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Perturbative matching relates the parton quasidistributions, defined by Euclidean correlators at finite
hadron momenta, to the light-cone distributions which are accessible in experiments. Previous matching

calculations have exclusively focused on twist-2 distributions. In this work, we address, for the first time,
the one-loop matching for the twist-3 parton distribution function gr(x). The results have been obtained
using three different infrared regulators, while dimensional regularization has been adopted to deal with the

ultraviolet divergences. We present the renormalized expressions of the matching coefficient for gr(x) in

the MS and modified MS schemes. We also discuss the role played by a zero-mode contribution. Our
results have already been used for the extraction of gr(x) from lattice QCD calculations.

DOI: 10.1103/PhysRevD.102.034005

I. INTRODUCTION

Parton distribution functions (PDFs) are important quan-
tities encoding information about spatial and momentum
distributions of partons inside hadrons [1]. PDFs are
nonperturbative objects which can be extracted from data
on high-energy scattering experiments by making use of
factorization theorems in quantum chromodynamics
(QCD) [2]. Additional input on PDFs has been obtained
through a variety of model calculations and, in particular,
ab initio calculations within the framework of lattice QCD
[3,4]. PDFs are light-cone dominated, which corresponds
to a single point in a 4-dimensional Euclidean space-time in
which lattice calculations are performed. Therefore, until
recently, lattice QCD computations of PDFs were limited to
matrix elements of local operators which are related to
Mellin moments of PDFs. These only give partial infor-
mation on PDFs, and practically, only the first two non-
trivial moments can be studied reliably. Consequently, the
full dependence of PDFs on the parton momentum fraction
x remained inaccessible.

In 2013, Ji proposed to address the x dependence of
PDFs in lattice QCD by means of so-called parton
quasidistributions (quasi-PDFs) [5,6]. Quasi-PDFs are
defined in terms of matrix elements of equal-time nonlocal
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operators which are purely spacelike and therefore can be
readily computed on Euclidean lattices. The matrix ele-
ments are considered for hadron states with momentum in a
given direction, say P = (P°,0,0, P?), and the quasi-PDFs
reduce to their corresponding standard (light-cone) PDFs
when P? = |P| — oo prior to renormalization of ultraviolet
(UV) divergences. In lattice computations, UV cutoffs (A)
are given by the finite lattice spacing a (A ~ a~!), and one
(naturally) deals with UV renormalization before taking the
limit P?> - oo. The limits A = o0 and P> — oo do not
commute, which leads to nontrivial differences in the UV
behavior of the quasi-PDFs and light-cone PDFs. On the
other hand, the essence of the approach is the fact that the
quasi-PDFs and light-cone PDFs share the same non-
perturbative physics [5,6], while the UV disparities can
be systematically computed through a perturbative pro-
cedure known as matching [7]. It was pointed out that a
matching formula for quasi-PDFs is basically equivalent to
the aforementioned factorization of hard scattering cross
sections—the quasi-PDF “lattice observable” is factorized
into a PDF and perturbatively calculable matching coef-
ficients [8]. All-order factorization for (twist-2) quasi-PDFs
has been addressed for the first time in Ref. [8] by
analyzing Feynman diagrams. Other studies of factoriza-
tion made use of the operator product expansion—see, for
instance, Ref. [9]. We also mention that other approaches
for addressing the x dependence of PDFs have been
suggested [8,10-21], with some of them closely related
to the quasi-PDFs.

By now, various aspects of quasi-PDFs and related
quantities have been studied in detail [22—59]. In particular,
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a considerable number of pioneering lattice QCD results
has been obtained in the meantime—see Refs. [60-84] for
recent work. Moreover, the properties of quasi-PDFs have
been explored in several models [85-97]. The tremendous
progress in this field has recently been reviewed in
Refs. [4,98].

The perturbative matching framework has already been
explored extensively for twist-2 parton correlation func-
tions [7-9,99-111]. Despite such commendable progress,
so far no information is available about matching for
higher-twist parton correlation functions, which include
the three (two-parton) twist-3 PDFs e, gr and £, that exist
for spin—% hadrons such as the nucleon [112,113]. Twist-3
PDFs do not have a density interpretation, in contrast to
twist-2 PDFs. However, they contain new information
about quark-gluon-quark correlations inside a hadron
[114,115]. Moreover, twist-3 PDFs are not necessarily
smaller than twist-2 PDFs. On the other hand, it is difficult
to measure twist-3 PDFs because they typically suffer from
a kinematical suppression in physical observables. Our
focus here is on g7, which, among the aforementioned three
twist-3 PDFs, has received most of the attention so far. It
appears in the “simple” inclusive deep-inelastic lepton-
nucleon scattering process (DIS) [116], while e and A
decouple from DIS. We refer to [117,118] for related recent
measurements and to [119,120] for attempts to extract
information on gy from experimental data.

At the twist-2 level, one-loop matching relations
between light-cone PDFs and quasi-PDFs are obtained
by computing both quantities for a quark target in pertur-
bative QCD (pQCD). In the present work, we aim at
extending this very method to the twist-3 PDF gy . Partial
computations of light-cone twist-3 PDFs for a quark target
in pQCD can be found in the literature—see for instance
Refs. [121-123]. Here we extend the calculation for g; by
going beyond the UV-divergent pieces and by computing
the corresponding quasi-PDF. We find that, diagram by
diagram, the IR poles of the light-cone PDF gy and the
quasi-PDF gr exactly match. This key feature of the
quasi-PDF approach is shown here explicitly for the first
time for a twist-3 parton correlator, and encourages us to
|

come up with a matching formula which we have used very
recently for the first calculation of gr(x) in lattice
QCD [82].

We regulate the UV divergences using dimensional
regularization (DR). In the nonperturbative [infrared
(IR)] region, we exploit three different regulators: nonzero
gluon mass, nonzero quark mass, and DR. These regulators
have been used before for the calculation of matching
relations of twist-2 operators, and whenever results for
different regulators were explicitly compared, it was
reported that the final matching coefficient is regulator
independent. We observe that for g; the situation is slightly
more complicated. The three regulators (again) provide the
same matching coefficient, except for a term related to a
5(x) zero-mode contribution to the light-cone g (x), which
appears in DR for the UV divergences, but is absent when
using a UV cutoff. More specifically, the matching coef-
ficient resulting from this term differs between a nonzero
quark mass and DR, while a nonzero gluon mass, strictly
speaking, is insufficient to regulate the associated IR
divergence. Note that delta function zero-mode contribu-
tions have already received some attention in relation to
twist-3 PDFs, while they are generally believed to be absent
for twist-2 PDFs—see [122—129] and references therein.

We organize the manuscript as follows: In Sec. II, we
recall the definition of the light-cone PDF g;(x) and
specify the corresponding quasi-PDF g7 o(x). Section III
is dedicated to presenting the one-loop pQCD results for
gr(x) in the Feynman gauge using the three IR regulators.
The (renormalized) matching kernel is derived in Sec. IV in
two schemes: the MS scheme and the recently proposed
modified MS (MMS) scheme [70]. Qualitative differences
in the matching formula depending upon these two
schemes have been discussed as well. In Sec. V, we
summarize our work and present a brief outlook.

I1. DEFINITIONS

The light-cone PDF g7 (x) of the nucleon is defined via
(see for instance Ref. [116])1

M dzm .. [ z\ Z 2z 2
peSton) = [ ensiposio(=5)raw(=3.5) (5) 1P 5oz . 0

[0

where M is the mass of the nucleon, P its 4-momentum, ‘i

a transverse index, and y5 the Dirac matrix which anticommutes

with all the other gamma matrices. The covariant spin vector S of the nucleon is given by

Pt

H = + _’_> == ﬂ_s_ﬂ—a
St = (57,55 (M —

5. ) = gy P Srsup. ). 2)

1,2

'For a generic four-vector v we denote the Minkowski components by (¢, v, v2, ¥3) and the light-cone components by (v+, v™, 7, ),

0 1

with v+ = %(vo +03), 07 = %(v

— ) and 7, = (v',v?). Note also that in Eq. (1) we suppress a flavor index.
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FIG. 1.
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One-loop real diagrams contributing to both gr and g7 q.

with A the nucleon helicity, and u(P, S) the momentum space Dirac spinor of the nucleon. Color gauge invariance of the
bilocal quark operator in Eq. (1) is ensured by the Wilson line

Z X
VV(‘E’E)

z" :O~ZJ_:0L

= Pexp <—igs /T dy‘A+(0+,y‘,5¢)>7 (3)

where P indicates path-ordering, g, the strong coupling constant, and A" the plus-component of the gluon field.
The quasi-PDF g7 o, on the other hand, can be defined through a spatial correlation function according to [5,92]

dz?

M, | ]
73 519ro(xn ) = /Ee”"z(P,Sh;/(

with the Wilson line

ZOZOuZJ_ZOJ_

The momentum fraction of the quark in Eq. (4) is given by
X = f,—i, which, for finite hadron momenta, differs from the
momentum fraction f,—: used in the light-cone PDF in
Eq. (1). In general, quasi-PDFs have an explicit depend-
ence on the hadron momentum P3. However, the definition
of gr o in Eq. (4) is such that the P? dependence drops out
when taking the lowest Mellin moment (see also Ref. [93]),

[ dxoratur) = [ drg(a). (6)

This feature can help one check the systematics of lattice
calculations.

III. ONE-LOOP RESULTS FOR g

In this section, we compute the one-loop perturbative
corrections for the light-cone PDF g; and the quasi-PDF

(2)

<

) Z z <
>71V5WQ <_ 2 §> 4 <§> P2 S)] -0z, -6, - )

3

= Pexp <—igs /?3 dy’A3(0, 6L,y3)>. (5)

2

|

grq- We work in the Feynman gauge for which the one-
loop real corrections are given by the diagrams shown in
Figs. 1(a)-1(d), while the virtual corrections are given by
diagrams in Figs. 2(a)-2(d). We will present our results
using three different IR regulators: nonzero gluon mass m,,
nonzero quark mass m,, and dimensional regularization.
For the UV divergences, DR will be used throughout the
paper. Since we work at the parton level, the target mass
will be denoted by m,, the target spin vector by s, and its
momentum by p = xP, where x is the momentum fraction
carried by the parton.

A. Light-cone PDF

First, we take up the real diagrams. For Fig. (1a), the one-
loop correction is

&

(©

FIG. 2. One-loop virtual diagrams contributing to both g and g7 . The Hermitean conjugate diagrams of (2a) and (2d) are not shown.
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+ T

p 4

o (27)"

where ¢ is the coupling constant associated with the quark-
gluon vertex, C. = 4/3 is the color factor, and n = 4 — 2e¢.
In general, we use € as the DR regulator, noticing that ¢ —
eyy > 0 (with the corresponding subtraction scale as
U — pyy > 0) if it is used for the UV region, while ¢ —
er < 0 if it is used for the IR region (with 4 — pur > 0).
|

(1a)

mysh (1) () = — i Crp gy, /°° d"k Tr[(f 4+ my) (1 +ysf)y" (K +my)y'ys(K + my)r"]
g - _ (Z—m2 1 ie)*((p — k)2 — m2 + ie)

) o
I

From the definition of gy it is clear that the quark mass
cannot be set to zero from the start, but must be kept finite
until we have extracted the terms which are linear in m,.
After this step, one can set m, = 0 unless it is used as the

IR regulator. With this in mind, Eq. (7) can be simplified to

gT (.X') = (271_)"

In the following, we use the abbreviation

_igCw /oo 2, dk-qier AR k= @ m)(R 4 mi) + 20
o (k> —m2 +ie)*((p — k)* — m2 + ie)

TSI

1
PUV = —+1n47r—yE,

€uv

and likewise for the IR. After performing the momentum integrals in Eq. (8), one gets

a,C 2
A0l = B0t (=500) + xPry +x10 2% 1 (12, o)
g 2 xny
or
09 ()], = B (5) 1 xPyy + xlnFv__ X =2x=] (10)
I Ma o 2n w (1—x)*m} l—x ’

depending on whether the gluon or quark mass is used as
the IR regulator. Both results, however, have contributions
from the point x = 0 reflected through the Dirac delta
function. To see the origin of this term, we notice that one
of the momentum integrals in Eq. (8) can be evaluated as
(see also Ref. [130])

1 in 6(x)
L S—— ) B - o
(n=4) / (k* —m + ie)? (m )ki +ml p*

(11)

and, hence, the DR regulated UV pole (from the k;
integral) makes a term proportional to §(x) contribute to
gr- The analysis of Eq. (11) in the case of a nonzero gluon
mass deserves extra discussion. Strictly speaking, in this
case one should set the quark mass to zero in Eq. (11). But
then one is left with an IR singularity. Therefore, m, # 0 is
not sufficient to regulate all IR divergences for the gr
calculation. Such a feature shows up for the first time at
twist-3. Terms like in Eq. (11) are not present in the twist-2
case and are related to the zero-mode contributions [122—

129]. In the following we do not abandon the gluon mass
regulator, but rather consider two pragmatic options:
(a) retain the quark mass in Eq. (11), and (b) use DR,
while for all other contributions we keep working with a
finite m,. The two routes lead to two different answers.
Option (a) gives rise to a §(x) term in gy, as explained
above. For option (b), the corresponding IR pole 1/eR also
allows for a §(x) through Eq. (11), but with an opposite
sign to the contribution from the UV pole. Hence, for DR
for the IR region the delta-function singularity drops out in
gr. The expression in Eq. (9) corresponds to option (a). We
emphasize that this choice is not necessary, and we discuss
the impact of the two options on the matching coefficient
later on.
The result for diagram 1(a) using DR is

a,C U
Q(Tla) ()¢, = 2 d (x(PUV - Pr) +xlngv), (12)
T Hir

where ur is the subtraction scale associated with the
IR pole.
For the diagram in Fig. 1(b), the momentum integral is
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mqu_ (1b)< ):

Tr[(¢f + my) (1 + sy’ ys(k + my)r]

+ T

_ ingF,uzevi” /00 d"k
p -

4

where v is the light-cone vector v* = (07,17, 0 ) such that
v> =0and v-a = a* for any generic four-vector a*. The
results are

(1b) a,Cp 14x Ky
= — In— ), 14
(1b) (ZSCF 1 +x ”%JV
e _— 1 —_— ],
91 (), 2z 2(1 —x) Povt n(1 - x)*m?

(15)

o d"k

—lZ(p) = CF /—oo (27[)" (_ig/’teyﬂ) k2 _

w (27)" (v- (p — k) + ie)(k* — mj + ie)((p — k)* — mj, + ie)

i(f+mg)
mé + ie

KT\ 1
(ot

(1b) a,Cr 1+x D D oy
pu— - 1 .

(16)

Diagram 1(c) gives the same result as 1(b), while diagram
1(d) gives no contribution since the result is proportional
to v2.

We now proceed to the computation of the virtual
diagrams. Figure 2(a) shows the contribution from the
quark self-energy diagram which is independent of the
particular PDF under consideration. The self-energy is
given by

' (17)

(—igur”) —
(p—k)? —m2 + ie

and the contribution to gy from diagram 2(a) (plus its Hermitean conjugate) is

(2a) 0Z(p) a,Cp /1 d (77 :”%JV >
| g oy . 27 Jo Yy\ Fuv ymg (18)
@) _ 9Z(p) & Cr / L < Ky 1+ )2 )

m = e — y 1 —_ y P —|— ln — . 19
Y n, 2 Jy YU Py (1=yPmg  (1-y)? 1)
(2a) 82(17) aSCF /1 ( ”%JV)

w = .| =~ dyy| Pyyv — Pr +In—~ 20

97 eg oy |, 27 o YY\ Fuv IR W (20)

for the three IR regulators.
The diagram in Fig. 2(b) provides

Tr[(# + my) (1 + rsd)r'Lys(K + my)r*]

mgst (o) :igchuzegm,v” w© 'k
pt Ir 4 -

which is exactly the same expression as its counterpart,
Fig. 1(b), except for an overall minus sign. The overall sign
is due to the reversed momentum flow in the Wilson line
relative to Fig. 1(b). Likewise, Fig. 2(c) gives the same
contribution as Fig. 1(c), while there is no contribution
from Fig. 2(d). The results for the virtual diagrams have an
overall prefactor of §(1 —x) which we have left out for
simplicity of notation.

For the matching presented in the following sections, we
will use the MS renormalized expressions of these results.
Here we have not studied potential mixing with other
operators under renormalization, but rather leave this topic
for future work.

o @2) (- (p— k) +ie) (K2 =2 +ie) (p — k) —m2 + ie)

(21)

B. Quasi-PDF

Quasi-PDFs are given by the Fourier transform
of purely spatial matrix elements between hadronic
states of finite momenta. With this in mind, the
quasi-PDF resulting from Fig. 1(a) is written as in
Eq. (7) with the replacement p* — p°. After inte-
grating over k° (using the residue theorem) and over k|
we find”

2 . . .
For convenience of notation, in our results we use that

p3=(p*)*
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xlni—l x> 1
g(TI,Q(X)Imgza;iF xIn i mq>”*+1 2 0<x<l1
xIn* 41 x <0,
22)
xInzZ—1 x>1
1 aCF 4xp?
Q(T,e(l))( )lmq o X1( )32+1—2x—|—2 O<x<l1
xIn*t+1 x<0,
(23)
xlnZ -1 x>1
e .
Ll = 258 A kP 0<x <1
It 41 x <0.
(24)

In contrast to light-cone PDFs, for quasi-PDFs the &k
integrals for real-emission diagrams are UV finite.
However, UV poles appear when the results are integrated
over the momentum fraction x. As is by now well known,
the quasi-PDFs have support outside the region 0 < x < 1.
But IR poles appear in that “physical” region only.
Moreover, for all three regulators the poles agree with
the ones we obtained for the corresponding contribution to
the light-cone PDF. In fact, we find such an exact match of
|

IR poles, which is at the heart of the quasi-PDF approach,
for all the one-loop diagrams.
For Fig. 1(b), the corresponding results are

In% x>1
(1b) — ascF I+x 1 4(1—){)])% 0<x<l1
9r.Q (x)|m_q 27 2(1—x) n——s X
lnxx;1 x <0,
(25)
In % x> 1
(1b) _ a,Cr 1+x 4xp?
gT,Q (x)|mq - 2][ 2(1 _x) In (]_x)jnz O0<x<l1
Inx=L x<0
(26)
In-% x>1
(1b) a,Cr 14+x 4x(1=x)p
gT,Q( )|€IR 7 2(1 X) In e PIR O<x<l1
In*=L x<0.

(27)

The contribution from Fig. 1(c) is the same as from
Fig. 1(b).
Finally, the contribution from Fig. 1(d) is calculated as

mys', 9 () _ingFﬂzggmv"v”/m d"k Tr[(¢ + my) (1 + rs))r' vs) sl FYL (28)
p e 4 o Q) (0 (=) i) (kP —mE i)\ p) P
[

which results in momenta, the self-energy diagram in Fig. 2(a) gives the
. same contribution for both light-cone PDFs and quasi-
= x>1 PDFs. Nevertheless, to make contact with the techniques
(Tld) (x) = aCr | 0<x<1 (29) used in the computation of the real diagrams for quasi-
Q 2n XII 0 PDFs, we first integrate over the k° and k, components,

— x<

x—1

for all three IR regulators. Note that this diagram provides
the same result for other parton distributions such as the
twist-2 unpolarized PDF.

We now compute the quasi-PDFs for the virtual dia-
grams in Figs. 2(a)-2(d). When integrated over all parton
|

3

(20) Z(p)| _ _«a

H’lg = aﬂ

Huv

leaving the integral over k* to be made at the end. In this
case, using the gluon mass as the IR regulator, and DR for
the UV divergence, which now appears in the integration
over y when using k* = yp?3, the result is

y‘zeUV(yln%—l> y>1

—2eyy :
S (L Zegy)Cleoy) [ £=) T [ ayd y2ew (yn s ‘>”3+1 2y) 0<y<1 (30
T

(—y)2ewv (y lny)%l + 1) y <0,

034005-6
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where

71-1/2—6Uv

() P T{1/2 = eon]” 3D

Cleyy) =
Notice that Eq. (30) differs from Eq. (26) of Ref. [102]. Upon integrating Eq. (30) we obtain

N 9x(p)
T.Qlm, aﬂ

(XSCF l M%JV
- 1 32
2z < 4 3 2 m2 3 PUV (32)

which agrees with Eq. (18) after the integration has been performed. This serves as an important consistency check of our
results for the self-energy graph. For the other two IR regulators we obtain

ea) _9x(p)
mq 8% mq
(1—eyy)y 2w ((l—y)ln%]+1) y>1
C 3 —2eyy ,
== Cew) (/%) ) / dyd 37200 (1= ep) (1) I 22— (1—e) 252 - (1-57) #2) 0<y <1
—eyv)(=y)~ —y)In*=t— y<0,
(1=epv) (=) ((1=3) 1) <0
(33)
yRew (yln - 1) y>1
OZ(p a,C p3 —2euv e .
ggzglem_% =- zﬂF(l—euv)C(Euv)(u— /dy y 2UV(yln il ))p3+1 y—yPIR) 0<y<l1
€IR uv
(=y)~2ew (y In5t 4 1) y <0.
(34)

Once again, it is straightforward to show that Eqs. (33) and (34) consistently reproduce their corresponding light-cone
results with the appropriate IR regulators.
The results for the diagrams in Fig. 2(b) [and Fig. 2(c)] read

y7 v Ingty y>1
3\ —2¢
(2b) a,Cr p uv l+y —2¢ 4(1-y)p3
=-—"tc — d o 2P g oy < 35
97.Qm, > (€UV)<MUV) / AR " y (35)
—v)2€euy lnu < 0’
y =
y—ZSUV hl%l y > ]
3 2¢
@), _  aCp p uv I+y —2eyy 4yp3
9ol =~ C(GUV)(E> /dy2(l—y) yoinge 0<y <l (36)
(—y)~2ew ln’)—7l y <0,
y2eov ln)%l y>1
3\ —2¢
(20, _ _%Cr P o Ly ) caegy (4 200003
gT,Q|€1R - C(eyvy) (a) /dym y~2ewv lnT—PlR 0<y<l1 (37)
(- st y<0

y

for the three different IR regulators.
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Finally, the result for the diagram in Fig. 2(d) is given by

C 3\ -2 y_zguvl%y y>1

g —2Cuv Z2e

g(ng) - ZﬂF Cleuv) </%) /dy y? va%l 0<y<l1 (38)
(—y) 2w Ly <0,

(2d)

7.0 includes also its

Strictly speaking, what we call here g
Hermitean conjugate.

IV. MATCHING KERNEL

Quasi-PDFs can be related to light-cone PDFs through a
perturbatively calculable matching coefficient up to power
corrections that are suppressed in the hadron momentum.
Omitting the scale dependence, a corresponding matching

formula schematically reads
—]q\y o2 |
y P3

g(x; P?) = /H@C
-1 |yl

where G(g) denotes a quasi-PDF (light-cone PDF) of a
parton inside a hadron, and C is the matching coefficient.
After performing a perturbative expansion of the left-hand
side and the right-hand side of Eq. (39) in powers of ;, one
can show that the first-order correction to the matching
coefficient is

Cx) = 8(1 = x) + % P(x) = 1)
+ asziF 5(1 — x)[f1-11] (40)
|
a,Cr (la)
5, [L(x) +6(1 =) = g7~ (x) + g7
a,Cr
Y ~5x)

in the MS scheme if a finite gluon mass is used as the IR
regulator. Note that, for ease of notation, in Eq. (41) we
have dropped the index “UV” in the subtraction scale .

Extra care is needed when applying the plus-prescription
for quasi-PDFs, especially outside the physical region. In
particular, terms like 1/(1 — y) that are present in diagram
2(d) require special attention. In the following, through the
specific example of this diagram, we outline the steps
needed to write one-loop corrections for the quasi-PDFs in
a full plus-prescription format. Focusing on the y > 1
|

1d 2d 1d
)+ 801 - 158 = [ 1800 + %5

aSC[: 1

y

In Eq. (40), T’ (D) and IT (1) represent the real corrections
and the virtual corrections for the light-cone (quasi-) PDFs,
respectively. To obtain the light-cone PDF from such a
perturbative matching, one needs to invert Eq. (39).
This inversion is applied to one-loop order and, thus, will
reverse the signs of the prefactors of «, in Eq. (40), and the
integral will run from —oco to +oo. The fact that the
matching formula in Eq. (39), which so far has been
explicitly checked for twist-2 PDFs only, does hold
as well for the (quark-target) calculation of the twist-3
gr can be considered a nontrivial outcome of this
study.

We next highlight some important points involved in the
construction of the matching coefficient for g;(x). As a first
step, we rewrite the sum of real and virtual corrections
in a full plus-prescription form. Recall that for an arbi-
trary function f(x), a plus-prescription is defined as
[f(x)]; = f(x) =8(1 = x) [dyf(y). This format naturally
captures the cancellation of x = 1 divergences between the
real and virtual corrections. For the light-cone g7, Egs. (9),
(14), and (18) give

PG 4 801 -2 (g7 + g5 )
42 2 1 2
ﬁlnﬂ—ﬁ(l—x)} , (41)
1 —x xm

g +

region, which is sufficient to convey the main idea,

we find

2
e _ _ [ 4] 00 a,Cpll  a,Cp 11 H
9rQ % )’[QT,Q ()’)+—2ﬂ y oz \2h 4—p§ .

(42)

(2d)

Thus, we can write gy 5 in terms of the integral of g(Tlfg. The

plus-prescription is then built as

Crl 1 2
i 5(1—x) —lnﬂ—2 .
2 4p;

27 x

QA CF
2

(43)

.-
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Repeating the above steps for the other diagrams, we arrive at

B [(w) + (1 = )11 = g (x) + g () + g () + 601~ x) (78 + o % + g0)
[—x+2x+11n 1_|_] +%}+_21x x> 1
aCF [—x+2x+1 )P3+1—2x—ﬁ}+ 0<x<l
|:x+2x+llnx1+1__+2< )]+—2<+_x) x<0
a,Cp 1 3 2
+ & 5(1—x)<2 21n4/;3> (44)

in the MS scheme.

Finally, combining expressions (41) and (44) as per Eq. (40), we obtain the matching coefficient

242841 3
[FEEn i+ 5+ 3] -3 £>1
2
CM—S(é,ﬁ—Q —5(1-¢) LY (80 + =5 (ﬂ)”wff_‘fgl}+ 0<é<l1
o 210841
[“H]*‘**z(l :)} g <0
a,Cr 1 3. u
5(1-&)(=+2m). 45
- (3 + 3l (45)

Note that in Eq. (45) we have transformed variables x — &
in order to keep x as the variable representing the
momentum fraction of the parent hadron carried by the
quark, that is p? = xP3>. We reemphasize that the IR
singularities of the light-cone PDF [see Eq. (41)] and
the quasi-PDF [see Eq. (44))] are the same. As pointed out
before, this is a requirement and the foundation for building
up any matching equation. Moreover, despite the fact that
the individual diagrams give (very) different finite con-
tributions for nonzero gluon and quark mass [see, for

|

|

example, Egs. (22) and (23)], the matching coefficient at
one-loop order is the same for both cases. Note that for the
gluon mass case, if one chooses DR for the IR region of the
k| integral in Eq. (11), then CM—S|mg = Cisle, [see Eq. (46)
below].

When DR is used throughout for the IR divergences, the
matching changes because of the absence of the afore-
mentioned §(x) term in gy. Specifically, the resulting
matching coefficient in this case reads

212641 :
=2 1+—{5+2%L—2% £ 1
2
U a,Cr [—§2+2§+1 46(1-6)p3 52—5—1}
Cos| &5 =5(1- In=—>= 0<é<1
Ms<§ p%) - =0+ R =N g
212641 : :
[ i In 1T:+2(13—¢)L_2<1%—§> £<0
a,C 1 3 u
=g -2+ 2m). 46
+2ﬂ<§>(224p§) (46)

It is interesting that in DR all the terms in the matching
coefficient remain the same compared to the case with
nonzero parton masses, with the exception of the §(x) term
in Eq. (45). There is also a change in the finite factor in the

|

coefficient of (1 — &), which is due to the absence of the
Dirac delta function in the light-cone result. The fact that
the matching coefficient depends on the IR regulator is
observed here for the first time at twist-3.
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The problem with the MS renormalized matching
coefficient is that the convolution integral relating the
light-cone PDF to the quasi-PDF is UV divergent. These
divergences originate from the integrals of the real correc-
tions. To illustrate this point, we use DR, restrict ourselves

£-2-1 ¢-

to the &£ > 1 region, and then generalize the underlined
technique for the other regions. Furthermore, we employ a
€ regularization for the additional divergence at & = 1.
Applying these techniques, we arrive at

1 ¢

|
EONCE

where the terms in € have not been written because they are
irrelevant for the discussion and ultimately drop out when
combining the real and virtual corrections. Using DR, we
can thus perform these integrals, which are otherwise
divergent. We observe that the £ dependence in the real
diagrams is such that, when Eqgs. (45) and (46) are
convoluted with the quasi-PDF, we get an unbalanced
divergence, as the convolution integrals are normal inte-

(I—gre " ¢

£-26-1 ¢-1 ¢ 28

In

’

g 7

I

grals in the parton momentum fraction &, and not DR
integrals. Therefore, in order to work with a finite match-
ing, we follow the procedure proposed in Ref. [70] and use
the so-called modified MS (MMS) scheme, which amounts
to subtracting the divergent logs by renormalizing the
whole & dependence outside the physical region,

-1

3
In

-1, ¢ 3

—In—¢o

J*FI

where |[...|z means that the whole & dependence for & > 1
was renormalized at the renormalization scale p. A similar
expression can be computed for the £ < 0 region. However,
the & dependence inside the physical region is left un-
touched. Renormalizing the & dependence outside the
physical region results in finite integrals, but the norm is
not preserved due to the remaining finite factors, +1/2 4
3/21n(1/4) (£ depending upon the IR regulator). In the

|

1-¢ I3 1-

-¢

e tioetae, 2 (1=¢) (48)

MMS scheme, we use as the renormalization condition that
the integral of the renormalized matching is equal to its
tree-level value conveyed through subtracting also the finite
parts. In other words, we construct a matching coefficient
such that the whole a, correction integrates to zero so that
the norm of the PDF is preserved. Doing these subtractions,
the matching for g in the MMS scheme is

[émgﬂln 1+1£+2€] ¢>1
Chm<&§>mm:=&l—®+$§5 o)+ Zm AN L El] - o<e<t (49)
3/ lmg.m, [52+25+11n 1—55+ﬁ:|+ E<O,
[5+2£+1ln 1_‘_15_'_24 £s
[‘ﬁig“l ﬁﬂtﬁL £<0,

with | diCymis = 1. Again, with m, # 0 if one chooses to do a DR for the k; integral in Eq. (11), then one finds
CMm|my = CMWLIR. At this point, we want to briefly comment on the dependence of the matching coefficient on the IR
regulator. For g7 (x) at finite x, the difference between results obtained from the two matching coefficients presented above
is related to g7 o at x = oo. Presently, this point is not accessible in a model-independent manner through calculations in
lattice QCD. One might attempt to approximately determine the quasi-PDF for x — oo in pQCD. If this approach is

justified, then the two matching coefficients would result for g;(x) in a difference of O(a?), that is, beyond the accuracy of
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the one-loop calculation presented here and therefore
negligible at this order. For the lattice calculations of gr
in Ref. [82], we used the matching coefficient in Eq. (50)
obtained with DR for the IR divergences. Note also that
partonic calculations of the type presented here are more
complicated when using nonzero parton masses (especially

|

MMS 1 %Cr3( 1,
2@, =153 (-0

1) —1—_59(—5)) - “;i‘” 5(1—¢) <—% +%1nG>).

a nonzero quark mass). This applies even more so when
trying to extend the matching calculation to two loops. In
that case, DR for the IR region may well be by far the best
choice from a pragmatic point of view.

The extra subtraction in the MMS scheme (with DR for
the IR region) was made with

(51)

This renormalization factor is structured so that the matching coefficients in the MS scheme and the MMS scheme are

related as
Coiis = ZMMS Cige. (52)
In position space, the renormalization factor in Eq. (51) reads
NS B a,Cp . 3 /1
ZMM (ZM)|€1R - 1 _76 i (_5+§1n<1>>
3a,Cr (. . o
SUCE (il i) + n(ap) = ) — i)
2 2n 2zp
3a,Cr . (2Ei(—izu) — In(—izpu) + In(izu) + inSign(zu)
—-= e’ , (53)
2 2n 2
where Ci is the cosine integral, Si the sine integral, Ei the exponential integral, and Sign the sign function. In the limit z — 0,
one has
MIVS - a,Cr 1 3 2u’e*re
2 (z = 0)],, = 1= o <—§+§ln< 1 ) (54)

Therefore, the renormalization condition in Eq. (53) im-
plies a cancellation of In(z?) singularity present in the MS
scheme.

V. SUMMARY AND OUTLOOK

In this paper, we have derived the one-loop matching
coefficient which relates the twist-3 light-cone PDF g7 (x)
to the corresponding quasi-PDF g7 o(x). Generally, this
type of matching can be considered as a factorization
theorem connecting light-cone distributions to Euclidean
correlators, which are calculable in lattice QCD. Here, we
have scrutinized this factorization for the first time at the
twist-3 level. Our results have been obtained using three
different IR regulators: nonzero gluon mass, nonzero quark
mass, and DR. The UV divergences have been dealt with
DR throughout. Most importantly, we have found that the
IR singularities of g and gy o exactly match. This is an
encouraging result, which clearly supports the idea that the
quasi-PDF method (and related approaches) is not limited
to twist-2 parton correlators.

|

The finite terms for individual diagrams are generally
(quite) different. Yet, the final result for the matching
coefficient, after summing over all diagrams, does not
depend on the IR regulator, which is another essential
outcome of this study. The only exception is a term that has
its origin in a §(x) (zero-mode) contribution to g;. For this
term, we find a different (IR-finite) result when using a
nonzero quark mass and DR. Such a dependence on the IR
regulator is found here for the first time. While we do not
consider this as an indication of a breakdown of the
factorization that underlies the matching formula, much
more work is needed to give a general factorization proof
for the quasi-PDF g7, by including higher-order correc-
tions and operator mixing. A nonzero gluon mass, strictly
speaking, would not be sufficient to regulate the IR
divergence related to this contribution. According to what
is known at present, such zero-mode contributions and the
discussed issues for the matching do not exist at the twist-2
level. On the other hand, we have argued that differences in
gr(x) caused by the presence/absence of the §(x) contri-
bution are presumably small. But this point requires further
investigation.
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The matching coefficient has been provided in the MS
scheme and in the MMS scheme, which originally had been
introduced to deal with extra complications one encounters
when dealing with quasi-PDFs [70]. More specifically,
results in the former scheme have divergences showing up
when the hard matching kernel is convoluted with the
quasi-PDFs calculated in lattice QCD. The MMS scheme
systematically removes all potential divergences and is
designed such that it preserves the norm of the PDF.
Recently, the DR matching coefficient obtained here has
been used in the first computation of g;(x) in lattice QCD
[82]. Results for the twist-3 PDFs e(x) and £ (x) will be
presented elsewhere. While more work is needed at the
twist-3 level, such as a careful study of potential mixing of
both light-cone PDFs and quasi-PDFs under UV renorm-
alization, the results presented here support the quasi-PDF

approach as a viable tool for studying the x dependence of
twist-3 parton correlators in lattice QCD.
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