,u)θ,

x = [e1,e2, ė1, ė2]T ∈ R4, u = τ ∈ R2, θ ∈ R4 (49)
 

f (t, x,u) =


e2

τ2a5
den

(τ1−2τ2)a5
den

− q̈des(t)
 (50)

 

g(t, x,u) =


0

τ2−τ1+a6(q̇1+ q̇2)2
den

−
τ2+a6q̇21

den
τ1−a6q̇2(q̇2+2q̇1)

den
02×4

−q̇21 sin(2q2)
2den

q̇21 cos(2q2)
den

sin(2q2)
(
(q̇1+ q̇2)2+ q̇21

)
2den

−
cos(2q2)

(
(q̇1+ q̇2)2+ q̇21

)
den


(51)

 

θ =


a1
a2

a23−a24
a3a4

 . (52)

M(q, θ̂)
h(q, q̇, θ̂) θ̂

For  a  general  Euler-Lagrangian  system  we  formulated  the
control  law  (41),  which  asymptotically  stabilizes  the  system.
Note  that  since  is  a  function  of  the  estimated
parameters,  is subsequently a function of .

a1 a2 a23−a24 a3a4

θ̂ = θ̂0

For  the  two-link  manipulator  shown  in Fig. 1,  we
investigate the performance of  designed controller  stabilizing
the  system  at  the  fully  extended  unstable  equilibrium  point
including four unknown parameters ( , , , and ).
First  of  all,  we  simulate  the  control  law  (41)  without  any
estimation update, . The following values are chosen for
the simulation,
 

m1 = 1, l1 = 1, lc1 = 0.5, I1 = 0.12
me = 2, lce = 0.6, Ie = 0.25, δe = 0.

Therefore, the actual values of parameters are as follows,
 

θ =
[
3.34 0.97 1.44 0

]T

while,  by  underestimating  the  mass,  length,  and  moment  of
inertia  of  the  links,  the  following  initial  guesses  for  the
parameters are taken,
 

θ̂0 =
[
2.338 0.291 0.72 0.2

]T
with the following initial conditions,
 

q01 = 0, q̇02 = −0.4 rad/s

q02 =
π

6
, q̇02 = −0.1 rad/s.

Here  we  investigate  the  identifier  (23)  with  the  following
parameters,  along  with  the  controller,  to  stabilize  the
manipulator at the fully extended unstable equilibrium point,
 

T = 5.0 s

V(e) =
1
2

(
|e1|2+2.5|e2|2

)
a(e) = 0.8

(
|e1|2+ |e2|2

)
.

t = 1.44 s < T

5 s T = 5 s

As can be seen in Fig. 2, the first event-triggered parameter
adaptation  happens  at  due  to  the  dramatic
growing  of  the  Lyapunov  function,  although  the  second  one
happens  after  the  first  one  (since ).  After  two
estimations, the parameters converge to their actual ones, and
the controller properly stabilizes the system.
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Fig. 2.     The parameter estimation process.
 

Figs. 3 and 8 present  the  performance  of  the  proposed
adaptive scheme and also stability of the two-link robot at the
fully  extended  unstable  equilibrium  point. Fig. 8 illustrates
that  the  tracking  errors  and  their  time  derivatives
asymptotically converge to zero.
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Fig. 1.     A two-link manipulator.
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The control torques of the joints are also illustrated in Fig. 4,
indicating  that  the  system  becomes  stable  at  the  equilibrium
point, and the control torques converge to zero.

To  demonstrate  the  importance  of  parameter  estimation,
both  the  phase  portrait  and  value  of  Lyapunov  function  for
both  the  cases  (with  and  without  parameter  estimation)  are
shown.

Fig. 5 presents  the  phase  portrait  of  tracking  error  and  its
time  derivative  for  link  1  when  there  is  an  identifier  along
with  the  controller  (blue  line),  and  there  is  not  an  identifier
(red  dashed  line).  As  can  be  seen,  the  trajectory  with  batch
parameter  estimation  converges  to  zero  (blue)  while  the
trajectory  without  batch  parameter  estimation  does  not  (red).
Fig. 6 presents the phase portrait of tracking error and its time
derivative for link 2, again for both the cases.

The phase portraits shown in Figs. 5 and 6 demonstrate the
importance of parameter estimation in the stability of closed-
loop  system.  As  expected,  the  phase  portraits  of  the  nominal
closed-loop  system  asymptotically  converge  to  the  origin,
although  in  the  presence  of  uncertainty  and  without  any
parameter  estimation,  the  phase  portraits  never  converge  to
the  origin. Figs. 5 and 6 reveal  that,  in  the  case  of  having
parameter  estimation,  the  phase  portraits  converge  to  the
nominal closed-loop ones, after the first parameter adaptation,

t = 1.44s

and  then  asymptotically  converge  to  the  origin.  Also,  the
values  of  the  Lyapunov  function  can  be  seen  in Fig. 7,
indicating  that  the  inequality  (11)  is  satisfied  at 
while  the  first  parameter  adaptation,  as  expected,  happens  at
that time.
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Fig. 3.     The joints’ angles in the case of having parameter estimation update.
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Fig. 4.     The  control  torques  of  the  joints  in  the  case  of  having  parameter
estimation update.
 

 

−175

−125

−75

−25

25

75

125
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Fig. 7.     The  values  of  Lyapunov  function  for  the  closed-loop  system  with
the proposed controller.
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α β
It is worth mentioning that, in the control law (42), selecting

small  and  matrices would yield a more effective role for
the model relevant part of the control scheme. 

V.  CONCLUSIONS

Throughout this paper, we designed a trigger-based adaptive
controller  for  robot  manipulators  to  estimate  the  unknown
parameters  and  also  to  achieve  asymptotic  stability  in  the
presence  of  uncertainties.  We  studied  a  2-DOF  manipulator
(Fig. 1)  with  four  unknown  parameters  and  stabilized  the
system at the fully extended unstable equilibrium point along
with efficiently estimating the unknown parameters.

To  this  end,  we  rewrote  the  manipulator  equations  in  the
general form of (3) and extracted the unknown parameters in
addition  to  designing  the  proper  nominal  controller.  Toward
designing the controller,  we formulated the proper  Lyapunov
candidate  function using the  backstepping approach and then
designed the nominal controller to asymptotically stabilize the
system  without  any  uncertainties.  The  simulation  results
revealed  that  the  controller,  in  the  presence  of  parametric
uncertainties,  makes  the  robot  manipulator  asymptomatically
stable and also efficiently estimates the unknown parameters.
Fig. 8 illustrates  the  convergence  of  tracking  errors  and  their
time  derivatives  to  zero.  Also,  the  parameter  estimation
process using the proposed scheme was shown in Fig. 2.
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Fig. 8.     The (a) tracking errors and (b) tracking errors’ time derivatives with
parameter estimation update. 
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