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We determine the strange electromagnetic form factors of the nucleon within the lattice formulation of
quantum chromodynamics using simulations that include light, strange and charm quarks in the sea all
tuned to their physical mass values. We employ state-of-the-art techniques to accurately extract the form
factors for values of the momentum transfer square up to 0.8 GeV2. We find that both the electric and
magnetic form factors are statistically nonzero. We obtain for the strange magnetic moment
μs ¼ −0.017ð4Þðþ1

0 Þðþ5
0 Þ, the strange magnetic radius hr2Mis ¼ −0.015ð9Þðþ3

0 Þðþ4
0 Þ fm2, and the strange

charge radius hr2Eis ¼ −0.0048ð6Þð0−8Þðþ12
0 Þ fm2, where the first error is statistical, and the second and third

systematic.
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I. INTRODUCTION

Strange quarks are the lightest nonvalance quarks in the
nucleon and thus themost likely constituents to contribute to
sea-quark dynamics. The study of strange-quark contribu-
tions to nucleon structure observables allows us to uniquely
identify sea-quark effects and understand virtual particle
dynamics in the nonperturbative regime of quantum
chromodynamics (QCD).Apossible difference in the spatial
distribution of strange and antistrange quarks reflected by a
nonzero strange electric form factor Gs

EðQ2Þ and a finite
strange magnetic moment μs ≡Gs

MðQ2 ¼ 0Þ are key quan-
tities describing the nontrivial composite structure of the
nucleon. Parity-violating electron-proton elastic scattering
events probing the interference of photons and Z-bosons
exchanges enable the measurement of the strange form
factors and weak charge of the proton [1]. An accurate
determination of the neutral-weak vector form factor in
combination with the electromagnetic form factors of the
nucleon are needed in order to put constraints on new
physics beyond the standard model.
Theoretical studies of the strange form factors of the

proton using various models have a long history [2–10].
They are complemented by major experiments. The exper-
imental program to study the strangeness in the proton

began with the SAMPLE experiment [11,12] and it has
been continuing with the series of A4 experiments at the
Mainz Microtron accelerator facility [13–15], and the
HAPPEX [16–19] and G0 experiments [20,21] at JLab.
However to date, the experimental results, although indi-
cating nonzero values, carry large errors that make them
inconclusive. This is confirmed by a recent global analysis
of parity-violating elastic scattering data [22], where,
although a negative magnetic strange form factor is
indicated, the large error still makes it consistent with
zero. A review of the experimental program and results can
be found in Ref. [23].
Given the current status of the experimental results,

where there is no agreement even on the sign of the strange
electromagnetic form factors, a first principle calculation of
these key quantities is crucial. Lattice QCD provides a
rigorous framework to compute nonperturbatively these
quantities. However, it is only recently that efficient
algorithms have enabled simulations of the theory with
physical values of the light quark masses and the evaluation
of disconnected quark loops to sufficient accuracy [24–27].
In this work, we use simulations generated with physical
values of the light quark masses to evaluate accurately the
strange-quark loops and extract the strange electromagnetic
form factors directly at the physical point.

II. LATTICE METHODOLOGY

The results of this work are based on the analysis of an
ensemble simulated with two mass degenerate light quarks,
a strange and a charm quark denoted by Nf ¼ 2þ 1þ 1,
with masses tuned to their physical values [28] within the
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twisted mass formulation [29–31] including a clover term
[32]. The lattice volume is 643 × 128, mπL ¼ 3.62, where
L is the spatial lattice length, the pion mass mπ ¼
0.1393ð7Þ MeV and the lattice spacing a ¼ 0.0801ð4Þ fm,
determined from the nucleon mass [33]. We will refer to this
ensemble as the cB211.072.64 ensemble. We use
Osterwalder-Seiler strange and charm quarks with mass
tuned to reproduce the Ω− baryon mass and the mass of
Λc, respectively.
The nucleon matrix element of the electromagnetic (EM)

current jsμ decomposes into two CP-even form factors
given by

hNðp0; s0ÞjjsμjNðp; sÞi ∝ ūNðp0; s0ÞΛs
μðq2ÞuNðp; sÞ ð1Þ

with

Λs
μðq2Þ ¼ γμFs

1ðq2Þ þ
iσμνqν

2mN
Fs
2ðq2Þ; ð2Þ

where Fs
1ðq2Þ, Fs

2ðq2Þ are the Dirac and Pauli form factors
for the strange quark s, Nðp; sÞ is the nucleon state with

mass mN , momentum p, spin s and energy ENð  pÞ. uN is
the nucleon spinor, q2 ¼ ðp0

μ − pμÞ2 is the square of
the momentum transfer and jsμ ¼ ess̄ðxÞγμsðxÞ, where
es ¼ −1=3. The electric and magnetic Sachs form factors
can be expressed as linear combinations of the Dirac and
Pauli form factors given in Euclidean space via the
relations,

Gs
EðQ2Þ ¼ Fs

1ðQ2Þ − Q2

4m2
N
Fs
2ðQ2Þ ð3Þ

Gs
MðQ2Þ ¼ Fs

1ðQ2Þ þ Fs
2ðQ2Þ ð4Þ

where Q2 ¼ −q2. In order to extract the electric and
magnetic strange form factors Gs

E and Gs
M we evaluate

the two- and three-point correlation functions, given by

CðΓ0;  p; tsÞ ¼
X

 xs

Tr½Γ0hJNðts;  xsÞJ̄Nð0;  0Þi�e−i  xs·  p ð5Þ

Cs
μðΓν;  q;  p0; ts; tinsÞ ¼

X

 xs;  xins

eþi  xins·  q−i  xs·  p0
× Tr½ΓνhJNðts;  xsÞjsμðtins;  xinsÞJ̄Nð0;  0Þi�: ð6Þ

x0 ¼ ð0;  0Þ is where a state with the nucleon quantum
numbers is created (source), xs where the same state is
annihilated (sink) and xins denotes the lattice site at which
the current couples to a quark. We use projectors Γν taking
for the unpolarized Γ0 ¼ 1

2
ð1þ γ0Þ and for the polarized

Γk ¼ Γ0iγ5γk. JNðxÞ ¼ ϵabcuaðxÞ½ubTðxÞCγ5dcðxÞ�, is the
standard interpolating field for the nucleon, and C is the
charge conjugation matrix. We use Gaussian smearing
[34,35] for the quark interpolating fields with APE-
smeared [36] gauge links in the hopping operator with
parameters given in Ref. [33].
The EM current js couples to a sea strange quark and the

contribution of the strange-quark loop is given by

X

 xins

eþi  q·  xinsTr½γμGðxins; xinsÞ�: ð7Þ

We use stochastic approaches combined with dilution
methods [37] to compute such quark loops [38].
Namely, we perform a full dilution in spin and color
[39] to avoid any stochastic contamination in that subspace.

The elements of the propagator decay exponentially with
the distance jx − yj thus dilution in space-time up to a
specific distance reduces stochastic contamination entering
from off-diagonal elements. This is implemented by
employing the hierarchical probing technique [40] using
a four dimensional coloring of distance-23 resulting in
NHad ¼ 512 Hadamard vectors. We also exploit properties
of the twisted mass fermions in the so-called one-end trick
[41,42], which improves signal-to-noise ratio [43,44]. We
compute the quark loops for every time slice tins and
construct the disconnected three-point function at every
value of ts and tins by correlating it with 200 nucleon two-
point functions of randomly distributed source positions
per gauge configuration. We use 750 configurations,
averaging over proton and neutron and forward and back-
ward propagators to reach in total 600,000 measurements.
We utilize the multigrid algorithm implemented on GPUs
through the QUDA software [45–47] to accelerate the
calculation of the quark propagators.
The nucleon matrix element is extracted from an

optimally constructed ratio [48–50] given by

RμðΓν;  p0;  p; ts; tinsÞ ¼
CμðΓν;  p0;  p; ts; tinsÞ

CðΓ0;  p0; tsÞ
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðΓ0;  p; ts − tinsÞCðΓ0;  p0; tinsÞCðΓ0;  p0; tsÞ
CðΓ0;  p0; ts − tinsÞCðΓ0;  p; tinsÞCðΓ0;  p; tsÞ

s
; ð8Þ
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which becomes time independent for ΔEðts − tinsÞ ≫ 1
and ΔEtins ≫ 1 yielding ΠμðΓν;  p0;  pÞ, where ΔE is the
energy gap between the ground and the first excited state.
We employ three methods to check the convergence to the
ground state matrix element [38,51]: (i) Plateau method:
We use the ratio of Eq. (8) and identify a time-independent
window (plateau), where we fit to a constant. We seek
convergence of this value as we increase ts. (ii) Two-state
fit: Takes into account the first excited state in the three- and
two-point correlators entering in the ratio of Eq. (8). More
details are given in Ref. [38]. (iii) Summation method: [52]
Summing over the insertion time tins in Eq. (8), excluding
contact terms, leads to a linear behavior. The slope yields
the nucleon state matrix element as ts increases. For all the
three methods we use correlated χ2 fits that take into
account correlations between different insertion time slices
and source-sink time separations.
For disconnected quantities we are not limited to using

 p0 ¼  0 since no additional inversions are needed. Given
that  p ¼ 2π

L  n, we analyze three-point functions as described
in Ref. [33]. We take j  n0j2 ≤ 2, and j  nj2 ≤ 11 for GE and
j  nj2 ≤ 26 for GM since the latter is in general more accurate
allowing us to reach higher values of the momentum.
In Fig. 1 we show the electric and magnetic form factors

for two representative values of Q2. As can be seen, the
plateau method converges as ts increases yielding agree-
ment with the two-state fit and summation method as tlows
increases. We take as a systematic for excited state effects

the difference between the maximum and minimum values
extracted from the plateau and the summation method. For
the plateau we take weighted average of the converged
values and for the summation we fit in the range
of ts ¼ 0.56–1.44 fm.

III. RENORMALIZATION

We compute the renormalization function ZV by employ-
ing the Rome-Southampton method (RI0-MOM scheme)
[53] and the momentum source approach introduced
in Ref. [54], achieving a per mil statistical accuracy
using Oð10Þ configurations [55–57]. Discretization effects
are suppressed using momenta that have the same
spatial components, satisfying

P
i p

4
i =ð

P
i p

2
i Þ2 < 0.3

[58]. Furthermore, we subtract unwanted finite-a effects
to Oðg2a∞Þ using results from lattice perturbation theory
[57]. We analyze five Nf ¼ 4 ensembles simulated with a
range of pion masses in order to take the chiral limit. These
gauge configurations are dedicatedly produced for the
renormalization program using the same β value as the
Nf ¼ 2þ 1þ 1 ensemble of this work. On each ensemble
we compute 25 different values of the initial renormaliza-
tion scale ðaμ0Þ2 ∈ ½1 − 7�. After extrapolating to the chiral
limit for each 25 values we then extrapolate to ðaμ0Þ2 → 0
to remove any residual dependence on the RI0-MOM scale.
Due to the subtraction of the Oðg2a∞Þ artifacts, an almost
zero slope line is obtained for ZV for ðaμ0Þ2 ∈ ½2 − 7�. We
obtain as our final value of ZV ¼ 0.728ð1Þð4Þ, where the
first parenthesis gives the statistical error and the second
the systematic coming from varying the fit window in the
ðaμ0Þ2 → 0 extrapolation. More details can be found in
Refs. [38,57,59].

IV. RESULTS

The results for the strange electric form factor Gs
EðQ2Þ

are presented in Fig. 2. The form factor is zero atQ2 ¼ 0 as
expected and reaches a maximum at about Q2 ≃ 0.4 GeV2.
In Fig. 3 we show results for the strange magnetic form
factor Gs

MðQ2Þ, which is clearly negative and nonzero
becoming increasingly more negative asQ2 → 0. We fit the
Q2 dependence of the form factors employing the model
independent z-expansion [60–62],

GðQ2Þ¼
Xkmax

k¼0

akzk; zðQ2Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcutþQ2

p
−

ffiffiffiffiffiffi
tcut

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcutþQ2

p
−

ffiffiffiffiffiffi
tcut

p ; ð9Þ

using as tcut ¼ ð2mKÞ2 where mK ¼ 486ð4Þ MeV the kaon
mass as measured for this ensemble. Since the series is
expected to converge, one can truncate to a k ¼ kmax and
check convergence by increasing kmax. Since Gs

Eð0Þ ¼ 0
we set a0 ¼ 0. We truncate the series to kmax ¼ 5 since
including higher order terms have an insignificant effect on
the fit. In order to stabilize the fit we use Gaussian priors for

FIG. 1. The electric Gs
EðQ2Þ (upper) and magnetic Gs

MðQ2Þ
(lower) form factors for Q2 ¼ 0.347 GeV2 and
Q2 ¼ 0.057 GeV2, respectively. We show the extracted values
using the plateau method (left) as a function of ts (red squares)
and using the summation method (green triangles) and two-state
fit (blue circles) (right) as a function of the lowest value of ts used
in the fits, denoted by tlows . The largest value of ts is fixed to
ts ¼ 1.44 fm for the summation method and to ts ¼ 1.12 fm for
the two-state fits. Open symbols indicate the values of ts for the
plateau and tlows for the summation and two-state fits, where
convergence to the ground state is reached. The weighted average
of the plateau values is shown by the red band.
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the coefficients with k > 1. Namely, we set ak>1 ¼ 0�
w maxðja0j; ja1jÞ [24], where w is a coefficient controlling
the width of the Gaussian prior. We find that for w ≥ 10 the
extracted values are unaffected and therefore we set w ¼ 10

in the fit and use a correlated χ2 for the fit. The strange
magnetic moment μs ≡Gs

Mð0Þ is then given by the fit
parameter aM0 . The radii are extracted from the slope of the
form factors as Q2 → 0, namely via

hr2E;Mis ¼ −6
dGs

E;MðQ2Þ
dQ2

����
Q2¼0

¼ −3aE;M1

2tcut
: ð10Þ

Since the extracted quantities are computed in the limit
Q2 → 0 we provide a systematic error by comparing the
maximum and minimum change in the fit parameters when
we restrict the maximum value of Q2 to 0.5 GeV2.

V. COMPARISON

Within the twisted mass formulation we have previously
analyzed an Nf ¼ 2 ensemble with close to physical
pion mass, namely mπ ¼ 130 MeV, lattice spacing a ¼
0.094ð1Þ fm and lattice size 483 × 96 [27], referred to as
the cA2.09.48 ensemble. Currently, there are no other
precise lattice QCD calculations of these form factors
directly at the physical pion mass. The fact that we achieved
the current accuracy is due to our improved methods for
computing the quark loops at the physical point. Three
other groups have computed the strange form factors. The
analysis by the χQCD Collaboration, which included an
ensemble with physical pion mass, was performed using
Nf ¼ 2þ 1 gauge configurations of domain wall fermions
(DWF) and overlap fermions for the evaluation of nucleon
two- and three-point correlators. The four DWF ensembles
spanned pion masses mπ ∈ ½139–330� MeV. Their final
values are extracted using a chiral extrapolation since their
results at the physical point alone carry larger statistical
errors [25]. The other two groups used simulations with
heavier than physical pions: The LHPC Collaboration
analyzed one ensemble of Nf ¼ 2þ 1 clover-improved
Wilson fermions with mπ ¼ 317 MeV [24]. The Mainz
group [63] analyzed several ensembles of Nf ¼ 2þ 1

FIG. 2. Gs
EðQ2Þ as a function of Q2. The red points are results

extracted using the plateau method as discussed in Fig. 1 with the
grey band showing the fit to the form factor in the range of Q2 ¼
0–0.8 GeV2 using the z-expansion (χ2=d:o:f ¼ 0.94). The blue
band is the corresponding fit taking as largest Q2 ¼ 0.5 GeV2.
The green band is the fit to the results extracted from the
summation method, using tlows ¼ 0.56 fm and a maximum value
of ts ¼ 1.44 fm. The strange charge factor es ¼ −1=3 is not
included.

FIG. 3. Gs
MðQ2Þ as a function ofQ2. The notation is as in Fig. 2

(χ2=d:o:f ¼ 1.05).

FIG. 4. Results for μs in Bohr magnetons (left), for hr2Mis
(middle) and for hr2Eis (right). Results for the cB211.072.64
ensemble are shown with the red stars accompanied by the red
error band and for the cA2.09.48 ensemble by the blue filled
square [27]. Open symbols denote results extrapolated at the
physical point using ensembles with larger than physical pion
masses. Purple upper triangles show results from the χQCD [25]
Collaboration, black right triangles from the Mainz group [63]
and green circles from the LHPC [24]. The inner error bars
indicate the statistical while the outer the total, which includes
systematic errors.
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OðaÞ-improved Wilson fermions with pion masses mπ ∈
½200–360� MeV and performed a chiral extrapolation to
extract the value at the physical point.
In Fig. 4, we show a comparison of the magnetic moment

and radii using the two twisted mass ensembles with
physical pion mass to the corresponding results from the
aforementioned groups. Our values for the electric radius
and magnetic moment confirm a nonzero value for both.
The agreement among lattice QCD results using ensembles
of different values of the lattice spacings and volumes
indicates that cutoff and finite volume effects are small.
This is corroborated by our results using the Nf ¼ 2
cA2.09.48 ensemble with a ¼ 0.094 fm and the Nf ¼ 2þ
1þ 1 cB211.072.64 ensemble with a ¼ 0.08 fm for which
no finite-a dependence is observed.

VI. CONCLUSIONS

The strange nucleon electromagnetic form factors are
evaluated directly at the physical point eliminating the need
for a chiral extrapolation that introduces an uncontrolled
systematic error that can be large [64]. Using the model
independent z-expansion to fit the form factors we obtain
the following values for the radii and magnetic moment:

μs ¼ −0.017ð4Þðþ1
0 Þðþ5

0 Þ;
hr2Mis ¼ −0.015ð9Þðþ3

0 Þðþ4
0 Þ fm2;

hr2Eis ¼ −0.0048ð6Þð0−8Þðþ12
0 Þ fm2; ð11Þ

where the first error is statistical, the second the systematic
error due to excited states and the third the systematic by
comparing the parameters when restricting to maximum
Q2 ¼ 0.5 GeV2 in the fits. We obtain nonzero values for
hr2Eis and μs. While the error on hr2Mis is larger and a zero
value is not excluded, all lattice QCD computations
consistently predict a negative mean value. Computing
these quantities to this accuracy is significant given the
status of experimental searches where the results are
inconclusive. For example, SAMPLE [11] finds μs ¼
0.37� 0.20� 0.26� 0.15 that is positive but also
compatible with zero. More recently, the HAPPEX
Collaboration finds Gs

M ¼ −0.070� 0.067 at Q2 ∼
0.62 GeV2 [19], while the A4 experiment [15] finds Gs

E ¼
0.050� 0.038� 0.019 and Gs

M ¼ 0.14� 0.11� 0.11 at
Q2 ¼ 0.22 GeV2. The Q-weak experiment [65,66] is aim-
ing to measure the weak charge of the proton to unprec-
edented accuracy and theoretical input on the strange
electromagnetic form factors can aid the interpretation of
the experimental results including those from future experi-
ments such as SoLID [67]. In addition, the P2 experiment at
MESA facility at Mainz [68] targets very lowQ2 in order to
improve the determination of the strange electric form
factor, making our results of high relevance. In Fig. 5 we

show the impact of the determination of the strange form
factors on the experimental measurements at a given value
of Q2 ¼ 0.1 GeV2. Our values provide a stringent con-
strain on experimental searches.
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FIG. 5. The red bands show the constraints arising from the
values of Gs

E and Gs
M at Q2 ¼ 0.1 GeV extracted in this work.

The ellipses indicate 95% confidence level. The green ellipse is
from Ref. [69], the orange from Ref. [22], the black from
Ref. [70] and the blue from Ref. [71].
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