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Gaussian Variational Estimation for Multidimensional

Item Response Theory

Abstract

Multidimensional Item Response Theory (MIRT) is widely used in assessment and

evaluation of educational and psychological tests. It models the individual response

patterns by specifying functional relationship between individuals’ multiple latent traits

and their responses to test items. One major challenge in parameter estimation in

MIRT is that the likelihood involves intractable multidimensional integrals due to la-

tent variable structure. Various methods have been proposed that either involve direct

numerical approximations to the integrals or Monte Carlo simulations. However, these

methods are known to be computationally demanding in high dimensions and rely on

sampling data points from a posterior distribution. We propose a new Gaussian Varia-

tional EM (GVEM) algorithm which adopts a variational inference to approximate the

intractable marginal likelihood by a computationally feasible lower bound. In addi-

tion, the proposed algorithm can be applied to assess the dimensionality of the latent

traits in an exploratory analysis. Simulation studies are conducted to demonstrate

the computational efficiency and estimation precision of the new GVEM algorithm in

comparison to the popular alternative Metropolis-Hastings Robbins-Monro (MHRM)

algorithm. In addition, theoretical results are also presented to establish the consis-

tency of the estimator from the new GVEM algorithm.

Keywords: Multidimensional IRT, Variational Inference, EM algorithm
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1 Introduction

The increasing availability of rich educational survey data and the emerging needs of assess-

ing competencies in education pose great challenges to existing techniques used to handle

and analyze the data, in particular when the data are collected from heterogeneous popula-

tions. Different forms of multilevel, multidimensional item response theory (MIRT) models

have been proposed in the past decades to extract meaningful information from complex

education data. The advancement of computational and statistical techniques, such as the

adaptive Gaussian quadrature methods, the Metropolis-Hastings Robbins-Monro algorithm,

the stochastic expectation maximization algorithm, or the fully Bayesian estimation meth-

ods, also help promote the usage of the MIRT models. However, even with these state-of-the-

art algorithms, the computation can still be time-consuming, especially when the number

of factors is large. The main aim of this paper is to propose a new Gaussian variational

expectation maximization (GVEM) algorithm for high-dimensional MIRT models.

As summarized in Reckase (2009), the MIRT models contain two or more parameters

to describe the interaction between the latent traits and the responses to test items. In

this paper, we focus on the logistic model with dichotomous responses. Specifically for

the multidimensional 2-Parameter Logistic (M2PL) model, there are N individuals who

respond to J items independently with binary response variables Yij, for i = 1, . . . , N and

j = 1, . . . , J . Then the item response function of the ith individual to the jth item is modeled

by

P (Yij = 1 | θi) =
exp(α>j θi − bj)

1 + exp(α>j θi − bj)
, (1)

where αj denotes a K-dimensional vector of item discrimination parameters for the jth item
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and bj specifies the corresponding difficulty level with item difficulty parameter as bj/‖αj‖2.

θi denotes the K-dimensional vector of latent ability for student i.

For the multidimensional 3-Parameter Logistic (M3PL) model, there is an additional

parameter cj, which denotes the guessing probability of the jth test item. The item response

function is expressed as

P (Yij = 1 | θi) = cj + (1− cj)
exp(α>j θi − bj)

1 + exp(α>j θi − bj)
. (2)

For both the M2PL and M3PL models, denote all model parameters as Mp. Then given

the typical local independence assumption in IRT, the marginal log-likelihood of Mp given

the responses Y is

l(Mp;Y) =
N∑
i=1

logP (Yi |Mp) =
N∑
i=1

log

∫ J∏
j=1

P (Yij | θi,Mp)φ(θi)dθi. (3)

where Yi = (Yij, j = 1, . . . , J) is the ith subject’s response vector and J is the total number

of items in the test. The φ denotes the K-dimensional Gaussian distribution of θ with mean

0 and covariance Σθ. The maximum likelihood estimators of the model parameters are then

obtained from maximizing the log-likelihood function. However, due to the latent variable

structure, maximizing the log-likelihood function involves a K dimensional integrals that are

usually intractable. Direct numerical approximation to the integrals have been proposed in

the literature, such as the Gauss–Hermite quadrature (Bock & Aitkin, 1981) and the Laplace

approximation (Lindstrom & Bates, 1988; Tierney & Kadane, 1986; Wolfinger & O’connell,

1993). However, the Gauss–Hermite quadrature approximation is known to become com-
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putationally demanding in the high-dimensional setting, which happens in MIRT especially

when the dimension of latent traits increases. The Laplace approximation, though compu-

tationally efficient, could become less accurate when the dimension increases or when the

likelihood function is in skewed shape. Other numerical approximation methods based on

Monte Carlo simulations have also been developed in the literature, such as the Monte

Carlo expectation-maximization (McCulloch, 1997), stochastic expectation-maximization

(von Davier & Sinharay, 2010), Metropolis-Hastings Robbins-Monro algorithms (Cai, 2010b,

2010a). These methods usually depends on sampling data points from a posterior distri-

bution and would be computationally involving. Recently, Zhang, Chen, and Liu (2020)

proposed to use the stochastic EM algorithm (Celeux & Diebolt, 1985) for the item factor

analysis, where an adaptive-rejection-based Gibbs sampler is still needed for the stochastic

E step. Moreover, Chen, Li, and Zhang (2019) studied the joint maximum likelihood esti-

mation by treating the latent abilities as fixed effect parameters instead of random variables

as in (3).

In this paper, we propose a computationally efficient method that is based on the vari-

ational approximation to the log-likelihood. Variational approximation methods are main-

stream methodology in computer science and statistical learning, and they have been applied

to diverse areas including speech recognition, genetic linkage analysis, and document retrieval

(Blei & Jordan, 2004; Titterington, 2004). Recently, there is an emerging interest in devel-

oping and applying variational methods in statistics (Blei, Kucukelbir, & McAuliffe, 2017;

Ormerod & Wand, 2010). In particular, Gaussian variational approximation methods were

developed for standard generalized linear mixed effects models (GLMM) with nested random

effects (Ormerod & Wand, 2012; Hall, Ormerod, & Wand, 2011). However, the variational
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methods have only been slowly recognized in psychometrics and educational measurement,

with the pioneer papers by Rijmen and Jeon (2013) as well as Jeon, Rijmen, and Rabe-

Hesketh (2017).

In essence, variational approximations refer to a family of deterministic techniques for

making approximate inference for parameters in complex statistical models (Ormerod &

Wand, 2010). The key is to approximate the intractable integrals (e.g. Eq.(3)) with a

computational feasible form, known as the variational lower bound to the original marginal

likelihood. In psychometrics, Rijmen and Jeon (2013) first developed a variational algorithm

for a high dimensional IRT model, but their algorithm was limited to only discrete latent

variables. Recently, Jeon et al. (2017) proposed a variational maximization-maximization

(VMM) algorithm for maximum likelihood estimation of GLMMs with crossed random ef-

fects. They showed that VMM outperformed Laplace approximation with small sample

size. However, their study is limited in several respects: (i) They only considered the Rasch

model. Although extending their algorithm to the 2PL model may be straightforward, its

generalization to 3PL is unknown because 3PL does not belong to the GLMM family; (ii)

The key component in their algorithm is the mean-field approximation (Parisi, 1988) that

assumes independence of the latent variables given observed data. Even though it seems

acceptable to assume independence of each random item effect, this independence assump-

tion can no longer apply to the MIRT models when different dimensions are assumed to be

correlated; (iii) In their first maximization step, the closed-form solution still contains a two-

dimensional integration where adaptive quadrature is used; in the second maximization step,

a Newton-Raphson algorithm is used. Therefore, both steps involve iterations, which may

slow down the algorithm. Instead, our proposed GVEM algorithm has closed-form solutions
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for all parameters in both the E and M steps, and it can deal with high-dimensional MIRT

models when the multiple latent traits are correlated. Moreover, the GVEM algorithm is

established for both the M2PL and M3PL models. Consistency theory of the estimators from

our proposed algorithm is established, and the performance of the algorithm is thoroughly

evaluated via simulation studies.

The rest of the paper is organized as follows. Section 2 introduces the general frame-

work of the Gaussian Variational method and derivation of EM algorithm in MIRT models.

Section 3 presents the GVEM algorithm for M2PL with the use of local variational approxi-

mation and presents the theoretical properties of the proposed algorithm. Section 4 extends

the GVEM algorithm to M3PL and also presents the stochastically optimized algorithm to

further improve its computational efficiency. Section 5 and section 6 illustrate the perfor-

mance of the proposed GVEM method with simulation studies and on real data, respectively.

The paper is concluded with Section 7, which discusses any future steps. The Supplementary

Material includes the detailed mathematical derivations of the EM steps and the proofs of

the theorem and proposition.

2 Gaussian Variational EM (GVEM)

From here onwards, for the MIRT models in (1) and (2), we denote the model parameters

by A = {αj, j = 1, . . . , J}, B = {bj, j = 1, . . . , J}, and C = {cj, j = 1, . . . , J}. As defined

in Section 1, we use the notation Mp = {A,B,C} in the 3PL model and Mp = {A,B}

in the 2PL model for simplicity. Latent traits θ from different dimensions are correlated,

resulting in a K by K covariance matrix Σθ. To fix the origin and units of measurement, it
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is conventional to fix the mean and variance of all θ’s to be 0 or 1, respectively. To remove

rotational indeterminacy in the exploratory analysis, (i.e. to ensure the model identifiability)

researchers often assume Σθ = IK andA contains a K-dimensional triangular matrix of zeros

(Reckase, 2009). On the other hand, in the confirmatory analysis, the zero structure of the

loading matrix A is completely or partially specified while the remaining nonzero elements

are left unknown. In this case, the correlation of latent traits θ is of interest and we need to

estimate the covariance matrix Σθ. In this paper, we consider a general setting of Σθ that

works for both exploratory and confirmatory analyses.

The idea of variational approximation is to approximate the intractable marginal likeli-

hood function, which involves integration over the latent random variables, by a computa-

tionally feasible lower bound. We follow the approach of variational inference (Bishop, 2006)

to derive this lower bound.

The marginal log-likelihood of responses Y is

l(Mp;Y) =
N∑
i=1

logP (Yi |Mp) =
N∑
i=1

log

∫ J∏
j=1

P (Yij | θi,Mp)φ(θi)dθi,

where φ denotes a K-dimensional Gaussian distribution of θ with mean 0 and covariance

Σθ. Note that the log-likelihood function l(Mp;Y) can be equivalently rewritten as

l(Mp;Y) =
N∑
i=1

∫
θi

logP (Yi |Mp)× qi(θi)dθi,

for any arbitrary probability density function qi satisfying
∫
θi
qi(θi)dθi = 1. Since P (Yi |
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Mp) = P (Yi,θi |Mp)/P (θi | Yi,Mp), then we can further write

l(Mp;Y) =
N∑
i=1

∫
θi

log
P (Yi,θi |Mp)

P (θi | Yi,Mp)
× qi(θi)dθi

=
N∑
i=1

∫
θi

log
P (Yi,θi |Mp)qi(θi)

P (θi | Yi,Mp)qi(θi)
× qi(θi)dθi

=
N∑
i=1

∫
θi

log
P (Yi,θi |Mp)

qi(θi)
× qi(θi)dθi +KL{qi(θi)‖P (θi | Yi,Mp)}

where KL{qi(θi)‖P (θi | Yi,Mp)} =
∫
θi

log qi(θi)
P (θi|Yi,Mp)

×qi(θi)dθi is the Kullback-Leibler (KL)

distance between the distributions qi(θi) and P (θi | Yi,Mp). The KL distanceKL{qi(θi)‖P (θi |

Yi,Mp)} ≥ 0 with the equality holds if and only if qi(θi) = P (θi | Yi,Mp). Therefore, we

have a lower bound of the marginal likelihood as

l(Mp;Y) ≥
N∑
i=1

∫
θi

log
P (Yi,θi |Mp)

qi(θi)
× qi(θi)dθi (4)

=
N∑
i=1

∫
θi

logP (Yi,θi |Mp)× qi(θi)dθi −
N∑
i=1

∫
θi

log qi(θi)× qi(θi)dθi

and the equality holds when qi(θi) = P (θi | Yi,Mp) for i = 1, . . . , N .

The follow-up question is how to design the candidate distribution function qi(θi) that

gives the best approximation of the marginal likelihood. From the above argument, the best

choice is the unknown posterior distribution function P (θi | Yi,Mp). Although this choice of

qi(θi) is intractable, it provides a guideline to choose qi(θi) in the sense that a good choice

of qi(θi) must approximate P (θi | Yi,Mp) well. The well-known EM algorithm follows this

idea and can be interpreted as a maximization-maximization (MM) algorithm (Hunter &

Lange, 2004) based on the above decomposition. In particular, the E-step chooses qi to be
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a distribution that minimizes the KL distance function, which corresponds to the estimated

posterior distribution P (θi | Yi, M̂p) with M̂p from the previous step estimates. The E-step

then evaluates the expectation with respect to qi’s, i.e.,

N∑
i=1

∫
θi

logP (Yi,θi |Mp)× qi(θi)dθi, (5)

which is equal to the lower bound in (4), except the additional constant term−
∑N

i=1

∫
θi

log qi(θi)×

qi(θi)dθi that does not depend on model parameters Mp. In the M-step, we maximize the

above expectation term to estimate model parameters and this is equivalent to maximizing

the lower bound in (4).

However, one challenge in the EM algorithm is to evaluate the expectation in (5) with

respect to the posterior distribution of θi. In the MIRT model, it is known that this integral

in (5) does not have an explicit form and in the literature, numerical approximation meth-

ods are often used, such as the Gauss–Hermite approximation, Monte Carlo expectation-

maximization (McCulloch, 1997), and stochastic expectation-maximization (von Davier &

Sinharay, 2010).

To avoid directly evaluating the posterior distribution of θi, the variational inference

method uses alternative choices of the qi(θi)’s to approximate the marginal likelihood func-

tion. The choices of qi(θi) not only approximate the posterior P (θi | Yi,Mp) well, but also

are easy to compute and usually give closed form evaluations in the algorithm. In particular,

from the MIRT literature, we know that as the number of items J becomes reasonably large,

the posterior distribution P (θi | Yi,Mp) can be well approximated by a Gaussian distri-

bution (Bishop, 2006). Motivated by this observation, we use the Gaussian approximation
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procedure that chooses qi(θi) from a family of Gaussian distributions such that the KL dis-

tance between qi(θi) and P (θi | Yi,Mp) is minimized. The estimation is then taken as a

two-step iterative procedure. In the variational E-step, we choose qi(θi) by minimizing the

KL distance between qi(θi) and P (θi | Yi,Mp) and evaluate the expectation of the likelihood

function with respect qi(θi), which is (5). In the M-step we update the unknown model

parameters by maximizing the above expectation. The algorithm repeats the two steps until

convergence. In the following sections, we present the detailed algorithm steps for the M2PL

and M3PL models.

3 GVEM for the M2PL Model

In this section we present the GVEM algorithm for the M2PL model. Without loss of

generality, we first focus on the ith subject’s likelihood function due to the independence of

different subjects’ responses. The joint distribution function of θi and Yi is

logP (Yi,θi | A,B) = logP (Yi | θi,A,B) + log φ(θi)

=
J∑
j=1

{
Yij log

exp(α>j θi − bj)
1 + exp(α>j θi − bj)

+ (1− Yij) log
1

1 + exp(α>j θi − bj)

}
+ log φ(θi)

=
J∑
j=1

{
Yij(α

>
j θi − bj) + log

1

1 + exp(α>j θi − bj)

}
+ log φ(θi).

The difficulty of handling the marginal distribution of Yi mostly comes from the logistic

sigmoid function, which makes the integration over θ not in a closed form in the E-step (i.e.,

Eq. (5)).

To avoid dealing with intractable likelihood in E-step, we use a local variational method
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initially proposed in the machine learning literature (Bishop, 2006; Jordan, Ghahramani,

Jaakkola, & Saul, 1999), which finds bounds on functions over individual variables or groups

of variables within a model instead of the full posterior distribution over all random variables.

For notational simplicity, hereafter, we denote xi,j = bj − α>i θi. Because of the concavity

of the logistic sigmoid function log(1/(1 + e−xi,j)), by the local variational method, we have

the following variational lower bound on the logistic sigmoid function,

exi,j

(1 + exi,j)
= max

ξi,j

eξi,j

(1 + eξi,j)
exp

{
(xi,j − ξi,j)

2
− η(ξi,j)(x

2
i,j − ξ2i,j)

}
≥ eξi,j

(1 + eξi,j)
exp

{
(xi,j − ξi,j)

2
− η(ξi,j)(x

2
i,j − ξ2i,j)

}
. (6)

where ξi,j is a variational parameter that is introduced to approximate the objective function

exi,j/(1 + exi,j), and η(ξi,j) = (2ξi,j)
−1[eξi,j/(1 + eξi,j) − 1/2]. We then aim to estimate the

parameter ξi,j that achieves the equality of the above display. By introducing an additional

variational parameter ξi,j, we successfully avoid the problem of estimating the intractable

integral in the E-step. The values of ξi,j’s will be iteratively updated in the M-step.

Using the lower bound on the logistic sigmoid function, we obtain a closed-form lower

bound for logP (Yi,θi | A,B) as follows

logP (Yi,θi | A,B) ≥
J∑
j=1

log
eξi,j

(1 + eξi,j)
+

J∑
j=1

Yij(α
>
j θi − bj) +

J∑
j=1

(bj −α>j θi − ξi,j)
2

−
J∑
j=1

η(ξi,j){(bj −α>j θi)2 − ξ2i,j}+ log φ(θi)

=: l(Yi,θi, ξi | A,B)

11



where ξi = (ξi,j, j = 1, . . . , J)>.

The key step is to find the optimal variational distribution qi(θi), which we describe in

detail in the next section.

3.1 Algorithm Details

Choice of qi Conditional on the model parameters A,B and the variational parameters

ξi,j for i = 1, . . . , N, j = 1, . . . , J , by the variational inference theory, it can be shown that

the variational distributions qi(θi), i = 1, . . . , N that minimize the KL divergence with the

posterior distributions P (θi|A,B), i = 1, . . . , N take the following form:

log qi(θi) ∝
J∑
j=1

(
Yij −

1

2

)
α>j θi −

J∑
j=1

η(ξi,j)(bj −α>j θi)2 −
θ>i Σ−1θ θi

2
.

The standard nonlinear optimization technique is exploited to show that qi(θi) ∼ N(θi |

µi,Σi) minimizes the KL divergence among all normal distributions where the mean and the

covariance are

µi = Σi ×
J∑
j=1

{
2η(ξi,j)bj + Yij −

1

2

}
α>j , (7)

Σ−1i = Σ−1θ + 2
J∑
j=1

η(ξi,j)αjα
>
j . (8)

With the variational densities qi(θi)’s, we aim to estimate model parameters ξi’s, αj’s

and bj’s by maximizing the lower bound of the marginal likelihood. Suppose we have ξi’s

from a previous step’s estimation or the initial values, denoted by ξ
(t)
i . Similarly, define

A(t) = {α(t)
j , j = 1, . . . , J}, B(t) = {b(t)j , j = 1, . . . , J}, Σ

(t)
θ , µ

(t)
i and Σ

(t)
i . The EM iteration
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is presented below.

E-Step In E-step, we evaluate the closed-form lower bound of the expected log likeli-

hood with respect to the variational distributions qi’s. With iteratively updated varia-

tional parameters µ
(t)
i and Σ

(t)
i , we easily evaluate the tth iteration’s lower bound of the

expected log-likelihood. Denote the tth iteration’s variational density as q
(t)
i (θi) = qi(θi |

ξ
(t)
i ,A

(t),B(t),Σ
(t)
θ ). Then, the tth iteration’s lower bound can be derived as

E(t)(A,B, ξ) :=
N∑
i=1

∫
θi

l(Yi,θi, ξi | A,B)× q(t)i (θi)dθi

=
N∑
i=1

J∑
j=1

(
log

eξ
(t)
i,j

(1 + eξ
(t)
i,j )

+ (
1

2
− Yij)b(t)j + (Yij −

1

2
)α

(t)>
j µ

(t)
i −

1

2
ξ
(t)
i,j

−η(ξ
(t)
i,j ){b(t)2j − 2b

(t)
j α

(t)>
j µ

(t)
i +α

(t)>
j [Σ

(t)
i + (µ

(t)
i )(µ

(t)
i )>]α

(t)
j − ξ

(t)2
i,j }

)
+
N

2
log |(Σ(t)

θ )−1| −
N∑
i=1

1

2
Tr((Σ

(t)
θ )−1[Σ

(t)
i + (µ

(t)
i )(µ

(t)
i )>]).

M-Step In M-step, we maximize the estimated lower bound to update the model parame-

ters (A,B, ξ,Σθ). This is achieved by simply setting the derivative of the lower bound with

respect to (A,B, ξ,Σθ) to be zero. As a result, it can be shown that each update of the

model parameters are done in a closed form, which makes the proposed GVEM algorithm

computationally efficient. The updating step is presented below. The most recently updated
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copies of the parameters are used for each iterative update.

αj =
1

2

[ N∑
i=1

η(ξi,j)Σi + η(ξi,j)µiµ
>
i

]−1 N∑
i=1

[(
Yij −

1

2
+ 2bjη(ξi,j)

)
µ>i

]
, (9)

bj =

∑N
i=1

[
(1
2
− Yij) + 2η(ξi,j)α

>
j µi

]
∑N

i=1 2η(ξi,j)
, (10)

ξ2i,j = b2j − 2bjα
>
j µi +α>j [Σi + µiµ

>
i ]αj. (11)

For the covariance matrix Σθ, in the exploratory analysis, we can keep Σθ = IK during the

GVEM estimation and then later performed proper rotation; in the confirmatory analysis,

we update Σθ by

Σθ =
1

N

N∑
i=1

[Σi + µiµ
>
i ]. (12)

Note that if the Σθ is assumed to be the correlation matrix with diagonals being 1, then

we need to standardize the estimated Σθ to get correlation matrix. Detailed derivations

regarding the above EM steps are given in the Supplementary Material.

In light of the above exposition, the GVEM algorithm for M2PL can be summarized as

follows.

Algorithm 1 GV-EM algorithm

1: Initialize M
(0)
p = {A0,B0}, ξ(0).

2: repeat
3: E step : For step t ≥ 1, update µ

(t)
i and Σ

(t)
i according to closed-form equations (7)

and (8).

4: M step : Further update M
(t)
p and ξ(t) according to closed-form equations (9), (10),

and (11), iteratively. Fix Σ
(t)
θ = IK in the exploratory analysis or update Σ

(t)
θ according

to (12) in the confirmatory analysis.
5: until convergence
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Remark 1 The algorithm complexity increases with the sample size N , which makes the

algorithm computationally inefficient for large data sets. Thus, we can stochastically optimize

the EM algorithm by sub-sampling the data to form noisy estimates of the variational lower

bound and model parameters. Please refer to Section 4.2 for detailed explanation of the

stochastic GVEM.

Remark 2 Under the IRT framework, test dimensionality is one of the major issues explored

in order to validate the design of a test and help practitioners with test development. As a

byproduct of the algorithm, we can empirically estimate the number of latent dimensions from

data. Specifically, the information criteria such as AIC or BIC can be used to compare the

model fit with varying number of dimensions. Because we approximate the true log-likelihood

by its lower bound in GVEM, the information criteria also need to be modified by replacing

the true log-likelihood with the variational lower bound, resulting in the following modified

AIC and BIC, denoted as AIC? and BIC?. The approximated information criteria are

as follows, AIC? = 2(‖A‖0 + ‖B‖0 + ‖Σθ‖0) − 2E(Â, B̂, ξ̂) and BIC? = ln(N)(‖A‖0 +

‖B‖0 + ‖Σθ‖0) − 2E(Â, B̂, ξ̂) where E(Â, B̂, ξ̂) is the estimated variational lower bound

and Â, B̂, ξ̂ are the final estimates from GVEM estimation procedure. The notation ‖A‖0

of matrix A denotes the zero norm of the matrix A, which is simply the number of non-

zero entries of A. The advantage of using GVEM to estimate test dimensionality is that it

is computationally more efficient especially under high dimensional data and more complex

model. This procedure can be easily applied in both the 2PL and the 3PL models. Please see

the simulation study for more discussions.
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3.2 Theoretical Properties

In this section, we establish theoretical bounds on the estimation of the model parameters

under the high-dimensional setting where both N and J go to infinity. The dimension of

latent traits, K, is assumed known for this analysis and thus fixed. As defined in Section 2,

A = [αjk]J×K denotes a matrix of factor loadings. Additionally, let Θ = [θij]N×K denote a

matrix of random variables following qi(θi) and let Θ̂ = [θ̂ij]N×K denote a matrix of estimated

latent abilities from data. Define Eθ̂∼q̂ to be the expectation with respect to the estimated

variational densities {q̂i(θ̂i) ∼ N(µ̂i, Σ̂i) : i = 1, . . . , N} from data. Lastly, a superscript

∗ denote a true parameter. For example, θ∗i denotes the ith person’s true latent ability,

which is a deterministic realization from its population distribution. We assume that the

true parameters Θ∗ and A∗ satisfy

(A1). ‖θ∗i ‖2 ≤ C and ‖α∗j‖2 ≤ C for all i, j for some positive constant C

Theorem 1 derives the bound on the expected Frobenius norm of the error, ‖Θ̂Â
>
−

Θ∗(A∗)>‖F , where ‖M‖F =
√∑

i,jM
2
ij denotes the Frobenius norm of a matrix M.

Theorem 1 Suppose that condition (A1) is satisfied for the true parameters Θ∗ and A∗.

With optimally estimated variational densities q̂i from data and estimated parameter matrix

Â that maximizes the variational lower bound, there exists absolute constants C1 and C2

such that

1

NJ
Eθ̂∼q̂[‖Θ̂Â

>
−Θ∗(A∗)>‖F ] ≤ C2Ce

C

√
J +N

JN

√
1 +

log(N + J)

N + J

is satisfied with probability 1− C1/(N + J).
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The proof of Theorem 1 can be found in the Supplementary Material.

Remark 3 Theorem 1 states that the expected estimation error measured by Frobenius norm

goes to 0 as both N →∞ and J →∞. The proof of Theorem 1 follows a similar argument

from Davenport, Plan, Van Den Berg, and Wootters (2014) and Theorem 1 in Chen et al.

(2019). However, the previous work by Chen et al. (2019) treats θi as fixed effects while this

work follows the conventional MIRT model setting with θi random effects and following a

normal population distribution.

Remark 4 The Gaussian family as the candidate choice of q is reasonable according to

Laplace approximation of the posterior distribution P (θi|Yi). The Laplace approximation

of P (θi|Yi) is a normal distribution with MLE θ̂i as mean and inverse of observed Fisher

information I−1(θ̂i) as variance. Denote θ∗i as the true parameter. By Bernstein-von Mises

Theorem, since P (Yi | θi), i = 1, . . . , N have same support and θi → logP (Yi | θi) is

twice continuously differentiable, then θ̂i → θ∗i almost surely and the Laplace approximated

distribution N(θ̂i, I
−1(θ̂i)) converges in distribution to the true limiting normal distribution

N(θ∗i , I
−1(θ∗i )) as J →∞ where I−1(θ∗i ) is the inverse of expected Fisher information. This

supports our choice of variational density qi as a multivariate Gaussian distribution provides

an asymptotically good approximation for the true posterior distribution of θ.

Remark 5 Compared with the existing stochastic estimation algorithms, such as the Metropolis-

Hastings Robbins-Monro algorithm and the stochastic EM algorithm, the proposed estimation

method has the advantage that each of the estimation iterations has simple closed-form update

and it does not involve the stochastic samplings from some intermediate posterior distribu-

tions as in the current stochastic estimation algorithms. As discussed in Remark 4, even
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though variational distributions are used to approximate the posterior distributions in our

method, the normal approximation is asymptotically valid. Simulation studies in Section 5

further illustrate this. Moreover, the above variational EM development can be easily gener-

alized to the M3PL model and can also be naturally combined with the idea of the stochastic

EM, as illustrated in the next section.

4 GVEM for the M3PL Model

Derivation of the variational lower bound is trickier in the M3PL function since the cancella-

tion of log and exponential function, which was essential in simplifying the variational lower

bound in M2PL, is impossible due to the addition of a guessing parameter. To solve this

problem, we introduce another latent variable, Zij which is an indicator function of whether

ith individual answered jth item based on their latent abilities or guessed it correctly (von

Davier, 2009). We define Zij = 1 if ith individual solved item j based on his or her latent

ability, and Zij = 0 if he or she guessed item j correctly. Notice here that for the case of

Zij = 1, Yij can be either 0 or 1. However, when Zij = 0, Yij has to be 1 by the definition

of Zij. Hence, {Yij = 0, Zij = 0} cannot occur.

Proposition 1 Given the two latent variables θi and Zij, then P (Yij | θi) under the follow-
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ing hierarchical model is equivalent to (2) of the 3PL model.

Zij ∼ Bernoulli(1− cj),

Yij | θi, Zij = 1 ∼ Bernoulli(
[ exp(α>j θi − bj)

1 + exp(α>j θi − bj)

]
),

Yij | θi, Zij = 0 ∼ Bernoulli(I(Yij = 1)).

The distribution of observation Yij given latent variables θi and Zij is then

P (Yij|Zij,θi) =

{[ exp(α>j θi − bj)
1 + exp(α>j θi − bj)

]Yij[ 1

1 + exp(α>j θi − bj)

]1−Yij}Zij

I(Yij = 1)1−Zij .

Without loss of generality we first focus on the ith subject’s likelihood function due to the

independence of different subjects. Denote Zi = {Zi1, Zi2, . . . , ZiJ} and its distribution as

p(Zi) =
∏J

j=1 p(Zij). Then the complete data likelihood of the ith subject is

logP (Yi,θi,Zi | A,B,C)

= logP (Yi | θi,Zi,A,B,C) + log φ(θi) + log p(Zi)

=
J∑
j=1

{
YijZij log

[ exp(α>j θi − bj)
1 + exp(α>j θi − bj)

]
+ (1− Yij)Zij log

[ 1

1 + exp(α>j θi − bj)

]}

+
J∑
j=1

{(1− Zij) log I(Yij = 1)}+ log φ(θi) + log p(Zi)

=
J∑
j=1

{
YijZij(α

>
j θi − bj) + Zij log

1

1 + exp(α>j θi − bj)
+ (1− Zij) log I(Yij = 1)

}
+ log φ(θi) + log p(Zi).

Following the result from Proposition 1, the hierarchical formulation of the 3PL model
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with the new latent variable Zij could be used to derive the GVEM algorithm for the 3PL

model. Please refer to the Supplementary Material for the proof of Proposition 1. Similar

data augmentation scheme was proposed in Albert (1992) in the Bayesian framework.

In this section, we derive the optimal choices of the variational densities for the latent

variables Zij and θi. The approach is similar to that of the 2PL model. For any arbitrary

density functions qi and rij of the latent variables θi and Zij, the following equation always

holds

logP (Yi | A,B,C) =

∫
θi

∑
Zi

logP (Yi | A,B,C)× qi(θi)ri(Zi)dθi.

where ri(Zi) =
∏J

j=1 rij(Zij).

Note that P (Yi | A,B,C) = P (Yi,θi,Zi | A,B,C)/P (θi,Zi | Yi,A,B,C). We can

write

logP (Yi | A,B,C) =

∫
θi

∑
Zi

log
P (Yi,θi,Zi | A,B,C)

P (θi,Zi | Yi,A,B,C)
× qi(θi)ri(Zi)dθi

=

∫
θi

∑
Zi

log
P (Yi,θi,Zi | A,B,C)

qi(θi)ri(Zi)
× qi(θi)ri(Zi)dθi

+KL{qi(θi)ri(Zi)‖P (θi,Zi | Yi,A,B,C)}.

Since the KL distance is ≥ 0 by definition, we get a lower bound on the marginal likelihood

similarly as in the 2PL model.

logP (Yi | A,B,C) ≥
∫
θi

∑
Zi

logP (Yi,θi,Zi | A,B,C)× qi(θi)ri(Zi)dθi (13)

−
∫
θi

∑
Zi

log
(
qi(θi)ri(Zi)

)
× qi(θi)ri(Zi)dθi (14)
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Since (14) doesn’t depend on parameters A, B and C, we focus on (13) for the derivation

of the lower bound. Again, the ith subject’s likelihood function is

logP (Yi,θi,Zi | A,B,C)

=
J∑
j=1

{
YijZij(α

>
j θi − bj) + Zij log

1

1 + exp(α>j θi − bj)
+ (1− Zij) log I(Yij = 1)

}
+ log φ(θi) + log p(Zi).

Using the same variational lower bound (6) on the logistic sigmoid function as in the 2PL

model, we show

logP (Yi,θi,Zi | A,B,C)

≥
J∑
j=1

Zij log
eξi,j

(1 + eξi,j)
+

J∑
j=1

ZijYij(α
>
j θi − bj) +

J∑
j=1

1

2
Zij(bj −α>j θi − ξi,j)

−
J∑
j=1

Zijη(ξi,j){(bj −α>j θi)2 − ξ2i,j}+
J∑
j=1

{(1− Zij) log I(Yij = 1)}

+ log φ(θi) + log p(Zi)

=: l(Yi,θi,Zi, ξi | A,B,C).

Recall that if Yij = 0, then we always have Zij = 1 by the design of our model. In other

words, {Yij, Zij} = {0, 0} cannot occur. To accommodate this constraint, we replace Zij by

Z ′ij = 1−Yij +ZijYij so that Z ′ij = Zij if Yij = 1 and Z ′ij = 1 if Yij = 0. This makes sure that

the case of {Yij, Zij} = {0, 0} is not included as a possible scenario during the estimation
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procedure. By this substitution, we have

l(Yi,θi,Zi, ξi | A,B.C)

=
J∑
j=1

(1− Yij + ZijYij) log
eξi,j

(1 + eξi,j)
+

J∑
j=1

(1− Yij + ZijYij)Yij(α
>
j θi − bj)

+
J∑
j=1

1

2
(1− Yij + ZijYij)(bj −α>j θi − ξi,j)

−
J∑
j=1

(1− Yij + ZijYij)η(ξi,j){(bj −α>j θi)2 − ξ2i,j}

+
J∑
j=1

{Yij(1− Zij) log I(Yij = 1)}+ log φ(θi) +
J∑
j=1

log p(Z ′ij)

where log p(Z ′ij) = (1− Yij + ZijYij) log(1− cj) + Yij(1− Zij) log(cj).

With variational distributions qi’s and ri’s, we have the following expression for the

variational lower bound of the marginal likelihood, which is an expectation of the joint

distribution with respect to qi’s and ri’s, i.e.,

E(t)(A,B,C, ξ) :=
N∑
i=1

∫
θi

[∑
Zi

l(Yi,θi,Zi, ξi | A,B,C)× r(t)i (Zi)

]
× q(t)i (θi)dθi. (15)

Appropriate choices of the variational distributions will lead to a closed form expression

of the lower bound expressed in (15). As in the 2PL model, we choose the variational

distributions for each latent variable by finding a distribution that best approximates the

posterior distribution of each latent variable.

22



4.1 Algorithm Details

Choice of qi Let Er denote the expectation with respect to. the variational densities of

Zij’s, i.e. rij(Zij)’s. We can write

Er(A,B,C, ξ) :=
N∑
i=1

∑
Zij

l(Yi,θi,Zi, ξi | A,B,C)× rij(Zij)

=
N∑
i=1

[ J∑
j=1

(1− Yij + Er[Zij]Yij) log
eξi,j

(1 + eξi,j)
+

J∑
j=1

(1− Yij + Er[Zij]Yij)Yij(α
>
j θi − bj)

+
J∑
j=1

(1− Yij + Er[Zij]Yij)
1

2
(bj −α>j θi − ξi,j)

−
J∑
j=1

(1− Yij + Er[Zij]Yij)η(ξi,j){(bj −α>j θi)2 − ξ2i,j}

+
J∑
j=1

{Yij(1− Er[Zij]) log I(Yij = 1)}+ log φ(θi) +
J∑
j=1

Er[log p(Z ′ij)]

]

Conditional on the model parameters A,B,C and the variational parameters ξi where i =

1, . . . , N , by the variational inference theory, we can show that the variational distributions

qi(θi), i = 1, . . . , N that minimize the distances between them and the posterior distributions

take the following form;

log qi(θi) ∝
J∑
j=1

(1− Yij + Er(Zij)Yij)
(
Yij −

1

2

)
α>j θi

−
J∑
j=1

(1− Yij + Er(Zij)Yij))η(ξi,j)(bj −α>j θi)2 −
1

2
θ>i Σ−1θ θi.
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The above likelihood function implies that qi(θi) ∼ N(θi | µi,Σi) where the mean and

covariance are

µi = Σi ×
J∑
j=1

{
2η(ξi,j)bj + Yij −

1

2

}
(1− Yij + Er(Zij)Yij)α

>
j , (16)

Σ−1i = Σ−1θ + 2
J∑
j=1

(1− Yij + Er(Zij)Yij)η(ξi,j)αjα
>
j . (17)

Choice of rij We follow the similar steps as qi. That is, we take the expectation of the

lower bound l(Yi,θi,Zi, ξi | A,B,C) with respect to the variational density of θi, qi(θi)

and derive the variational distributions for Zij, i = 1, . . . , N, j = 1, . . . , J . The variational

distribution minimizes the distances between them and the posterior distributions of Zij

given model parameters A,B,C and the variational parameters ξi.

Let Eq denote the expectation with respect to. the variational densities qi’s and Eqi denote

the expectation with respect to qi. Taking expectation of the lower bound l(Yi,θi,Zi, ξi |

A,B,C) with respect to qi(θi), we have

Eq(A,B,C, ξ)

=
N∑
i=1

[ J∑
j=1

(1− Yij + ZijYij) log
eξi,j

(1 + eξi,j)
+

J∑
j=1

(1− Yij + ZijYij)Yij(α
>
j Eqi [θi]− bj)

+
J∑
j=1

(1− Yij + ZijYij)
1

2
(bj −α>j Eqi [θi]− ξi,j)

−
J∑
j=1

(1− Yij + ZijYij)η(ξi,j){Eqi [(bj −α>j θi)2]− ξ2i,j}

+
J∑
j=1

{Yij(1− Zij) log I(Yij = 1)}+ Eqi [log φ(θi)] +
J∑
j=1

log p(Z ′ij)

]
(18)
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This implies that the variational distributions rij(Zij) are

log rij(Zij) ∝ ZijYij

[
log

eξi,j

(1 + eξi,j)
+ Yij(α

>
j Eqi [θi]− bj) +

1

2
(bj −α>j Eqi [θi]− ξi,j)

−η(ξi,j){Eqi [(bj −α>j θi)2]− ξ2i,j}+ log(1− cj)
]

+Yij(1− Zij)
[

log I(Yij = 1) + log(cj)

]
.

Thus, rij(Zij) ∼ Bernoulli(sij) where sij = 1 if Yij = 0 and

s−1ij = 1 +
cj

1− cj
1 + eξi,j

eξi,j
exp

{
− Yij(α>j Eqi [θi]− bj) +

1

2
(bj −α>j Eqi [θi]− ξi,j)− η(ξi,j){Eqi [(bj −α>j θi)2]− ξ2i,j}

}
(19)

if Yij = 1 where Eqi [θi] = µi and Eqi [(bj −α>j θi)2] = b2j − 2bjα
>
j µi +α>j [Σi + µiµ

>
i ]αj.

With the chosen qi’s and rij’s, we aim to estimate model parameters ξ, A, B and C, by

maximizing the variational lower bound of the marginal likelihood, i.e., (15). The EM steps

for 3PL model follow the same procedure as in 2PL case.

E-Step In every E step, we choose the optimal variational distributions qi’s and rij’s, which

is equivalent to estimating variational parameters µi, Σi, and sij for every i and j. With

iteratively updated variational parameters, (i.e. µ
(t)
i , Σ

(t)
i , and s

(t)
ij ) and most recent updates

of model parameters (i.e. M
(t)
p = {A(t),B(t),C(t)}), we derive a closed form expression of
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variational lower bound at tth step as follows;

E(t)(A,B,C, ξ)

=
N∑
i=1

J∑
j=1

(1− Yij + s
(t)
ij Yij)

(
log

eξ
(t)
i,j

(1 + eξ
(t)
i,j )

+ (
1

2
− Yij)b(t)j + (Yij −

1

2
)α

(t)>
j µ

(t)
i

−1

2
ξ
(t)
i,j − η(ξ

(t)
i,j ){b(t)2j − 2b

(t)
j α

(t)>
j µ

(t)
i + (α

(t)
j )>[Σ

(t)
i + (µ

(t)
i )(µ

(t)
i )>]α

(t)
j − ξ

(t)2
i,j }

)
+

N∑
i=1

J∑
j=1

Yij(1− s(t)ij ) log I(Yij = 1)−
N∑
i=1

1

2
Tr((Σ

(t)
θ )−1[Σ

(t)
i + (µ

(t)
i )(µ

(t)
i )>])

+
N

2
log |(Σ(t)

θ )−1|+
N∑
i=1

J∑
j=1

{(1− Yij + s
(t)
ij Yij) log(1− c(t)j ) + Yij(1− s(t)ij ) log(c

(t)
j )}.

M-Step In this step, we again maximize the E(t)(A,B,C, ξ) to update the parameters

(A,B,C, ξ). This is achieved by setting the derivative of E(t)(A,B,C, ξ) with respect to

(A,B,C, ξ) to be zero. Since we have a closed-form expression of the lower bound, updates

of the model parameters are also in closed-form. Detailed derivation is provided in the

Supplementary Material.

For ξ and Σθ, the update is the same as in 2PL model. For other parameters, we derive

the updating rule by taking derivative of the variational lower bound E(A,B,C, ξ) derived
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in E step. As a result, we have the following updating rule for αj, bj and cj;

αj =
1

2

[ N∑
i=1

(1− Yij + sijYij)η(ξi,j)[Σi + µiµ
>
i ]
]−1

×
N∑
i=1

[
(1− Yij + sijYij)

(
Yij −

1

2
+ 2bjη(ξi,j)

)
µ>i

]
, (20)

bj =

∑N
i=1(1− Yij + sijYij)

[
(1
2
− Yij) + 2η(ξi,j)α

(t)>
j µi

]
∑N

i=1 2(1− Yij + sijYij)η(ξi,j)
, (21)

cj =

∑N
i=1(Yij − sijYij)∑N

i=1(1− Yij + sijYij) +
∑N

i=1(Yij − sijYij)
=

1

N

N∑
i=1

Yij(1− sij). (22)

The Algorithm 2 summarizes the EM steps for GVEM algorithm in M3PL.

Algorithm 2 GV-EM algorithm for M3PL

1: Initialize M
(0)
p = {A0,B0,C0}, ξ(0).

2: repeat
3: E step : For step t ≥ 1, update variational parameters µ

(t+1)
i , Σ

(t+1)
i , and s

(t+1)
ij

according to closed-form equations (16), (17), and (19).

4: M step : Further update M
(t+1)
p according to closed-form equations (20), (21), and

(22) iteratively. Update ξ(t+1) and Σ
(t+1)
θ same as in M2PL.

5: until convergence

Remark 6 The theoretical property of the M3PL is more challenging to derive rigorously

due to the addition of the guessing parameters cj’s. From Theorem 2 in Davenport et al.

(2014) we can show that the Hellinger distance of error between estimated probability dis-

tributions and the true probability distributions is bounded above. For this discussion, we

define Hellinger distance for probability distributions and matrices. Hellinger distance for

two scalars p, q ∈ [0, 1] is defined as d2H(p, q) := (
√
p − √q)2 + (

√
1− p −

√
1− q)2. Fol-

lowing Davenport et al. (2014), we also allow the Hellinger distance to act on matrices by

averaging Hellinger distances over their entries. For matrices P,Q ∈ [0, 1]d1×d2, we de-
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fine d2H(P,Q) = 1
d1d2

∑
i,j d

2
H(Pij, Qij). Let M = [Mij]N×J be the matrix with entries Mij

satisfying
exp(Mij)

1+exp(Mij)
= cj + (1− cj)

exp(α>
j θi−bj)

1+exp(α>
j θi−bj)

. Let P (Y |M) be a matrix of probability dis-

tributions P (Yij|Mij)’s where Mij denotes a collection of model parameters αij, bj, cj. Again,

M∗ denotes a matrix of true parameters and M̂ denotes estimated model parameters. Then

by Theorem 2 of Davenport et al. (2014)

d2H(P (Y |M̂), P (Y |M∗)) ≤ C2C

√
K(N + J)

NJ

√
1 +

(N + J) log(NJ)

NJ

with probability 1 − C1

N+J
for absolute constants C1 and C2. Hence, the Hellinger distance

between estimated probability distribution and true probability distribution goes to 0 as both

N → ∞ and J → ∞. However, the consistency result for model parameter {αj, bj, cj : j =

1, . . . , J} in M3PL is more challenging to derive and thus left for the future research.

4.2 Stochastic Optimization of GVEM

In M3PL, the proposed GVEM algorithm may become computationally inefficient as sample

size increases because of the additional variational parameters and model parameters to esti-

mate compared to M2PL. Especially in the E step, variational parameters (i.e. µi,Σi, ξi,j, sij)

need to be optimized for every data points i = 1, . . . , N . Thus, the computational bur-

den increases with larger sample size N . To improve the computational efficiency of the

GVEM algorithm, we can stochastically optimize the variational approximation in the E

step (Hoffman, Blei, Wang, & Paisley, 2013). That is, at each iteration of the E step, we

subsample the data to form noisy estimate of the variational lower bound and iteratively up-

date the estimate with a decreasing step size. Then M step in Algorithm 2 follows using this
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stochastically estimated variational lower bound. The stochastic optimization only affects

the E step, thus with minor changes to the original GVEM algorithm we can stochastically

optimize the algorithm for M3PL. The noisy estimates of the variational lower bound are

cheaper to compute as it only requires small subset of the data at each iteration. Also, for

complicated models like M3PL, following such noisy estimates can also help the algorithm

to escape local optima of complex objective functions. Specifically, the stochastic EM steps

can be summarized as follows.

Stochastic E step For step t ≥ 1, choose a subset of data St with desired size. Choose a

decreasing step size εt. Update µ
(t)
i , Σ

(t)
i , ξ

(t)
i and s

(t)
ij for data point i ∈ St only, according to

closed-form equations (16) and (17). Since we only update variational parameters for i ∈ St,

the algorithm is computationally more efficient than GVEM approach without stochastic

optimization, especially when the size of the subset St is chosen to be small.

With updated variational parameters partially for i ∈ St, calculate noisy estimate of tth

iteration’s expected variational lower bound Q̂t as follows;

Q̂t =
∑
i∈St

∫
θi

[∑
Zi

l(Yi,θi,Zi, ξi | A,B,C)× r(t)i (Zi)

]
× q(t)i (θi)dθi

Then we obtain a stochastic approximation of the variational lower bound by a weighted

average of previous and current step’s noisy estimates of the lower bound, i.e. (1− εt)Q̂t−1 +

εtQ̂t.

M step Once E step is done, we follow the previous M step. That is, estimate Â
(t)

, B̂
(t)

,

Ĉ
(t)

, and Σ̂
(t)
θ that maximizes the stochastic approximation of the variational lower bound.
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Notice that this stochastic optimization idea is different from the stochastic component

in the stochastic EM (StEM) algorithm (Nielsen, 2000). In the StEM algorithm, random

samples of the unobserved latent variables θi are drawn from the conditional distribution

of θi given observed variable Yi, and these random samples are used to approximate the

otherwise intractable expectation in the E step. In our algorithm, the stochastic component

instead refers to the random sub-sampling of the observed data {Yij, i = 1, . . . , N} to form

a noisy approximation of the variational lower bound E(A,B,C, ξ) in E step.

In theory, if a sequence of step sizes satisfies the conditions such that

∑
εt =∞ and

∑
ε2t <∞, (23)

which results in a sequence of decreasing step sizes, the algorithms provably converge to an

optimum (Robbins & Monro, 1951). Following the approach in Hoffman et al. (2013), we set

the tth step size as εt = (t+ τ)−r where forget rate r ∈ (0.5, 1] and delay τ ≥ 0. The forget

rate controls how quickly old information is forgotten and the delay down-weights early

iterations to decrease the effect of the earlier noisy estimations. This step size obviously

satisfies the conditions (23). Thus the iterative stochastic optimization of E step converges

to a local optimum of the variational lower bound. In simulation, we fix the delay to be one

and try various forget rates as different values of delay didn’t play a big role for our model.

Although in theory the stochastic optimization of GVEM converges to a stationary point

for any valid forget rate r, the quality and speed of the convergence may depend on r in

practice.
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5 Simulations

5.1 Design

A series of simulation studies were conducted to evaluate the performance of the proposed

GVEM algorithm in comparison to the Metropolis-Hastings Robbins-Monro (MHRM) al-

gorithm implemented in the R package, ‘mirt’ (Chalmers, 2012). The Metropolis-Hastings

sampler is used to draw missing data (which is θ in MIRT) in the stochastic imputation

step of the MHRM algorithm (Cai, 2008, 2010a). In the ‘mirt’ package, “MHcand” is a

vector of values used to tune the MH sampler, with larger values yielding lower acceptance

rate. By default, these values are determined internally and adjusted on-the-fly, attempt-

ing to tune the acceptance of the draws to be between .1 and .4. In addition, the default

number of Metropolis-Hastings draws at each iteration is 5, which is considered sufficient

by Cai (2010a). Only the exploratory item factor analysis will be presented since it is a

computationally more challenging scenario than the confirmatory analysis. That is, in the

confirmatory analysis, many of the item loading parameters (or discrimination parameters)

are constrained to 0 based on the pre-specified item factor loading structure. Hence, the

update equation for α (i.e., (9) for the 2PL model and (20) for the 3PL model) only needs

minimum updates to reflect the constraints specified in the factor loading structure. In the

exploratory analysis, we do not assume any constraint on the item discrimination parameter

A while fix Σθ = IK during the estimation. A post-hoc rotation can then follow to rotate

the factors and allow them to be correlated. The best-known rotation methods available

in most commercial software packages are varimax (Kaiser, 1958) in orthogonal rotation or

promax (Hendrickson & White, 1964) in oblique rotation. Other popular methods include,
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for instance, the CF-Quartimax rotation (Browne, 2001). In the simulations studies, the

promax rotation was used such that the factors were allowed to be correlated. Both the

M2PL and M3PL were considered in the simulation studies. The number of dimensions was

fixed at 3 and test length was fixed at 45.

Additionally, we compared the performance of GVEM to the joint maximum likelihood

(JML) estimator given that the JML estimator is also shown to be consistent under the same

high-dimensional setting presented in Theorem 1 and efficient (Chen et al., 2019). The JML

estimator was computed using the default settings in the R package ‘mirtjml’ implemented

by Chen et al. (2019). Since Chen et al. (2019) did not study M3PL, here we only compared

the performances for M2PL.

The manipulated conditions include: (i) multidimensional structure, i.e. between-item

multidimensionality and within-item multidimensionality; (ii) correlations among the latent

traits, and (iii) sample size. In particular, for the between-item multidimensional structure,

there were 15 items loaded onto each factor; whereas for the within-item multidimensional

structure, about one third of the items were loaded onto one, two, and three factors respec-

tively. In all cases, item discrimination parameters were simulated from Unif(1, 2) distri-

bution, and difficulty parameter bj was simulated from the standard normal distribution.

For the M3PL model, the true guessing parameters were fixed at 0.2 for all test items. The

latent traits θi were generated from multivariate normal distribution, N(0,Σθ), where Σθ is

a covariance matrix whose diagonal elements were 1 and the off-diagonals were drawn from

Uniform distribution. For the high correlation condition, the correlations were drawn from

Unif(0.5, 0.7) and for the low correlation condition, they were drawn from Unif(0.1, 0.3).

Sample size was set at either 200 or 500.
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The convergence criterion for the GVEM algorithm is ‖Mp‖2 < 0.0001, where ‖Mp‖2

refers to the L2 norm of all model parameters. The number of Markov chain samples drawn

in the MHRM algorithm is by default 5000 in the R package ‘mirt’. Lastly, the JML method

adopts sequential change in log-likelihood as the convergence criterion and the tolerance of

convergence is by default 5 in the R package ‘mirtjml’. 100 replications were conducted

for each condition. Evaluation criteria include the average bias, root mean squared error

(RMSE), and computation time of both methods. The parameter recovery for Σθ is calcu-

lated by taking differences between each entries of the true Σθ and estimated Σ̂θ. Both bias

and RMSE were obtained for each model parameter across all items within a condition first

and then averaged over 100 replications.

5.2 Results for the M2PL model

Figures 1 and 2 compare the distributions of bias and RMSE of the model parameters from

the two methods under the four manipulated conditions for the between-item and within-

item M2PL model respectively. As shown, GVEM generally produces comparable or more

accurate model parameter estimates than MHRM run by the R package ‘mirt’ in all con-

ditions for both between-item and within-item models. With respect to the manipulated

conditions, increasing sample sizes helps reduce the RMSE and bias of the parameter esti-

mates in both GVEM and MHRM in ‘mirt’. Moreover, the RMSE and bias are generally

higher when the correlations among factors are higher. This may be because higher correla-

tion introduce multicollinearity among factors, making the parameter recovery more difficult

(Wang & Nydick, 2015). Last but not least, the parameter recovery from the between-item
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multidimensional model is better than the parameter recovery from the within-item multi-

dimensional model. This is not surprising since the loading structure A is more complex in

the within-item model. Figures 3 and 4 compare the distribution of bias and RMSE of the

model parameters from GVEM and the JML method under the four manipulated conditions

for the between-item and within-item M2PL models respectively. We observe that GVEM

produces much lower RMSE and bias than the JML estimation under all conditions for both

between-item and within-item models. The performance of the JML estimator is especially

worse in small sample and high correlation settings and under more complex within-item

multidimensionality structure. This could be due to the fact that the JML estimator as-

sumes θi’s as fixed effects whereas GVEM models them as random effects with multivariate

Gaussian distributions which account for the factor correlations. This result suggests that

our proposed estimation method not only is theoretically consistent but also performs bet-

ter in practice particularly under these complex simulation settings with correlated latent

factors.

Figure 5 shows the average computation times in seconds for GVEM and MHRM in

‘mirt’ over 100 replications. To demonstrate a thorough comparison of the computation time,

additional simulation settings were added for Figure 5; three different sample sizes (N =

200, 500, and 1000) and three different test dimensions (K = 3, 4, and 5) were considered as

the simulation settings, resulting in 9 conditions in total. Each column presents the results

for the between-item and withinin-item model respectively. Overall, GVEM algorithm is

computationally more efficient than MHRM in both low and high correlation settings with

varying sample sizes. The most reduction in computation time was observed in between-

item model with low correlation setting. Unsurprisingly, computation time increases for both
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methods when the number of dimensions increases or when sample sizes increase.

We would like to emphasize that the above observations regarding the MHRM algorithm

are based on the implementation of the algorithm in the ‘mirt’ package under the default

setting. Researchers using other packages may get slightly different results. We also tried

other tuning methods in flexMIRT and found that a more careful tuning can improve the

performance of MHRM as in ‘mirt’; on the other hand, the estimation results can be very

sensitive to the tuning, and the optimal tuning of MHRM could vary case by case, depending

on the model setting and the correlation of the latent traits. For instance, following one

reviewer’s kind suggestion, we found that the strategy of combining mirt’s default Stage 3

setup with flexMIRT’s default Stages 1 and 2 setup provides slightly better estimation results

than the proposed GVEM under the high correlation and between item model setting (while

still slightly worse under the low correlation and within item model settings); please see

Figure 1 in the Supplementary Material. Based on these observations, we clarify that the

simulation study does not intend to conclude that the proposed GVEM outperforms the

MHRM algorithm, but rather to show that GVEM provides a good alternative estimation

method for MIRT, which does not rely on much tuning. Thoroughly evaluating the optimal

tuning of MHRM algorithm is an interesting research problem, yet it is beyond the scope of

the current paper, and we would like to leave that as a future study.

5.3 Results for the M3PL model

For the M3PL model, the sample size and forget rate for stochastically optimized 3PL

algorithm were chosen based on pilot testing of various sample sizes and forget rates. We
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observed that using the whole data set for the initial estimation step helped a lot with

the estimation precision. Hence the forget rate was fixed at a small value so that the

information from entire data set in the first iteration was weighted more heavily in the

subsequest iterations (i.e. forget the information from entire data set slowly with small

forget rate). After the first iteration, only 5 data points were sampled at a time, resulting

in a huge reduction in computation time.

Figures 6 and 7 present the distributions of bias and RMSE of the model parameters

from the two methods under the four manipulated conditions for the between-item and

within-item M3PL model, respectively. During simulation studies, we observed that the

performance of MHRM was quite unstable and the model did not converge well in M3PL

under all manipulated conditions. Specifically, model did not converge in about 30 to 45% of

the total experiments in most conditions. In another 15 to 20% of the experiments, the model

converged but the estimates of the model parameters exploded to surprisingly high values,

which implies the instability of the parameter estimation. For MHRM method, we excluded

these results from the total of 100 experiments and reported only the values that seem more

meaningful. On the other hand, we report the results for all 100 experiments for the GVEM

method. Precisely, in Figure 6, 40 cases for (a), 41 for (b), 28 for (c), and 40 for (d) were

reported. In Figure 7, 48 cases for (a), 46 for (b), 54 for (c), and 47 for (d) were reported.

Note again that in both Figures, we report all 100 experiments for GVEM method because

they all converged successfully. Similarly as in the simulation studies for M2PL, increasing

sample sizes helps reduce the RMSE and bias of the parameter estimates in both GVEM and

MHRM. However, the RMSE for MHRM method is quite high with large variation under

most conditions. Overall, we observe that for varying sample sizes and correlations between
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latent traits, GVEM performs better than MHRM, even after excluding unstable estimation

results for MHRM. Given that the inclusion of guessing parameter poses model estimation

challenge is well-documented in literature (e.g, Lord, 1968; Thissen & Wainer, 1982; Yen,

1987), it is not too surprising to note the large proportion of non-converged replications

from MHRM. However, the stable performance of GVEM further reinforces its promise as a

robust alternative method to the current status-quo, in particular when guessing parameter

is included in the model. Also note that GVEM does not need much tuning for good

performance, hence it is more accessible to broader audience who may not have the technical

capacity to manually tune certain parameters, as may required by other algorithms. One

last note to make is, for M3PL or 3PL models in general, marginal maximum a posteriori

estimation (MMAP) is sometimes preferred over the maximum likelihood approach. That

is, prior distributions are specified for constrained estimation of the a and c parameters to

improve estimation stability (Kim, 2006). Therefore, one can compare GVEM with MMAP

in a future study as well.

5.4 Estimating the Number of Dimensions

In this section, a separate simulation study was conducted to evaluate if AIC? and BIC?

could help identify the correct number of factors from data. The simulation design is the same

as illustrated in Section 5.1. The result is presented for different sample sizes and degrees of

correlation between latent traits. A total of 100 independent samples were generated for each

setting, and the proportion of replications in which the correct number of factors identified

by AIC? and BIC? were recorded.
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Table 1 and Table 2 present the correct estimation rate of the number of dimensions

for M2PL and M3PL models respectively. As shown, increasing sample size help increase

the correct estimation rate. In addition, similar to the findings in the previous sections,

lower correlation is more preferable as it usually produced higher correct estimation rates.

There is only one exception, though, for the within-item M3PL model, in which both AIC?

and BIC? performed better for the higher correlation scenario regardless of the sample size.

There is no appreciable difference between AIC? and BIC? except a few cells in Table 1:

AIC? performed better than BIC? for large Σθ with sample size of 200, whereas BIC?

performed better for small Σθ with sample size of 200.

6 Real Data Analysis

In this section, the GVEM and MHRM algorithms were used to conduct an exploratory

item factor analysis on the National Education Longitudinal Study of 1988 (NELS:88) data.

In this data set, a nationally representative sample of approximately 24,500 students were

tracked via multidimensional cognitive batteries from 8th to 12th grade (the first three stud-

ies) in years 1988, 1990, and 1992. In this study, we focused on the science and mathematics

test data where the multidimensional factorial structure has been previously investigated (e.g,

Kupermintz & Snow, 1997; Nussbaum, Hamilton, & Snow, 1997). For the science subject,

there are 25 items and four factors emerged from the data collected in 1988: “Elementary

science (ES)”, “Chemistry knowledge (CK)”, “Scientific reasoning (SR)” and “Reasoning

with knowledge (RK)”. For the math subject, there are 40 items in 1988 and two factors

emerged, they are “Mathematical reasoning (MR)” and “Mathematical knowledge (MK)”.

38



We pooled together data from both domains, resulting in 65 items and a complete sample

size of N=13,488. Because the factor structure was analyzed using normal theory factor

analysis more than two decades ago, we plan to reanalyze the data using the proposed new

methods. In addition, pooling together both math and science domains result in poten-

tially high dimensional data. First, both GVEM and MHRM were conducted assuming the

number of factors were 6. The focus is on the recovery of the correlation matrix Σθ and its

comparison between two methods. Since the exploratory item factor analysis was conducted,

in both GVEM and MHRM we assumed that Σθ = IK during GVEM estimation and later

performed the same promax rotation to estimate the correlation matrix Σ̂θ. Second, GVEM

was used to explore the dimension of latent traits from the data.

Table 3 shows the estimated Σθ from both methods assuming the number of factors is

6. The correlations in Σ̂θ from two algorithms look comparable although most values from

GVEM are slightly smaller than those from MHRM. The negative correlations on the last

row, especially, are similar between two correlation matrices. Please note that Σ̂θ is invariant

to the ordering of the latent traits (i.e., the factor labels are arbitrary), hence it is possible

to reduce the differences between two matrices by further reordering their columns in Table

3.

To further explore the optimal number of factors from data, we applied the GVEM

algorithm with the information criteria for dimension selection. Figure 8 presented the

results of latent dimension selection under M2PL and M3PL models. By fitting the M2PL

model to the data, the optimal dimensionality of the latent traits was estimated to be six by

both AIC? and BIC? as shown in Figure 8. This corresponds to the number of latent traits

identified in prior research. However, the dimensionality of the latent traits was estimated to
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be five under the M3PL model. This result implies that some of the six latent traits may be

highly correlated under the M3PL model that they are merged. Comparing the information

criteria values across both M2PL and M3PL, it appears that AIC? and BIC? were smallest

for the M2PL model with six factors. Hence, our results further validate the number of

latent factors that could be extracted from the NELS:88 data. In addition, it suggests that

the guessing didn’t play a significant role in students’ performance on the math and science

cognitive test data.

7 Discussions

Variational methods are first introduced in psychometrics by Rijmen and Jeon (2013) for

high dimensional IRT model with discrete latent traits, and later by Jeon et al (2017) in a

form of a variational maximization-maximization algorithm for GLMMs with crossed random

effects. Although their findings demonstrate great promise of variational methods as they

apply in psychometrics, their methods are not ready for calibrating high-dimensional MIRT

models with correlated latent factors and guessing parameters. In this paper, a new method

based on variational approximation is proposed for the parameter estimation in the M2PL

and M3PL models. Compared to the existing methods, it has the advantage of avoiding

the calculation of intractable log-likelihood by approximating the lower bound to the log-

likelihood. It also greatly reduces the computation complexity by deriving the closed-form

updates in the every EM step. Moreover, the efficiency of the algorithm is further improved

in the stochastic version. Simulation studies demonstrate that the proposed methods show

better performance in terms of parameter recovery and computation time in both M2PL and
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M3PL compared to the widely used MHRM method. Theoretical results are provided on

the convergence rate, which shows that the estimation error goes to 0 as both the sample

size and number of test items go to infinity. As byproducts of the GVEM algorithm, both

AIC? and BIC? could be used to help identify the optimal number of latent factors from

data, as reflected by the simulation results.

Although the current simulation study and data analysis focused on the exploratory item

factor analysis, the GVEM algorithm can also be easily applied to the confirmatory item

factor analysis. In the latter case, the loading matrix A will have structural 0’s implying

that certain items are irrelevant to certain factors. Similar to the approach in Cai (2010b),

these user-defined restrictions can be incorporated in the estimation via linear constraints.

Reflecting in the GVEM algorithm, due to the closed-form solutions in the M-step, handling

the structural 0’s basically means multiplying Â by a same size matrix of binary entries with

1’s indicating the corresponding element is estimable.

This work does not study standard errors of the GVEM estimation procedure. However,

one can derive standard errors of the model parameters similarly following the existing works

(Jamshidian & Jennrich, 2000). Relevant future research is needed on exploring the accuracy

and efficiency of the estimation of standard errors in the GVEM framework. In addition,

extending the GVEM framework to polytomous response models and four parameter IRT

models (Meng, Xu, Zhang, & Tao, 2019) would be of another interest for the future research.
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between-item within-item
Correlation(Σθ) N AIC? BIC? AIC? BIC?

small
200 76 92 69 94
500 82 91 76 83
1000 88 93 79 85

large
200 59 25 69 58
500 66 41 82 81
1000 83 52 84 89

Table 1: Simulation: correct estimation rate(%) in the M2PL model

between-item within-item
Correlation(Σθ) N AIC? BIC? AIC? BIC?

small
200 47 47 63 63
500 83 87 93 93
1000 93 93 84 84

large
200 40 43 83 83
500 60 60 97 97
1000 73 73 97 97

Table 2: Simulation: correct estimation rate(%) in the M3PL model

GVEM MHRM
1
.622 1
.566 .298 1
.472 .112 .426 1
.489 .869 .424 .248 1
−.767 −.388 −.701 −.512 −.595 1




1
.549 1
.697 .432 1
.635 .532 .682 1
.697 .478 .740 .544 1
−.607 −.497 −.602 −.525 −.592 1



Table 3: Real Data: comparison of estimated Σ̂θ
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Figure 1: Parameter recovery of the between-item M2PL models from exploratory factor analysis
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Figure 2: Parameter recovery of the within-item M2PL models from exploratory factor analysis
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Figure 3: Parameter recovery of the between-item M2PL models from exploratory factor analysis
using GVEM and Joint Maximum Likelihood (JML) estimator
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Figure 4: Parameter recovery of the within-item M2PL models from exploratory factor analysis
using GVEM and Joint Maximum Likelihood (JML) estimator
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Figure 5: Average computation time for (a) between-item model (first column) and (b) within-
item model (second column) with low correlation (first row) and high correlation (second row).
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Figure 6: Parameter recovery of the between-item M3PL models from exploratory factor analysis.
For MHRM, (a) 40, (b) 41, (c) 28, (d) 40 cases of simulation results were reported due to convergence
issue. For GVEM, all 100 cases were reported under all conditions.
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Figure 7: Parameter recovery of the within-item M3PL models from exploratory factor analysis.
(a) 48, (b) 46, (c) 54, (d) 47 cases of simulation results were reported due to convergence issue. For
GVEM, all 100 cases were reported under all conditions.
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Figure 8: Real Data: BIC? for both M2PL and M3PL (AIC? shows the same trend).
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