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We determine the nucleon axial, scalar and tensor charges within lattice quantum chromodynamics
including all contributions from valence and sea quarks. We analyze three gauge ensembles simulated
within the twisted mass formulation at approximately physical value of the pion mass. Two of these
ensembles are simulated with two dynamical light quarks and lattice spacing a = 0.094 fm and the third
with a = 0.08 fm includes in addition the strange and charm quarks in the sea. After comparing the results
among these three ensembles, we quote as final values our most accurate analysis using the latter ensemble.
For the nucleon isovector axial charge we find 1.286(23) in agreement with the experimental value. We
provide the flavor decomposition of the intrinsic spin %AZ‘i carried by quarks in the nucleon obtaining for
the up, down, strange and charm quarks 1 AZ* = 0.431(8), $ AZ? = —0.212(8), 1 AZ* = —0.023(4) and
1AYS =
flavor are also evaluated providing valuable input for experimental searches for beyond the standard model

—0.005(2), respectively. The corresponding values of the tensor and scalar charges for each quark

physics. In addition, we extract the nucleon o-terms and find for the light quark content o,y =
41.6(3.8) MeV and for the strange o, = 45.6(6.2) MeV. The y-parameter that is used in phenomeno-

logical studies we find y = 0.078(7).

DOI: 10.1103/PhysRevD.102.054517

I. INTRODUCTION

The nucleon axial charge, denoted here by ¢4, is a
fundamental quantity within the Standard Model (SM) of
particle physics. It determines the rate of the weak decay of
neutrons into protons and provides a quantitative measure
of spontaneous chiral symmetry breaking in hadronic
physics. It enters in the analysis of neutrinoless double-
beta decay and in the unitarity tests of the Cabibbo-
Kobayashi-Maskawa matrix. It is known precisely from
neutron beta decay measurements using polarized ultracold
neutrons [1-3]. Partial conservation of the axial current
(PCAC) relates the axial and pseudoscalar charges and
allows us to predict the latter. The flavor-diagonal axial

charge gﬂ; determines the intrinsic spin %AZq carried by the
quarks in the nucleon. These are being measured in deep
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inelastic scattering (DIS) experiments in major facilities
such as Jefferson lab and CERN and are targeted in the
program of the Electron Ion Collider (EIC).

The isovector tensor and scalar charges can put limits on
the existence of beyond SM interactions with scalar and
tensor structures [4]. Ongoing neutrino scattering experi-
ments probing scalar and/or tensor interactions include the
experiments DUNE [5], COHERENT [6], IsoDAR [7], LZ
[8], GEMMA [9] and the TEXONO collaboration [10]. A
review on probing new physics by CP violating processes
using the electric dipole moments of atoms can be found in
Ref. [11]. High precision measurements of spectral lines in
few-electron atoms can probe the existence of exotic forces
between electrons [12], while Direct dark matter searches
look for new scalar interactions [13] and semileptonic kaon
[14] or tau [15] decays experiments are probing for tensor
interactions. The tensor and scalar charges are less pre-
cisely known, and a determination within lattice QCD can
provide essential input for precision measurements probing
the existence of novel scalar and tensor interactions aiding
experimental searches. The tensor charge is the first Mellin
moment of the transversity parton distribution function
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(PDF) being studied in many experiments including Drell-
Yan and semi-inclusive DIS by COMPASS at CERN [16]
and at Jefferson Lab. The planned SoLID experiment at
Jefferson Lab [17] will allow us to measure the tensor
charge with an improved accuracy. The extraction of the
transversity distribution is less precise than the unpolarized
PDF, and additional phenomenological modeling is
required. In addition, the flavor-diagonal tensor charge
enters into the determination of the quark electric dipole
moment contribution to the neutron electric dipole moment
[18], which signals CP violation.

The nucleon matrix element of the single-flavor scalar
operator gg is directly connected to the quark content of the
nucleon, or the so-called nucleon ¢/-term, which deter-
mines the mass generated by a quark in the nucleon and it
is, thus, related to the explicit breaking of chiral symmetry
[19]. Nucleon o-terms are relevant for pion and kaon
nucleon scattering processes but also for the interpretation
of direct-detection dark matter searches. The dark matter
candidates under consideration are weakly interacting
massive particles in a number of beyond the SM theories
that interact with normal matter by elastic scattering with
nuclei. Besides its direct relation to the o-term, the
isovector scalar charge gg‘d measures the proportionality
constant between the neutron-proton mass splitting 6m2CD
and the up and down quark mass splitting ém,,; in the
absence of electromagnetism via the relation 6m%CD =
g4=45m,,4 [20]. This relation first appeared in Ref. [21],
while a similar result was derived in Ref. [22]. The
fundamental role of these quantities in the physics of weak
interactions and in beyond the SM physics makes their
nonperturbative determination of central importance.

The nonperturbative nature of the fundamental theory of
the strong interaction makes a theoretical calculation of
these fundamental quantities difficult. The discretized
version of the theory defined on a four-dimensional
Euclidean lattice and known as lattice quantum chromo-
dynamics (QCD) provides a rigorous, nonperturbative
formulation that allows for a numerical simulation with
controlled systematic uncertainties. Since, as mentioned
already, ¢4~ is accurately measured experimentally it
serves as a benchmark quantity for lattice QCD.
Numerous past lattice QCD studies [23] underestimated
¢4~¢ and impeded reliable predictions of the other nucleon
charges. It is only recently that an accurate computation of
gx‘d was presented [24] that reproduced the experimental
value. It was, however, obtained using chiral extrapolations
involving ensembles with heavier than physical pions. For a
complete list of lattice QCD results with details on the
lattice QCD framework used, we refer to the recent FLAG
report [25]. Reproducing the value of g4~ within a lattice
QCD framework serves both as a validation and as a most
valuable benchmark computation for the extraction of the

isovector scalar gg‘d and tensor g4~ charges. In addition, a

precise computation of ¢4~ in lattice QCD can provide a
constraint for nonstandard right-handed currents [4].

In this work, we compute the nucleon charges and
o-terms using gauge configurations generated with the
physical values of the light quark masses, avoiding chiral
extrapolation or any modeling of the pion mass depend-
ence. We consider two ensembles with two light quarks in
the sea, denoted by N = 2 ensembles, and one ensemble
where, besides the light quarks, we include the strange and
charm quarks in the sea, denoted with Ny = 2 + 1 + 1. The
latter ensemble provides one of the best description of the
QCD vacuum to date and thus we devote most of our
computational resources to its analysis and use it to extract
our final values. For this Ny =2+ 1+ 1 ensemble we
achieve high precision not only for the isovector axial (A),
tensor (T) and scalar (S) quantities but also for the single
flavor charges and o-terms. Such an accurate computa-
tion from first principles of the axial, scalar and tensor
charges for each quark flavor, as well as the direct
determination of the zN, strange and charm o-terms,
constitutes a major step in our understanding of the
structure of the nucleon.

The remainder of this paper is organized as follows: in
Sec. II we provide the methodology used for extracting the
nucleon charges using lattice QCD, in Sec. III we detail the
analysis carried out, in particular as regards ensuring
suppression of excited states, and provide unremormalized
results of the nucleon charges. In Sec. IV we describe our
renormalization procedure and in Sec. V we provide
renormalized results for the nucleon charges and compare
with phenomenology and other lattice results. In Sec. VI we
review our final results and provide our conclusions.

II. METHODOLOGY

The axial, tensor and scalar flavor charges Q/I;,T,s are
obtained from the nucleon matrix elements of the axial,
tensor and scalar operators at zero momentum transfer,
given by

(N[ Tastw/|N) = g/f;,T,SﬁNFA,S-TMN . (1)

where uy is the nucleon spinor, f denotes the quark flavor,
and I'y = y,ys for the axial-vector operator, I'y = 1 for the
scalar and I'; = 6, for the tensor. The renormalization
group invariant o/-term is defined by m (N[ sy s|N)
where m is the quark mass.

A. Lattice QCD formulation and gauge ensembles

We use three gauge ensembles simulated with a physical
value of the pion mass [26,27] using the twisted mass
fermion discretization scheme [28,29] with a clover-term
[30]. The parameters are listed in Table I. We refer to these
ensembles as physical point ensembles. Twisted mass
fermions (TMF) provide an attractive formulation for
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TABLE 1. Twisted mass fermion ensembles simulated with
clover improvement at the physical pion mass [26,27]. N is the
number of quark flavors in the sea, L (T) is the spatial (temporal)
extent of the lattice in lattice units and «a is the lattice spacing
determined using the nucleon mass. When two errors are given,
the first is statistical and the second is systematic.

Ensemble L3xT my/m, m,L m,; [MeV] L [fm]

N;=2,=21,a=00938(3)(1) fm

cA2.09.48 483 x 98 7.152) 298 130.3(4)2) 4.50(1)

CA2.09.64  64°x 128 7.14(4) 3.97 130.6(4)2) 6.00(2)

Ny=2+1+1,=1778, a=0.0801(4) fm
cB211.072.64 64° x 128 6.74(3) 3.62 139.3(7)

5.12(3)

lattice QCD allowing for automatic O(a) improvement
[29], where a is the lattice spacing. This is an important
property for evaluating the quantities considered here, since
all quantities have lattice artifacts of O(a?) and are closer to
the continuum limit as observed in previous studies using
simulation with larger than physical pion mass [31]. A
clover-term is added to the TMF action to allow for smaller
O(a®) breaking effects between the neutral and charged
pions that lead to the stabilization of simulations with light
quark masses close to the physical pion mass. For more
details on the TMF formulation see Refs. [32,33] and for
the simulation strategy Refs. [26,27].

The two ensembles denoted by cA2.09.48 and
cA2.09.64, are generated with two dynamical mass degen-
erate up and down quarks (N, = 2) with mass tuned to
reproduce the physical pion mass [26]. They have the same
lattice spacing but use two lattice sizes of 483 x 96 and
643 x 128 allowing for checking finite volume dependence.
The ensemble denoted by cB211.072.64 has been gener-
ated on a lattice of size 64> x 128 with two degenerate light
quarks and the strange and charm quarks (Ny =2 + 1 + 1)
in the sea with masses tuned to produce the physical pion,
kaon and D;-meson mass, respectively, keeping the ratio of
charm to strange quark mass m./mg ~ 11.8 [25]. For the
valence strange and charm quarks we use Osterwalder-
Seiler fermions [34] with mass tuned to reproduce the Q~
and the Al baryons [35], respectively. Results for nucleon
charges using the cA2.09.48 ensemble have been presented
in Refs. [36-38]. Since we perform a reanalysis to match
our analysis strategy for the cB211.072.64 ensemble, the
results are updated.

B. Computation of correlators

The nucleon matrix elements are extracted by computing
appropriately defined three-point correlators ch A.s.T» as well
as the nucleon two-point correlators, Cyy, at zero momen-
tum. These correlation functions are constructed by creat-
ing a state from the vacuum with the quantum numbers of
the nucleon at some initial time (source) that is annihilated
at a later time ¢, (sink), where we take the source time to be

zero. All expressions that follow are given in Euclidean
space. We consider three-point correlators

CQST(P. ts’ tins)

= ZTr (I (1

xms X:

)OAST<t1n5’ 1ns)JN(O O)ﬂ (2)

where OQ’S’T(th, Xins) is a local current operator that
couples to a quark at insertion time #;,; having 0 < #;,¢ <
t,. P is a projector acting on spin indices, and we will use
either the so-called unpolarized projector P, = 1 5 (1 +70)
or the three polarized P; = iysy; P combmatlons For Jy,
we use the standard nucleon interpolating operator,

ePeu (x)[u (x)Crsd< (x)]. (3)

where u and d are up- and down-quark spinors and C =
Yo7> 1s the charge conjugation matrix. The local current
operator is given by

Oz,s,T (x)

In(x) =

=g/ (x)Ca g1/ (x) (4)

where y/ is a quark spinor of flavor f and the matrices
['p g1 are defined in Eq. (1).

Inserting two complete sets of states in Eq. (2), one
obtains a tower of hadron matrix elements with the
quantum numbers of the nucleon multiplied by overlap
terms and time dependent exponentials. For large enough
time separations, the excited state contributions are sup-
pressed compared to the nucleon ground state and one can
then extract the desired matrix element. Knowledge of two-
point functions is required in order to cancel time depen-
dent exponentials and overlaps. They are given by

Copelts ZTrPo In(te%)Iy(0,0)].  (5)

In order to increase the overlap of the interpolating
operator J, with the nucleon state and thus decrease
overlap with excited states we use Gaussian smeared quark
fields via [39,40]:

y'(t.5).  (6)

Wemear (1, X)

= ZF“b(Ec',i;Ut
y
=(1+aH)",

3

H(Z5:U(t) =Y _[Ui(x)8,- + Uf(x
i—1

- ,i)éx,yﬁ]’ (7)

with APE-smearing [41] applied to the gauge fields U,
entering the Gaussian smearing hopping matrix H. For the
APE smearing [41] we use 50 iteration steps and
aape = 0.5. The Gaussian smearing parameters are tuned
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to yield approximately a root mean square radius for the
nucleon of about 0.5 fm, which has been found to yield
early convergence to the nucleon two-point functions.
This can be achieved by a combination of the smearing
parameters a and n. We use a=0.2, 0.2, and 4.0
and n = 125, 90, and 50 for ensembles ¢cB211.072.64,
cA2.09.64, and cA2.09.48, respectively. We employ a
multigrid solver [42] to speed up the inversions that has
been extended to the case of the twisted mass operator and
shown to yield a speed-up of more than one order of
magnitude at the physical point compared to the conjugate
gradient method (CG) [43]. The resulting propagators are
used to construct two- and three-point correlators.

C. Connected and disconnected contributions

The three-point correlators receive two contributions,
one arising when the current couples to a valence quark and
one when coupled to a sea quark. The former is referred to
as giving rise to a connected and the latter to a disconnected
contribution. The connected contributions are evaluated
using sequential inversions through the sink. Since in this
method 7, and the four spin projection matrices needed
for the extraction of the charges are fixed, four sets of
sequential inversions are performed for each value of 7, in
the rest frame of the nucleon. In Table II we give the
statistics used for computing the connected contributions
for the three ensembles analyzed. As can be seen, the
statistics are increased as we increase f, to keep statistical
errors comparable for all time separations z,. Ensemble
cB211.072.64 has the largest statistics and we will thus
base our final values on this ensembles. For the discon-
nected contributions we utilize a combination of methods
that are suitable for physical point ensembles [44]. These
employ full dilution in spin and color in order to eliminate
exactly any contamination from off-diagonal elements and
a partial dilution in space-time using Hierarchical Probing
[45] up to a distance of 2° lattice units taking advantage of
the exponential decay of off-diagonal elements with the
distance. For the up and down quarks this exponential
decay is slow and therefore we combine with deflation of
the low modes. For the strange and charm quarks deflation

TABLE II. The values of the sink-source time separation in
lattice units, 7,/a, and in physical units, 7,, and the associated
statistics used for the computation of the connected contribution
to the three-point function for the three ensembles listed in
Table 1. For the ensemble cA2.09.48, t,/a = 16 and t,/a = 18
are computed only for the case of the scalar charge.

t,/a 8 10 12 14 16 18 20
t, [fm] 0.75 094 1.13 131 150 1.69 1.88

cA2.09.48 9264 9264 9264 47696 69784
cA2.09.64 ... 5328 8064 17008
t, [fm] 0.64 0.80 096 1.12 128 144 1.60

cB211.072.64 750 1500 3000 4500 12000 36000 48000

TABLE III. ~ Statistics used for the calculation of the discon-
nected contribution to the three-point function computed using
two of the three ensembles listed in Table I. C,,, refers to the two-

point function and C{;op

When a product is indicated hierarchical probing has been used
having as first the number of stochastic vectors and as second the
number of Hadamard vectors, i.e., Ngoeh X NHadam- 1he notation

“+deflation” means that the operator C{gg is deflated computing

refers to the fermion loop of flavor f.

exactly 200 low-modes.

C2pt Cﬁ;g Cfoop Clcoop
cA2.09.48 848000 4808250 2204672 2691250
cB211.072.64 600000 750x512 750512 9000x32
+deflation

is not necessary due to the heavier mass and we use a
distance of 23 and 22 lattice units, respectively, in the
hierarchical probing. Additionally, we employ the so-called
one-end trick [46,47] that makes use of the properties of
the twisted mass action to improve the signal-to-noise
ratio. Deflation of low modes and hierarchical probing
have been employed only for the computations using the
cB211.072.64 ensemble. For the cA2.09.48 ensemble we
use stochastic sources. In Table III we list the parameters
and statistics used in the calculation of the disconnected
contributions.

III. ANALYSIS OF CORRELATORS

The nucleon charges can be extracted by taking a ratio of

Chs (s fing) and Cop(1) [cf. Egs. (2) and (5)],

' C£ S T(t ’ t'ns) AE(’.\_Iins)>>1 '
R]/;,S.T(Tm tins) = C (St )l QQ.S,T (8)
2pt\ts

where AFE is the energy gap between the ground and first
excited states. This ratio becomes time independent for
large values of ¢, and t;,, yielding a plateau, the value of

AEt,>1

which gives the desired nucleon charge, g/A’S’T. In practice,
t, cannot be chosen arbitrarily large because the statistical
errors grow exponentially with #,. Thus, we need to use the
smallest ¢, that ensures convergence to the nucleon state. In
this work, we use several values of 7, and increase the
statistics as we increase t, to keep the statistical error
approximately constant, which is essential to reliably assess
excited states [36,48]. In Table II we give the values of #,
used for the connected contribution and the associated
statistics. A careful analysis is then performed, employing
different methods to study ground state convergence.

When fitting, we carry out correlated fits to the data, i.e.,
we compute the covariance matrix v;; between jackknife or
bootstrap samples and minimize

2= lvi— fb.x)vi' [y, - f(b.x))]. (9)

iJ
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FIG. 1. We show the ratio of Eq. (8) as a function of f,,, for four

t, values, namely t,/a = 14, 16, 18, and 20, where the two-point
function having the same statistics as the three point function.
The ratio yields, in the large Euclidean time limit, the isovector
axial charge, g/’i‘d, for the ¢cB211.072.64 ensemble. The bands
and open symbols mark the interval #;,, € [Zpya, t; — Tpia] Where
the plateau fit is performed.

where y; are the lattice data, f (1; x;) is the fit function,
which depends on x; and b. x; € {t,, t;,,} are the values of

t,ns and/or t; at which y; is evaluated and b is a vector of the
parameters being fitted for.

A. Plateau method

We fit the ratio of Eq. (8) to a constant in an interval
tins € [Tplat» s — Tprar)- This assumes the ground state is the
dominant contribution. We choose 7, such that a constant
fit describes well the data. The fits are performed inde-
pendently for each 7, using the same 7, and thus we fit
only the data for which 7, satisfies 7, > 27,,,. We seek
convergence of the fitted value as 7, increases. An example
of this analysis, which we will refer to as the plateau
method, is shown in Fig. 1, applied to the isovector axial
charge, where we take 7,,,/a = 6. As can be seen, as we
increase f, the ratio increases, indicating a convergence
only for the two largest time separations. However, the
errors also increase and make it difficult to judge
convergence.

B. Two- and three-state fit

In the two- and three-state fit approaches, we take into
account the contributions of the first and second excited
states, respectively, using multiple values of ¢, and fit them
simultaneously. The two-point correlator is described by
the tower of states,

o0

= Z c;e Eils, (10)

i=0

C2pt(ts)

where E, = my is the nucleon mass and E; > my fori > 0
are excited states with increasing energies. The amplitudes
¢; are positive numbers. In our two- and three-state fit
analysis we fit the two-point functions using Eq. (10) with,

in the first case, i = 0 and 1 and having four fit parameters
and, in the latter case, i =0, 1, and 2 and having six fit
parameters.

The three-point function correlator is described by the
tower of states,

[se]
CSpt(tS’ tins) = Z Aije_Ei(lx_lins)e_Ejtins (11)
i=0,j=0

where A;; are matrix elements and overlaps and A;; = A ;.
When we fit the three-point function with Eq. (1 1) we use
the nucleon mass and the energies of the first and second
excited states as obtained from the fit of the two-point
functions of Eq. (10) and fit for the amplitudes A;;. The
nucleon mass and energies are extracted via a jack-knife
analysis from the two-point functions and the resampled
values are subsequently used in the jack-knife analysis of
the three-point functions. Within such an approach all the
nucleon matrix elements share the same set of energies and
we restrict the search-space of the fit to the three-point
function to the amplitudes A;; only. This means that in the
case of the two-state fit ana1y31s and using Eq. (11) with i,
j=0 and 1, we have three additional fit parameters to
determine. For the three-state fit analysis we have i, j = 0,
1, and 2 and six additional fit parameters.

We demonstrate the application of the two- and three-
state fit approaches in the case of the axial charge for the
cB211.072.64 ensemble. We show in Fig. 2 the ratio for
each value of ¢, with the predicted curve from two-state fit
obtained by fitting two- and three-point functions as
described above. The extracted value of ¢4™¢ = Agyy/cy
is shown with a gray band and the predicted curve for each
t, is shown with a band of the same color as the points.
Since we fit two-point functions with the largest statistic
available, i.e., obtained by averaging forward, backward,
neutron and proton nucleon correlators over 264 source

18F : : : : : : : .
-d
Ra

Mimyents® '
15{§1ﬁ%§%§§$3

l4p . . . . . . .
-06 -04 -02 00 02 04 0.6

tins — ts/2 [fmM]

Loy Ha
T =
e R
e
i

FIG. 2. The ratio of Eq. (8) as a function of f,,, for various
values of ¢, where we divide with the two-point function with the
maximum statistics since this is what is fitted to extract the
energies of the ground and first excited states. We show the
associated bands resulting from a two-state fit for the
cB211.072.64 ensemble. The grey band shows the extracted
value of the bare g4~ from the fit.
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1.4, . . . . . & . . L]
0.50 0.75 1.00 1.25 1.50 1.75 0.50 0.75 1.00 1.25

ts [fm] tlow [fm]
FIG. 3. The left panel shows the values extracted from either

taking the midpoint of the ratio or from fitting the plateau to a
constant as illustrated in Fig. 1 for each ¢, value. We use the same
symbols at each ¢, as the symbols used for the ratio in Fig. 2. The
gray band shows the predicted curve as a function of ¢, if we use
the parameters extracted from the selected two-state fit and taking
tins = ,/2. The right panel shows the value of the bare g4~
extracted from the two-state fit (black squares) as a function of the
lowest value of ¢, included in the two-state fit, 7'°%. The numbers
below each point are the values of y2/d.o.f. from the fit to the
three-point function. The y2/d.o.f. from the fit to the two-point
functions using the two-state fit is the same for all values of 7, and
equal to 1.0. The selected value for the two-state fit is marked
with an open symbol and the red band shows the associated error
across both panels.

positions per configuration, the ratios shown in Fig. 2 are
constructed by dividing the three-point functions by the
two-point function with the maximum statistics. This
differs from the ratio used in the analysis of the plateau
averages where we divide the three-point function by the
two-point function having the same statistics as the three
point function to take advantage of the correlations
between them.

In Fig. 3 we show the resulting curve using the
parameters determined from the two-state fit as a function
of ¢, fixing f;,, = t,/2 in Eq. (8). We also show for each ¢,
the extracted plateau value extracted, following the pro-
cedure explained in connection to Fig. 1. For #; < 27, we
show the mid point of the ratio since no fit is performed. As
can be seen, the two-state fit predicts well the behavior of
the ratio and demonstrates that the asymptotic value is
reached for values of 7, larger than 2 fm, which is in
agreement with the chiral perturbation analysis of Ref. [49].
Therefore, taking the plateau value for the largest t,
considered, which, within errors, seems to have converged,
underestimates gf“d . In particular, notice that since data are
correlated, one might mistake convergence in the window
of ¢, € 0.75-1.25, which will lead to a small value of g4~
This is why it is important to have precise data for larger
time separations. In the right panel of Fig. 3 we show the
extracted value of gjﬁ‘d as a function of 7°V, i.e., the
smallest 7, included in the two-state fit. As can be seen,
the values remain consistent as 7° increases. We also give
for each point the y2/d.o.f. as given in Eq. (9) that is close

18F . . .
ga ¢
bitt)
i $ 12
L 1 1211 .
1.6 ¥ A i E L3 1.0
1.5 @ 1 .
1.4, \ \ \ \ \ 1. \ \ =
0.50 0.75 1.00 1.25 1.50 1.75 0.50 0.75 1.00 1.25
ts [fm] tlow [fm]

FIG.4. The same as Fig. 3 but using a three-state fit to the ratios
of Eq. (8) for the cB211.072.64 ensemble. The y2/d.o.f. from the
fit of the two-point functions using the three-state fit is the same
for all values of 7, and equal to 1.2. The cyan band on the left
shows the predicted curve if we use the parameters extracted from
the selected three-state fit marked with an open symbol. The red
band shows for comparison the selected value from the two-
state fit.

to unity for all the cases. We note that the y2 is computed
from the fit of the three-point function correlator and the
quality of the fit can be better understood by looking at the
curves depicted in Fig. 2 than how well the gray band
describes the plateau averages in Fig. 3, which are not fitted.
Since the values show convergence as 7°% increases we
select the value obtained by using #°% = 0.64 fm. As we
will see below, this will be also in agreement with the three-
state fit and the summation method and thus will fulfill our
criterion for selecting the two-state fit value that also agrees
with the value extracted from the summation method.

A similar analysis is performed for the three-state fit
approach, i.e., when two excited states are considered
taking i, j = 0, 1, and 2 in Eqgs. (10) and (11). The results
are given in Fig. 4 where we use the same convention as for
the two state-fit and for comparison we show with a red
band the errors related to the selected two-state fit value.

C. Summation method

We sum over the insertion time t;,, in the ratio in Eq. (8)
assuming only the lowest state dominates to obtain a linear
dependence on t,, given by

ty—a
. : AEt>>1 .
S{\,S,T(IS) = Z R(t;, tins) — ¢ +Q/fx,s,Tls’ (12)

ling=a

where in the sum we omit the source and sink time slices.
The slope extracted from a linear fit to Eq. (12) gives the
nucleon charge in the limit of large #,. By increasing the
lowest value of 7, used in the fit we look for convergence in
the extracted slope. The advantage of the summation
method is that, despite the fact that it still assumes a single
state dominance, the excited states are suppressed expo-
nentially with respect to ¢z, instead of 7, — #;,, that enters in
the plateau method [50]. On the other hand, the errors tend
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FIG. 5. The left panel shows the summed ratio of Eq. (12) as a

function of ¢, for the cB211.072.64 ensemble. The green band
shows the resulting curve using the open symbols in the fit. The
right panel shows the extracted value from the linear fit to the
summed ratio (green up-triangles) as a function of the lowest
value of ¢, included in the fit, /°. The numbers below each point
are the values of y2/d.o.f. from the fit. The open symbol shows
the selected value of the slope yielding ¢g4~¢. The red band shows
for comparison the result for the selected #°% from the two-
state fit.

to be larger since we have two parameters to fit. As an
example we show in Fig. 5 the results after applying the
summation approach for the case of the isovector axial
charge using the cB211.072.64 ensemble. We select as our
final value the one extracted from the two-state fit when
excited states are detected, since the two-state fit models the
data better than either the plateau or the summation method
in these cases. Even though the statistical error on the
extracted value of the charges is larger than that extracted
using the summation method, we prefer to be conservative
so that we do not underestimate errors.

D. Analysis of the ¢B211.072.64 ensemble

In Fig. 6 we show a comparison among the three
aforementioned analysis methods for the axial charges
using the cB211.072.64 ensemble. As already observed,
the value extracted for the axial charge ¢4~ from the two-
state fit shows very mild dependence on the #°* used in the
fits. In addition, the value extracted from the two-state fit is
confirmed by the three-state fits as well as by the summa-
tion method. Therefore, we take as our final result the value
extracted from the two-state fit for which y?/d.o.f. ~ 1 and
there is agreement with the summation method. The
connected and the disconnected parts of the isoscalar
charge gﬁ*d as well as the strange and charm disconnected
contributions do not suffer from large excited states
contamination, as can be seen in Fig. 6 by the fact that
the plateau results at the largest three or four values of ¢, are
roughly constant. Furthermore, the plateau values converge
to a value that is in agreement with the values extracted
using two- and three-state fits and the summation methods
and we thus take the weighted average. We note that we
follow this procedure for all cases where such a behavior is

L8[ qu-d 1 ]
1.7} N H { 1
Ler v A% $4 1t ﬂl Iﬁ}ﬂ -
15 = 4+ ]
0_8'5 ::gK‘L d (Conn:) = —
0.80} % + .
osh g T8 18 | j*#{*#IJ |
0.70 4 ]
0.65-‘ . . . . . 1. . . N
Z:(l) gy +d (is0)
-0.1r e v s . % 4+ i
o treptog éﬂhﬁ |
01 _'gi(di;c) - | | '_
0.0f % + { -
o Trrmer sl
o.1o-:g,§<di:sc> s ": = :_
0.05 qr E
BRI PR

-0.05F, Ny 1

0.50 0.75 1.00 1.25 1.50 1.75 0.50 0.75 1.00 1.25
t; [fm] tlow [fm]

FIG. 6. We show results for the connected and disconnected
contributions to the axial charges g, for the cB211.072.64
ensemble. The left panels show the values extracted from either
fitting the plateau to a constant as illustrated in Fig. 1 for each #;
value when #; > 27, or taking the midpoint for other values of
t;,. We use the same colors and symbols at each 7, as those used
for the ratio in Fig. 1. The right panel shows the extracted value of
g = Agy/co from the two-state fit (black squares), three-state fit
(cyan downwards-pointing triangles) and summation (green
upwards-pointing triangles) as a function of the lowest value
of ¢, included in the two- and three-state fits, #°%. The red band
across both panels shows the associated error to the selected final
value. When a two-state fit value is selected, we mark on the right
panel the selected value with open symbol and we show with the
grey band the predicted curve for the ratio in Eq. (8) fixing
tins = t,/2. When a plateau average is selected as final value, we
mark on the left panel with open symbols the selected interval in
t, where the plateau average is performed.
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FIG. 7. We show results for the connected and disconnected
contributions to the scalar charges gg for the cB211.072.64
ensemble. The notation is the same as that in Fig. 6.

observed, i.e., we take the correlated average of the plateau
values for the range of ¢, for which these have converged.

We perform the same analysis for the scalar charge and
we show the results in Fig. 7. Contrary to the axial charge,
all the contributions to the scalar charges, except for the
charm disconnected component, suffer from large excited
states contamination. As can be seen, the plateau values
show a similar behavior as ¢4~¢ showing convergence of
the two-state fit at 7, larger than 2 fm. We therefore choose
as our final value the one extracted from the two-state fit
when it agrees with the summation method and does not
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FIG. 8. We show results for the connected and disconnected

contributions to the tensor charges g; for the cB211.072.64
ensemble. The notation is the same as that in Fig. 6.

show dependence on 7°%. We thus use 7°Y =8a =

0.64 fm in the fit of the isovector gg‘d, connected isoscalar

g§+d(conn> and the strange disconnected scalar charge gg.

For the disconnected isoscalar scalar charge g?d(disc) and
gg(dlsc), we use a larger value 7°% =0.96 fm to better

account for the upward trend still present in the data. We
note that the results on the scalar charges have errors about
ten times larger as compared to the axial charges.

We perform the same analysis for the tensor charges and
show the resulting values in Fig. 8. As can be seen, for the

054517-8



NUCLEON AXIAL, TENSOR, AND SCALAR CHARGES AND ...

PHYS. REV. D 102, 054517 (2020)

TABLE IV. The nucleon axial, scalar and tensor charges extracted using the cB211.072.64 ensemble.

u—d u + d (conn) u + d (disc) K c
Jga 1.686(30) 0.7766(90) —0.199(29) —0.0583(96) —0.0112(45)
Js 3.04(59) 20.4(1.6) 3.04(59) 1.00(13) 0.175(36)
gr 1.106(32) 0.629(27) —0.0131(31) —0.00299(68) —0.00010(19)

isovector ¢4 ¢ and connected isoscalar tensor charge

gfrd(conn), there is no agreement between the two-state

and summation values for smaller 7°% values. The value
from the two-state fit becomes consistent with the one
extracted from the summation when 7°% = 12a = 0.96 fm
and this is what we select as final value. This demonstrates
that the larger values of ¢, are crucial for properly probing
ground state dominance.

. u~+d(conn)

The results for the connected isoscalar charge g,
are shown in Fig. 8. As can be seen, the plateau values
computed by fitting to a constant using the data at
t;, =0.96, 1.12 and 1.28 fm are compatible and one may
think that the values have converged. However, both the
results from the two-state and three-state fits are lower.
Furthermore, there is a tension between the two-state fit and
the summation method for 7°% = 0.64 fm and only when
% — 1.28 fm that they become consistent. This would
correspond to about 2.6 fm in the plateau method. This
again demonstrates the importance of having precise data
for large ¢, values.

Similarly to the axial charge, the disconnected contri-
butions do not show large effects from excited states. We
thus take the average of the plateau values for the range of
t, for which these have converged as the final value.

We summarize in Table IV the bare values for the
isovector, connected and disconnected isoscalar, strange
and charm axial, scalar and tensor charges. These results
clearly demonstrate that disconnected contributions cannot
be neglected at the physical point. They are enhanced in
comparison to the values obtained at heavier pion masses
where for example the disconnected part of gﬁ*d using a
N;=2+1+1 ensemble simulated at a pion mass of
m, = 370 MeV was -0.07(1) [51] as compared to -0.199
(29) for the cB211.072.64 ensemble.

E. Analysis of cA2.09.48

We repeat the same analysis described for the
cB211.072.64 ensemble for the cA2.09.48 ensemble.
Since we now use correlated fits the values presented in
Refs. [36,37] are modified but remain within their statistical
errors. For the connected components on this ensemble we
have only three values of ¢, for the matrix element of the
axial and tensor currents determining g, and gy and five for
the scalar current determining gg. The three smaller values
of 1, have constant statistics, as shown in Table II, and thus
their statistical errors increase significantly with increasing
t,. This means that the quality of the fits are not as good as

for the cB211.072.64 ensemble. In particular, a three-state
fit analysis cannot be performed due to the low statistics
and the small number of 7,. On the other hand the
disconnected contributions are available for a larger

16} + gi ;
yxi i

1.4F 1+ 1

1.2- 1 1 1 1 1 1 1 1 1 ]

0.9} gx+d(conn) 4 i

0.8} 1+ { -

o7p * & B 1+ i} ;

0.6f 1+ :

0.5f 1+ :

02F raw@so 1 | ]
ga "

NEEI {%jjfﬂmﬁ

0.4+ 4 4
-0.6F | ) ) ) ) 1. ) ) 1
0-1r g (@is) T |
0.0f 4+ 1
e v 3z %
) mog 8
o1l F ] 1 1 I ]

_0.3- 1 1 1 1 1 1 1 1 1 1 ]
0.05F T T T T — T —]

g'cA(disc) 1
! % [¥ = N

000F g ¥ & 3

-0.05

-0.15¢ | . . . . il |l . M
0.75 1.00 1.25 1.50 1.75 2.00 0.75 1.00 1.25

ts [fm] tlow [fm]

FIG. 9. We show results for the connected and disconnected
contributions to the axial charges g4 for the cA2.09.48 ensemble.
The notation is the same as that in Fig. 6.
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FIG. 10. We show results for the connected and disconnected
contributions to the scalar charges gg for the cA2.09.48 ensemble.
The notation is the same as that in Fig. 6.

number of ¢, and we thus show a more complete analysis.
The results of the analysis are summarized in Fig. 9 for the
axial charges, in Fig. 10 for the scalar charges and in Fig. 11
for the tensor charges. For the connected matrix elements of
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FIG. 11. We show results for the connected and disconnected
contributions to the tensor charges gr for the cA2.09.48 ensem-
ble. The notation is the same as that in Fig. 6.

the axial and scalar current the two-state fit with 7°% =
0.94 fm agrees with the summation value as well as with
the value extracted when using #°% = 1.13 fm and thus we
take it as final value. On the other hand the tensor charge

TABLE V. The nucleon axial, scalar and tensor charges extracted using the cA2.09.48 ensemble.

u—d u + d (conn) u + d (disc) s c
ga 1.590(35) 0.747(32) —0.284(53) —0.077(22) —0.0082(64)
Js 2.54(34) 17.99(82) 2.59(44) 0.742(71) 0.118(35)
gr 1.116(40) 0.638(35) —0.0268(42) —0.0048(14) —0.0071(44)
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shows a more severe contamination of excited states and,
similarly to the cB211.072.64 ensemble, we take as final
value the two-state fit result at larger separation, namely
% — 1.13 fm. Disconnected contributions to axial and
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FIG. 12.  We show results for the connected contributions to the
axial g,, scalar gy and tensor charges gy for the cA2.09.64
ensemble. The notation is the same as that in Fig. 6.

TABLE VI. The nucleon axial, scalar and tensor charges
extracted using the cA2.09.64 ensemble.

u—d u + d (conn)
ga 1.603(45) 0.711(16)
gs 1.99(56) 17.1(1.2)
gr 1.139(38) 0.683(30)

tensor charges show very mild excited state contamination
and we take the plateaus average as final value. On the hand
for the scalar charge excited states are more severe and we
take the two-state fit result at 7°% = 1.31 fm for the
disconnected isoscalar gﬁ*d and 7°% = 1.13 fm for the
strange disconnected g§. We summarize in Table V the bare
values for the isovector, connected and disconnected
isoscalar, strange and charm axial, scalar and tensor charges
for this ensemble.

F. Analysis of cA2.09.64

For the cA2.09.64 ensemble we only have three values of
t, and therefore the analysis of excited states is again not as
accurate as for the cB211.072.64 ensemble. In addition we
only have connected contributions since the purpose of the
analysis of the cA2.09.64 ensemble is to check for finite
volume effects using the connected contributions which are
much more precise and less expensive. Following the same
analysis procedure we summarize the results on the iso-
vector and connected isoscalar charges in Fig 12. Given
that the values for the two available /% are consistent
between them and with the values from the summation, we
take as our selected values the ones extracted from the two
state fits when using 7% = 1.13. We remark that while for
scalar charge the plateau values show convergence we
know from the more accurate analysis using the
cB211.072.64 ensemble that this quantity has non-negli-
gible contribution from excited states and thus we still fit it
using a two-state fit. If we were to extract it using the
weighted average plateau values we would obtain a value
that is compatible with that from the two-state fit with
however a smaller error. We therefore conservatively quote
the value with the larger statistical error.

We summarize in Table VI the bare values for the
1sovector and connected isoscalar axial, scalar and tensor
charges that can be directly compared to the values listed in
Table V for the cA2.09.48 ensemble, since these ensembles
have the same renormalization constants. The results
obtained using the cA2.09.48 and cA2.09.64 are compat-
ible indicating that finite size effects are within our
statistical accuracy.

IV. RENORMALIZATION

Lattice QCD matrix elements must be renormalized to
extract physical quantities. We use the RIj;q,,; scheme [52]
to compute nonperturbatively the renormalization functions
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TABLE

VIL

cB211.072.64

Parameters for N = 4 ensembles needed for the
renormalization of the

(Ny=2+41+1). pis the twisted mass parameter.

ensemble

p=1.778, a =0.08 fm

ap am, lattice size
0.0060 0.14836 243 x 48
0.0075 0.17287 243 x 48
0.0088 0.18556 243 x 48
0.0100 0.19635 243 x 48
0.0115 0.21028 243 x 48

using the momentum source method [53]. We implement it
as done in Ref. [54] and remove lattice spacing effects by
subtracting O(g?a®) terms computed in perturbation
theory [55,56]. We distinguish between non-singlet and
singlet renormalization functions, where for the latter we
compute, in addition to the connected, the disconnected
contributions. The non-singlet and singlet renormalization
functions Z,, Zp and Z; for the Ny =2 + 1 + 1 ensemble
cB211.072.64 are computed using N, =4 ensembles
simulated at the same g value and at five values of the
pion mass so the chiral limit can be taken. The parameters
for these ensembles are given in Table VII. For the
renormalization of the matrix elements using the
cA2.09.48 and cA2.09.64 ensembles we have analyzed
Ny =2 ensembles as extensively discussed in Ref. [56].
The scalar quantities are renormalized with the pseudo-
scalar renormalization constant, Zp, since they are com-
puted using the pseudo-scalar current in the twisted-mass
formulation.
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FIG. 13. Non-singlet and singlet renormalization functions

computed on a Ny =4 ensemble with the same p-parameter
of the cB211.072.64 ensemble.

TABLE VIII. Non-singlet (Z"*) and singlet (Z*) renormaliza-
tion constants computed using Ny =2 and N, = 4 ensembles
and used for the renormalization of the matrix elements computed
for the cA2.09.48 and cA2.09.64 and cB211.072.64 ensembles,
respectively. We note that the scalar matrix elements in the
twisted basis are renormalized with the pseudoscalar renormal-
ization function Zp.

z N/ R/ S/ B/

Ny =20.7910(6) 0.797(9) 0.50(3) 0.50(2) 0.855(2) 0.852(5)
Ny =4 0.763(1) 0.753(5) 0.462(4) 0.461(5) 0.847(1) 0.846(1)

We show in Fig. 13 the determination of the non-singlet
and singlet Z,, Zp and Z; renormalization constants for the
Ny =2+ 1+ lensemblecB211.072.64. The mass depend-
ence is mild and we extrapolate to the chiral limit using the
results at the five values of the twisted mass parameters.

The values of the renormalization functions are listed in
Table VIII. The N, =2 renormalization functions were
computed in Refs. [36,37] and are included here for easy
reference. We estimate the systematic error by varying the
fit ranges used for the extrapolation of the R}, scale
1o — 0. While the renormalization function Z, for the axial
current is scheme and scale independent, the corresponding
ones for the scalar and tensor charges, Zp and Z, are scale
and scheme-dependent and are given in the MS scheme at
2 GeV. The singlet and nonsinglet renormalization func-
tions are different only for Z,. For Z3 we use the
conversion factor calculated to 2-loops in perturbation
theory [57]. The conversion factor for Z% and Zj is the
same as in the corresponding non-singlet case.

V. RESULTS

A. Nucleon charges

In Table IX we present our final renormalized values for
the isovector charges for the three ensembles. Comparing
the values extracted from the two Ny = 2 ensembles with
Lm, ~3 and Lm, ~4 no volume effects can be resolved
within our statistical accuracy. This corroborates our
previous results at heavier than physical pion masses where
no volume effects were detected for gﬁ“‘d [31]. A previous
study of cutoff effects using three Ny =2 + 1 + 1 ensem-
bles with lattice spacings a = 0.089(5), 0.070(4), and
0.056(4) fm, revealed that cutoff effects are negligible
for a range of pion masses spanning 260 MeV to 450 MeV

TABLE IX. Isovector charges extracted from the analysis of the
three ensembles of Table I.

g g5 gr
cA2.09.48 1.258(27) 1.27(19) 0.954(35)
cA2.09.64 1.268(36) 0.99(28) 0.974(33)
cB211.072.64 1.286(23) 1.35(17) 0.939(27)
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FIG. 14. Comparison of lattice QCD results on th e isovector charges computed directly at the physical point. Results are shown with a
red star for cB211.072.64 and blue filled squares for cA2.09.48 and cA2.09.64, green filled circles for LHPC [59], magenta right-
pointing triangle from PACS [60], cyan upwards-pointing triangles from PNDME [58] and yellow downwards-pointing triangles from
CalLat [24]. The line shown in the left panel is the experimental value of the nucleon axial charge gjg‘d = 1.27641(56) [3].

[31] for our twisted mass action. Having a clover term we
expect cutoff effects to be reduced and be within our current
accuracy. However, we are planing to repeat the analysis for
two further ensembles with smaller lattice spacings that will
enable us to take the proper continuum limit at the
physical point.

In Fig. 14 we compare with recent results from other
lattice collaborations considering only results computed
using simulations with approximately physical pion mass
i.e., excluding chiral extrapolations. This provides a fair
comparison among the lattice QCD results. In Fig. 15 we
compare our results with recent lattice QCD results
obtained after performing chiral and continuum extrapo-
lation. They include at least one ensemble with mass about
200 MeV or lower. The final results by the PNDME [58]
and CallLat [24] collaborations shown in Fig. 15 are
obtained by combining measurements from several ensem-
bles with different lattice spacing, volume and pion mass.
They include two measurements at the physical pion mass
that are also included in Fig. 14 as well as the final value
after a combined chiral and continuum extrapolation.
CalLat quotes as their final value g4~¢ = 1.271(13) and
PNDME ¢4~ = 1.218(25)(30). As can be seen, the final
values by both PNDME and CallLat are in agreement with
their results using the physical point ensembles, but with a
much smaller error for the latter. The CalLat value is in
perfect agreement with our value. Furthermore, the lattice
results computed for a given ensemble over a range of
lattice spacings shown in Fig. 14 are in good agreement
demonstrating that lattice spacing effects are indeed small.

For the case of g%, we find a value that is larger as
compared to other lattice QCD determinations, which can
be explained by the fact that gg‘d increases with ;. In our
analysis of the cB211.072.64 ensemble seven values of ¢
are used reaching larger time separations combined with
increased statistics that allow for a better control of excited
states [48], as demonstrated in the Appendix. Similarly, our

value for ¢4~ tends to be smaller since this quantity
decreases with increasing values of #,. As we already
stressed, given that the analysis for the cB211.072.64
ensemble is the most thorough having the largest statistics
and the biggest number of 7, we consider as final the values
extracted using this ensemble. In Fig. 15 we include the
values of g% ¢ and g4~ obtained by the PNDME and CLS

collaborations after chiral and continuum extrapolation.

—y—r— {1ETMC, Ny=2+1+1
— {1PNDME, Ny=2+1+1
{CalLat, Ny=2+1+1
— {Mainz, Ny=2+1
| {Mainz, N;=2
) e . L XQCD, N;=2+1
1.15 1.20 1.25 1.30 1.35
u—d
94
' ———a————  JETMC, Nj=2+1+1
—_—r— {PNDME, N;=2+1+1
> . 1 Mainz, Ny=2+1
1.0 1.2 1.4 1.6
u—d
9s
T ——— ' 1ETMC, Ny=2+1+1
—r— {PNDME, N;=2+1+1
L —> — {Mainz, Ny=2+1
0.90 0.95 1.00
u—d
9r
FIG. 15. Comparison of recent lattice QCD results on the

isovector charges after chiral and continuum extrapolation (open
symbols) with our results for the cB211.072.64 ensemble.
Results are shown with cyan upwards-pointing triangles from
PNDME [58], yellow downwards-pointing triangles from CalLat
[24], gray right-pointing triangles from Mainz [61,62] and green
left-pointing triangle from yQCD [63]. The solid line shown in
the top panel is the experimental value of the nucleon axial charge
g4~ =1.27641(56) [3].
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TABLE X. Single flavor charges using the cA2.09.48 ensem-
ble.

u d K c

ga  0.817(29) —0.450(29) —0.061(17)  —0.0065(51)
gs  5.78(32) 45132 0.371(38) 0.059(18)
gr 0.73723) —0217(23) —0.0041(12) —0.0060(37)

TABLE XI. Isovector, isoscalar and single flavor charges using
the ¢cB211.072.64 ensemble.

u—d u+d—2s u+d+s—3c u+d+s+c
ga 1.286(23)  0.530(18) 0.422(25) 0.382(31)
gs 1.35(17) 9.92(90) 11.1(1.0) 11.4(1.0)
gr 0.936(25) 0.527(22) 0.519(22) 0.518(22)

u d s c

ga  0.862(17) —0.424(16) —0.0458(73) —0.0098(34)
gs  6.09(55) 4.74(43) 0.454(61) 0.075(17)
gr 0.729(22) —0.2075(75) —0.00268(58) —0.00024(16)

The chirally extrapolated values by PNDME are consistent
with their value using the two physical ensembles, cor-
roborating the fact that finite discretization effects are small
and consistent with our findings using heavier than
physical pion mass [31]. The computation by the CLS
Mainz group used ensembles with a smallest pion mass of
about 200 MeV and it is in agreement with our values.

The values extracted for the renormalized isovector,
isoscalar and single flavor charges are tabulated in
Tables X and XI for the cA2.09.48 and cB211.072.64
ensembles respectively. The latter are our best determina-
tion of these quantities and in particular the precision
obtained in the determination of the single flavor charges
computed directly at the physical point using this ensemble
is much better as compared to any other available lattice
QCD results. This includes also our previous determination
[36,37] using the cA2.09.48 ensemble. In particular, we
find for the first time, for g4, g¢ and g% a nonzero value
showing charm quark effects.

In Figs. 16 and 17 we show a comparison of available
lattice QCD results for the tensor charges and intrinsic spin
contributions of quarks, 1/2AX*%$, to the proton com-
puted directly at the physical point.1 We also include
phenomenological results, where we limit ourselves to
those that have not used input from lattice QCD. A good

"The results of the PNDME collaboration for the connected
contributions and for the strange charges are of comparable
quality [58,64]. We note that the result of PNDME after chiral and
continuum extrapolation is consistent with their value using the
physical ensemble. However, the disconnected contributions to
the up and down quarks have not been computed at the physical
point and thus we do not include them in Fig. 17. One can find the
values without the disconnected contributions in Ref. [64].

TABLE XII. Isoscalar and single flavor o-terms and £V using
the cB211.072.64 ensemble. Instead of giving the o-term for the
up and down quarks separately we give the isoscalar combination
which is the phenomenologically relevant ¢,y. We also give the
factors [N, = o,y /my.

u+d s c
o [MeV] 41.6(3.8) 45.6(6.2) 107(22)
b 0.0444(43) 0.0487(68) 0.115(24)

agreement is observed among lattice QCD results and a
notable observation is that the lattice QCD results are at
least as accurate as the phenomenological determinations.

PCAC relates ¢4~ to the pseudoscalar charge through
the relation g4~¢ = my /m,4g%~ [20]. Using our values for

g474, the relation

am,Zp = au = 0.00072, (13)

where ap is the twisted mass parameter in lattice units used
in the simulation of the cB211.072.64 ensemble, and the
extracted value of the nucleon mass my we obtain
g4 =313.8(6.4). This value is lower as compared to
g4 =349(9) found in Ref. [20]. A direct evaluation of
g% in lattice QCD using the same setup will be under-
taken in the future to study the origin of this discrepancy.

B. Nucleon o-terms

The nucleon o-terms that give the scalar quark contents
are fundamental quantities of QCD. They determine the
mass generated by the quarks in the nucleon. They are

] {ETMC, N;=2+1+1
—0— 1 Goldstein et al.
—O— 1 Pitschmann et al.
O 1Kang et al.
0 ) ) 1 Radici et al.
0.2 0.4 0.6 0.8 1.0 1.2
gy
—— JETMC, Ny=2+1+1
—a— {1ETMC, N;=2
) i - A — {1PNDME, Ny=2+1+1
—0.006 —0.004 —0.002 0.000
97

FIG. 16. The isovector (top) and strange (bottom) nucleon
tensor charges computed directly at the physical point by various
lattice QCD collaborations. We include phenomenological results
when available. We exclude phenomenological results that use
input from lattice QCD. Results are shown with a red star for the
cB211.072.64 ensemble, with blue filled squares for the
cA2.09.48 ensemble and with cyan upwards-pointing triangles
from PNDME [65]. Phenomenological results are shown with
open black circles [66—69]. For g%‘d we only compare with the
value extracted using the cB211.072.64 ensemble since other
lattice results are given in Fig. 14.
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[ —a— 1 —— ] b JETMC, Ny=2+1+1
L —— 1t —— . - 1ETMC, Ny=2
L i L e —h—i {PNDME, Ny=2+1+1
L —0— 4 F —0— g —0— 4 deFlorian et al.
- —Oo——— g - R —O0— 1 Nocera et al.
L —— E - —O— R —0o— 4 Sato et al.
H —O— R F —_——A A I i 4 Ethier et al.
038 0.40 0.42 041 —0.26 021 022 020 010 005 0.00
3 AR 5 AX? 3 AYS
FIG. 17. The intrinsic spin % AX4 carried by the up, down and strange quarks in the nucleon computed directly at the physical point by

various lattice QCD collaborations. We include results from phenomenological analyses when available. Lattice QCD results are shown
with a red star for the cB211.072.64, with blue filled squares for the cA2.09.48 ensemble and with cyan upwards-pointing triangles from
PNDME [64]. Phenomenological results are shown with open black circles [70-73].

relevant for a wide range of physical processes and for the
interpretation of direct-detection dark matter (DM)
searches [74] being undertaken by a number of experiments
[75]. Tt is customary to define the nucleon o-terms to be
scheme- and scale-independent quantities:

Oy = Myq{N|itu + dd|N)
(14)

op =m, (N|gpqs|N),

for a given quark g, of flavor f, or for the isoscalar
combination, where m,, is the mass of g, m,, = (m, +
mg)/2 is the average light quark mass and |N) is the
nucleon state.

Since the pioneering chiral perturbation theory analysis
that yielded o,y ~ 45 MeV [76], there has been significant
progress in the determination of o,y from experimental
data [77,78]. Using high-precision data from pionic atoms
to determine the mN-scattering lengths and a system of
Roy-Steiner equations that encode constraints from analy-
ticity, unitarity, and crossing symmetry a value of 59.1
(3.5) MeV is obtained [79]. This larger value of o,y has
theoretical implications on our understanding of the strong
interactions as stressed in Ref. [80]. Given the importance
of these quantities, a number of lattice QCD calculations
have been undertaken to compute them using two
approaches [81]. The first uses the Feynman-Hellmann

theorem that is based on the variation of the nucleon mass

: . — Omy
my with my:op=my oy,

However, since the depend-

ence of the nucleon mass on the strange and charm quark
mass is weak, this approach yields large errors. An
alternative method is to evaluate directly the nucleon matrix
elements of the scalar operator that involves disconnected
quark loops as done in this work. The evaluation of the
three-point function is computationally much more
demanding than hadron masses. Therefore, it is only
recently that a direct computation of the o-terms has been
performed using dynamical simulations [51,82-87].

The values extracted for the o-terms and £V are tabulated
in Table XII for the cB211.072.64 ensemble. We show
results for the o,y- and o -terms in Fig. 18 computed by

various lattice QCD collaborations at the physical point
either directly by computing the three-point function or
using the Feynman-Hellmann method that include ensem-
bles at the physical point. We also compare with

' —_—— ' "JETMC, Ny=2+1+1
—a— 1ETMC, Ny=2
{BMW, Ny=2+1
—— 1xQCD, Ny=2+1+1
—_——— 1RQCD, Ny=2+1+1
—O0— 1 Gasser et al.
—O0— 1 Alarcon et al.
I—O':O_' 1 Chen et al.
—O0— 1An et al.
—0— 1 Hoferichter et al.
—0— 1 RuizdeElvira et al.
) ) —0— ] Friedman et al.
30 40 50 60 70
oxn [MeV]
' ' b ' ' JETMC, Ny=2+1+1
HEH {1ETMC, N;=2
{BMW, N;=2+1
—h—i 1XQCD, Ny=2+1+1
L 2 {RQCD, Nj=2+1+1
) LK ) ) 1An et al.
—50 0 50 100 150
os [MeV]
FIG. 18. Nucleon o-terms from lattice QCD and from phe-

nomenology. We show lattice QCD results computed directly at
the physical point by evaluating the three-point functions with
filled symbols, namely for the cB211.072.64 ensemble (red star)
for the cA2.09.48 ensembles [88] (blue square), from yQCD [86]
(green up-pointing triangles), and from RQCD [87] (gray
diamond). We also show a result form BMW [89] obtained
using the Feynman-Helmann method that includes ensembles at
the physical point (open down-pointing triangle). We note that the
results by RQCD and yQCD after chiral and continuum extrapo-
lation agree with their corresponding value obtained using their
physical point ensemble and are thus not included. We include a
range of phenomenological results that do not use lattice QCD
input [76,77,79,90-93] (open circles).
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phenomenological results limiting ourselves to those that
have not used input from lattice QCD. We observe a very
good agreement among lattice QCD results. One can see
the very large uncertainty on o, by BMW when extracted
using the Feynman-Hellmann method.

It is customary to also provide results in terms of
the dimensionless ratios, f}\' = oy/my. Since we have
the isovector matrix element (N|iu — dd|N), for the
cB211.072.64 ensemble, we can combine it with the
isoscalar matrix element to obtain the individual up- and
down-quark contributions for the proton and the neutron in
the isospin limit via the relations

p_ 2m,qr (N|au|N) . 2m,qr (N|dd|N)
“Trl my “rdl my

2 N|dd|N 2 Nl|au|N
fo = 2 NIAAIN) -y 2 (NJdN)

r+1 my r+1 my

where the up and down quark mass splitting entering in f%
and fg' is computed taking the ratio of the up to the down
quark masses r = m,/m,; = 0.513(31) from Ref. [25]
together with our determination of the up and down quark
mass, as given in Eq. (13). We obtain

£ =0.0169(18),
£ =0.0257(26).

n = 0.0132(14),
n=0.0330(33).  (16)

These results are compatible with the results of our
previous study using the cA2.09.48 ensemble [88]. The
isovector scalar charge is also related to the neutron-proton
mass splitting 5m1?,CD in the absence of electromagnetism
[20] through the relation (N|au — dd|N) = Am3®/ Am,,.
We thus obtain

1-r

AmZ™ =2
mN mud1+r

(N|itu — dd|N) (17)

and we find Am{° = 3.33(50) MeV. This value is con-

sistent with AmQ™" = 2.52(17)(24) MeV determined for
nondegenerate up- and down-quarks [94].

(N[5s[N)
(N|au+dd|N)’
measure of the strangeness content of the nucleon. We find
a value of y = 0.0849(81) for the cB211.072.64 ensemble.

The y-parameter, defined as y =2 gives a

VI. CONCLUSIONS

Results on the nucleon axial, tensor and scalar charges
are presented for three ensembles of twisted mass clover-
improved fermions tuned to reproduce the physical value of
the pion mass. The most thorough analysis is performed for
the Ny =2+ 1+ 1 ensemble which provides one of the
best descriptions of the QCD vacuum to date having light,
strange and charm quarks in the sea. A notable result of

this work is the accurate computation of ¢4~ using the
N;=2+1+1 cB211.072.64 ensemble that agrees with
the experimental value of 1.27641(56) [3]. An additional
milestone is the evaluation to an unprecedented accuracy of
the flavor charges directly at the physical point taking into
account the disconnected contributions. We show that the
charm axial charge is nonzero and obtain a value for g, that
is more accurate than recent phenomenological determi-
nations. It confirms the smaller values recently suggested
by the NNPDF [71] and JAM17 [73] analyses both of
which, however, carry a large error. We find that the
intrinsic quark spin contribution in the nucleon is
LA =137, 4sc g4 = 0.191(16). The non-singlet com-
bination is found to be g%4™¥* = 0.530(18). Furthermore,
the evaluation of the isovector scalar and tensor charges to
an accuracy of about 10% and 3%, respectively provides
valuable input to experimental studies on possible allowed
scalar and tensor interactions and new physics searches [4].
Using the scalar matrix element we extract the nucleon
o-terms that are important for direct dark matter searches
and for phenomenological studies of zN scattering proc-
esses. We find o,y = 41.6(3.8) MeV, that confirms a
smaller value already suggested from previous lattice
QCD studies [82,86,88]. While this smaller value is in
agreement with the first analysis that yielded o,y ~
45 MeV [76], it is in tension with recent analyses that
yield larger values. An analysis based on the Roy-Steiner
equations and experimental data on pionic atoms extracted
the value of 59.1(3.5) MeV [79] that is confirmed by using
a large-scale fit of pionic-atom level shift and width data
across the periodic table [93]. The larger value is also
confirmed by using the zN scattering lengths from the
low-energy data base [92]. Given the significant progress in
the determination of o,y both using experimental data
[77,78,95] and lattice QCD this persisting tension needs to
be further examined. Computing the zN scattering lengths
within lattice QCD will provide a crucial cross-check.
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APPENDIX

We examine here in more detail the importance of
increasing the statistics in the three-point functions as we
increase the source-sink time separation in order to keep the
statistical error approximately constant. This is carried out
for the cB211.072.64 ensemble for which we increase the
statistics as listed in Table II at each #;,. As we will show
below, excited state effects are only correctly addressed if the
statistics are sufficiently large to keep the errors approx-
imately the same among the various values of ;.

1. Plateau method

We first examine the plateau method for the case of the
isovector charge operators. We show in the left panel of
Fig. 19 the plateau values that one would obtain if one kept
the statistics the same as at the smallest ¢, value for all the
source-sink time separations instead of the ones given in
Table II. As can be seen the errors increase becoming very
large for the two largest time separations. With such errors
one might think that convergence is reached already at
t, = 1.2 fm, shown by the open red symbol. For gg‘d for
which effects of excited state are milder one would obtain a
value compatible with the one extracted from the two-state
fit. However, a weighted average would yield a lower value
for g4~4 and alarger one for g%, as shown by the gray bands.
This is to be contrasted with the values extracted using the
increased statistics of Table II for larger 7, values, shown in
the right panel of Fig. 19. For both ¢4~ and ¢4~ there is a
clear indication that excited states are still present and even
larger time separations are needed to be sure that one has
converged to the two-state result depicted by the red band.

2. Two-state fit method

Our data show also that the two-state fit approach cannot
capture correctly excited state effects if the error increases
with the source-sink separation. This is specially seen for
the tensor charge as depicted in Fig. 20 we show results
extracted using the two-state fit approach considering five
different cases:

(1) Using the three smaller values of ¢, keeping the

statistics the same as that of the smallest 7, namely
750. Since the smallest ¢, is the most accurate its
weight in the fit is large and the error band increases
as t, increases, resulting in a mean value for gjg‘d and

191
u—d

1B_QA

1.7F 1+

16 v i % % T v Aok

15 ® T =

141

1.3 1T

1.2-Ifz%% 3"l1liE!§_

1.0, . . il o . . ]
07 10 13 16 07 10 13 1.6
ts [fm] ts [fm]

FIG. 19. We show the plateau values of the ratio that yields the
bare isovector charges for the cB211.072.64 ensemble. The left
panels show the plateau values obtained keeping the statistics the
same as those of the smallest 7,. The open symbols show the plateau
values one would consider converged given the errors. The gray
band is the weighted average of the plateau values for tsil.Z fm.
The right panels show the plateau values when increasing the
statistics with increasing source-sink time separation as listed in
Table II. The grey bands are the same as those shown in Fig. 6 as are
the red bands across both left and right panels.

g4~ that is below the one obtained if one uses the

full statistics shown by the red band. Given the large

error in particular for ¢4™¢ the two results are
consistent. However, for g4 the fit yields a value
that clearly overestimates the value extracted when
using the full statistics.

(i1) Using all values of 7, but keeping the statistics at 750
for all. A similar behavior is observed despite the
fact that we now have seven time separations instead
of three since the fits are dominated by the smallest
and most accurate point. Therefore, having results at
larger time separations, without increasing statistics
is not very useful.

(iii) Using t;, = 0.96 fm, 1.12 fm and 1.28 fm keeping the
statistics at 3000, namely the same as for the smallest
t, used in the fit. Having larger time separations with
more statistics tends to increase the mean values of
gf‘_d and ¢“~¢, but once more the fit is heavily biased
b the first most accurate point, resulting in a larger
value for g7,

054517-17



C. ALEXANDROU et al. PHYS. REV. D 102, 054517 (2020)

1.9
gA~¢

1.8
1.7} + 1 +
1.6

v 1
15 @
1.4¢F 1 4 4+ 4 4

2r . . . il . M A . . . i | . . . M
1.4F T T T T T T T T T T T — T T T I

1.3+ 1+ 1 4+ 4+
1 i % % A

11f 1+ + 1 1

1.2 xii;;

1.0 . . . il . . n il A . . . i | . . . il | . . . .
07 1.0 13 16 1.9 07 1.0 13 16 1.9 07 1.0 13 16 1.9 0.7 1.0 13 16 19 0.7 1.0 1.3 1.6 1.9
ts [fm] ts [fm] ts [fm] ts [fm] ts [fm]

FIG. 20. We show the values extracted for the bare isovector charges for the cB211.072.64 ensemble using the two state fit approach.
The notation is the same as that in Fig 3 showing in each panel the plateau values at the ¢, values included in the two-state fits. The two
leftmost panels show the resulting fit setting f;,, = #,/2 as a function of 7, (grey bands) when 750 measurements are used for each 7, i.e.,
the statistics used for the smallest #;, = 0.64 fm. The third and fourth two panels show the resulting fits when using 3000 measurements
for each ¢y, i.e., the statistics used for #;, = 0.96 fm. The rightmost panel shows the results using the full statistics, from which the final
values for the bare charges are obtained as depicted by the red band across all panels.

(iv) Using all values greater than f; = 0.96 fm but
keeping the statistics the same as for 7, =0.96 fm.
Similar results are obtained as with the pre-
vious case.

(v) Using the full statistics as listed in Table II for our
final analysis. For the extraction of the final value
g4~¢ we exclude the two smallest time separations to

ensure agreement with the summation method as
shown in Fig. 8.
As this study shows it is important to both have sink-source
time separations that span a large enough range and also to
increase statistics so the errors at each time separation are
approximately constant. Otherwise, the two-state fit is driven
by the most accurate point and can lead to wrong results.
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