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Abstract

The existence of a nucleation instability is demonstrated at the vanishing of the path-
independent M integral in linear anisotropic elasticity so that a region that is arbitrarily
small can grow at constant potential energy. It yields a quadratic equation for the critical
pressure to balance the Eshelby dissipation and nucleate an inclusion undergoing both
change in density and change in bulk modulus, and is independent of the radius of the
defect. Regarding the shape of nucleation, the expression from Noether’s theorem allows
also a symmetry breaking mode as a penny-shape “pancake”, and by comparison of the
M integrals for the pancake and the sphere, it would require a greater loss of potential
energy of the system to nucleate a pancake, but less to grow it larger.

1. Introduction

We are considering the problem of the nucleation of a phase change defect under
pressure. It is shown that a “nucleation instability” exists, which allows a defect that is
arbitrarily small to grow incrementally at constant potential energy when the pressure
reaches a critical value depending on the phase change, but not on the radius. The
nucleation instability occurs when the M integral, which is the energy-release rate under
scaling of the defect (Budiansky and Rice, 1973) vanishes. The M integral was derived by
Gunther (1962) based on Noether’s (1918) theorem for invariance of the Lagrangean
under scaling of the defect, and it is path-independent in anisotropic /inear elasticity
(Knowles and Sternberg, 1972). Lubarda and Markenscoff (2007) treated the dual
integrals while Markenscoff and Singh (2015) analyzed the elastodynamic ones. The
vanishing of the M integral determines a (quadratic) equation for the critical instability
pressure in terms of the change in bulk modulus and concurrent change in density, and
shows the Peach-Koehler type of terms that balance the Eshelby dissipation; the
conditions for the existence of a positive root are investigated. The criterion of nucleation
of defects proposed in the literature is that the interface becomes unstable point-wise
when the “driving force” reaches a critical value [Stolz, 2018, and references within],
while the M integral was proposed as a criterion for the growth of holes by Kienzler et a/
(2006) . Recently, Markenscoff (2019b) treated the problem of the dynamically
expanding ellipsoidal region of phase change under pre-stress as an Eshelby (1957, 1961)
inclusion, and showed, on the basis of Noether’s (1918) theorem for invariance of the
Hamiltonian under a group of infinitesimal translations, that the shape of a self-similarly
expanding Eshelby ellipsoidal region may or may not preserve symmetry, in which case
it can nucleate and expand as a flattened ellipsoid “pancake-like” inclusion with



axisymmetric symmetry. Here, the comparison of the M integral for a sphere and a
penny-shape “pancake” shows that it would require a bigger loss in potential energy to
nucleate the “pancake” and but less to grow it. The phenomenon manifests itself in
geophysics in deep focus earthquakes with phase transformation of volume collapse and
change in moduli under high pressure .

I1. The M integral and a “nucleation instability” for a phase change spherical defect
under pressure.

The M integral is derived from Noether’s theorem for invariance of the Lagrangean
functional under scaling and is path-independent in anisotropic linear elasticity (Knowles
and Sternberg, 1972). With / denoting the scaling parameter so that the rate of an
increment in the radius a is §a = al , the relation of the M integral to the rate of change of
the potential energyIT of a purely mechanical system is (Budiansky and Rice, 1973)

drl/ dt=T1=—IM (1)

where the potential energy IT of the system is (e.g. Mura 1982, eqtn (25.19)).
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with F being the loading on the boundary surface S.
The expression for the M integral is (Budiansky and Rice, 1973)

M = [(Wxn, =T, x,— (1) 2)Tu,)dS 3)
N

with 7' denoting the traction vector, and for the spherical inclusion considered here, it
takes the form (e.g. Kienzler and Herrmann, 2000),
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For a spherical inhomogeneity where the field quantities undergo jumps of the outside
quantity minus the inside one (denoted by the double brackets) across the interface at
r=a (e.g., Markenscoff, 2015), we have from (1) and (3)

[[M1)i=-T1=—{dI1/da}da/dt =—{oI1/da}ba  (4)

with [[M]]i = ! {[[Wﬂ— T-H%maa S (4a)



where 8a=al. The third term in the 3-D expression for the M integral in (3) does not
contribute a jump in (4a), which makes the connection to equation (20) below for
invariance in translation.

An instability will occur when eqtn (4) vanishes for any incremental 64 , with the defect
growing in scaling by éa without loss of potential energy, i.e., dI1/da =0 , which
provides the nucleation criterion as

[[M]]i = j[[[W]]_ T H%maads =—{0I1/9a}da=0 )

N

The vanishing of the M integral marks the nucleation event, and it is independent of the
radius for the sphere as shown below in eqtn (10).

We consider the nucleation of a region of phase change modeled as an Eshelby inclusion
(Eshelby, 1957, 1961) and the matrix material will be assumed isotropic. The analysis is
also valid in anisotropy with the Eshelby Tensor obtained by Willis (1971). The spherical
inclusion undergoes change in density (superscript “cd’’) with corresponding eigenstrain
3:/."" (as the “plastic” eigenstrain in Mura’s (1982) terminology) and a concurrent change

in bulk modulus change (“inhomogeneous inclusion” according to Eshelby 1957, 1961)

. (0) . . . . . . *7 h
under remotely applied pressure ¢;,” producing an inhomogeneity with eigenstraing,™ .

The reason that two different types of eigenstrains are considered is because the
transformation strain due to change in density occurs independently of the presence of an
applied field at infinity, while the one due to the inhomogeneity is due to the presence of
the applied field, and the interaction energies are different. The inhomogeneity (change in
bulk modulus) under applied pressure has interaction energy depending only on the
pressure acting on the eigenstrain, but not on the inclusion internal stresses acting on the
eigenstrain (Eshelby 1957, eqtn (4.10)). By contrast, for an inclusion with the change in
density ( “inhomogeneous inclusion”), the interaction energy depends on the internal
stresses acting on the eigenstrain (Eshelby, 1961, eqtn (3.21)) in addition to the applied
stresses. This difference results in the corresponding terms affecting the M integral
differently in eqtn (12) below.

where p is a positive

We consider an infinite solid under pressure at infinity p=—Ke!,’,

number related through the bulk modulus X to the dilatation €’ (negative in this
application) uniformly applied at infinity. We assume that the inclusion undergoes a
change in bulk modulus from K to K", and simultaneously, at zero pressure Ke', a
change in density.

If the material of an inclusion with initial density p, as the matrix has a change in density

to p° given outside the matrix during the Eshelby (1957, 1975a) thought experiment, it



can be considered as an eigenstrain (p,—p’)/p =dV /V =¢, . When reinserted in the

matrix (of the same material) it produces a change in volume in the constrained inclusion
that corresponds to a density p” in the constrained inclusion

(P,=P)/ P =€, =S, =1+V)/3(1-V)e; =(1+V)/(1-v)e™ ©6)

with EU = 61./.e* . For increase in density (volume collapse) the equivalent eigenstrain in (6)

is negative €, <0.

If there is a change in density simultaneously with change in bulk modulus under remote

pressure (pre-stress) €', then the total eigenstrain, due to the inhomogeneity and the

change in density under pressure is & =€, +¢,, where (e.g. Mura, 1982, eqtn (22.25))

g, =(K-K)el+K e, 1(1-v)}/{2(1-2v)K +(1+V)K} (7)
Equation (7) indicates that without applied pressure, but only change in bulk modulus,
the eigenstrain due to change in density with concurrent change in bulk modulus
produces an “inhomogeneous inclusion” with equivalent eigenstrain given from the
second term in (7), as

3K'e ' (1-v)/{2(1-2V)K + K" (1+V)} =

9(1-v)/(1+v)e,“ /[3+4u/ K] (®)

k

which depends on the ratio of the shear modulus of the matrix over the bulk modulus of
the inclusion, and with the expression in (8) being in agreement with Eshelby (1975c).

The eigenstrain due to the inhomogeneity of different bulk modulus does not only include
the effect of pressure on the change of bulk modulus, but also the effect of the change in
density as “loading” on a material with a different bulk modulus, and is

3¢ =g =g, -, =(UK-K)e+K e 11-v)}/ {20-2v)K+(1+V)K }—¢," =

 Ckk kk kk

3A=v)/(1+v)1=K"/K)=p/K)/{20-2v)/(1+V)+ K / K}
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+9(1-v)/ (A+v)e* /[3+4u/ K ]-¢€,."
The total change in volume is
AV/Vngk :‘Svllmmg"ltzi /3:(1-’-\/)/3(1_\/)8: (10)

and, with (7) and (9), it is



AV IV =¢,=(1+v)/3(1-v)e, =(1-K /K)-p/ K)/{2(1-2v)/(1+V)+ K"/ K}
+3e /[3+4u/ K
w [[Brap/ K] (1
For the calculation of the M integral according to (4), the change of the potential energy

of the system in (2) for an inclusion with eigenstrains £ “,e ™" under an applied stress

field G;].O) is evaluated as equal to the “interaction energy” , which according to Mura
(1982, eqtn (25.24)) is

AW =-1/2[cVe"dV - [oVe; " av 1/2[ 0 &,V (12)
y y g g gy
Q Q Q
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We have remarked earlier why there is a difference on how ¢, and ¢ affect

differently the interaction energy in (12). We need to evaluate the stress o, in the last

term in (12) for the spherical inhomogeneity with transformation strain ¢’ = £, +¢,*
with a superposed field of radial stress "’ =—p at infinity. The displacement field

external and internal to the spherical inclusion is given by Mura (1982,eqtns
(11.44)/(11.45)), and the stress field is calculated accordingly. The internal stresses in
the inhomogeneous inclusion are

0,=0,=0,=—(4/3)(1+Vv)/(1-v)ue” (13)
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Thus, (12) yields

AW =2 pe™a’ +4rpe ' a’ +8mui(1+v)/31-v)}(e™ +e“)e“a’ (14)

I1I. Instability pressure for nucleation of a phase change defect

The instability criterion of the vanishing of the M integral in eqtn (5), for a defect of
phase change under pressure to grow in scaling incrementally under no loss in potential
energy, in view of eqtn (14), takes the form

[[M])i=-0I1/0add=—-d(AW)/dadi = —
(—6mpe” —6mpe ™ —Smul(1+v)/ (1-v)ie e “1a’8a =0 (15)

with §a=al . We may note that AW in (15) is related to [[#]] since the LHS of (15) is
given by (4a). The expression (15) is in agreement with the calculation of the change in
potential energy in eqtn (2) using the above fields for a spherical inhomogeneity under a
radial applied stress performed by S. P.V. Singh. (To be noted here that the domain has



always to be considered finite when the derivative with respect to the radius is taken, and
then take the limit for the outside boundary to go to infinity).

For any infinitesimally small nonzero radius a, the vanishing of the term in curls in eqtn
(15) with eqtns (6), (7), (8) and (9) gives an equation for the critical pressure for

nucleation of a defect with change in density and bulk modulus; it is independent of the
radius. Equation (15) yields a quadratic equation for the instability pressure

A(p/ Ky +B(p/K)+C=0 (16)
with

_ (1-K"/K)
[2(1-2v)/(1+V)+ K"/ K]

(17)

B=[{9{(1-v)/(1+V)}/[3+4u/ K 1+1}

i (1-K"/ K) e (18)
2{(1 2v)/(1+v)}[2(1—2v)/(1+v)+K*/K]](1+v)/3(1 V)E,,
C:2{(1—2v)/(1—v)}(£;§"’)2/[3+4,u/K*]] (19)

The investigation of the signs of the roots in terms of their product and sum gives the
conditions for the existence of a positive root p/ K so that nucleation will occur. For
drop in bulk modulus (K" < K ) a positive root always exists since the product of the roots
C/A is negative, so a positive nucleation pressure exists. For K* > K the sum of the roots
depends the sign of the change in density: for increase in density €, <0 there will be

two positive roots. For decrease in density and K~ > K no positive root exists. The root
(smaller) is plotted in Figure 1.
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Figure 1: Critical pressure for nucleation of a spherical defect of change in density and
bulk modulus

The first two terms in the curly brackets in (15) represent a Peach-Koehler type of force
to balance the third term, which is the self-force (Eshelby dissipation). We note that for
pressures lower than the critical pressure the M integral is negative. For one material with
change in density only, with bulk modulus K = K", the coefficient 4 in eqtn (16)

vanishes, and we observe that equations (15)/ (16) equate the Peach-Koehler force —pe,,
to the third term —2u(1+v)/(1-v)(e" ')’ ==2uBA+2u)/ (A+2u)(e )’ which is the
Eshelby dissipation (Eshelby, 1951, 1956, 1970, 1975a) for a spherical inclusion with
eigenstrain as given by Eshelby (1978). The self-force in the equation of motion with
inertia (Markenscoff, 2010, 2019b)) includes the above term, which shows that the
solution of the dynamically self-similarly expanding spherical inclusion automatically
expends the energy needed to nucleate a static inclusion from non-existence before
growing it (which is the nonzero term at expansion speed V=0). This is to be expected,
since the governing system of equations for the self-similarly expanding inclusion is
starting from zero initial conditions.

IV. Symmetry breaking instability as a penny-shape (“pancake”) growing inclusion



It was shown in Markenscoff, 2019b, that the shape which a self-similarly expanding
ellipsoidal inclusion will assume is the one for which the Hamiltonian remains invariant
under a group of infinitesimal translations of the inhomogeneity position. From Noether’s
theorem (dynamic J integral), under total loading, the energy -release rate through a
contour surrounding the surface of discontinuity and shrinking onto it was obtained as

SE™ =—1lim [I((W]}-<0,>[[u,,]DdS =0 (20)

5950

so that the moving phase boundary does not become a source or sink of energy. The
quantity in parenthesis in (20) is the energy-momentum tensor, Eshelby, 1970, 1975a,
1978), where the square brackets [[.]] denote jumps across the interface, <.> the average ,
[ the normal boundary velocity ( not the scaling parameter as in the previous sections, in
order to maintain consistency with notations in the pertinent literature), and

W=1/20 (g, ~€,)=1/2C, (¢, —¢€,)(€, —€,) is the strain energy density; the expression in
parenthesis in (20) coincides with the expression in parenthesis in eqtns (4) and (5). The
field quantities include both the applied pre-stress loading and the self-stresses due to the
motion of the self-similarly expanding inclusion. It should be noted that before the
inclusion starts to nucleate/expand the integral in (20) is a negative quantity under total
loading.

In eqtn (20) two possibilities exist: either the quantity in parenthesis is zero (symmetry
preserving) or to have the normal boundary velocity /=0 on the upper and lower
surfaces, in the limit of a flattened ellipsoid (“pancake”), which has only axisymmetric
symmetry (symmetry-breaking). The two modes are in competition for nucleation and
growth, as will be shown below. In self-similar expansion the nucleated shape does not
change, it only scales.

The evaluation of the M integral (eqtns (4) with (14)) shows that the M integral for the
sphere depends on the radius asa’ .The M integral for the circular pancake of phase
change is not calculated at this point, but we can make the following remarks: As shown
in Eshelby, 1975b, Freund, 1978, Rice (1985), the M integral M, about the origin will

be shifted with regard to the crack tip by x/J. . For a circular penny-shape crack in
tension the stress intensity factor is K, =(2/m)ovar , so that J~K; ~a . Thus, for the

circular penny-shape, M, would vary as a/ ~a” . While this holds for cracks (which are

a special limit of inclusions, e.g., Mura (1982), Markenscoff (2019b), the singularity at
the tip of the flattened ellipsoidal inclusion with eigenstrain will also be square-root
singular. The square root singularity at the tip of the inclusion was obtained by the
integration of distributed centers of eigenstrain inside the flattened elliptical cylinder in
Markenscoff (2019a), where the principal value of the resulting integral gives a square-
root singularity according to Kaya and Erdogan, 1987.



The fact that the M integral for the sphere varies as a’, while for the pancake it varies

as a° , implies that, for small a (as a—0), initial growth at nucleation requires a
smaller loss of the potential energy of the system, while for growth into a larger shape, as
a— e the pancake mode is energetically favored , as the M, integral tends to infinity

at a slower rate. From the above, we may infer that, if there is enough energy to nucleate
an inclusion as a “pancake”, it will then grow planarly with less energy expenditure,
while a spherically nucleated one may not have the energy to grow large.

V. Conclusions

The path-independent M integral in linear anisotropic elasticity, as the energy-release rate
under scaling of the defect, provides an instability criterion for nucleation of a defect, for
incremental growth of an arbitrarily small defect to grow without loss of potential energy
under scaling. The instability pressure for nucleation of an inclusion of phase change in
density and concurrent change in bulk modulus was obtained as a quadratic equation
(independent of the radius), in which the Peach-Koehler forces balance the self-force of
Eshelby dissipation, with the conditions for the existence of a positive root investigated.
As shown in Markenscoff, 2019b, Noether’s theorem allows both for a symmetry
preserving nucleation shape and also for a symmetry breaking axisymmetric one, as a
“pancake”-like ellipsoidal limit, under conditions of total symmetry in the loading and
material properties. The comparison of the M integrals shows that the two geometries are
in competition for nucleation and growth, and the results are also valid for self-similarly
expanding inclusions of phase change with inertia, which in self-similarity start with zero
initial conditions and include the nucleation energy. Indeed, as shown in Markenscoff and
Ni (2016) the dynamic solution includes the static Eshelby energy to nucleate them, so
that the above comparisons also hold in dynamic expansion of regions of phase change.
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