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SUMMARY

Wilk’s theorem, which offers universal chi-squared approximations for likelihood ratio tests, is widely
used in many scientific hypothesis testing problems. For modern datasets with increasing dimension, re-
searchers have found that the conventional Wilk’s phenomenon of the likelihood ratio test statistic often
fails. Although new approximations have been proposed in high dimensional settings, there still lacks a
clear statistical guideline regarding how to choose between the conventional and newly proposed approx-
imations, especially for moderate-dimensional data. To address this issue, we develop the necessary and
sufficient phase transition conditions for Wilk’s phenomenon under popular tests on multivariate mean
and covariance structures. Moreover, we provide an in-depth analysis of the accuracy of chi-squared ap-
proximations by deriving their asymptotic biases. These results may provide helpful insights into the use
of chi-squared approximations in scientific practices.

Some key words: Wilk’s phenomenon, phase transition

1. INTRODUCTION

The likelihood ratio test is a standard testing method for many hypothesis testing problems due to its
nice statistical properties (Anderson, 2003; Muirhead, 2009). Under the low-dimensional setting with a
fixed number of parameters p and large sample size n, classic theorems offer general asymptotic results
for various likelihood ratio test statistics. One of the most celebrated and fundamental results is Wilks’
theorem, which states that, under the null hypothesis, twice the negative log-likelihood ratio asymptoti-
cally approaches a χ2

f distribution, where f is the difference of the degrees of freedom between the null
and alternative hypotheses. The popularly used Bartlett correction provides a general rescaling strategy
that further improves the finite sample accuracy of the chi-squared approximations (Cordeiro and Cribari-
Neto, 2014; Barndorff-Nielsen and Hall, 1988). Similar Wilk’s phenomenon and Bartlett correction were
also studied for empirical likelihood (Owen, 1990; DiCiccio et al., 1991; Chen and Cui, 2006).

Despite the extensive literature on the Wilk’s-type phenomenon of likelihood ratio tests under finite
dimensions, it is of emerging interest to study the large n, diverging p asymptotic regions in a wide
variety of modern applications. To understand how large the dimension p can be to ensure the validity of
the classical Wilk’s phenomenon, various works establish sufficient conditions on the growth rate of p as n
increases. For instance, Portnoy (1988) showed that the chi-squared approximation of the likelihood ratio
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test statistic for a simple hypothesis in canonical exponential families holds if p/n2/3 → 0. Moreover,
Hjort et al. (2009), Chen et al. (2009), and Tang and Leng (2010) studied the empirical likelihood ratio
statistic when p→∞. Particularly, Chen et al. (2009) argued that p/n1/2 → 0 is likely to be the best
rate for the chi-squared approximation of general empirical likelihood ratio test, and showed that for
the least-squares empirical likelihood, a simplified version of the empirical likelihood, the chi-squared
approximation holds if p/n2/3 → 0. The effect of data dimension was also studied in other inference
problems; see, for example, Portnoy (1985), He and Shao (2000), and Wang (2011).

When the dimension p further increases, researchers have found that the chi-squared approximations
based on Wilk’s theorem often become inaccurate, resulting in the failure of the corresponding likelihood
ratio tests. To address this issue, various corrections and alternative approximations for the likelihood ratio
tests have been proposed. For example, when p is asymptotically proportional to n, namely, p/n→ y ∈
(0, 1) as n→∞, Bai et al. (2009), Jiang and Yang (2013), and Jiang and Qi (2015) proposed normal
approximations for the corrected likelihood ratio tests on testing mean vectors and covariance matrices.
Zheng (2012), Bai et al. (2013), and He et al. (2020) proposed normal approximations for corrected
likelihood ratio tests in multivariate linear regression models. Furthermore, Sur and Candès (2019), Sur
et al. (2019), and Candès and Sur (2020) studied the phase transition of the maximum likelihood estimator
for the logistic regression, and proposed a rescaled chi-squared approximation for the likelihood ratio test.

Despite the proposed distributional theory of the likelihood ratio tests for low- or high-dimensional
data, there still lacks a quantitative guideline on which approximation should be chosen to use in practice,
especially for moderate-dimensional data. For instance, when analyzing a dataset with the number of pa-
rameters p ≤ 5 and sample size n = 100, the chi-squared approximation may be considered as reliable.
However, when studying a data set with moderate dimension, e.g., p is between 6 to 20 and sample size
n = 100, it may be unclear to practitioners whether they can still apply the classical chi-squared approxi-
mations or they should turn to other high-dimensional asymptotic results. To address this practical issue,
it is of interest to investigate the phase transition boundary where the chi-squared approximation starts
to fail as p increases, and also characterize the approximation accuracy. Theoretically, this needs a deep
understanding of the limiting behavior of the likelihood ratio test statistics from low to high dimensions.

In this work, we focus on several standard likelihood ratio tests on multivariate mean and covariance
structures that are widely used in biomedical and social sciences (Pituch and Stevens, 2015; Cleff, 2019).
For each considered likelihood ratio test, we derive its phase transition boundary of Wilk’s phenomenon
and also provide an in-depth analysis of the accuracy of the chi-squared approximation. First, in terms of
the phase transition boundary, we establish the necessary and sufficient condition for Wilk’s theorem to
hold when p increases with n. Specifically, we show that the chi-squared approximations hold if and only
if p/nd → 0, where the value of d depends on the testing problem and whether the Bartlett correction is
used. Interestingly, the proposed phase transition boundaries resonate with the abovementioned literature
(e.g., Portnoy, 1988; Chen et al., 2009), which mostly focused on sufficient conditions without the Bartlett
correction. Second, we provide a detailed characterization of the asymptotic bias of each chi-squared
approximation. Specifically, we consider two local asymptotic regimes, depending on whether Wilk’s
theorem holds or not. Under the asymptotic regime when Wilk’s theorem holds, the derived asymptotic
bias sharply characterizes the convergence rate of the distribution of the likelihood ratio test statistic
to the limiting chi-squared distribution, and thus provides a useful measure on the accuracy of the chi-
squared approximation. When Wilk’s theorem fails, the derived asymptotic bias describes the unignorable
discrepancy between the chi-squared approximation and the true distribution of the likelihood ratio test
statistic. As illustrated in the simulation studies, our theoretical results of the phase transition boundaries
and the asymptotic biases may provide a helpful guideline on the use of the chi-squared approximations
in practice.

2. RESULTS OF ONE-SAMPLE TESTS

In this section, we present the theoretical results under three one-sample testing problems. We also
obtain similar results for other multiple-sample testing problems, which are introduced in § 4, and please
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see their details in the Supplementary Material. Under one-sample problems, suppose x1, . . . , xn ∈ Rp
are independent and identically distributed random vectors with distribution Np(µ,Σ), which denotes a
p-variate multivariate normal distribution with mean vector µ and covariance matrix Σ. We define x =
n−1

∑n
i=1 xi andA =

∑n
i=1(xi − x)(xi − x)T, and denote the determinant and the trace ofA by |A| and

tr(A), respectively. We next introduce the considered testing problems and the corresponding likelihood
ratio tests (Anderson, 2003; Muirhead, 2009).

(I) Testing Specified Value for the Mean Vector. This test examines whether the population mean vector
µ is equal to a specified vector µ0 ∈ Rp, that is, H0 : µ = µ0 against Ha : H0 is not true. Through the
transformation xi − µ0, we consider, without loss of generality, µ0 = (0, . . . , 0)T. Then, the likelihood
ratio test statistic is Λn = |A|n/2(A+ nx̄x̄T)−n/2. When p is fixed and n→∞, under the null hypothe-
sis, the classical chi-squared approximation without correction is −2 log Λn

d−→ χ2
f , where d−→ represents

the convergence in distribution and f = p, and the chi-squared approximation with the Bartlett correction
is −2ρ log Λn

d−→ χ2
f , where ρ = 1− (1 + p/2)/n.

(II) Testing the Sphericity of the Covariance Matrix. This test examines whether the covariance matrix
Σ is proportional to an identity matrix; that is, H0 : Σ = λIp against Ha : H0 is not true, where λ > 0 is
an unspecified constant and Ip denotes the p× p identity matrix. The likelihood ratio test statistic is Λn =

|A|(n−1)/2 {tr(A)/p}−p(n−1)/2 . When p is fixed and n→∞, under the null hypothesis, the chi-squared
approximation is−2 log Λn

d−→ χ2
f , where f = (p− 1)(p+ 2)/2, and the chi-squared approximation with

the Bartlett correction is −2ρ log Λn
d−→ χ2

f , where ρ = 1− {6(n− 1)p}−1(2p2 + p+ 2).

(III) Joint Testing Specified Values for the Mean Vector and Covariance Matrix. Consider a speci-
fied vector µ0 ∈ Rp and a specified positive-definite matrix Σ0 ∈ Rp×p. We study the test H0 : µ = µ0

and Σ = Σ0 against Ha : H0 is not true. By applying the transformation Σ
−1/2
0 (xi − µ0), we assume,

without loss of generality, that µ0 = 0 and Σ0 = Ip. Then, the likelihood ratio test statistic is Λn =

(e/n)
np/2 |A|n/2 exp{− tr(A)/2− nxTx/2}. When p is fixed and n→∞, under the null hypothesis,

the chi-squared approximation is −2 log Λn
d−→ χ2

f , where f = p(p+ 3)/2, and the chi-squared approxi-

mation with the Bartlett correction is−2ρ log Λn
d−→ χ2

f , where ρ = 1− {6n(p+ 3)}−1(2p2 + 9p+ 11).

For the likelihood ratio tests of the above three testing problems, Theorem 2.1 gives the phase transition
boundaries of the chi-squared approximations without and with the Bartlett correction.

THEOREM 2.1. Assume n > p+ 1 for all n ≥ 3 and n− p→∞ as n→∞. Under H0, for the chi-
squared approximations without and with the Bartlett correction of each likelihood ratio test in (I)–(III),
we have the following necessary and sufficient conditions:

(i) supα∈(0,1) |pr{−2 log Λn > χ2
f (α)} − α| → 0 if and only if p/nd1 → 0;

(ii) supα∈(0,1) |pr{−2ρ log Λn > χ2
f (α)} − α| → 0 if and only if p/nd2 → 0,

where the values of d1 and d2 under the three testing problems are listed in the table below.

(I) Mean (II) Covariance (III) Joint
(i) without correction d1: 2/3 1/2 1/2
(ii) with correction d2: 4/5 2/3 2/3

In Theorem 2.1, n > p+ 1 is assumed to ensure the existence of the likelihood ratio tests. We next
discuss the obtained phase transition boundaries of the classical chi-squared approximations without cor-
rection. When only testing mean parameters, Theorem 2.1 suggests that the chi-squared approximation
holds if and only if p/n2/3 → 0. This asymptotic regime is similarly assumed in Portnoy (1988), which
considered testing p natural parameters in exponential families. However, Portnoy (1988) only showed
the sufficiency of p/n2/3 → 0 for the chi-squared approximation to be applied, and did not establish the
necessary and sufficient result, which is essential for understanding the phase transition behaviors. In ad-
dition, when the likelihood ratio tests involve covariance matrices as in (II) and (III), Theorem 2.1 shows
that the chi-squared approximation holds if and only if p/n1/2 → 0, which is consistent with the discus-
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sion in Chen et al. (2009). Particularly, under certain regularity conditions, Chen et al. (2009) established
that the chi-squared approximation of the empirical likelihood ratio test holds if p/n1/2 → 0. The authors
further argued that p/n1/2 → 0 is likely to be the best rate for p, because it is the necessary and sufficient
condition for the convergence of the sample covariance matrix to the true covariance matrix Σ under the
trace norm when the eigenvalues of Σ are bounded. The analysis provides an intuitive explanation for the
phase transition boundaries obtained above, and our necessary and sufficient result would serve as another
support for their conjecture, despite the different problem settings in Chen et al. (2009) and here.

Additionally, for the chi-squared approximations with the Bartlett correction, Theorem 2.1 also explic-
itly characterizes their phase transition boundaries, which generally achieve a larger asymptotic region
than those without correction. When p is fixed, the Bartlett correction serves as a rescaling strategy that
can improve the convergence rate of the likelihood ratio statistic fromO(n−1) toO(n−2); however, when
p grows with sample size n, the classical result cannot apply directly. Alternatively, the results in Theorem
2.1 provide a precise illustration of how the Bartlett correction improves the chi-squared approximations
in terms of the phase transition boundaries.

The phase transition boundaries in Theorem 2.1 give the necessary and sufficient conditions on the
asymptotic regimes of (n, p) in Wilk’s phenomenon. When applying the likelihood ratio test in practice, it
is desired to have a better understanding of the accuracy of the chi-squared approximation, especially near
its phase transition boundary. The following Theorem 2.2 characterizes the accuracy of each chi-squared
approximation for tests (I)–(III) when Wilk’s phenomenon holds. Specifically, we consider the asymptotic
regime where (n, p) satisfies the corresponding necessary and sufficient condition in Theorem 2.1, i.e.,
p/nd1 → 0 and p/nd2 → 0 for the chi-squared approximations without and with the Bartlett correction,
respectively.

THEOREM 2.2. For each likelihood ratio test (I)–(III), let di, i = 1, 2 take the corresponding values
in Theorem 2.1. Let zα denote the upper α-level quantile of the standard normal distribution. Consider
p→∞ as n→∞. Then under H0, given α ∈ (0, 1),

(i) when p/nd1 → 0, the chi-squared approximation satisfies

pr{−2 log Λn > χ2
f (α)} − α =

ϑ1(n, p)√
π

exp

(
− z2α

2

)
+ o

(
p1/d1

n

)
; (1)

(ii) when p/nd2 → 0, the chi-squared approximation with the Bartlett correction satisfies

pr{−2ρ log Λn > χ2
f (α)} − α =

ϑ2(n, p)√
π

exp

(
− z2α

2

)
+ o

(
p2/d2

n2

)
. (2)

The values of ϑ1(n, p) and ϑ2(n, p) under three testing problems (I)–(III) are listed below.

(I) ϑ1(n, p) =
p2 + 2p

4n
√
f
, ϑ2(n, p) =

p(p2 − 4)

24(ρn)2
√
f
;

(II) ϑ1(n, p) =
p(2p2 + 3p− 1)− 4/p

24(n− 1)
√
f

, ϑ2(n, p) =
(p− 2)(p− 1)(p+ 2)(2p3 + 6p2 + 3p+ 2)

144p2ρ2(n− 1)2
√
f

;

(III) ϑ1(n, p) =
p
(
2p2 + 9p+ 11

)
24n
√
f

, ϑ2(n, p) =
p(2p4 + 18p3 + 49p2 + 36p− 13)

144(p+ 3)(ρn)2
√
f

.

In Theorem 2.2, the forms of ϑ1(n, p) and ϑ2(n, p) are derived from a nontrivial calculation of cer-
tain complicated infinite series (see Eq. (B.20) and (B.28) in the Supplementary Material). We can see
that for each test, ϑ1(n, p) and ϑ2(n, p) are of orders of p1/d1n−1 and p2/d2n−2, respectively. It fol-
lows that ϑ1(n, p) exp(−z2α/2)/

√
π in (1) is the leading term for the chi-squared approximation bias

pr{−2 log Λn > χ2
f (α)} − α, and therefore can be used to measure the accuracy of the chi-squared

approximation. Similar conclusion also holds for ϑ2(n, p) exp(−z2α/2)/
√
π in (2) when using the chi-

squared approximation with the Bartlett correction. We demonstrate the usefulness of (1) and (2) in prac-
tice by simulation studies in § 3.
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In the above discussion, we focus on the local asymptotic regime when Wilk’s phenomenon holds,
and the derived bias describes the accuracy of the chi-squared approximation. When p further increases
beyond this local asymptotic regime, the chi-squared approximation starts to fail, and the approximation
bias becomes asymptotically unignorable. The following Theorem 2.3 characterizes such unignorable
biases of the chi-squared approximations. Particularly, we consider the local asymptotic regime p/n→ 0,
which includes the case when Wilk’s theorem fails, that is, p/nd1 6→ 0 for the chi-squared approximation,
and p/nd2 6→ 0 for the chi-squared approximation with the Bartlett correction.

THEOREM 2.3. Assume p→∞ and p/n→ 0 as n→∞. For each likelihood ratio test (I)–(III), under
H0, there exists a small constant δ ∈ (0, 1) such that for any α ∈ (0, 1),

(i) the chi-squared approximation satisfies

pr
{
− 2 log Λn > χ2

f (α)
}
− α = Φ̄

{
χ2
f (α) + 2µn

2nσn

}
− α+O

{( p
n

) 1−δ
2

+ f−
1−δ
6

}
, (3)

where Φ̄(·) = 1− Φ(·), and Φ(·) denotes the cumulative distribution function of the standard nor-
mal distribution;

(ii) the chi-squared approximation with the Bartlett correction satisfies

pr
{
− 2ρ log Λn > χ2

f (α)
}
− α = Φ̄

{
χ2
f (α) + 2ρµn

2ρnσn

}
− α+O

{( p
n

) 1−δ
2

+ f−
1−δ
6

}
. (4)

The values of µn and σn under each problem are listed below, where Lx,p = log(1− p/x) for x > p.

(I) µn =
n

2

{(
n− p− 3

2

)
(Ln,p − Ln−1,p) + Ln,p + pLn,1

}
, σ2

n =
1

2
(Ln,p − Ln−1,p);

(II) µn = −n− 1

2

{
(n− p− 3/2)Ln−1,p + p

}
, σ2

n = −1

2

(
p

n− 1
+ Ln−1,p

)
(n− 1)2

n2
;

(III) µn = −n
2

{
(n− p− 3/2)Ln−1,p + p

}
− p

2
, σ2

n = −1

2

(
p

n− 1
+ Ln−1,p

)
.

Theorem 2.3 is derived by quantifying the difference between the characteristic functions of log Λn
and a normal distribution (see Lemma B.3.2 in the Supplementary Material). The local asymptotic regime
p/n→ 0 is assumed mainly for the technical simplicity of evaluating the asymptotic expansions of the
characteristic functions. Under the conditions of Theorem 2.3, Φ̄[{χ2

f (α) + 2µn}/(2nσn)]− α in (3)
can be approximated by Φ̄{zα + (f + 2µn)/(2nσn)} − Φ̄(zα), where (f + 2µn)/(2nσn) is of the or-
der of pn−d1 (see Remark B.3.2 in the Supplementary Material). Consequently, when the chi-squared
approximation fails, i.e., pn−d1 6→ 0, we know that Φ̄[{χ2

f (α) + 2µn}/(2nσn)]− α in (3) character-
izes the corresponding unignorable bias of the chi-squared approximation. Similarly, we can show that
Φ̄[{χ2

f (α) + 2ρµn}/(2ρnσn)]− α can be approximated by Φ̄{zα + (f + 2ρµn)/(2ρnσn)} − Φ̄(zα),
where (f + 2ρµn)/(2ρnσn) is of the order of p2/d2n−2. Therefore, when the chi-squared approxima-
tion with the Bartlett correction fails, i.e., pn−d2 6→ 0, we know that (4) characterizes the corresponding
unignorable approximation bias.

Remark 2.0.1. Although the above discussions consider p/nd1 6→ 0 and p/nd2 6→ 0, (3) and (4) in
Theorem 2.3 also hold under the asymptotic regimes p/nd1 → 0 and p/nd2 → 0 examined in Theorem
2.2. However, since Theorems 2.2 and 2.3 focus on different asymptotic regimes and are proved using
different techniques, we can show that when p/nd1 → 0 and p/nd2 → 0, (3) and (4) have an additional
remainder termO{(p/n)(1−δ)/2 + f−(1−δ)/6} compared to (1) and (2), respectively; see Remark B.3.2 in
the Supplementary Material. Therefore, under the asymptotic regimes of Theorem 2.2, (1) and (2) provide
a sharper characterization of the accuracy of the chi-squared approximations than (3) and (4), respectively.
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3. SIMULATIONS

We conduct simulation studies to evaluate the finite-sample performance of the theoretical results. Par-
ticularly, under the null hypothesis of the one-sample tests, we generate data with µ = (0, . . . , 0)T and
Σ = Ip and use α = 0.05. We next consider problem (III), jointly testing mean and covariance, as an illus-
tration example, and present the results of the chi-squared approximation without the Bartlett correction.
For test (III) with the Bartlett correction and problems (I)–(II), testing mean and covariance separately,
the simulation results are similar and thus presented in §A.3 of the Supplementary Material.

First, to examine the phase transition boundary in Theorem 2.1, we take p = bnεc, where n ∈
{100, 500, 1000, 5000}, ε ∈ {6/24, . . . , 23/24}, and b·c denotes the floor function. We plot the empir-
ical type-I error versus ε in Part (a) of Fig. 1, which is based on 1,000 simulation replications. We can see
that for all considered sample sizes, the empirical type-I errors start to inflate around ε = 1/2, matching
the phase transition boundary d1 = 1/2 of test (III) in Theorem 2.1. Similar results are obtained for other
tests as shown in the Supplementary Material.
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Fig. 1: Chi-squared approximation without the Bartlett correction for test (III): (a) Empirical type-I error
for n = 100 (cross), 500 (asterisk), 1000 (square), and 5000 (triangle); the theoretical phase transition
boundary ε = 1/2 (vertical dashed line). (b) Empirical type-I error for n = 500 (asterisk); asymptotic
bias ϑ1(n, p) exp(−z2α/2)/

√
π in (1) (dot); the difference between the empirical type-I error and the

asymptotic bias in (1) (circle). (c) Empirical type-I error for n = 500 (asterisk); the maximum bias over
the bias in (1) and the bias Φ̄[{χ2

f (α) + 2µn}/(2nσn)]− α in (3) (dot); the location where the bias in
(3) starts to dominate the bias in (1) (plus sign); the difference between the empirical type-I error and the
maximum bias (circle).

Second, we numerically evaluate the asymptotic biases in Theorems 2.2 and 2.3 with p = bnεc, where
n ∈ {100, 500} and ε ∈ (0, 1). Parts (b) and (c) in Fig. 1 present the results with n = 500, while the
results with n = 100 are similar and thus reported in the Supplementary Material. Part (b) shows that the
asymptotic bias in (1) can be an informative indicator of the failure of Wilk’s theorem. Particularly, as ε
increases, the asymptotic bias in (1) increases accordingly. At the ε values where the empirical type-I error
begins to inflate (e.g. ε ∈ [0.4, 0.5]), the difference between the empirical type-I error and the asymptotic
bias is still close to 0.05 as shown in the circle line, suggesting that (1) can approximate the bias well.
When ε further increases beyond the phase transition boundary (e.g. ε > 0.5), the asymptotic bias keeps
increasing, and its large value indicates the failure of the chi-squared approximation, even though it now
underestimates the approximation bias in this regime. To better characterize the approximation bias when
ε is beyond the phase transition boundary, we can combine the results in Theorem 2.3 together with those
in Theorem 2.2. Specifically, Part (c) shows that taking the maximum over the two asymptotic biases in (1)
and (3) gives a good evaluation of the approximation bias for a full range of ε, below or above the phase
transition boundary. We also find that using (3) itself does not evaluate the approximation bias well for
small ε (results are not presented). Based on our theoretical and numerical results, when applying Wilk’s
theorem, we would recommend practitioners to compare the asymptotic bias, either (1) or the maximum
over (1) and (3), with a small threshold value that they may specify beforehand, e.g., 0.01-0.02. If the
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asymptotic bias is larger than the threshold, the chi-squared approximation should not be directly used,
and other methods would be needed.

4. RESULTS OF OTHER TESTS

In addition to three one-sample tests in § 2, we also obtain similar theoretical and numerical results
for other four popular testing problems in the Supplementary Material. Particularly, we consider three
multiple sample tests: (IV) Testing the equality of several mean vectors; (V) Testing the equality of several
covariance matrices; (VI) Jointly testing the equality of several mean vectors and covariance matrices. We
also study (VII) Testing independence between multiple vectors. Similarly to the results in § 2, for each
likelihood ratio test, we establish not only the phase transition boundary of Wilk’s theorem, but also the
approximation biases under the two asymptotic regimes, where Wilk’s theorem holds or not, respectively.
Please see the details in §A of the Supplementary Material.

5. DISCUSSION

This study derives the phase transition boundary and characterizes the approximation bias of Wilk’s
theorem in seven standard likelihood ratio tests. It is interesting to see that the phase transition bound-
ary generally depends on the problem setting and whether the Bartlett correction is used or not, which
emphasizes the necessity of statistically-principled guidelines. The approximation bias of Wilk’s theo-
rem was also recently studied by Anastasiou and Reinert (2018), which derived an explicit bound of the
chi-squared approximation bias for a general family of regular likelihood ratio test statistics. However,
as noted in that paper, their bounds are generally not optimized. It is thus of interest to further study
the necessary and sufficient conditions for Wilk’s phenomenon and the approximation accuracy in such
a general setting. Beyond the regular parametric inference problems, Wilk’s-type phenomenon has also
been studied in geometrically irregular parametric models (Drton and Williams, 2011; Chen et al., 2018),
and extended to nonparametric models and statistical learning theory (e.g., Fan et al., 2000, 2001; Fan
and Zhang, 2004; Boucheron and Massart, 2011). Understanding the phase transition behavior of Wilk’s
phenomenon for the likelihood ratio tests would shed light on studying the general Wilk’s phenomenon
under these complicated statistical models. Besides the likelihood ratio tests, similar phase transition phe-
nomena can also occur for other popular test statistics. For instance, Xu et al. (2019) recently studied the
approximation theory for Pearson’s chi-squared statistics when the number of cells is large, and demon-
strated a similar phase transition phenomenon that the asymptotic distribution of the test statistic can be
either a chi-squared or a normal distribution. It is interesting to further investigate the phase transition
boundaries of these tests.
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testing problems in Section 4, additional simulation studies, and the proofs of the theorems.

REFERENCES

Abramowitz, M. and I. A. Stegun (1970). Handbook of mathematical functions with formulas, graphs, and mathe-
matical tables (9th ed.), Volume 55. US Government printing office.



8 HE ET AL.

Anastasiou, A. and G. Reinert (2018). Bounds for the asymptotic distribution of the likelihood ratio. arXiv preprint
arXiv:1806.03666.

Anderson, T. (2003). An Introduction to Multivariate Statistical Analysis. Wiley Series in Probability and Statistics.
Wiley.

Bai, Z., D. Jiang, J.-F. Yao, and S. Zheng (2009). Corrections to LRT on large-dimensional covariance matrix by
RMT. The Annals of Statistics 37(6B), 3822–3840.

Bai, Z., D. Jiang, J.-f. Yao, and S. Zheng (2013). Testing linear hypotheses in high-dimensional regressions. Statis-
tics 47(6), 1207–1223.

Barndorff-Nielsen, O. and P. Hall (1988). On the level-error after Bartlett adjustment of the likelihood ratio statistic.
Biometrika 75(2), 374–378.

Boucheron, S. and P. Massart (2011). A high-dimensional Wilks phenomenon. Probability theory and related
fields 150(3-4), 405–433.

Candès, E. J. and P. Sur (2020). The phase transition for the existence of the maximum likelihood estimate in high-
dimensional logistic regression. The Annals of Statistics.

Chen, S. X. and H. Cui (2006). On bartlett correction of empirical likelihood in the presence of nuisance parameters.
Biometrika 93(1), 215–220.

Chen, S. X., L. Peng, and Y.-L. Qin (2009). Effects of data dimension on empirical likelihood. Biometrika 96(3),
711–722.

Chen, Y., J. Huang, Y. Ning, K.-Y. Liang, and B. G. Lindsay (2018). A conditional composite likelihood ratio test
with boundary constraints. Biometrika 105(1), 225–232.

Cleff, T. (2019). Applied Statistics and Multivariate Data Analysis for Business and Economics: A Modern Approach
Using SPSS, Stata, and Excel. Springer.

Cordeiro, G. M. and F. Cribari-Neto (2014). An introduction to Bartlett correction and bias reduction. Springer.
DiCiccio, T., P. Hall, and J. Romano (1991). Empirical likelihood is Bartlett-correctable. the Annals of Statistics 19(2),

1053–1061.
Drton, M. and B. Williams (2011). Quantifying the failure of bootstrap likelihood ratio tests. Biometrika 98(4),

919–934.
Fan, J., H.-N. Hung, and W.-H. Wong (2000). Geometric understanding of likelihood ratio statistics. Journal of the

American Statistical Association 95(451), 836–841.
Fan, J., C. Zhang, and J. Zhang (2001). Generalized likelihood ratio statistics and Wilks phenomenon. The Annals of

statistics 29(1), 153–193.
Fan, J. and W. Zhang (2004). Generalised likelihood ratio tests for spectral density. Biometrika 91(1), 195–209.
He, X. and Q.-M. Shao (2000). On parameters of increasing dimensions. Journal of Multivariate Analysis 73(1),

120–135.
He, Y., T. Jiang, J. Wen, and G. Xu (2020). Likelihood ratio test in multivariate linear regression: from low to high

dimension. Statistica Sinica.
Hjort, N. L., I. W. McKeague, and I. Van Keilegom (2009). Extending the scope of empirical likelihood. The Annals

of Statistics 37(3), 1079–1111.
Jiang, T. and Y. Qi (2015). Likelihood ratio tests for high-dimensional normal distributions. Scandinavian Journal of

Statistics 42(4), 988–1009.
Jiang, T. and F. Yang (2013). Central limit theorems for classical likelihood ratio tests for high-dimensional normal

distributions. The Annals of Statistics 41(4), 2029–2074.
Luke, Y. L. (1969). Special functions and their approximations, Volume 2. Academic press.
Muirhead, R. J. (2009). Aspects of multivariate statistical theory, Volume 197. John Wiley & Sons.
Owen, A. (1990). Empirical likelihood ratio confidence regions. The Annals of Statistics, 90–120.
Pituch, K. A. and J. P. Stevens (2015). Applied multivariate statistics for the social sciences: Analyses with SAS and

IBMs SPSS. Routledge.
Portnoy, S. (1985). Asymptotic behavior of M estimators of p regression parameters when p2/n is large; II. Normal

approximation. The Annals of Statistics, 1403–1417.
Portnoy, S. (1988). Asymptotic behavior of likelihood methods for exponential families when the number of param-

eters tends to infinity. The Annals of Statistics, 356–366.
Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1992). Numerical recipes in Fortran 77: the art

of scientific computing. Cambridge university press.
Sur, P. and E. J. Candès (2019). A modern maximum-likelihood theory for high-dimensional logistic regression.

Proceedings of the National Academy of Sciences 116(29), 14516–14525.
Sur, P., Y. Chen, and E. J. Candès (2019). The likelihood ratio test in high-dimensional logistic regression is asymp-

totically a rescaled chi-square. Probability Theory and Related Fields 175(1-2), 487–558.
Tang, C. Y. and C. Leng (2010). Penalized high-dimensional empirical likelihood. Biometrika 97(4), 905–920.
Ushakov, N. G. (2011). Selected topics in characteristic functions. Walter de Gruyter.
Van der Vaart, A. W. (2000). Asymptotic statistics, Volume 3. Cambridge university press.
Wang, L. (2011). GEE analysis of clustered binary data with diverging number of covariates. The Annals of Statis-

tics 39(1), 389–417.



On the Phase Transition of Wilk’s Phenomenon 9

Whittaker, E. T. and G. N. Watson (1996). A course of modern analysis. Cambridge university press.
Xu, M., D. Zhang, and W. B. Wu (2019). Pearson’s chi-squared statistics: approximation theory and beyond.

Biometrika 106(3), 716–723.
Zheng, S. (2012). Central limit theorems for linear spectral statistics of large dimensional F -matrices. Annales de

l’IHP Probabilités et statistiques 48(2), 444–476.
Zwillinger, D. (2002). CRC standard mathematical tables and formulae (31st ed.). CRC press.

Supplementary Material for
“On the Phase Transition of Wilk’s Phenomenon”

In this supplementary material, we present additional results in §A. Particularly, the theoretical results
for tests (IV)–(VI) and test (VII) are given in §A.1 and §A.2, respectively. All the simulations for tests
(I)–(VII) are provided in §A.3. We next present the proofs for the testing problem (III) as an illustration
example in §B, where the corresponding results in Theorems 2.1–2.3 are proved in §§B.1–B.3, respec-
tively. The proofs for other tests are similar and given in §C. The technical lemmas are proved in §D.

A Additional Results 10
A.1 Multiple-Sample Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
A.2 Testing Independence between Multiple Vectors . . . . . . . . . . . . . . . . . . . . . . 12
A.3 Additional Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B Proof Illustration with Problem (III) 23
B.1 Proof of Theorem 2.1 (III) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
B.2 Proof of Theorems 2.2 (III) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
B.3 Proof of Theorems 2.3 (III) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

C Proofs of Other Problems 30
C.1 Proofs of Theorems 2.1, A.1 & A.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
C.2 Proofs of Propositions A.1 & A.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
C.3 Proofs of Theorems 2.2, A.2 & A.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
C.4 Proofs of Theorems 2.3, A.3, & A.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

D Proofs of Assisted Lemmas 52
D.1 Results on Asymptotic Expansions of the Gamma Function . . . . . . . . . . . . . . . . 52
D.2 Lemmas for Theorems 2.2, A.2 & A.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
D.3 Lemmas for Theorems 2.3, A.3, & A.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



10 HE ET AL.

A. ADDITIONAL RESULTS

A.1. Multiple-Sample Tests

This subsection presents the theoretical results of three multiple-sample tests (IV)–(VI). Under the
multiple-sample problems, let k denote the number of samples, which is assumed to be fixed compared
to the sample size. In each sample i = 1, . . . , k, the observations xi1, · · · , xini are independent and
identically distributed Np (µi,Σi) random vectors. In this subsection, we define xi = n−1i

∑ni
j=1 xij and

Ai =
∑ni
j=1(xij − xi)(xij − xi)T for i = 1, . . . , k, and let A = A1 + . . .+Ak and n = n1 + . . .+ nk.

We next briefly review the likelihood ratio tests for the problems (IV)–(VI).

(IV) Testing the Equality of Several Mean Vectors. Consider H0 : µ1 = . . . = µk agains Ha : H0

is not true, where the covariances of the k samples are assumed to be the same. Define B =∑k
i=1 ni(xi − x)(xi − x)T and x = n−1

∑k
i=1 nixi. Then, the likelihood ratio test statistic is Λn =

|A|n/2|A+B|−n/2. When p is fixed and n→∞, the chi-squared approximation is −2 log Λn
d−→ χ2

f ,

where f = (k − 1)p, and the chi-squared approximation with the Bartlett correction is−2ρ log Λn
d−→ χ2

f ,
where ρ = 1− {1 + (k + p)/2}/n.

(V) Testing the Equality of Several Covariance Matrices. Consider H0 : Σ1 = . . . = Σk against Ha :

H0 is not true. For this test, Λn = |A|−(n−k)/2(n− k)(n−k)p/2 ×
∏k
i=1(ni − 1)−(ni−1)p/2|Ai|(ni−1)/2

is the modified likelihood ratio test statistic with the unbiasedness property. When p is fixed and
min1≤i≤k ni →∞, the chi-squared approximation is −2 log Λn

d−→ χ2
f , where f = p(p+ 1)(k − 1)/2,

and the chi-squared approximation with the Bartlett correction is −2ρ log Λn
d−→ χ2

f , where ρ = 1−
{6(p+ 1)(k − 1)}−1(2p2 + 3p− 1){

∑k
i=1(ni − 1)−1 − (n− k)−1}.

(VI) Joint Testing the Equality of Mean Vectors and Covariance Matrices. Consider H0 : µ1 =
. . . = µk, Σ1 = . . . = Σk against Ha : H0 is not true. The likelihood ratio test statistic is Λn =

npn/2|A+B|−n/2 ×
∏k
i=1 n

−pni/2
i |Ai|ni/2. When p is fixed and min1≤i≤k ni →∞, the chi-squared

approximation is −2 log Λn
d−→ χ2

f , where f = p(k − 1)(p+ 3)/2, and the chi-squared approxima-

tion with the Bartlett correction is −2ρ log Λn
d−→ χ2

f , where ρ = 1− {6(k − 1)(p+ 3)}−1(2p2 + 9p+

11)(
∑k
i=1 n

−1
i − n−1).

For the likelihood ratio tests (IV)–(VI), Theorem A.1 gives the phase transition boundaries of the chi-
squared approximations without and with the Bartlett correction.

THEOREM A.1. Assume ni > p+ 1 for i = 1, . . . , k, and there exists a constant δ ∈ (0, 1) such that
δ < ni/nj < δ−1 for any 1 ≤ i, j ≤ k. Under H0, for the chi-squared approximations without and with
the Bartlett correction, we have the following necessary and sufficient conditions:

(i) supα∈(0,1) |pr{−2 log Λn > χ2
f (α)} − α| → 0 if and only if p/nd1 → 0;

(ii) when p = o(n), supα∈(0,1) |pr{−2ρ log Λn > χ2
f (α)} − α| → 0 if and only if p/nd2 → 0,

where the values of d1 and d2 under the three testing problems are listed in the table below.

(IV) Mean (V) Covariance (VI) Joint
(i) without correction d1: 2/3 1/2 1/2
(ii) with correction d2: 4/5 2/3 2/3

In Theorem A.1, the boundedness of ni/nj suggests that the sizes of all the samples are compara-
ble. The additional regularity condition p = o(n) in (ii) specifies a local asymptotic region, which is of
practical interest, and simulation studies suggest that the conclusion can hold more generally without this
condition. With a fixed k, the phase transition boundaries in Theorem A.1 are parallel to those in The-
orem 2.1, and the analyses after Theorem 2.1 apply to Theorem A.1 similarly. Particularly, examining
covariances or not will yield different phase transition boundaries in the three problems. When k also
increases with n, the phase transition boundaries would involve k, p, and n, as illustrated in the following
proposition.
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PROPOSITION A.1. Consider n > p+ k, n− k →∞, and n− p→∞. For Λn in problem (IV), un-
der H0, as n→∞,

(i) supα∈(0,1) |pr{−2 log Λn > χ2
f (α)} − α| → 0 if and only if

√
pk(p+ k)/n→ 0;

(ii) supα∈(0,1) |pr{−2ρ log Λn > χ2
f (α)} − α| → 0 if and only if

√
pk(p2 + k2)/n2 → 0.

Proposition A.1 suggests that the total number of samples k and the dimension of each observation p
play symmetric roles in the phase transition boundary of problem (IV). When k is fixed, Proposition A.1
is consistent with Theorem A.1. To further illustrate the cases with increasing k, we consider p = bnεc
and k = bnηc, where 0 < ε, η < 1 and b·c denotes the floor of a number. Then the two phase transition
boundaries in Proposition A.1 become (i) max{ε, η}+ (ε+ η)/2 < 1 and (ii) max{ε, η}+ (ε+ η)/4 <
1, respectively. Specifically, for (i), when ε is close to 0, the largest value of η is around 2/3, and vice
versa; when ε = η, suggesting p and k are of the same order, the largest value of ε is 1/2. For (ii), when
ε is close to 0, the largest value of η is around 4/5, and vice versa; when ε = η, the largest value of ε
becomes 2/3.

In addition to the phase transition boundaries above, the following Theorem A.2, similarly to Theorem
2.2, further characterizes the accuracy of each chi-squared approximation for tests (IV)–(VI) when Wilk’s
theorem holds. Specifically, we consider p/nd1 → 0 and p/nd2 → 0 for the chi-squared approximations
without and with the Bartlett correction, respectively.

THEOREM A.2. Assume that there exists a constant δ ∈ (0, 1) such that δ < ni/nj < δ−1 for any
1 ≤ i, j ≤ k, and p→∞ as n→∞. For each likelihood ratio test (IV)–(VI), let di, i = 1, 2 take the
corresponding values in Theorem A.1. Then under H0, for any α ∈ (0, 1),

(i) when p/nd1 → 0, (1) in Theorem 2.2 holds with the value of ϑ1(n, p) listed below;
(ii) when p/nd2 → 0, (2) in Theorem 2.2 holds with the values of ϑ2(n, p) listed below.

Let Dn,r =
∑k
i=1 n

−r
i − n−r and D̃n,r =

∑k
i=1(ni − 1)−r − (n− k)−r.

(IV) Mean: ϑ1(n, p) =
p(k − 1)(p+ 2 + k)

4n
√
f

,

ϑ2(n, p) =
(k − 1)p(p2 + k2 − 2k − 4)

24n2ρ2
√
f

;

(V) Covariance: ϑ1(n, p) =
D̃n,1p(2p

2 + 3p− 1)

24
√
f

,

ϑ2(n, p) =
p(p+ 1)

24ρ2
√
f

{
(p− 1)(p+ 2)D̃n,2 − 6(k − 1)(1− ρ)2

}
;

(VI) Joint: ϑ1(n, p) =
Dn,1p

(
2p2 + 9p+ 11

)
24
√
f

,

ϑ2(n, p) =
p(p+ 3)

24ρ2
√
f

{
(p+ 1)(p+ 2)Dn,2 − 6(k − 1)(1− ρ)2

}
.

Theorem A.2 shows that for multiple-sample tests (IV)–(VI), (1) and (2) in Theorem 2.2 still hold.
However, the values of ϑ1(n, p) and ϑ2(n, p) depend on the testing problems, and are different from
those in Theorem 2.2. Similarly to Theorem 2.2, in each test (IV)–(VI), we also know that ϑ1(n, p) and
ϑ2(n, p) are of the orders of p1/d1n−1 and p2/d2n−2, respectively. Then ϑ1(n, p) exp(−z2α/2)/

√
π in (1)

and ϑ2(n, p) exp(−z2α/2)/
√
π in (2) are the leading terms of the biases of the chi-squared approximations

without and with the Bartlett correction, respectively. We can similarly use the derived asymptotic biases
to measure the approximation accuracy, and please see the simulation studies for multiple-sample tests
(IV)–(VI) in §A.3.
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Theorem A.2 focuses on the local asymptotic regime of (n, p) when Wilk’s theorem holds. When
p further increases such that Wilk’s theorem fails, the biases of the chi-squared approximations become
unignorable. The following Theorem A.3 characterizes such unignorable biases of the chi-squared approx-
imations in testing problems (IV)–(VI). Similarly to Theorem 2.3, we consider a general local asymptotic
regime p/n→ 0, which includes the case when Wilk’s theorem fails, i.e., p/nd1 6→ 0 and p/nd2 6→ 0 for
the chi-squared approximations without and with the Bartlett correction, respectively.

THEOREM A.3. Assume that there exists a constant δ ∈ (0, 1) such that δ < ni/nj < δ−1 for any
1 ≤ i, j ≤ k. Moreover, assume p→∞ and p/ni → 0 as ni →∞. For each likelihood ratio test (I)–
(III), underH0, for any α ∈ (0, 1), (3) and (4) in Theorem 2.3 hold under three testing problems (IV)–(VI)
with µn and σn listed below.

(IV) Mean: µn =
n

2

{
(n− p− k − 1/2)(Ln−1,p − Ln−k,p) + (k − 1)Ln−1,p + pLn−1,k−1

}
,

σ2
n =

1

2

(
Ln−1,p − Ln−k,p

)
;

(V) Covariance: µn =
1

2

k∑
i=1

(ni − 1)
{

(n− p− k − 1/2)Ln−k,p − (ni − p− 3/2)Lni−1,p

}
,

σ2
n =

(n− k)2

2n2

{
Ln−k,p −

k∑
i=1

(
ni − 1

n− k

)2

Lni−1,p

}
;

(VI) Joint: µn =
1

2

[
−kp+ n

(
n− p− 3

2

)
Ln,p −

k∑
i=1

{
p

2ni
+ ni

(
ni − p−

3

2

)
Lni−1,p

}]
,

σ2
n =

1

2

(
Ln,p −

k∑
i=1

n2i
n2
× Lni−1,p

)
.

Theorem A.3 shows that (3) and (4) still hold for multiple-sample tests (IV)–(VI), where the values
of µn and σ2

n depend on the specific testing problem. Similarly to Theorem 2.3, the analysis in Remark
B.3.2 also applies here, and we know that when pn−d1 6→ 0, (3) characterizes the unignorable biases for
the chi-squared approximation, and when pn−d2 6→ 0, (4) characterizes the unignorable biases for the chi-
squared approximation with the Bartlett correction. Moreover, the analysis in Remark 2.0.1 also applies
similarly to the multiple-sample tests (IV)–(VI), and thus is not repeated here.

A.2. Testing Independence between Multiple Vectors

This subsection studies testing the independence between k sets of multivariate normal variables. Sup-
pose x1, . . . , xn ∈ Rp are independent and identically distributed Np(µ,Σ) random vectors, and we par-
tition xi and Σ as xi = (ξT

i1, . . . , ξ
T

ik)T and Σ = (Σjl)1≤j,l≤k, respectively, where ξi,j is of size pj × 1,
Σjl is a pj × pl sub-matrix of Σ, and

∑k
j=1 pj = p. In this subsection, we define x = n−1

∑n
i=1 xi,

ξ̄j = n−1
∑n
i=1 ξij , A =

∑n
i=1(xi − x)(xi − x)T, and Ajj =

∑n
i=1(ξij − ξ̄j)(ξij − ξ̄j)T.

(VII) Testing Independence of Subvectors of Multivariate Normal Distribution. For the multivari-
ate normal distribution, testing the independence between k sets of vectors ξi,1, . . . , ξi,k is equiv-
alent to testing H0 : Σjl = 0, for 1 ≤ j < l ≤ k, against Ha : H0 is not true. The likelihood ratio
statistic is Λn = |A|n/2

∏k
j=1 |Ajj |−n/2. When p1, . . . , pk are fixed, the chi-squared approximation is

−2 log Λn
d−→ χ2

f , where f = (p2 −
∑k
i=1 p

2
i )/2; the chi-squared approximation with the Bartlett correc-

tion is −2ρ log Λn
d−→ χ2

f , where ρ = 1− (3/2n)−1 − {3n(p2 −
∑k
i=1 p

2
i )}−1(p3 −

∑k
i=1 p

3
i ).

Theorem A.4 below gives the phase transition boundaries of the chi-squared approximations without
and with the Bartlett correction for test (VII).

THEOREM A.4. Assume n > p+ 1 and there exists δ ∈ (0, 1) such that δ < pi/pj < δ−1 for 1 ≤
i, j ≤ k. For Λn in problem (VII), under H0, as n→∞,
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(i) supα∈(0,1) |pr{−2 log Λn > χ2
f (α)} − α| → 0 if and only if p/n1/2 → 0;

(ii) when p = o(n), supα∈(0,1) |pr{−2ρ log Λn > χ2
f (α)} − α| → 0 if and only if p/n2/3 → 0.

The phase transition boundaries in Theorem A.4 are consistent with those in Theorems 2.1 and A.1 for
testing problems (II), (III), (V), and (VI). This is reasonable because testing independence between multi-
variate normal vectors examines the structures of covariance matrices. In Theorem A.4, the boundedness
of pi/pj suggests that the dimensions of the multiple vectors are comparable. The following Proposition
A.2 relaxes this constraint for k = 2, a case closely related to the canonical correlation analysis.

PROPOSITION A.2. Consider n > p1 + p2 and n−max{p1, p2} → ∞. For Λn in problem (VII), un-
der H0, as n→∞,

(i) supα∈(0,1) |pr{−2 log Λn > χ2
f (α)} − α| → 0 if and only if

√
p1p2(p1 + p2)/n→ 0;

(ii) supα∈(0,1) |pr{−2ρ log Λn > χ2
f (α)} − α| → 0 if and only if

√
p1p2(p21 + p22)/n2 → 0.

Proposition A.2 shows that the effects of p1 and p2 on the phase transition boundaries are symmetric. To
further illustrate, consider p1 = bnεc and p2 = bnηc, where 0 < ε, η < 1. Then the two phase transition
boundaries in Proposition A.2 become (i) max{ε, η}+ (ε+ η)/2 < 1 and (ii) max{ε, η}+ (ε+ η)/4 <
1, respectively. When ε = η, i.e., p1 and p2 are of the same order, the largest value of ε and η achievable is
(i) 1/2 and (ii) 2/3 respectively, which are consistent with Theorem A.4. When η is close to 0, the largest
value of ε is (i) 2/3 and (ii) 4/5 respectively. Therefore when one set of the vectors is of finite dimension,
the chi-squared approximations without and with the Bartlett correction can be applied when p/n2/3 → 0
and p/n4/5 → 0, respectively. This demonstrates an interesting phenomenon that for the phase transition
boundary, the growth rate of p changes as the ratio of p1 and p2 varies.

Similarly to Theorems 2.2 and A.2, the following Theorem A.5 further characterizes the accuracy of
the chi-squared approximation under the asymptotic regime where p satisfies the corresponding necessary
and sufficient conditions in Theorem A.4.

THEOREM A.5. Assume that there exists δ ∈ (0, 1) such that δ < pi/pj < δ−1 for 1 ≤ i, j ≤ k, and
p→∞ as n→∞. Let d1 = 1/2 and d2 = 2/3 as in Theorem A.4. For Λn in problem (VII), under H0,
for any α ∈ (0, 1),

(i) when p/nd1 → 0, (1) in Theorem 2.2 holds with the value of ϑ1(n, p) below;
(ii) when p/nd2 → 0, (2) in Theorem 2.2 holds with the value of ϑ2(n, p) below.

Let Dp,r = pr −
∑k
j=1 p

r
j . Then

ϑ1(n, p) =
2Dp,3 + 9Dp,2

24n
√
f

, ϑ2(n, p) =
1

(ρn)2
√
f

(
1

24
Dp,4 −

5Dp,2

48
−

D2
p,3

36Dp,2

)
.

Similar to Theorems 2.2 and A.2, Theorem A.5 focuses on the local asymptotic regime when Wilk’s
theorem holds, and we know from a similar analysis that (1) and (2) provide useful information on the
accuracy of the chi-squared approximations. Please see the simulations for test (VII) in §A.3. When p
further increases such that Wilk’s theorem fails, the following Theorem A.6 characterizes the unignorable
chi-squared approximation biases for test (VII) similarly as in Theorems 2.3 and A.3.

THEOREM A.6. Assume that there exists δ ∈ (0, 1) such that δ < pi/pj < δ−1 for 1 ≤ i, j ≤ k, and
p→∞ and p/n→ 0 as n→∞. For Λn in problem (VII), under H0, as n→∞, for any α ∈ (0, 1), (3)
and (4) in Theorem 2.3 hold with µn and σn listed below.

µn =
n

2

[
−
(
n− p− 3

2

)
Ln−1,p +

k∑
j=1

{(
n− pj −

3

2

)
Ln−1,pj

}]
,

σ2
n =

1

2

(
− Ln−1,p +

k∑
j=1

Ln−1,pj

)
.
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Note that Theorem A.6 is analogous to Theorems 2.3 and A.3, and therefore similar analyses and
conclusions as in Remarks 2.0.1 and B.3.2 also hold for test (VII), which are not repeated here.

A.3. Additional Simulations

We next introduce the simulation settings of each test and afterwards analyze the numerical results.

A.3.1. One-Sample Tests (I)–(III). Similarly to Section 3, under the null hypothesis of each one-
sample test (I)–(III), we set µ = (0, . . . , 0)T and Σ = Ip.
(1) On the phase transition boundaries. We take p = bnεc, where n ∈ {100, 500, 1000, 5000} and ε ∈
{6/24, . . . , 23/24}. We next plot the empirical type-I error rates (over 1000 replications) versus ε for
each chi-squared approximation in Fig. 2. We still include the results in § 3 for easy presentation of the
figure.
(2) On the asymptotic biases. To evaluate the asymptotic biases in Theorems 2.2 and 2.3, we take p =
bnεc, where n ∈ {100, 500} and ε ∈ (0, 1). The results of n = 100 and 500 (over 3000 replications) are
given in Fig. 4 and Fig. 5, respectively. In each setting, the range of ε is chosen such that the largest
empirical type-I error is below 0.5.

To facilitate the presentation of figures and the discussions below, we define

$1 = ϑ1(n, p) exp(−z2α/2)/
√
π, $3 = Φ̄

[{
χ2
f (α) + 2µn

}
/(2nσn)

]
− α,

$2 = ϑ2(n, p) exp(−z2α/2)/
√
π, $4 = Φ̄

[{
χ2
f (α) + 2ρµn

}
/(2ρnσn)

]
− α.

Then $1, $2, $3, and $4 denote the asymptotic biases in (1)–(4), respectively. For each test in Fig. 4
and Fig. 5, we plot $1 and $2 in the subfigures in the columns (a) and (c), respectively. Similarly to
§ 3, to better characterize each approximation bias when ε is beyond the corresponding phase transition
boundary, we combine the results in Theorem 2.2 and those in Theorem 2.3. Specifically, in the column
(b) of Fig. 4 and Fig. 5, we plot Mc($1, $3) ≡ $11{$1 < c}+ max{$1, $3}1{$1 ≥ c}, where 1{·}
denotes an indicator function, and c denotes a small positive threshold, and we choose c = 0.002 in the
simulations. This definition of Mc($1, $3) suggests that $1 is used when the approximation bias is
smaller than c, and max{$1, $3} is used when the approximation bias becomes larger. Similarly, we
define Mc($2, $4) ≡ $21{$2 < c}+ max{$2, $4}1{$2 ≥ c}, and plot it in the column (d) of Fig. 4
and Fig. 5.

Remark A.3.1. For each chi-squared approximation, max{$1, $3} already characterizes the bias well
most of the time. We use Mc($1, $3) instead of max{$1, $3} because $3 can mistakenly indicate a
large bias under small ε, especially when n is small. Compared to max{$1, $3}, Mc($1, $3) does not
use $3 when $1 indicates that the bias is still small. As long as c is sufficiently small but not too close
to zero, Mc($1, $3) will not take the wrong value given by $3, and thus gives a good evaluation of
the approximation bias under a wide range of ε values. Despite the difference between Mc($1, $3) and
max{$1, $3}, we note that Mc($1, $3) is equal to max{$1, $3} under most cases. For instance, in
all our simulations with n = 500 and c = 0.002, Mc($1, $3) = max{$1, $3}. Thus in § 3, we did not
highlight this difference. When the Bartlett correction is used, we know that similar analysis applies to
max{$2, $4} and Mc($2, $4).

A.3.2. Multiple-Sample Tests (IV)–(VI). Consider k = 3, n1 = n2 = n3, and n = n1 + n2 + n3. Un-
der the null hypothesis of each multiple-sample test (IV)–(VI), we set µi = (0, . . . , 0)T, and Σi = Ip for
i = 1, 2, 3.
(1) On the phase transition boundaries. Let p = bnεc, where n = n1 + n2 + n3 and ni ∈
{100, 500, 1000, 5000} for i = 1, 2, 3. We then plot the empirical type-I error rates (over 1000 replica-
tions) versus ε for each chi-squared approximation in Fig. 3.
(2) On the asymptotic biases. To evaluate the asymptotic biases in Theorems A.2 and A.3, we take p =
bnεc, where n = n1 + n2 + n3, ni ∈ {100, 500} for i = 1, 2, 3, and ε ∈ (0, 1). The results of ni = 100
and 500 (over 3000 replications) are given in Fig. 6 and Fig. 7, respectively. Similarly to Fig. 4 and Fig.
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5, in each row of Fig. 6 and Fig. 7, the lines with dot markers in the four columns (a)–(d) give $1,
Mc($1, $3), $2, and Mc($2, $4), respectively.

A.3.3. Testing Independence between Multiple Tests (VII). Consider k = 3. Under the null hypothesis
of test (VII), we set µ = (0, . . . , 0)T and Σ = Ip.
(1) On the phase transition boundaries. Let p = bnεc, where ε ∈ {6/24, 7/24, . . . , 23/24} and n ∈
{100, 500, 1000, 5000}. Under each (n, p), we set p1 = p2 = bp/3c and p3 = p− p1 − p2, and then plot
the empirical type I error (over 1000 replications) versus ε in Fig. 3.
(2) On the asymptotic biases. To evaluate the asymptotic biases in Theorems A.5 and A.6, we set p = bnεc,
where n ∈ {100, 500} and ε ∈ (0, 1). Under each (n, p), we take p1 = p2 = bp/3c and p3 = p− p1 − p2.
The results of n = 100 and 500 (over 3000 replications) are given in Fig. 8 and Fig. 9, respectively.
Similarly to Figures 4–7, in Fig. 8 and Fig. 9, the lines with dot markers in the four columns (a)–(d) give
$1, Mc($1, $3), $2, and Mc($2, $4), respectively.

We next analyze the simulation results. First, as shown in Figures 2 and 3, the theoretical phase tran-
sition boundary, denoted by a vertical line, is observed to be consistent with where each chi-squared
approximation starts to fail. For instance, the two plots in the first row of Fig. 2 show that for test (I),
the type-I error rates of the chi-squared approximations without and with the Bartlett correction begin to
inflate when ε is around 2/3 and 4/5, respectively. These are consistent with d1 = 2/3 and d2 = 4/5 for
test (I) in Theorem 2.1. Similarly for other tests, we can see that the numerical results are also consistent
with the corresponding conclusions in Theorems 2.1, A.1, and A.4.

Second, similarly to § 3, the results in Figures 4–9 show that the derived theoretical asymptotic biases
provide good evaluations of the corresponding chi-squared approximation biases. From the subfigures
in the column (a) of Figures 4–9, we can see that as ε increases, the empirical type-I error inflates, and
$1 also increases accordingly. At the ε values where the type-I error begins to inflate, the difference
between the empirical type-I error and$1 is close to 0.05, as shown by the circle line, which suggests that
$1 approximates the chi-squared approximation bias pr{−2 log Λn > χ2

f (α)} − α well in this regime.
When ε further increases beyond the corresponding phase transition boundary, the asymptotic bias $1

keeps increasing, and its large value indicates the failure of the chi-squared approximation, even though
now $1 underestimates the approximation bias in this regime. To better characterize the approximation
bias when ε is beyond the phase transition boundary, we combine $1 and $3 by plotting Mc($1, $3) in
the column (b) of Figures 4–9. The results suggest that utilizing the two asymptotic biases in (1) and in (3)
together can give a good evaluation of the approximation bias under a wide range of ε values, either below
or above the phase transition boundary. Moreover, in each subfigure in the column (b), we also highlight
the location with x-axis ε∗ where Mc($1, $3) starts to be larger than $1 (the plus sign). When ε < ε∗,
Mc($1, $3) = $1, indicating that $1 approximates the bias better than $3 does in this regime, while
$3 performs better than $1 when ε ≥ ε∗. Similarly, for the chi-squared approximation with the Bartlett
correction, similar conclusions can be obtained by the results in the columns (c) and (d) of Figures 4–9.

The simulations under the finite sample suggest that the derived asymptotic biases can be used as prac-
tical guidelines for the considered likelihood ratio tests. Specifically, when using the chi-squared approxi-
mation in each test, similarly to our recommendation in § 3, the practitioners can compare the asymptotic
bias, either $1 or Mc($1, $3), with a small threshold value that they may specify in advance, e.g.,
0.01–0.02. If the asymptotic bias is larger than the threshold, the chi-squared approximation should not be
directly used, and other methods would be needed. In addition, when using the chi-squared approximation
with the Bartlett correction in each test, we can compare the asymptotic bias, either $2 or Mc($2, $4)
with the pre-specified threshold value. Similarly, if the asymptotic bias is larger than the threshold, the
chi-squared approximation with the Bartlett correction should not be directly applied, and other methods
would be needed.
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(i) Without the Bartlett correction
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(ii) With the Bartlett correction correction

Fig. 2: One-sample tests (I)–(III). Rows 1-3 give the results for tests (I)–(III), respectively. Columns (i) and
(ii) correspond to the chi-squared approximations without and with the Bartlett correction, respectively.
Within each subfigure: empirical type-I error versus ε with n = 100 (cross), 500 (asterisk), 1000 (square),
and 5000 (triangle); theoretical phase transition boundary (vertical dashed line).
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(i) Without the Bartlett correction
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Fig. 3: Multiple-sample tests (IV)–(VI) and the independence test (VII). Rows 1-4 give results for tests
(IV)–(VII), respectively. Columns (i) and (ii) are for the chi-squared approximations without and with the
Bartlett correction, respectively. Within each subfigure, please see the caption description in Fig. 2.
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B. PROOF ILLUSTRATION WITH PROBLEM (III)

In this section, we illustrate the proofs of Theorems 2.1–2.3 by focusing on the testing problem (III),
which jointly tests the the one-sample mean vector and covariance matrix. Other testing problems (I)–(II)
and (IV)–(VII) can be proved following a similar analysis, and are discussed in Section C. We define some
notation to facilitate the proofs. For two sequences of numbers {an;n ≥ 1} and {bn;n ≥ 1}, an = O(bn)
denotes lim supn→∞ |an/bn| <∞; an = o(bn) denotes limn→∞ an/bn = 0; an = Θ(bn) represents
that an = O(bn) and bn = O(an) hold simultaneously; an ∼ bn denotes limn→∞ |an/bn| = 1.

B.1. Proof of Theorem 2.1 (III)

When p is fixed, the chi-squared approximations hold by the classical multivariate analysis (Anderson,
2003; Muirhead, 2009). Therefore, without loss of generality, the proofs below focus on p→∞.

Deriving the necessary and sufficient conditions for the chi-squared approximations requires the correct
understanding of the limiting behavior of log Λn under both low and high dimensions. Particularly, we
examine the limiting distribution of the log likelihood ratio test statistic log Λn based on the moment
generating function of log Λn, that is, E{exp(t log Λn)}. For Λn in question (III), by Theorem 8.5.3 and
Corollary 8.5.4 in Muirhead (2009), we have that under H0,

E{exp(t log Λn)} = E(Λtn) =

(
2e

n

)npt/2
(1 + t)−np(1+t)/2 × Γp[{n(1 + t)− 1}/2]

Γp{(n− 1)/2}
, (B.1)

where Γp(·) is the multivariate Gamma function; see Definition 2.1.10 in Muirhead (2009).
When p is fixed, the moment generating function of −2 log Λn approximates that of a chi-squared

variable χ2
f , where f = p(p+ 3)/2; see, Sections 8.2.4 and 8.5 in Muirhead (2009). When p→∞, Jiang

and Yang (2013) and Jiang and Qi (2015) derived an approximate expansion of the multivariate Gamma
function, and their Theorem 5 utilized (B.1) to show that under the conditions of Theorem 2.1,

E[exp{s(−2 log Λn + 2µn)/(2nσn)}]→ exp(s2/2), (B.2)

where exp(s2/2) is the moment generating function of N (0, 1), and

µn = −1

4

{
n(2n− 2p− 3) log

(
1− p

n− 1

)
+ 2(n+ 1)p

}
, (B.3)

σ2
n = −1

2

{
p

n− 1
+ log

(
1− p

n− 1

)}
. (B.4)

We next prove (i) in Theorem 2.1 when p→∞ based on (B.2). Particularly, we write

sup
α∈(0,1)

∣∣pr{−2 log Λn > χ2
f (α)} − α

∣∣ = sup
α∈(0,1)

∣∣∣pr(Tn > qn,α)− Φ̄(qn,α) + Φ̄(qn,α)− Φ̄(zα)
∣∣∣, (B.5)

where Tn = (−2 log Λn + 2µn)/(2nσn), qn,α = {χ2
f (α) + 2µn}/(2nσn), and Φ̄(·) = 1− Φ(·) with

Φ(·) being the cumulative distribution function of N (0, 1). Since (B.2) suggests that Tn converges to
N (0, 1) in distribution, and the cumulative distribution function of N (0, 1) is continuous, by Pólya-
Cantelli Lemma (see, e.g., Lemma 2.11 in Van der Vaart (2000)), we have supα∈(0,1) |pr(Tn > qn,α)−
Φ̄(qn,α)| → 0. Consequently, (B.5)→ 0 if and only if supα∈(0,1) |Φ̄(qn,α)− Φ̄(zα)| → 0,which is equiv-
alent to supα∈(0,1) |qn,α − zα| → 0, as Φ̄(·) is a continuous and strictly decreasing function with bounded
derivative. Since χ2

f can be viewed as a summation over f independent χ2
1 variables, and f →∞ as

p→∞, we can apply BerryEsseen theorem to χ2
f variable, and obtain

sup
α∈(0,1)

∣∣{χ2
f (α)− f}/

√
2f − zα

∣∣ = O(f−1/2). (B.6)
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Therefore, supα∈(0,1) |qn,α − zα| → 0 is equivalent to√
2f × (2nσn)−1 → 1, (B.7)

(O(1) + f + 2µn)× (2nσn)−1 → 0. (B.8)

Following similar analysis, we know that under the conditions of Theorem 2.1 and p→∞, for the chi-
squared approximation with the Bartlett correction, supα∈(0,1) |pr{−2ρ log Λn > χ2

f (α)} − α| holds if
and only if √

2f × (2nρσn)−1 → 1, (B.9)

(O(1) + f + 2ρµn)× (2nρσn)−1 → 0. (B.10)

We next examine (B.7)–(B.8) and (B.9)–(B.10) for the chi-squared approximation without and with the
Bartlett correction, respectively.

(III.i) The chi-squared approximation. We next discuss two cases limn→∞ p/n = 0 and
limn→∞ p/n = C ∈ (0, 1], respectively.

Case (III.i.1) limn→∞ p/n = 0. Under this case, we prove that (B.7) holds. As
√

2f ∼ p, it is equivalent
to show that p/(2nσn)→ 1. By Taylor’s expansion of σ2

n in (B.4), we have

2σ2
n = − p

n− 1
− log

(
1− p

n− 1

)
=

p2

2(n− 1)2
+ o

(
p2

n2

)
,

and therefore
√

2f × (2nσn)−1 → 1. We next show that (B.8) holds if and only if p2/n→ 0. Given
(B.7) and

√
2f ∼ p, (B.8) is equivalent to (f + 2µn)/p→ 0. By p/n = o(1) and Taylor’s expansion of

log(1− x), for µn in (B.3), we have

4µn/p = − 2(n+ 1) + n(2n− 2p− 3)

{
1

n− 1
+

p

2(n− 1)2
+

p2

3(n− 1)3
+O

(
p3

n4

)}
(B.11)

= − 2(n+ 1) + (2n− 2p− 3)

{
1 +

p

2(n− 1)
+

p2

3(n− 1)2

}
+ 2 + o(1) +O

(
p3

n2

)
= − 2p− 3 +

(2n− 2p− 3)p

2(n− 1)
+

(2n− 2p− 3)p2

3(n− 1)2
+ o(1) +O

(
p3

n2

)
.

As 2f/p = p+ 3, we obtain

2× (f + 2µn)/p = − p+
{2(n− 1)− 2p− 1}p

2(n− 1)
+

2p2

3(n− 1)
+ o(1) +O

(
p3

n2

)
(B.12)

= − p2

3(n− 1)
+ o(1) +O

(
p3

n2

)
.

Therefore when p/n→ 0, (B.8) holds if and only if p2/n→ 0.

Case (III.i.2) limn→∞ p/n = C ∈ (0, 1]. Under this case, we have√
2f × (2nσn)−1 ∼ p(2nσn)−1 ∼ C(2σn)

−1
. (B.13)

If C = 1, σ2
n →∞ and thus (B.13)→ 0. If C ∈ (0, 1), we have C(2σn)−1 ∼ C[−2{C + log(1−

C)}]−1/2 < 1 when 0 < C < 1. In summary, (B.7) does not hold, which suggests that the chi-squared
approximation fails.

Finally, we consider a general sequence p/n = pn/n ∈ [0, 1], where we write p as pn to emphasize that
p changes with n. Similarly, we also write f as fn. Note that a sequence converges if and only if every
subsequence converges. For the sequence {pn/n}, by the BolzanoWeierstrass theorem, we can further
take a subsequence {nt} such that pnt/nt → C ∈ [0, 1]. If C ∈ (0, 1], the above analysis still applies,
which shows that the chi-squared approximation fails. Alternatively, if all the subsequences of {p/n}
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converge to 0, we know p/n→ 0. In summary, the above analysis shows that (B.7) and (B.8) hold if and
only if p2/n→ 0.

(III.ii) The chi-squared approximation with the Bartlett correction. Similarly to the analysis above, we
discuss two cases limn→∞ p/n = 0 and limn→∞ p/n = C ∈ (0, 1], respectively.

Case (III.ii.1) limn→∞ p/n = 0. Under this case, we know (B.9) holds since ρ = 1 +O(p/n)→ 1 and
p/(2nσn)→ 1 as shown in Case (III.i.1) above. Given (B.9), deriving the condition for (B.10) is equiva-
lent to examine when p−1(f + 2ρµn)→ 0. Following the analysis of (B.12), we further obtain

2× (f + 2µn)/p = (p+ 3)− 2(n+ 1) + n(2n− 2p− 3)
4∑
j=1

pj−1

j(n− 1)j
+O

(
p4

n3

)
(B.14)

= − p2

3(n− 1)
− p3

6(n− 1)2
+O

(
p4

n3

)
+ o(1).

We write ρ = 1−∆n where ∆n = {6n(p+ 3)}−1(2p2 + 9p+ 11), which is O(p/n). By (B.12), we
have 4µn/p = −p− 3− p2/{3(n− 1)}+ o(1) +O(p3n−2). Together with (B.14), we have

2× (f + 2ρµn)/p = 2× (f + 2µn)/p− 4∆n × µn/p (B.15)

= − p2

3(n− 1)
− p3

6(n− 1)2
−∆n

{
−p− 3− p2

3(n− 1)

}
+O

(
p4

n3

)
+ o(1)

= − p2

3(n− 1)
− p3

6(n− 1)2
+

2p2(p+ 3)

6n(p+ 3)
+

2p2 × p2

6n(p+ 3)× 3(n− 1)
+O

(
p4

n3

)
+ o(1)

= − p3

18n2
+O

(
p4

n3

)
+ o(1).

Therefore under this case (B.10) holds if and only if p3/n2 → 0.

Case (III.ii.2): When limn→∞ p/n = C ∈ (0, 1], we have ρ→ 1− C/3 and√
2f × (2nρσn)−1 ∼ C × (1− C/3)−1(2σn)−1.

Similarly to the Case (III.i.2) above, if C = 1, (B.9)→ 0; if C ∈ (0, 1), we have C(1−
C/3)−1(2σn)−1 ∼ C(1− C/3)−1[−2{C + log(1− C)}]−1/2 < 1 when 0 < C < 1. In summary, (B.9)
does not hold, which suggests the failure of the chi-squared approximation with the Bartlett correction.

For a general sequence p/n = pn/n ∈ [0, 1], the analysis of taking subsequences above can be ap-
plied similarly. In summary, we know that for the likelihood ratio test in problem (III), the chi-squared
approximation with the Bartlett correction holds if and only if p3/n2 → 0.

B.2. Proof of Theorem 2.2 (III)

Similarly to §B.1, in this subsection, we prove Theorem 2.2 for problem (III) as an illustration example,
while the proofs of other problems are similar and the details are provided in §C.3. Particularly, we prove
Theorem 2.2 for problem (III) by examining the characteristic function of −2η log Λn, where η = 1 or
η = ρ, and ρ is the corresponding Bartlett correction factor, given in § 2. The following Lemma B.2.1
gives an asymptotic expansion for the characteristic function E{exp(−2itη log Λn)}, where the notation
i is reserved to denote the solution of the equation x2 = −1, i.e., the imaginary unit.

LEMMA B.2.1. Under H0 of the testing problem (III), when η = 1 or η = ρ with the Bartlett correc-
tion factor ρ in § 2, the characteristic function of −2η log Λn satisfies that for a given integer L, when
pL+2/nL → 0,

E{exp(−2itη log Λn)} = (1− 2it)−f/2 exp

[
L−1∑
l=1

ςl
{

(1− 2it)−l − 1
}

+O

(
pL+2

nL

)]
,
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where f = p(p+ 3)/2 is the corresponding degrees of freedom, and

ςl =
(−1)l+1

l(l + 1)

p∑
j=1

{
Bl+1

(
(1− η)n

2
− j

2

)
−
(

(1− η)n

2

)l+1
}(ηn

2

)−l
. (B.16)

For any integer l ≥ 1, Bl(·) represents the Bernoulli polynomial of degree l; see, e.g., Eq. (25) in Section
8.2.4 of Muirhead (2009).

Proof. Section D.2.1 on Page 55. �

With Lemma B.2.1, we next prove (1) and (2) in Theorem 2.2 for the chi-squared approximations without
and with the Bartlett correction, respectively.

(i) The chi-squared approximation. When ρ = 1, as Bl+1(·) is a polynomial of order l + 1, we have
ςl = O(pl+2n−l) for l ≥ 2, and we can check that ς1 = Θ(p3n−1); see (B.23). Thus when p2/n→ 0,
ςl → 0 for l ≥ 2. Let Ψ(t) = E{exp(−2it log Λn)}. Then by Lemma B.2.1,

Ψ(t) = (1− 2it)−f/2

{
exp

[
2∑
l=1

ςl
{

(1− 2it)−l − 1
}

+O
(
p5n−3

)]}
. (B.17)

By Taylor’ expansion, we can write exp[ςl{(1− 2it)−l − 1}] = 1 + Vl(t), where

Vl(t) =

∞∑
v=1

ςvl
v!

v∑
w=0

(
v

w

)
(1− 2it)−lw(−1)v−w. (B.18)

Then by (B.17) and p2/n→ 0, we have Ψ(t) = Ψ̃(t){1 +O(p5/n3)}, where

Ψ̃(t) = (1− 2it)−f/2
{

1 + V1(t)
}{

1 + V2(t)
}

= (1− 2it)−f/2 +
∞∑
v=1

ςv1
v!

v∑
w=0

(
v

w

)
(1− 2it)−f/2−w(−1)v−w (B.19)

+
∞∑
v=1

ςv2
v!

v∑
w=0

(
v

w

)
(1− 2it)−f/2−2w(−1)v−w

+
∑

v1≥1; 0≤w1≤v1
v2≥1; 0≤w2≤v2

ςv11 ςv22
v1!v2!

(
v1
w1

)(
v2
w2

)
(1− 2it)−f−w1−2w2(−1)v1−w1+v2−w2 .

Note that (1− 2it)−f/2 is the characteristic function of χ2
f distribution. Following similar analysis to

Section 8.5 in Anderson (2003), we use the inversion property of the characteristic function, and then by
(B.19), we obtain that

Pr(−2 log Λn ≤ x) (B.20)

=

{
Pr(χ2

f ≤ x) +
∞∑
v=1

ςv1
v!

v∑
w=0

(
v

w

)
Pr(χ2

f+2w ≤ x)(−1)v−w

+
∞∑
v=1

ςv2
v!

v∑
w=0

(
v

w

)
Pr(χ2

f+4w ≤ x)(−1)v−w

+
∑

v1≥1; 0≤w1≤v1
v2≥1; 0≤w2≤v2

ςv11 ςv22
v1!v2!

(
v1
w1

)(
v2
w2

)
Pr(χ2

2f+2w1+4w2
≤ x)(−1)v1−w1+v2−w2

}{
1 +O

(
p5

n3

)}
.

(From (B.19) to (B.20), Fubini’s theorem is implicitly used to exchange the order of the infinite sum
and the integration of characteristic functions.) We next utilize the following Propositions B.1 and B.2 to
evaluate (B.20).
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PROPOSITION B.1. Given an integer h ∈ {1, 2, 3, 4}, when x = χ2
f (α), there exists a constant C such

that as f →∞,
v∑

w=0

(
v

w

)
Pr(χ2

f+2hw ≤ x)(−1)v−w = O(v!Cvf−v/2) (B.21)

uniformly over v ≥ 1.

Proof. Please see Section D.2.4 on Page 58. �

PROPOSITION B.2. For (h1, h2) = (1, 2) or (h1, h2) = (2, 3), when x = χ2
f (α), there exists a con-

stant C such that as f →∞,
v1∑

w1=0

v2∑
w2=0

(
v1
w1

)(
v2
w2

)
Pr(χ2

2f+2h1w1+2h2w2
≤ x)(−1)v1−w1+v2−w2

= O{v1!v2!Cv1+v2f−(v1+v2)/2}

uniformly over v1, v2 ≥ 1.

Proof. Please see Section D.2.5 on Page 63. �

Remark B.2.1. In Propositions B.1 and B.2, C denotes a universal constant and its value can change.
This is similarly used in the following proofs. In addition, for a series {bv,f} that depends on positive
integers v and f , we say bv,f = O(v!Cvf−v/2) as f →∞ and uniformly over v ≥ 1, if there exists a
constant C such that supv≥1 lim supf→∞ |bv,f/(v!Cvf−v/2)| <∞.

When x = χ2
f (α) and f →∞, we apply Proposition B.1 with h = 1 and h = 2, and Proposition B.2 with

(h1, h2) = (1, 2) to (B.20). Then as ς1 = Θ(p3n−1), ς2 = O(p4n−2), and f = Θ(p2), when p→∞ and
p2/n→ 0, we obtain

Pr(−2 log Λn ≤ x) = Pr(χ2
f ≤ x) + ς1

{
Pr(χ2

f+2 ≤ x)− Pr(χ2
f ≤ x)

}
+ o(p2/n). (B.22)

We next compute ς1. Particularly, for the chi-squared approximation, ρ = 1, and then by (B.16),

ς1 =
1

2

p∑
j=1

B2

(
− j

2

)(n
2

)−1
=

1

24n
p
(
2p2 + 9p+ 11

)
, (B.23)

where we use B2(z) = z2 − z + 1/6; see, e.g., Eq. (26) in Section 8.2.4 of Muirhead (2009). To finish
the proof of (1), we use the following lemma.

LEMMA B.2.2. When x = χ2
f (α) and f →∞, for h ∈ {1, 2, 3, 4},

Pr(χ2
f+2h ≤ x)− Pr(χ2

f ≤ x) = −
h∑
k=1

{
Γ

(
f

2
+ h− k + 1

)}−1 (x
2

) f
2 +h−k

e−x/2 (B.24)

= − h√
fπ

exp

(
−z

2
α

2

){
1 +O(f−1/2)

}
. (B.25)

Proof. Please see Section D.2.3 on Page 57. �

As p→∞, f →∞. Then by (B.22) and (B.23), and applying Lemma B.2.2 with h = 1, (1) is proved,
where ϑ1(n, p) = ς1/

√
f .

(ii) The chi-squared approximation with the Bartlett correction. Similarly to the proof in Part (i) above,
we prove (2) by examining the expansion of the characteristic function in Lemma B.2.1. In particular, for
the chi-squared approximation with the Bartlett correction, we note that the Bartlett correction factor ρ is
chosen such that ς1 = 0 (see Section 8.5.3 in Muirhead (2009)). This can be checked by plugging ρ = 1−
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{6n(p+ 3)}−1(2p2 + 9p+ 11) into (B.16) to calculate ς1. In addition, by B3(z) = z3 − 3z2/2 + z/2
(see, e.g., Eq. (26) in Section 8.2.4 of Muirhead (2009)), we calculate

ς2 =
p(2p4 + 18p3 + 49p2 + 36p− 13)

288(p+ 3)(ρn)2
, (B.26)

and therefore ς2 = Θ(p4n−2). We redefine Ψ(t) = E{exp(−2itρ log Λn)}. Then when p3/n2 → 0, by
Lemma B.2.1, we have

Ψ(t) = (1− 2it)−f/2

{
exp

[
3∑
l=2

ςl
{

(1− 2it)−l − 1
}

+O(p6n−4)

]}
, (B.27)

where we use ς1 = 0. Similarly to (B.19), we have Ψ(t) = (1− 2it)−f/2{1 + V2(t)}{1 + V3(t)}{1 +
O(p6n−4)}. Moreover, similarly to (B.20), we obtain

pr(−2ρ log Λn ≤ x) (B.28)

=

{
Pr(χ2

f ≤ x) +
∞∑
v=1

ςv2
v!

v∑
w=0

(
v

w

)
pr(χ2

f+4w ≤ x)(−1)v−w

+
∞∑
v=1

ςv3
v!

v∑
w=0

(
v

w

)
Pr(χ2

f+6w ≤ x)(−1)v−w

+
∑

v2≥1; 0≤w2≤v2
v3≥1; 0≤w3≤v3

ςv22 ςv33
v2!v3!

(
v2
w2

)(
v3
w3

)
Pr(χ2

2f+4w2+6w3
≤ x)(−1)v2−w2+v3−w3

}{
1 +O

( p6
n4

)}
.

When x = χ2
f (α) and f →∞, we apply Proposition B.1 with h = 2 and h = 3, and Proposition B.2 with

(h1, h2) = (2, 3) to (B.28). Then as ς2 = Θ(p4/n2), ς3 = O(p5/n3), and f = Θ(p2), we know that when
p→∞ and p3/n2 → 0,

Pr(−2ρ log Λn ≤ x) = Pr(χ2
f ≤ x) + ς2

{
Pr(χ2

f+4 ≤ x)− Pr(χ2
f ≤ x)

}
+ o(p3/n2). (B.29)

By (B.26) and (B.29), and applying Lemma B.2.2 with h = 2, we prove (2), where ϑ2(n, p) = 2ς2/
√
f .

B.3. Proof of Theorem 2.3 (III)

In this section, we prove Theorem 2.3 also by examining the characteristic function of the likelihood
ratio test statistic. In particular, motivated by the limit in (B.2), we study the standardized test statistic
(−2 log Λn + 2µn)(2nσn)−1, where the values of µn and σn are given in Theorem 2.3. Under H0 of the
testing problem (III), by (B.1), the characteristic function of (−2 log Λn + 2µn)/(2nσn) is

E

{
exp

(
is× −2 log Λn + 2µn

2nσn

)}
(B.30)

=

(
2e

n

)−npti/2
(1− ti)−np(1−ti)/2 Γp[{n(1− ti)− 1}/2]

Γp{(n− 1)/2}
exp

(
µnsi

nσn

)
,

where i denotes the imaginary unit and t = s/(nσn). Then the proof of Theorem 2.3 utilizes the following
inequality result of the characteristic function.

LEMMA B.3.1 (THEOREM 1.4.9 (USHAKOV, 2011)). Let G1(x) and G0(x) be two distribution
functions with characteristic functions ψ1(s) and ψ0(s), respectively. If G0(x) has a derivative and
supxG

′
0(x) ≤ a <∞, then for any positive T and any b ≥ 1/(2π),

sup
x

∣∣G1(x)−G0(x)
∣∣ ≤ b ∫ T

−T

∣∣∣∣ψ1(s)− ψ0(s)

s

∣∣∣∣ds+
c

T
,

where c is a constant that depends on a and b.



On the Phase Transition of Wilk’s Phenomenon 29

We next prove (3) and (4) in Theorem 2.3 for the chi-squared approximations without and with the Bartlett
correction, respectively.

(i) Chi-squared approximation. We prove (3) by using Lemma B.3.1 to derive an upper bound of the
difference G1(x)−G0(x), where we consider

G1(x) = Pr

(
−2 log Λn + 2µn

2nσn
≤ x

)
, G0(x) = Φ(x);

here Φ(x) denotes the cumulative distribution function of the standard normal distribution. Then the
characteristic function of G1(x) is ψ1(s) = (B.30), and the characteristic function of G0(x) is ψ0(s) =
exp(−s2/2). To quantify ψ1(s)− ψ0(s), we use the following Lemma B.3.2.

LEMMA B.3.2. When s = o(min{(n/p)1/2, f1/6}),

logψ1(s)− logψ0(s) = O
( p
n

)
s+

(
1

p
+
p

n

)
O
(
s2
)

+O

(
s3√
f

)
. (B.31)

Proof. Please see Section D.3.1 on Page 74. �

By Lemmas B.3.1 and B.3.2, we take T = min{(n/p)(1−δ)/2, f (1−δ)/6}, where δ ∈ (0, 1) is a small
constant, and then

sup
x

∣∣G1(x)−G0(x)
∣∣ ≤ b ∫ T

−T
ψ0(s)

{
O
( p
n

)
+

(
1

p
+
p

n

)
O (s) +O

(
s2√
f

)}
ds+

c

T
. (B.32)

Since
∫ T
−T ψ0(s) <∞,

∫ T
−T ψ0(s)s <∞, and

∫ T
−T ψ0(s)s2 <∞, by f = Θ(p2) and (B.32),

sup
x

∣∣G1(x)−G0(x)
∣∣ = O

{( p
n

)(1−δ)/2
+ f−(1−δ)/6

}
.

Consider x = {χ2
f (α) + 2µn}(2nσn)−1, and then G1(x)−G0(x) gives

Pr
{
−2 log Λn ≤ χ2

f (α)
}
− Φ

{
χ2
f (α) + 2µn

2nσn

}
= O

{( p
n

)(1−δ)/2
+ f−(1−δ)/6

}
. (B.33)

Then (3) is proved by Φ̄(·) = 1− Φ(·) and Pr{−2 log Λn > χ2
f (α)} = 1− Pr{−2 log Λn ≤ χ2

f (α)}.

(ii) Chi-squared approximation with the Bartlett correction. To prove (4), we still use (B.32). Now
consider x = {χ2

f (α) + 2ρµn}(2ρnσn)−1, and then G1(x)−G0(x) gives

Pr
{
−2ρ log Λn ≤ χ2

f (α)
}
− Φ

{
χ2
f (α) + 2ρµn

2ρnσn

}
= O

{( p
n

)(1−δ)/2
+ f−(1−δ)/6

}
.

Remark B.3.1. Although Theorem 2.3 is inspired by the limit in (B.2), which was first established
in Jiang and Yang (2013), Theorem 2.3 differs from the existing results by further characterizing the
convergence rate of (B.2) by Lemma B.3.2. Particularly, Jiang and Yang (2013) proved (B.2) when s is
considered fixed and the convergence rate is not examined. On the other hand, Lemma B.3.2 allows s
changes with n and p, and the difference between the two characteristic functions is characterized by
(B.31). Technically, establishing (B.31) requires a careful investigation of the asymptotic expansion of the
gamma functions, where the technical details are given in Sections D.1 and D.3.

Remark B.3.2. Since χ2
f can be viewed as a summation over f independent χ2

1 variables, by apply-
ing the central limit theorem, we have χ2

f (α) =
√

2fzα + f +O(1), where zα denote the upper α-level
quantile of the standard normal distribution. For the problem (III), note that µn and σn in Theorem
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2.3 are the same as (B.3) and (B.4), respectively. Then by the proof of (B.7) in Section B.1, we have
2nσn/

√
2f = 1 +O(p/n). Consequently, when f →∞ and p/n→ 0,

Φ

{
χ2
f (α) + 2µn

2nσn

}
= Φ

(
zα +

f + 2µn
2nσn

)
+O

(
1√
f

)
+O

( p
n

)
.

Moreover, by (B.12), (f + 2µn)/(2nσn) ∼ −p2/(6n) when p/n→ 0. Thus −(f + 2µn)/(2nσn) =√
2ϑ1(n, p) + o(p1/d1n−1), which is of the order of p1/d1n−1 with d1 = 1/2. When p/nd1 → 0, by

α = Φ̄(zα) and Taylor’s series of Φ̄(·) at zα,

Φ̄

(
zα +

f + 2µn
2nσn

)
− α =

ϑ1(n, p)√
π

exp

(
− z2α

2

)
+ o

(
p1/d1

n

)
,

which suggests that the first two terms in the right hand side of (3) are consistent with (1). Similarly, for
the chi-squared approximation with the Bartlett correction, when f →∞ and p/n→ 0,

Φ

{
χ2
f (α) + 2ρµn

2ρnσn

}
= Φ

(
zα +

f + 2ρµn
2ρnσn

)
+O

(
1√
f

)
+O

( p
n

)
.

By (B.15), we have −(f + 2ρµn)/(2ρnσn) =
√

2ϑ2(n, p) + o(p2/d2n−2), which is of the order of
p2/d2n−2 with d2 = 2/3. Thus when p2/d2n−2 → 0, we also know that the first two terms in the right
hand side of (4) are consistent with (2). For other likelihood ratio tests (II)–(VI), similar conclusions also
hold by the proofs in Section C.1.

C. PROOFS OF OTHER PROBLEMS

In this section, we provide the proofs of other testing problems following similar arguments to that in
Section B. Particularly, for tests (I)–(II) and (IV)–(VII), Theorems 2.1, A.1 and A.4 are proved in Section
C.1; Theorems 2.2, A.2 and A.5 are proved in Section C.3, Theorems 2.3, A.3, and A.6 are proved in
Section C.4. Propositions A.1 and A.2 are proved in Section C.2.

C.1. Proof of Theorems 2.1, A.1 & A.4
When p is fixed, the chi-squared approximations hold by the classical multivariate analysis (Anderson,

2003; Muirhead, 2009). Therefore, without loss of generality, the proofs below focus on p→∞. In addi-
tion, we note that the analysis of taking subsequences in Section B.1 can be used similarly in the following
proofs, and thus we consider without loss of generality that the sequence p/n has a limit below. We next
study six likelihood ratio tests in the following subsections separately.

C.1.1. Proof of Theorem 2.1 (I): Testing One-Sample Mean Vector Similarly to the proof above, we
derive the necessary and sufficient conditions for the chi-squared approximations by examining the mo-
ment generating functions. Note that testing one-sample mean vector can be viewed as testing coefficient
vector µ of the multivariate linear regression xi = 1× µ+ εi, where εi ∼ N (0,Σ). Motivated by the ap-
proximate expansion of multivariate Gamma function in Jiang and Yang (2013), He et al. (2020) studied
the moment generating function of the likelihood ratio test in high-dimensional multivariate linear regres-
sion. Particularly, by Theorem 3 in He et al. (2020), we know that when n, p→∞ and n− p→∞, (B.2)
holds with

µn =
n

2

{
(n− p− 3/2) log

(n− p)(n− 1)

n(n− 1− p)
+ log

(
1− p

n

)
+ p log

(
1− 1

n

)}
, (C.1)

σ2
n =

1

2

{
log
(

1− p

n

)
− log

(
1− p

n− 1

)}
. (C.2)

Following the analysis in Section B.1, we know that to derive the necessary and sufficient conditions
for the chi-squared approximations without and with the Bartlett correction, it is equivalent to examine
(B.7)–(B.8) and (B.9)–(B.10), respectively, with µn in (C.1) and σn in (C.2).
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(I.i) The chi-squared approximation. When p/n→ 0, we apply Theorem 1 in He et al. (2020), and know
that (B.7)–(B.8) hold if and only if p3/n2 → 0. When p/n→ C ∈ (0, 1], we have

2σ2
n = log

{
1 +

(
1− p

n− 1

)−1 p

n(n− 1)

}
∼ C

n(1− C)
,

and then
√

2f/(2nσn) =
√

2p/(2nσn)→
√

1− C < 1. Therefore (B.7) fails, which suggests that the
classical chi-squared approximation fails.
(I.ii) The chi-squared approximation with the Bartlett correction. When p/n→ 0, we apply Theorem 2
in He et al. (2020), and know that (B.9)–(B.10) hold if and only if p5/n4 → 0. When p/n→ C ∈ (0, 1]
and n− p→∞, we have ρ ∼ 1− C/2, and then

√
2f/(2nρσn) = (1− C/2)−1

√
2p/(2nσn)→ (1−

C/2)−1
√

1− C < 1. Therefore (B.9) fails, which suggests that the classical chi-squared approximation
with the Bartlett correction fails.

C.1.2. Proof of Theorem 2.1 (II): Testing One-Sample Covariance Matrix Similarly to the proof in
Section B.1, by Theorem 1 in Jiang and Yang (2013) and Jiang and Qi (2015), we know that under the
conditions of our Theorem 2.1 and p→∞, (B.2) holds with

µn = − (n− 1)p

2
− n− 1

2
(n− p− 3/2) log

(
1− p

n− 1

)
, (C.3)

σ2
n = − 1

2

{
p

n− 1
+ log

(
1− p

n− 1

)}
× (n− 1)2

n2
. (C.4)

Following the analysis above, we know that to derive the necessary and sufficient conditions for the chi-
squared approximations without and with the Bartlett correction, it is equivalent to examine (B.7)–(B.8)
and (B.9)–(B.10), respectively, with µn in (C.3) and σn in (C.4). As analyzed in Section B.1, it suffices to
discuss two cases limn→∞ p/n = 0 and limn→∞ p/n = C ∈ (0, 1] below.
(II.i) The chi-squared approximation.

Case (II.i.1) limn→∞ p/n = 0. As
√

2f ∼ p, and (C.4) and (B.4) are asymptotically the same, by the
proof in Section B.1, we know that (B.7) holds under this case. We next show that (B.8) holds if and only
if p2/n→ 0. By (B.7) and

√
2f ∼ p, (B.8) is equivalent to p−1(f + 2µn)→ 0. By Taylor’s expansion of

µn in (C.3), we obtain

µn = − (n− 1)p

2
+

(n− 1)

2
(n− p− 3/2)

{
p

n− 1
+

p2

2(n− 1)2
+

p3

3(n− 1)3
+O

(
p4

n4

)}
.

Through calculations, we obtain

p−1(f + 2µn) = p−1 ×
{
−p

2

2
+
p2(n− p)
2(n− 1)

+
p3n

3(n− 1)2
+ o(p) +O

(
p4

n2

)}
= p−1

{
− p

3

6n
+ o(p) +O

(
p4

n2

)}
= − p

2

6n
{1 + o(1)}+ o(1),

which goes to 0 if and only if p2/n→ 0.
Case (II.i.2) limn→∞ p/n = C ∈ (0, 1]. Similarly, as (C.4) and (B.4) are asymptotically equal, we can
apply the analysis same as Section B.1, and know that the chi-squared approximation fails under this
case.
(II.ii) The chi-squared approximation with the Bartlett correction.
Case (II.ii.1) limn→∞ p/n = 0. Under this case, we know (B.9) holds since ρ = 1 +O(p/n)→ 1 and
p/(2nσn)→ 1 as shown above. Given (B.9), to prove (B.10), it is equivalent to prove p−1(f + 2ρµn)→
0. By Taylor’s expansion of µn in (C.4), we have

µn =− p(n− 1)

2
+

(n− p− 3/2)(n− 1)

2

{
p

n− 1
+

p2

2(n− 1)2
+

p3

3(n− 1)3
+

p4

4(n− 1)4
+O

(
p5

n5

)}
.
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After calculations, we obtain

2ρµn = − p
(
p+

1

2

)
+

p3

3(n− 1)
+
p2(n− p)
2(n− 1)

− p3(n− p)
6(n− 1)2

+
p3(n− p)
3(n− 1)2

− p4n

9(n− 1)3
+

p4n

4(n− 1)3
+ o(p) +O

(
p5

n3

)
.

It follows that

f + 2ρµn

= − p2

2
+
p2(n− p)
2(n− 1)

+
p3

3(n− 1)
− p3(n− p)

6(n− 1)2
+
p3(n− p)
3(n− 1)2

+
5p4n

36(n− 1)3
+ o(p) +O

(
p5

n3

)
= − p4

36n2
+ o(p) +O

(
p5

n3

)
.

Therefore p−1{f + µnρ(n− 1)} → 0 if and only if p3/n2 → 0.

Case (II.ii.2) limn→∞ p/n = C ∈ (0, 1]. Under this case, we have ρ→ 1− C/3. Similarly, as (C.4) (B.4)
are asymptotically equal, we can apply the proof same as in Section B.1, and know that the chi-squared
approximation with the Bartlett correction also fails under this case.

C.1.3. Proof of Theorem A.1 (IV): Testing the Equality of Several Mean Vectors Note that testing the
equality of several mean vectors can be viewed as testing the coefficient matrix in multivariate linear
regression; see, Section 10.7 in Muirhead (2009). Similarly to Section C.1.1, by Theorem 3 in He et al.
(2020), we know that when n, p→∞ and n− p→∞, (B.2) holds with

µn =
n

2

{
(n− p− k − 1/2) log

(n− 1− p)(n− k)

(n− p− k)(n− 1)
(C.5)

+ (k − 1) log
(n− 1− p)

(n− 1)
+ p log

(n− k)

(n− 1)

}
,

σ2
n =

1

2

{
log

(
1− p

n− 1

)
− log

(
1− p

n− k

)}
. (C.6)

Following the analysis in Section B.1, we know to derive the necessary and sufficient conditions for the
chi-squared approximations without and with the Bartlett correction, it is equivalent to examine (B.7)–
(B.8) and (B.9)–(B.10), respectively, with µn in (C.5) and σn in (C.6).

(IV.i) The chi-squared approximation. When p/n→ 0, we apply Theorem 1 in He et al. (2020), and
know that (B.7)–(B.8) hold if and only if p3/n2 → 0. When p/n→ C ∈ (0, 1] and n− p→∞, we have
σ2
n ∼ C(k − 1)/{2n(1− C)}, and then

√
2f/(2nσn) =

√
2(k − 1)p/(2nσn)→

√
1− C < 1. There-

fore (B.7) fails, which suggests that the classical chi-squared approximation fails.

(IV.ii) The chi-squared approximation with the Bartlett correction. When p/n→ 0, we apply Theorem 2
in He et al. (2020), and know that (B.9)–(B.10) hold if and only if p5/n4 → 0. When p/n→ C ∈ (0, 1]
and n− p→∞, we have ρ ∼ 1− C/2, and then

√
2f/(2nρσn) = (1− C/2)−1

√
2p/(2nσn)→ (1−

C/2)−1
√

1− C < 1. Therefore (B.9) fails, which suggests that the classical chi-squared approximation
with the Bartlett correction fails.

C.1.4. Proof of Theorem A.1 (V): Testing the Equality of Several Covariance Matrices Similarly to
the proof in Section B.1, by Theorem 4 in Jiang and Yang (2013) and Jiang and Qi (2015), we know that
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under the conditions of Theorem A.1 and p→∞, (B.2) holds with

µn =
1

4

{
(n− k)(2n− 2p− 2k − 1) log

(
1− p

n− k

)
(C.7)

−
k∑
i=1

(ni − 1) (2ni − 2p− 3) log

(
1− p

ni − 1

)}
,

σ2
n =

(n− k)2

2n2

{
log

(
1− p

n− k

)
−

k∑
i=1

(
ni − 1

n− k

)2

log

(
1− p

ni − 1

)}
. (C.8)

Following the analysis in Section B.1, we next derive the equivalent conditions for (B.7)–(B.8) and (B.9)–
(B.10), respectively, with µn in (C.7) and σn in (C.8).

(V.i) The chi-squared approximation.
Case (V.i.1) limn→∞ p/n = 0. Under this case, we show that (B.7) holds. By Taylor’s expansion,

σ2
n =

(n− k)2

2n2

[
− p

n− k
− p2

2(n− k)2
+

k∑
i=1

(
ni − 1

n− k

)2{
p

ni − 1
+

p2

2(ni − 1)2

}
+O

(
p3

n3

)]

=
(n− k)2

2n2

{
− p

n− k
+

k∑
i=1

p(ni − 1)

(n− k)2
− p2

2(n− k)2
+

kp2

2(n− k)2
+O

(
p3

n3

)}

=
(k − 1)p2

4n2
{1 + o(1)} ,

where we use ni = Θ(n). As
√

2f ∼ p
√
k − 1, we have (B.7) holds. Given (B.7), we know that (B.8) is

equivalent to (2f + 4µn)/(2p
√
k − 1)→ 0. Through Taylor’s expansion, we obtain

4µn = − p(2n− 2p− 2k − 1)− (n− p)p2

n− k
− 2(n− p)p3

3(n− k)2
+ o

(
p3

n

)
+ o(p)

+

k∑
i=1

p(2ni − 2p− 3) +

k∑
i=1

(ni − p) p2

(ni − 1)
+

k∑
i=1

2 (ni − p) p3

3 (ni − 1)
2 + o

(
p3

n

)

= p(p− kp− k + 1) +
p3

3(n− k)
−

k∑
i=1

p3

3(ni − 1)
+ o

(
p3

n

)
+ o(p).

By f = p(p+ 1)(k − 1)/2, we have

2f + 4µn =
p3

3

(
1

n− k
−

k∑
i=1

1

ni − 1

)
+ o

(
p3

n

)
+ o(p) = Θ(p3/n) + o(p), (C.9)

where we use the fact that (n− k)−1 −
∑k
i=1(ni − 1)−1 > 0. It follows that (2f + 4µn)/(2p

√
k − 1) =

Θ(p2/n), which converges to 0 if and only if p2/n→ 0.

Case (V.i.2) limn→∞ p/n = C ∈ (0, 1]. Under this case, we show that (B.7) and (B.8) do not hold at
the same time. Particularly, (B.7) and (B.8) together induce 4(µn + n2σ2

n)/(2f)→ 0, which indicates
2(µn + n2σ2

n)n−2 → 0, and thus g1(C) = 0, where we define

g1(C) = (2− C) log(1− C)−
k∑
i=1

δi(2δi − C) log(1− Cδ−1i ),

and we assume ni/n→ δi ∈ (0, 1) for i = 1, . . . , k. As p/n = (p/ni)× (ni/n) < ni/n, we have 0 <
C ≤ δi < 1 for i = 1, . . . , k. We next show that g1(C) > 0 for C ∈ (0,mini=1,...,k δi] by taking deriva-
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tive of g1(C). Specifically, by
∑k
i=1 δi = 1 and calculations, we have

g′1(C) =
k∑
i=1

δi
{
− log(1− C)− (1− C)−1 + log(1− Cδ−1i ) + δi(δi − C)−1

}
,

g′′1 (C) =
k∑
i=1

δi × C
{
−(1− C)−2 + (δi − C)−2

}
.

When 0 < C ≤ δi < 1 for i = 1, . . . , k, we have g′′1 (C) > 0 and thus g′1(C) is a monotonically increasing
function of C. As g′1(0) = 0, g′1(C) > 0 when 0 < C < 1 and then g1(C) is also monotonically increas-
ing. By g1(0) = 0, we further obtain g1(C) > 0 when 0 < C < 1, which contradicts with g1(C) = 0.
As a result, we know (B.7) and (B.8) do not hold simultaneously, which suggests that the chi-squared
approximation fails.

(V.ii) The chi-squared approximation with the Bartlett correction. When limn→∞ p/n = 0, since ρ =
1 +O(p/n)→ 1 and (B.7) is proved above, we know (B.9) holds. Given (B.9), as f ∼ p2(k − 1)/2,
to prove (B.10), it is equivalent to show (2f + 4ρµn)/p→ 0, which is also equivalent to (2f + 4µn −
4∆nµn)/p→ 0, where we redefine in this subsection that

∆n =
2p2 + 3p− 1

6(p+ 1)(k − 1)
× D̃n,1, D̃n,1 =

k∑
i=1

1

ni − 1
− 1

n− k
.

Similarly to the analysis of (C.9), through Taylor’s expansion of µn in (C.7), we obtain

2f + 4µn = −p
3

3
× D̃n,1 −

p4

6
× D̃n,2 + o

(
p4

n2

)
+ o(p), (C.10)

where D̃n,2 =
∑k
i=1(ni − 1)−2 − (n− k)−2. Moreover, by (C.9) and ∆n = O(p/n) = o(1), we have

4∆nµn = ∆n

(
−p

3

3
× D̃n,1 − 2f

)
+ o

(
p4

n2

)
+ o(p), (C.11)

Combining (C.10) and (C.11), we have

2f + 4µn − 4∆nµn = − p3

3
× D̃n,1 −

p4

6
× D̃n,2 + ∆n

(
p3

3
× D̃n,1 + 2f

)
+ o

(
p4

n2

)
+ o(p),

=
p4

18(k − 1)

{
2D̃2

n,1 − 3(k − 1)D̃n,2

}
+ o

(
p4

n2

)
+ o(p), (C.12)

where we use D̃n,1 = Θ(n−1), D̃n,2 = Θ(n−2), ∆n = pD̃n,1/{3(k − 1)}+ o(p/n), and 2∆nf =

p3D̃n,1/3 + o(p).
We next show that (C.12) = Θ(p4n−2). In particular, in this subsection, we redefine δi = (ni −

1)/(n− k), which satisfies
∑k
i=1 δi = 1. Then by the definitions of D̃n,1 and D̃n,2, we calculate that

(n− k)2 × {2D̃2
n,1 − 3(k − 1)D̃n,2}

= (5− 3k)
k∑
i=1

δ−2i + 2
∑

1≤i6=j≤k

δ−1i δ−1j − 4
k∑
i=1

δ−1i + 3k − 1. (C.13)
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As 2δ−1i δ−1j ≤ δ−2i + δ−2j , we have

(C.13) ≤ (3− k)
k∑
i=1

δ−2i − 4
k∑
i=1

δ−1i + 3k − 1

≤ (3− k)
k∑
i=1

δ−2i − 4k2 + 3k − 1, (C.14)

where in the last inequality, we use
∑k
i=1 δ

−1
i ≥ k2(

∑k
i=1 δi)

−1 = k2. Therefore (C.14) < 0 when
k ≥ 3. When k = 2, as δ1 + δ2 = 1, we have δ−11 + δ−12 = δ−11 δ−12 and (C.13) = −

∑2
i=1 δ

−2
i −

2
∑2
i=1 δ

−1
i + 5. As

∑2
i=1 δ

−1
i ≥ 22, (C.13) < −2× 22 + 5 < 0. In summary, we know (C.13) < 0 for

k ≥ 2, and thus (C.12) = Θ(p4n−2). If follows that (2f + 4ρµn)/p→ 0 if and only if p3/n2 → 0. In
summary, we know for testing problem (V), the chi-squared approximation with the Bartlett correction
works if and only if p3/n2 → 0.

C.1.5. Proof of Theorem A.1 (VI): Joint Testing the Equality of Several Mean Vectors and Covariance
Matrices Similarly to the proof in Section B.1, by Theorem 3 in Jiang and Yang (2013) and Jiang and
Qi (2015), we know that under the conditions of Theorem A.1 and p→∞, (B.2) holds with

µn =
1

4

{
−2kp−

k∑
i=1

p

ni
− nLn,p(2p− 2n+ 3) +

k∑
i=1

niLni−1,p(2p− 2ni + 3)

}
, (C.15)

σ2
n =

1

2

(
Ln,p −

k∑
i=1

n2i
n2
× Lni−1,p

)
, (C.16)

where Ln,p = log(1− p/n). Following Section B.1, we next derive the equivalent conditions for (B.7)–
(B.8) and (B.9)–(B.10), respectively, with µn in (C.15) and σn in (C.16).

(VI.i) The chi-squared approximation.
Case (VI.i.1) limn→∞ p/n = 0. Under this case, we show that (B.7) holds. As − log(1− x) = x+
x2/2 +O(x3) and ni = Θ(n), we obtain

2σ2
n = =

k∑
i=1

n2i
n2

{
p

ni − 1
+

p2

2(ni − 1)2

}
− p

n
− p2

2n2
+O

(
p3

n3

)

=
k∑
i=1

n2i
n2

(
p

ni
+

p

n2i
+

p2

2n2i

)
− p

n
− p2

2n2
+O

(
p3

n3

)
=
kp

n2
+

(k − 1)p2

2n2
+O

(
p3

n3

)
,

where in the second equation, we use (ni − 1)−1 = n−1i + n−2i +O(n−3i ) and (ni − 1)−2 = n−2i +
O(n−3i ). It follows that 2nσn ∼ p

√
k − 1. By

√
2f ∼ p

√
k − 1, we have (B.7). Given (B.7), we know

that (B.8) is equivalent to (2f + 4µn)/p→ 0. As p/n = o(1), through Taylor’s expansion, we obtain

−n(2p− 2n+ 3)Ln,p = n(2p− 2n+ 3)

{
p

n
+

p2

2n2
+

p3

3n3
+O

(
p4

n4

)}
(C.17)

= p

{
2p+

p2

n
− 2n− p− 2p2

3n
+ 3 +O

(
p3

n2

)
+ o(1)

}
= p

{
p+

p2

3n
− 2n+ 3 +O

(
p3

n2

)
+ o(1)

}
.
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Similarly, by Taylor’s expansion and ni = Θ(n), we have

− ni(2p− 2ni + 3)Lni−1,p (C.18)

= ni(2p− 2ni + 3)

{
p

ni − 1
+

p2

2(ni − 1)2
+

p3

3(ni − 1)3
+O

(
p4

n4

)}
= ni(2p− 2ni + 3)

{
p

ni
+

p

n2i
+

p2

2n2i
+

p3

3n3
i

+O

(
p4

n4

)
+O

(
p2

n3

)}
= p

{
p+

p2

3ni
− 2ni + 3− 2 +O

(
p3

n2i

)
+ o(1)

}
,

where in the second equation, we use (ni − 1)−1 = n−1i + n−2i +O(n−3i ) and (ni − 1)−a = n−ai +
O(n−3i ) for integers a ≥ 2. Combining (C.17) and (C.18), we obtain

2f + 4µn = 2f − 2kp+ p

{
(1− k)p+

p2

3

( 1

n
−

k∑
i=1

1

ni

)
+ 3− k

}
+O

( p4
n2

)
+ o(p) (C.19)

=
p3

3

( 1

n
−

k∑
i=1

1

ni

)
+O

( p4
n2

)
+ o(p).

As n−1 −
∑k
i=1 n

−1
i = Θ(n−1), we have 2f + 4µn = Θ(p3n−1). Therefore we know (2f + 4µn)/p→

0 if and only if p2/n→ 0.

Case (VI.i.2) limn→∞ p/n = C ∈ (0, 1]. In this subsection, we redefine δi = ni/n ∈ (0, 1). Then

4n2σ2
n

2f
→ 2

C2(k − 1)
×
{

log(1− C)−
k∑
i=1

δ2i log(1− Cδ−1i )
}
,

where 0 < C ≤ δi < 1. Therefore (B.7) induces g2(C) = 0, where we define

g2(C) = log(1− C)−
k∑
i=1

δ2i log(1− Cδ−1i )− (k − 1)C2/2.

By taking derivative of g2(C), we obtain g′2(0) = 0, g′′2 (0) = 0, and

g′′′2 (C) =
2

(C − 1)2
−

k∑
i=1

2δ2i
(C − δi)3

=
k∑
i=1

2δi(1− δi)(C3 − 3δiC + δ2i + δi)

(1− C)3(δi − C)3
.

AsC3 − 3δiC + δ2i + δi is a monotonically decreasing function ofC when 0 < C ≤ δi < 1, and it equals
δi(δi − 1)2 > 0 when C = δi, we have g′′′2 (C) > 0 for 0 < C ≤ δi. It follows that g2(C) is a monoton-
ically increasing function when 0 < C ≤ δi < 1. As g2(0) = 0, we have g2(C) > 0, which contradicts
with g2(C) = 0. Therefore, we know that (B.7) does not hold under this case, which implies that the
chi-squared approximation fails.
(VI.ii) The chi-squared approximation with the Bartlett correction. When limn→∞ p/n = 0, since
ρ = 1 +O(p/n)→ 1 and (B.7) is proved above, we know (B.9) holds. Given (B.9), as f ∼ p2(k − 1)/2,
to prove (B.10), it is equivalent to show (2f + 4ρµn)/p→ 0, which is equivalent to (2f + 4µn −
4∆nµn)/p→ 0, where in this subsection, we redefine

∆n =
2p2 + 9p+ 11

6(p+ 3)(k − 1)
×Dn,1, Dn,1 =

k∑
i=1

1

ni
− 1

n
.

Similarly to (C.17), through Taylor’s expansion, we further have

n(2p− 2n+ 3)r2n = p

{
p− 2n+ 3 +

p2

3n
+

p3

6n2
+O

( p4
n3

)
+ o(1)

}
.
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In addition, similarly to (C.18), we have

ni(2p− 2ni + 3)r2n′i = p

{
p− 2ni + 3− 2 +

p2

3ni
+

p3

6n2i
+O

( p4
n3i

)
+ o(1)

}
. (C.20)

It follows that

2f + 4µn = −p
3

3
Dn,1 −

p4

6
Dn,2 +O

( p5
n3

)
+ o(p), (C.21)

where Dn,2 =
∑k
i=1 n

−2
i − n−2. Moreover, by (C.19) and ∆n = O(p/n) = o(1),

4∆nµn = ∆n

(
− p3

3
Dn,1 − 2f

)
+O

( p5
n3

)
+ o(p). (C.22)

Combining (C.21) and (C.22), we obtain

2f + 4µn − 4∆nµn =
p4

18(k − 1)
{2D2

n,1 − 3(k − 1)Dn,2}+O
( p5
n3

)
+ o(p), (C.23)

where we use Dn,1 = Θ(n−1), Dn,2 = Θ(n−2), ∆n = pDn,1/{3(k − 1)}+ o(p/n), and 2∆nf =
p3Dn,1/3 + o(p). Following the analysis of (C.13), we know (C.23) = Θ(p4n−2). Therefore, (2f +
ρµn)/p→ 0 if and only if p3/n2 → 0, which suggests that the chi-squared approximation with the
Bartlett correction holds if and only if p3/n2 → 0.

C.1.6. Proof of Theorem A.4 (VII): Testing Independence between Multiple Vectors Similarly to the
proof in Section B.1, by Theorem 2 in Jiang and Yang (2013) and Jiang and Qi (2015), we know that
under the conditions of Theorem A.4 and p→∞, (B.2) holds with

µn =
n

2

−(n− p− 3

2

)
Ln−1,p +

k∑
j=1

{(
n− pj −

3

2

)
Ln−1,pj

} (C.24)

σ2
n =

1

2

(
− Ln−1,p +

k∑
j=1

Ln−1,pj

)
. (C.25)

Following the analysis in Section B.1, we next derive the equivalent conditions for (B.7)–(B.8) and (B.9)–
(B.10), respectively, with µn in (C.24) and σn in (C.25).

(VII.i) The chi-squared approximation.
Case (VI.i.1) limn→∞ p/n = 0. Under this case, we show that (B.7) holds. Through Taylor’s expansion,

2σ2
n =

p

n− 1
+

p2

2(n− 1)2
− 2

k∑
i=1

{
pi

n− 1
+

p2i
2(n− 1)2

}
+O

(
p3

n3

)

=
p2 −

∑k
i=1 p

2
i

2(n− 1)2
+O

(
p3

n3

)
.

Recall that 2f = p2 −
∑k
i=1 p

2
i , and thus (B.7) holds. As f = Θ(p2) undert the conditions of Theorem

A.4, given (B.7), we know (B.8) is equivalent to (2f + 4µn)/p→ 0. Similarly to the analysis of (C.18),
through Taylor’s expansion, we have

n(2n− 2p− 3)Ln−1,p = p
{
p+

p2

3n
− 2n+ 1 +O

( p3
n2

)
+ o(1)

}
,

n(2n− 2pi − 3)Ln−1,pi = pi

{
pi +

p2i
3n
− 2n+ 1 +O

( p3i
n2

)
+ o(1)

}
.
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It follows that

2f + 4µn

= p2 −
k∑
i=1

p2i − p
(
p+

p2

3n
− 2n+ 1

)
+

k∑
i=1

pi

(
pi +

p2i
3n
− 2n+ 1

)
+O

( p4
n2

)
+ o(p)

=
1

3n

( k∑
i=1

p3i − p3
)

+O
( p4
n2

)
+ o(p).

Under the conditions of Theorem A.4, we have
∑k
i=1 p

3
i − p3 = Θ(p3). Thus (2f + 4µn)/p→ 0 if and

only if p2/n→ 0, which suggests that the chi-squared approximation holds if and only if p2/n→ 0.

Case (VI.i.2) limn→∞ p/n = C ∈ (0, 1]. Under this case, we show that (B.7) and (B.8) do not hold at
the same time. Particularly, as f = Θ(p2) and p/n→ C ∈ (0, 1], (B.7) induces (2n2σ2

n − f)/n2 → 0,
and (B.8) induces (f + 2µn)/n2 → 0. Therefore, (B.7) and (B.8) together give (2n2σ2

n + 2µn)/n2 → 0.

Suppose limn→∞ pi/n = Ci ∈ (0, 1). It follows that
∑k
i=1 Ci = C, and

(2n2σ2
n + 2µn)/n2 → −g3(C) +

k∑
i=1

g3(Ci), (C.26)

where g3(C) = (2− C) log(1− C). Note that g3(C) is a strictly concave function of C ∈ (0, 1] and
g(0) = 0. By the property of strictly concave function, we have

k∑
i=1

g3(Ci) =
k∑
i=1

g3(C × Ci/C) >
k∑
i=1

g3(C)× Ci/C = g3(C),

where we use
∑k
i=1 Ci = C. Therefore when C ∈ (0, 1], the right hand side of (C.26) > 0, which contra-

dicts with (2n2σ2
n + 2µn)/n2 → 0.We thus know that (B.7) and (B.8) do not hold simultaneously, which

suggests that the chi-squared approximation fails.

(VII.ii) The chi-squared approximation with the Bartlett correction. When limn→∞ p/n = 0, since ρ =
1 +O(p/n)→ 1 and (B.7) is proved above, we know (B.9) holds. Given (B.9), as f = Θ(p2), to prove
(B.10), it is equivalent to show (2f + 4ρµn)/p→ 0, which is equivalent to (2f + 4µn − 4∆nµn)/p→
0, where in this subsection, we redefine

∆n =
2×Dp,3 + 9×Dp,2

6n×Dp,2
, Dp,3 = p3 −

k∑
i=1

p3i , Dp,2 = p2 −
k∑
i=1

p2i .

Similarly to (C.20), through Taylor’s expansion, we further obtain

n(2n− 2p− 3)Ln−1,p = p
{
p− 2n+ 1 +

p2

3n
+

p3

6n2
+O

( p4
n3

)
+ o(1)

}
,

n(2n− 2pi − 3)Ln−1,pi = pi

{
pi − 2n+ 1 +

p2i
3n

+
p3i

6n2
+O

( p4i
n3

)
+ o(1)

}
.

It follows that

2f + 4µn = − 1

3n
Dp,3 −

1

6n2
Dp,4 +O

( p5
n3

)
+ o(p), (C.27)

where Dp,4 = p4 −
∑k
i=1 p

4
i . Moreover, as ∆n = Θ(p/n), by (C.27) and 2f = Dp,2, we have

4∆nµn = ∆n

(
− 1

3n
Dp,3 −Dp,2

)
+O

( p5
n3

)
+ o(p).
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As ∆n = Dp,3/(3nDp,2) +O(n−1), we calculate that

2f + 4µn − 4∆nµn (C.28)

= − 1

3n
Dp,3 −

1

6n2
Dp,4 +

Dp,3

3nDp,2

( 1

3n
Dp,3 +Dp,2

)
+O

( p5
n3

)
+ o(p)

= − 1

18n2Dp,2
(3Dp,4Dp,2 − 2D2

p,3) +O
( p5
n3

)
+ o(p).

We next prove (C.28) = Θ(p4n−2) by showing 3Dp,4Dp,2 − 2D2
p,3 = Θ(p6). Specifically, by the def-

initions of Dp,2, Dp,3, and Dp,4, we write

3Dp,4Dp,2 − 2D2
p,3 (C.29)

= p4
(
p2 −

k∑
i=1

p2i

)
+ 2p3

(
− p

k∑
i=1

p2i +

k∑
i=1

p3i

)
+ 2p2

(
p

k∑
i=1

p3i −
k∑
i=1

p4i

)
+
(
− p2 +

k∑
i=1

p2i

) k∑
i=1

p4i + 2

{
k∑
i=1

p2i

k∑
i=1

p4i −
( k∑
i=1

p3i

)2}
.

Using p =
∑k
i=1 pi, we obtain

p

k∑
i=1

pαi −
k∑
i=1

pα+1
i =

∑
i6=j

pip
α
j , p

∑
i6=j

pipj − 2
∑
i6=j

p2i pj =
∑
i6=j 6=l

pipjpl, (C.30)

where integer 1 ≤ α ≤ 5, and we use
∑
i6=j and

∑
i6=j 6=l to denote the summation

∑
1≤i6=j≤k and∑

1≤i6=j 6=l≤k for simplicity. By (C.30), we calculate that

(C.29) = p3
∑
i6=j 6=l

pipjpl + 2p2
∑
i6=j

p3i pj −
∑
i6=j

pipj

k∑
l=1

p4l − 2
∑
i6=j

p3i p
3
j + 2

∑
i6=j

p2i p
4
j

> 2p2
∑
i6=j

p3i pj −
∑
i6=j

pipj

k∑
l=1

p4l − 2
∑
i6=j

p3i p
3
j

= 2
( k∑
i=1

p2i +
∑
i6=j

pipj

)∑
i6=j

p3i pj − 2
∑
i6=j

pip
5
j −

∑
i6=j 6=l

pipjp
4
l − 2

∑
i6=j

p3i p
3
j > 0.

Therefore (C.29) = Θ(p6) and then (C.28) = Θ(p4n−2). Thus (2f + 4ρµn)/p→ 0 if and only if
p3/n2 → 0, which suggests that the chi-squared approximation with the Bartlett correction holds if and
only if p3/n2 → 0.

C.2. Proofs of Propositions A.1 & A.2
This section proves Propositions A.1 and A.2 following similar arguments to that in Sections B.1 and

C.1. In particular, we consider without loss of generality that p→∞ and p/n has a limit.

C.2.1. Proof of Proposition A.1 Following the analysis in Section C.1.3, we know that when n, p→
∞, n− k →∞, and n− p→∞, (B.2) holds with µn in (C.5) and σ2

n (C.6). Moreover, to derive the
necessary and sufficient conditions for the chi-squared approximations without and with the Bartlett cor-
rection, it is equivalent to examine (B.7)–(B.8) and (B.9)–(B.10), respectively, with µn in (C.5) and σn in
(C.6).

(i) The chi-squared approximation. (i.1) When p/n→ 0 and k/n→ 0, we apply Theorem 1 in He
et al. (2020), and know that (B.7)–(B.8) hold if and only if

√
pk(p+ k)/n→ 0. (i.2) When p/n→

C ∈ (0, 1] and k/n→ 0, we have f ∼ C(k − 1)n and 2σ2
n ∼ C(k − 1)/{n(1− C)}. It follows that
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√

2f/(2nσn) ∼
√

1− C < 1. Thus (B.7) fails, which suggests that the chi-squared approximation fails.
(i.3) When p/n→ 0 and k/n→ C ∈ (0, 1], by applying the symmetric substitution technique in Sec-
tion 10.4 of Muirhead (2009), we can switch k and p and analyze similarly as in the case (i.2) above.
Therefore we know the chi-squared approximation also fails here. (i.4) When p/n→ C1 ∈ (0, 1] and
k/n→ C2 ∈ (0, 1], we know 0 < C1 + C2 ≤ 1 as p+ k < n. By the constraint, it then suffices to
consider C1, C2 ∈ (0, 1). Note that 2σ2

n ∼ log{(1− C1)(1− C2)} − log(1− C1 − C2) and 2f/n2 ∼
2C1C2. Thus (B.7) induces g4(C1, C2) = 0 where g4(C1, C2) = C1C2 − log{(1− C1)(1− C2)}+
log(1− C1 − C2). If C1 + C2 = 1, g4(C1, C2)→ −∞. We next consider 0 < C1 + C2 < 1. By cal-
culations, we have g4(0, C2) = 0, and

d

dC1
g4(C1, C2) =

C2{(C1 − 1)(C1 + C2)− C1}
(1− C1)(1− C1 − C2)

< 0,

where we use C1, C2 ∈ (0, 1) and 0 < C1 + C2 < 1. Similarly to the previous analyses, we know that
g4(C1, C2) is monotonically decreasing for C1 ∈ (0, 1) and thus g4(C1, C2) < 0, as C1 ∈ (0, 1) and
g4(0, C2) = 0. Therefore (B.7) fails, which suggests that the classical chi-squared approximation fails.

(ii) The chi-squared approximation with the Bartlett correction. (ii.1) When p/n→ 0 and k/n→ 0, we
apply Theorem 2 in He et al. (2020), and know that (B.9)–(B.10) hold if and only if

√
pk(p2 + k2)/n2 →

0. (ii.2) When p/n→ C ∈ (0, 1] and k/n→ 0, we have ρ ∼ 1− C/2, and the proof of part (IV.ii)
in Section C.1.3 can be applied here similarly. Thus the chi-squared approximation fails. (ii.3) When
p/n→ 0 and k/n→ C ∈ (0, 1], we know the chi-squared approximation also fails by switching k and
p symmetrically as in the case (i.3) above. (ii.4) When p/n→ C1 ∈ (0, 1] and k/n→ C2 ∈ (0, 1],
we know 0 < C1 + C2 ≤ 1 as p+ k < n. Similarly to the case (i.4) above, we consider C1, C2 ∈
(0, 1) and C1 + C2 < 1. Here ρ ∼ 1− (C1 + C2)/2 and then (B.9) induces g5(C1, C2) = 0, where
g5(C1, C2) = 2C1C2 − (2− C1 − C2)[log{(1− C1)(1− C2)} − log(1− C1 − C2)]. By calculations,
we have g5(0, C2) = 0, and

d

dC1
g5(C1, C2)|C1=0 = −C2/(1− C2) < 0,

d2

d2C1
g5(C1, C2) = −C2{(C1 + C2)(C2 − 2) + 2}

(1− C1)2(1− C1 − C2)2
< 0,

where we use (C1 + C2)(C2 − 2) + 2 > 0 as 0 < C1 + C2 < 1 and −2 < C2 − 2 < −1. Similarly to
the analysis above, we know that g5(C1, C2) < 0 and thus (B.9) fails, which suggests that the chi-squared
approximation with the Bartlett correction fails.

C.2.2. Proof of Proposition A.2 (i) The chi-squared approximation. (i.1) When p1/n→ 0 and
p2/n→ 0, we apply Theorem 1 in He et al. (2020), and know that (B.7)–(B.8) hold if and only
if
√
p1p2(p1 + p2)/n→ 0. (i.2) When p1/n→ C ∈ (0, 1] and p2/n→ 0, we have 2f ∼ Cnp2 and

2σ2
n ∼ Cp2/{2n(1− C)}. Then

√
2f/(2nσn) ∼

√
1− C < 1 suggesting the failure of (B.7) and thus

the chi-squared approximation fails. (i.3) When p1/n→ 0 and p2/n→ C ∈ (0, 1], the chi-squared ap-
proximation also fails by the symmetric substitution technique in Section C.2.1. (i.4) When p1/n→
C1 ∈ (0, 1] and p2/n→ C2 ∈ (0, 1], we have 2σ2

n ∼ log{(1− C1)(1− C2)} − log(1− C1 − C2) and
2f/n2 ∼ C1C2. It follows that the analysis in case (i.4) of Section C.2.1 can be applied similarly, and we
obtain the same conclusion, that is, (B.7) fails and then the chi-squared approximation fails.

(ii) The chi-squared approximation with the Bartlett correction. (ii.1) When p1/n→ 0 and p2/n→
0, we apply Theorem 2 in He et al. (2020), and know that (B.9)–(B.10) hold if and only if√
p1p2(p21 + p22)/n2 → 0. (ii.2) When p1/n→ C ∈ (0, 1] and p2/n→ 0, we have ρ ∼ 1− C/2, and

then
√

2f/(2nρσn) = (1− C/2)−1
√

2p/(2nσn)→ (1− C/2)−1
√

1− C < 1. Therefore (B.9) fails,
which suggests that the classical chi-squared approximation with the Bartlett correction fails. (ii.3) When
p1/n→ 0 and p2/n→ C ∈ (0, 1], similar conclusion holds by the symmetric substitution technique as
above. (ii.4) When p1/n→ C1 ∈ (0, 1] and p2/n→ C2 ∈ (0, 1], we have ρ ∼ 1− (C1 + C2)/2. It fol-
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lows that the analysis in case (ii.4) of Section C.2.1 can be applied similarly. Then we obtain the same
conclusion, that is, (B.9) fails and the chi-squared approximation with the Bartlett correction fails.

C.3. Proofs of Theorems 2.2, A.2 & A.5
In this section, we prove the results for other testing problems in Theorems 2.2, A.2 & A.5 following

similar analysis to that in Section B.2. Particularly, for each test, we consider the characteristic function
of −2η log Λn when η = 1 and ρ; here ρ denotes the corresponding Bartlett correction factor of each test.

By Eq. (20)–(23) in Section 8.2.4 of Muirhead (2009), we know that for the testing problems (I)–(II)
and (IV)–(VII), the characteristic functions of the likelihood ratio test statistics take the following general
form:

log E{exp(−2itη log Λn)} = ϕ(t)− ϕ(0), (C.31)

where

ϕ(t) = 2itη

K1∑
k=1

ξ1,k log ξ1,k −
K2∑
j=1

ξ2,j log ξ2,j


+

K1∑
k=1

log Γ
{
ηξ1,k(1− 2it) + τ1,k + υ1,k

}
−

K2∑
j=1

log Γ
{
ηξ2,j(1− 2it) + τ2,j + υ2,j

}
,

i denotes the imaginary unit, τ1,k = (1− η)ξ1,k, and τ2,j = (1− η)ξ2,j . We next consider η = 1 and
ρ for the chi-squared approximation without and with the Bartlett correction, respectively. The values
of ρ, K1, K2, ξ1,k, ξ2,j , υ1,k, and υ2,j depend on the testing problem, and thus take different values
in the following subsections. Moreover, by Muirhead (2009), in each problem, we have

∑K1

k=1 ξ1,k =∑K2

j=1 ξ2,k, the degrees of freedom f is

f = −2


K1∑
k=1

υ1,k −
K2∑
j=1

υ2,j −
1

2
(K1 −K2)

 , (C.32)

and the Bartlett correction ρ takes the value

ρ = 1− 1

f


K1∑
k=1

υ21,k − υ1,k + 1
6

ξ1,k
−

K2∑
j=1

υ22,j − υ2,j + 1
6

ξ2,j

 . (C.33)

In the following proofs, we use Lemma C.3.1 below to obtain an asymptotic expansion of each character-

istic function.

LEMMA C.3.1. For a finite integer L, when η = 1 or ρ, p/n→ 0, and Rn,L (in (C.34) below) con-
verges to 0,

log E{exp(−2itη log Λn)} = − f

2
log(1− 2it) +

L−1∑
l=1

ςl
{

(1− 2it)−l − 1
}

+Rn,L,

where

ςl =
(−1)l+1

l(l + 1)


K1∑
k=1

Bl+1(τ1,k + υ1,k)

(η × ξ1,k)l
−

K2∑
j=1

Bl+1(τ2,j + υ2,j)

(η × ξ2,j)l

 ,
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Bl+1(·) denotes the (l + 1)-th Bernoulli polynomial; see, e.g., Eq. (25) in Section 8.2.4 of Muirhead
(2009), and Rn,L denotes the remainder which is of the order of

Rn,L = O

(
K1∑
k=1

|τ1,k + υ1,k|L+1

|ηξ1,k|L
+

K2∑
j=1

|τ2,j + υ2,j |L+1

|ηξ2,j |L

)
. (C.34)

Proof. Please see Section D.2.16 on Page 73. �

We next examine each testing problem based on Lemma C.3.1.

C.3.1. Proof of Theorem 2.2 (I): Testing One-Sample Mean Vector Recall that in Section C.1.1, we
mention that testing one-sample mean vector can be viewed as testing coefficient vector of a multivariate
linear regression model. By Section 10.5 in Muirhead (2009), we know that in this problem, K1 = 1,
K2 = 1, ξ1,1 = n/2, ξ2,1 = n/2, υ1,1 = −p/2, υ2,1 = 0, f = p and ρ = 1− (p/2 + 1)/n. We next dis-
cuss the chi-squared approximation without and with the Bartlett correction, respectively.

(i) Chi-squared approximation. Consider ρ = 1 and p3/n2 → 0. Then τ1,1 = τ2,1 = 0,

ςl =
(−1)l+1

l(l + 1)
× 1

(n/2)l

{
Bl+1

(
−p

2

)
−Bl+1(0)

}
, (C.35)

and for any finite integer L, Rn,L = O(pL+1n−L). Since Bl+1(·) is a polynomial of order l + 1, then
ςl = O(pl+1/nl). By Lemma C.3.1, when p3/n2 → 0, Rn,3 = O(p4n−3)→ 0, and

E{exp(−2it log Λn)} = (1− 2it)−
f
2

2∏
l=1

exp
[
ςl
{

(1− 2it)−l − 1
}]{

1 +O(p4n−3)
}

= (1− 2it)−
f
2

{
1 + V1(t) + V2(t) + V1(t)V2(t)

}{
1 +O(p4n−3)

}
,

where Vl(t) is defined as in (B.18) on Page 26. Then similarly to the proof in Section B.2, by the inversion
property of the characteristic function, we obtain

Pr(−2 log Λn ≤ x) (C.36)

=

{
Pr(χ2

f ≤ x) +

∞∑
v=1

ςv1
v!

v∑
w=0

(
v

w

)
Pr(χ2

f+2w ≤ x)(−1)v−w

+
∞∑
v=1

ςv2
v!

v∑
w=0

(
v

w

)
Pr(χ2

f+4w ≤ x)(−1)v−w

+
∑

v1≥1; 0≤w1≤v1
v2≥1; 0≤w2≤v2

ςv11 ςv22
v1!v2!

(
v1
w1

)(
v2
w2

)
Pr(χ2

2f+2w1+4w2
≤ x)(−1)v1−w1+v2−w2

}{
1 +O

( p4
n3

)}
.

When x = χ2
f (α), by Propositions B.1 and B.2, and ςl = O(pl+1/nl), we have

Pr(−2 log Λn ≤ x) = Pr(χ2
f ≤ x) + ς1

{
Pr(χ2

f+2 ≤ x)− Pr(χ2
f ≤ x)

}
+ o(p3/2/n).

Particularly, by Lemma B.2.2,

Pr(χ2
f+2 ≤ x)− Pr(χ2

f ≤ x) = − 1√
fπ

exp

(
−z

2
α

2

){
1 +O(f−1/2)

}
,

and we compute ς1 = (p2 + 2p)/(4n). In Theorem 2.2, we have ϑ1(n, p) = ς1/
√
f .

(ii) Chi-squared approximation with the Bartlett correction. By choosing the Bartlett correction factor
ρ as in (C.33), we have ς1 = 0; see, e.g., Section 8.2.4 in Muirhead (2009). Specifically, in this problem,
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ρ = 1− (p+ 2)/(2n), ρξ1,1 = ρξ2,1 = n/2− (p+ 2)/4, τ1,1 = τ2,1 = (p+ 2)/4, υ1,1 = −p/2, υ2,1 =
0, and then

ςl =
(−1)l+1

l(l + 1)(ρ× ξ1,1)l

{
Bl+1

(
−p− 2

4

)
−Bl+1

(
p+ 2

4

)}
.

We calculate ς2 = p(p2 − 4){48(ρn)2}−1, ς3 = 0, and ςl = O(pl+1n−l) for l ≥ 4. Similarly to the proof
in Section B.2, when p5/n4 → 0, we have

E{exp(−2itρ log Λn)} = (1− 2it)−
f
2

{
1 + V2(t) + V4(t) + V2(t)V4(t)

}{
1 +O(p6/n5)

}
,

and thus

Pr(−2ρ log Λn ≤ x) (C.37)

=

{
Pr(χ2

f ≤ x) +
∞∑
v=1

ςv2
v!

v∑
w=0

(
v

w

)
Pr(χ2

f+4w ≤ x)(−1)v−w

+

∞∑
v=1

ςv4
v!

v∑
w=0

(
v

w

)
Pr(χ2

f+8w ≤ x)(−1)v−w

+
∑

v2≥1; 0≤w2≤v2
v4≥1; 0≤w4≤v4

ςv22 ςv44
v2!v4!

(
v2
w2

)(
v4
w4

)
Pr(χ2

2f+4w2+8w4
≤ x)(−1)v2−w2+v4−w4

}{
1 +O

( p6
n5

)}
.

Note that ς2 = Θ(p3n−2) and ς4 = Θ(p5n−4). By applying proposition B.1 with h = 2,
∞∑
v=1

ςv2
v!

v∑
w=0

(
v

w

)
Pr(χ2

f+4w ≤ x)(−1)v−w =
∞∑
v=1

{
O
(
ς2p
−1/2)}v = Θ(p5/2n−2).

By applying proposition B.1 with h = 4, we have
∞∑
v=1

ςv4
v!

v∑
w=0

(
v

w

)
Pr(χ2

f+8w ≤ x)(−1)v−w =
∞∑
v=1

{
O
(
ς4p
−1/2)}v = O

(
p9/2n−4

)
= o(p5/2n−2),

and ∑
v2≥1; 0≤w2≤v2
v4≥1; 0≤w4≤v4

ςv22 ςv44
v2!v4!

(
v2
w2

)(
v4
w4

)
Pr(χ2

2f+4w2+8w4
≤ x)(−1)v2−w2+v4−w4

=
∑
v2≥1

{
O
(
ς2p
−1/2)}v2 ∑

v4≥1

{O(ς4)}v4
v4!

= o
(
p5/2n−2

)
.

In summary, by (C.37),

Pr(−2ρ log Λn ≤ x) = Pr(χ2
f ≤ x) + ς2

{
Pr(χ2

f+4 ≤ x)− Pr(χ2
f ≤ x)

}
+ o
(
p5/2n−2

)
.

Particularly, by Lemma B.2.2,

Pr(χ2
f+4 ≤ x)− Pr(χ2

f ≤ x) = − 2√
fπ

exp

(
−z

2
α

2

){
1 +O(f−1/2)

}
.

In Theorem 2.2 (I), ϑ2(n, p) = 2ς2/
√
f .

C.3.2. Proof of Theorem 2.2 (II): Testing One-Sample Covariance Matrix In this problem, by Section
8.3.3 in Muirhead (2009), we know f = (p+ 2)(p− 1)/2, andr K1 = p, K2 = 1;



44 HE ET AL.r ξ1,k = (n− 1)/2, υ1,k = −(k − 1)/2 for k = 1, . . . ,K1;r ξ2,1 = p(n− 1)/2, υ2,1 = 0.

(i) Chi-squared approximation. Consider ρ = 1 and p2/n→ 0. Then τ1,k = 0 for k = 1, . . . ,K1,
τ2,1 = 0, and

ςl =
(−1)l+1

l(l + 1)

{
p∑
k=1

(
2

n− 1

)l
Bl+1

(
−k − 1

2

)
− 2

p(n− 1)
Bl+1(0)

}
,

which satisfies ςl = O(pl+2/nl). By Lemma C.3.1,

E{exp(−2it log Λn)} = (1− 2it)−
f
2

{
1 + V1(t) + V2(t) + V1(t)V2(t)

}{
1 +O(p5/n3)

}
,

where Vl(t) is defined as in (B.18). Similarly to Section B.2, by the inversion property of the characteristic
functions, and Propositions B.1 and B.2, we obtain (B.22). We calculate

ς1 =
1

2

[
p∑
k=1

2

n− 1

{(
−k − 1

2

)2

−
(
−k − 1

2

)
+

1

6

}
− 2

p(n− 1)
× 1

6

]

=
2p3 + 3p2 − p− 4/p

24(n− 1)
.

The conclusion then follows by Lemma B.2.2 and ϑ1(n, p) = ς1/
√
f .

(ii) Chi-squared approximation with the Bartlett correction. In this problem, consider

ρ = 1− 2p2 + p+ 2

6p(n− 1)
,

and p3/n2 → 0. Then τ1,k = (2p2 + p+ 2)/(12p) for k = 1, . . . , p, and τ2,1 = (2p2 + p+ 2)/12. It fol-
lows that

ςl =
(−1)l+1

l(l + 1)

{
ρ(n− 1)

2

}−l{ p∑
k=1

Bl+1

(
2p2 + p+ 2

12p
− k − 1

2

)
− p−lBl+1

(
2p2 + p+ 2

12

)}
.

In particular, we calculate

ς2 =
(p− 2)(p− 1)(p+ 2)

288p2ρ2(n− 1)2
(2p3 + 6p2 + 3p+ 2).

Similarly to Section B.2, by the inversion property of the characteristic functions, and Propositions B.1
and B.2, we obtain (B.29). The conclusion then follows by Lemma B.2.2 and ϑ2(n, p) = 2ς2/

√
f .

C.3.3. Proof of Theorem A.2 (IV): Testing the Equality of Several Mean Vectors Recall that in Section
C.1.3, we show that this testing problem can be viewed as testing the coefficient matrix in multivariate
linear regression. Then by Eq. (3) in Section 10.5.3 in Muirhead (2009), we know that in this problem,
f = (k − 1)p, andr K1 = k − 1, K2 = k − 1;r ξ1,j1 = n/2, υ1,j1 = −(j1 + p)/2, j1 = 1, . . . , k − 1;r ξ2,j2 = n/2, υ2,j2 = −j2/2, j2 = 1, . . . , k − 1.

(i) Chi-squared approximation. It follows that

ςl =
(−1)l+1

l(l + 1)

(
2

n

)l
k−1∑
j1=1

Bl+1

(
−j1 + p

2

)
−

k−1∑
j2=1

Bl+1

(
−j2

2

) ,
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which is O(pl+1n−l) when k is finite. In particular, we calculate

ς1 =
p(k − 1)(p+ 2 + k)

4n
.

Applying similar analysis to that in Section C.3.1, the conclusion follows by ϑ1(n, p) = ς1/
√
f .

(ii) Chi-squared approximation with the Bartlett correction. In this problem,

ρ = 1− 1

2n
(p+ k + 2).

It follows that

ςl =
(−1)l+1

l(l + 1)

(
2

ρn

)l  k−1∑
j1=1

Bl+1

{
(1− ρ)n− (j1 + p)

2

}
−

k−1∑
j2=1

Bl+1

{
(1− ρ)n− j2

2

} .
We calculate that

ς2 =
(k − 1)p(p2 + k2 − 2k − 4)

48ρ2n2
.

Similarly to Section C.3.1, the conclusion then follows by ϑ2(n, p) = 2ς2/
√
f .

C.3.4. Proof of Theorem A.2 (V): Testing the Equality of Several Covariance Matrices In this problem,
by Section 8.2.4 in Muirhead (2009), we have f = p(p+ 1)(k − 1)/2, andr K1 = kp, K2 = p;r ξ1,j1 = (nr − 1)/2, j1 = (r − 1)p+ 1, . . . , rp, (r = 1, . . . , k);r υ1,j1 = −(r − 1)/2, j1 = r, p+ r, . . . , (k − 1)p+ r, (r = 1, . . . , p);r ξ2,j2 = (n− k)/2, υ2,j2 = −(j2 − 1)/2, j2 = 1, . . . , p.

(i) Chi-squared approximation. Consider ρ = 1 and p2/n→ 0. Then

ςl =
(−1)l+1

l(l + 1)

[
k∑

r1=1

p∑
r2=1

(
2

nr1 − 1

)l
Bl+1

(
− r2 − 1

2

)
−

p∑
j=1

(
2

n− k

)l
Bl+1

(
− j − 1

2

)]
,

which satisfies ςl = O(pl+2/nl). Particularly,

ς1 =

( k∑
i=1

1

ni − 1
− 1

n− k

)
1

24
p(2p2 + 3p− 1).

Following similar analysis to that in Section B.2, the conclusion then follows by ϑ1(n, p) = ς1/
√
f .

(ii) Chi-squared approximation with the Bartlett correction. In this problem,

ρ = 1− (2p2 + 3p− 1)

6(p+ 1)(k − 1)

(
k∑
i=1

1

ni − 1
− 1

n− k

)
,

and we consider p3/n2 → 0. In this problem,

ςl =
(−1)l+1

l(l + 1)

[
k∑

r1=1

p∑
r2=1

Bl+1{(1− ρ)(nr1 − 1)/2− (r2 − 1)/2}
{ρ(nr1 − 1)/2}l

−
p∑
j=1

Bl+1{(1− ρ)(n− k)/2− (j − 1)/2}
{ρ(n− k)/2}l

]
.
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Note that (1− ρ)(n− k) and (1− ρ)(nr1 − 1) are of the order of Θ(p), Bl+1(·) is a polynomial of order
l + 1, and k is finite. Then for l ≥ 2, ςl = O(pl+2/nl). In particular, we calculate

ς2 =
p(p+ 1)

48ρ2

[
(p− 1)(p+ 2)

{
k∑

i1=1

1

(ni1 − 1)2
− 1

(n− k)2

}
− 6(k − 1)(1− ρ)2

]
.

Similarly to Section B.2, the conclusion then follows by ϑ2(n, p) = 2ς2/
√
f .

C.3.5. Proof of Theorem A.2 (VI): Joint Testing the Equality of Several Mean Vectors and Covariance
Matrices In this problem, by Section 10.8.2 in Muirhead (2009), we have f = (k − 1)p(p+ 3)/2, andr K1 = kp, K2 = p;r ξ1,j1 = nr/2, j1 = (r − 1)p+ 1, . . . , rp, (r = 1, . . . , k);r υ1,j1 = −r/2, j1 = r, p+ r, . . . , (k − 1)p+ r, (r = 1, . . . , p);r ξ2,j2 = n/2, υ2,j2 = −j2/2, (j2 = 1, . . . , p).

(i) Chi-squared approximation. Consider ρ = 1 and p2/n→ 0. It follows that

ςl =
(−1)l+1

l(l + 1)


k∑

r1=1

p∑
r2=1

Bl+1(−r2/2)

(nr1/2)l
−

p∑
j=1

Bl+1(−j/2)

(n/2)l

 .

Particularly, we compute

ς1 =

(
k∑
r=1

1

nr
− 1

n

)
1

24
p
(
2p2 + 9p+ 11

)
.

Following similar analysis to that in Section B.2, the conclusion then follows by ϑ1(n, p) = ς1/
√
f .

(ii) Chi-squared approximation with the Bartlett correction. In this problem,

ρ = 1−

(
k∑
r=1

1

nr
− 1

n

)(
2p2 + 9p+ 11

)
6(k − 1)(p+ 3)

.

It follows that ς1 = 0 and for l ≥ 2,

ςl =
(−1)l+1

l(l + 1)


k∑

r1=1

p∑
r2=1

Bl+1{(1− ρ)nr1/2− r2/2}
(ρnr1/2)l

−
p∑
j=1

Bl+1{(1− ρ)n/2− j/2}
(ρn/2)l

 .

Particularly, we calculate

ς2 =
1

ρ2

{
p(p+ 1)(p+ 2)(p+ 3)

48

( k∑
i=1

1

n2i
− 1

n2

)
− p(k − 1)(p+ 3)

8
(1− ρ)2

}
.

Applying similar analysis to that in Section B.2, the conclusion then follows by ϑ2(n, p) = 2ς2/
√
f .

C.3.6. Proof of Theorem A.5 (VII): Testing Independence between Multiple Vectors In this problem,
by Section 11.2.4 in Muirhead (2009), we have f = (p2 −

∑k
j=1 p

2
j )/2, andr K1 = p, K2 = p;r ξ1,j1 = n/2, υ1,j1 = −j1/2, j1 = 1, . . . , p;r ξ2, p1+...+pr−1+j2 = n/2, υ2, p1+...+pr−1+j2 = −j2/2, r = 1, . . . , k, j2 = 1, . . . , pr.
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(i) Chi-squared approximation. Consider ρ = 1 and p2/n→ 0. It follows that

ςl =
(−1)l+1

l(l + 1)


p∑

j1=1

Bl+1(−j1/2)

(n/2)l
−

k∑
r=1

pr∑
j2=1

Bl+1(−j2/2)

(n/2)l

 .

Particularly,

ς1 =
2(p3 −

∑k
j=1 p

3
j ) + 9(p2 −

∑k
j=1 p

2
j )

24n
.

Following similar analysis to that in Section B.2, the conclusion then follows by ϑ1(n, p) = ς1/
√
f .

(ii) Chi-squared approximation with the Bartlett correction. In this problem,

ρ = 1− 2Dp,3 + 9Dp,2

6nDp,2

where Dp,r = pr −
∑k
j=1 p

r
j . Then

ςl =
(−1)l+1

l(l + 1)


p∑

j1=1

Bl+1{(1− ρ)n/2− j1/2}
(ρn/2)l

−
k∑
r=1

pr∑
j2=1

Bl+1{(1− ρ)n/2− j2/2}
(ρn/2)l

 .

In particular, we calculate

ς2 =
1

(ρn)2

(
1

48
Dp,4 −

5Dp,2

96
−

D2
p,3

72Dp,2

)
.

Applying similar analysis to that in Section B.2, the conclusion then follows by ϑ2(n, p) = 2ς2/
√
f .

C.4. Proofs of Theorems 2.3, A.3, & A.6
In this section, we prove other problems in Theorems 2.3, A.3, & A.6 similarly as in Section B.3.

Specifically, we still define ψ0(s) = exp(−s2/2), and we let ψ1(s) be the characteristic function of
(−2 log Λn + 2µn)/(2nσn), where Λn denotes the corresponding likelihood ratio test statistic, and µn
and σn take the corresponding values given in Theorems 2.3, A.3, & A.6. By the analysis in Section
B.3, we know that it suffices to prove the results similar to Lemma B.3.2 on Page 29. In particular, in
the following subsections, we prove that under H0 of each test, when s = o(min{(n/p)1/2, f1/6}), the
characteristic functions satisfy

logψ1(s)− logψ0(s) = O

(
p

n
+

1√
f

)
s+

(
1

p
+
p

n

)
O
(
s2
)

+O

(
s3√
f

)
. (C.38)

C.4.1. Proof of Theorem 2.3 (I): Testing One-Sample Mean Vector Recall that in Section C.1.1, we
mention that testing one-sample mean vector can be viewed as testing coefficient vector of a multivariate
linear regression model. By Section 10.5.3 in Muirhead (2009), we have

logψ1(s) = log
Γ
{

1
2n(1− ti)− 1

2p
}

Γ
{

1
2 (n− p)

} − log
Γ
{

1
2n(1− ti)

}
Γ
(
1
2n
) +

µnsi

nσn
,

where t = s/(nσn). By (B.7), t = s/(nσn) = O(s/
√
f). By Lemma D.1.3 (on Page 53),

log
Γ
{

1
2n(1− ti)− 1

2p
}

Γ
{

1
2 (n− p)

} =

{
1

2
(n− p)− 1

2
nti

}
log

{
1

2
(n− p)− 1

2
nti

}
+

1

2
nti

− 1

2
(n− p) log

{
1

2
(n− p)

}
+

nti

2(n− p)
+O

(
t

n
+ t2

)
.
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Similarly, we have

log
Γ{ 12n(1− ti)}

Γ( 1
2n)

=

{
n(1− ti)

2

}
log

{
n(1− ti)

2

}
+

1

2
nti− n

2
log
(n

2

)
+
ti

2
+O

(
t

n
+ t2

)
.

It follows that

logψ1(s) = g0

(
− nti

2

)
− g0(0) +

µnsi

nσn
+O

(
pt

n
+ t2

)
,

where we define in this subsection that g0(z) = {(n− p)/2 + z} log{(n− p)/2 + z} − (n/2 +
z) log(n/2 + z). Following the proof of Lemma D.3.3 (see Section D.3.4 on Page 77), we similarly obtain

g0

(
− nti

2

)
− g0(0) = g

(1)
0 (0)×

(
− nti

2

)
− g

(2)
0 (0)

2

n2t2

4
+O(pt3),

where

g
(1)
0 (0) = log

(
1− p

n

)
, g

(2)
0 (0) =

2p

n(n− p)
.

Recall that 2nσn/
√

2f → 1 by (B.7). Then by Taylor’s series and f = p,

g
(2)
0 (0)n2 = 4n2σ2

n

{
1 +O

( p
n

)}
= 4n2σ2

n +O

(
p2

n

)
.

Moreover, by Taylor’s series, we have ng(1)0 (0)− 2µn = O (p/n) . In summary, by t = s/(nσn) and
nσn = Θ(

√
p), we obtain

logψ1(s) = −µnsi
nσn

− 4n2σ2
n

2

s2

4(nσn)2
+
µnsi

nσn
+O

(
ps

n

)
+O

(
p

n
+

1

p

)
s2 +O

(
s3
√
p

)
.

Then (C.38) is proved.

C.4.2. Proof of Theorem 2.3 (II): Testing One-Sample Covariance Matrix By Corollary 8.3.6 in Muir-
head (2009), we have

logψ1(s) = −p(n− 1)ti

2
log p+ log

Γp{ 12 (n− 1)(1− ti)}
Γp{ 12 (n− 1)}

+ log
Γ{ 12p(n− 1)}

Γ{ 12p(n− 1)(1− ti)}
+ µnti.

By (B.7) and f = Θ(p2), nσn = Θ(p). Then as t = s/(nσn), the conditions in Lemma D.3.1 (on Page
74 ) are satisfied and we have

log
Γp{(n− 1)(1− ti)/2}

Γp{(n− 1)/2}
= − (n− 1)βn,1ti

2
+

(n− 1)2βn,2t
2

4
+ βn,3

{
− (n− 1)ti

2

}
+O

(
p2t

n

)
+

(
1

p
+
p

n

)
O
(
p2t2

)
+O

(
p2t3

)
,

where βn,1, βn,2, and βn,3(·) are defined in Lemma D.3.1. In addition, we can apply Lemma D.1.3 and
obtain

log
Γ{p(n− 1)/2}

Γ{p(n− 1)(1− ti)/2}
= − p

{
n− 1

2
(1− ti)

}
log

[
p

{
n− 1

2
(1− ti)

}]
+
p(n− 1)

2
log

p(n− 1)

2
− p(n− 1)ti

2
− ti+O

(
t

pn
+ t2

)
.

By the definition of βn,3(·) in Lemma D.3.1, we have

log
Γ{p(n− 1)/2}

Γ{p(n− 1)/2− pnti/2}
= −βn,3

{
− (n− 1)ti

2

}
− p(n− 1)ti(1− log p)

2
+O

(
t+ t2

)
.
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Since µn = (βn,1 + p)(n− 1)/2, 2n2σ2 = βn,2(n− 1)2, t = s/(nσn), and nσn = Θ(p),

logψ1(s)− logψ0(s) = O

(
p

n
+

1

p

)
s+O

(
1

p
+
p

n

)
s2 +O

(
s3

p

)
.

C.4.3. Proof of Theorem A.3 (IV): Testing the Equality of Several Mean Vectors By (C.31) and the
analysis in Section C.3.3, we have

logψ1(s) =
k−1∑
j=1

[
log

Γ
{

1
2 (n− j − p)− 1

2nti
}

Γ
{

1
2 (n− j − p)

} − log
Γ
{

1
2 (n− j)− 1

2nti
}

Γ
{

1
2 (n− j)

} ]
+
µnsi

nσn
,

where t = s/(nσn). By Lemma D.1.3,

log
Γ
{

1
2 (n− j − p)− 1

2nti
}

Γ
{

1
2 (n− j − p)

} =

{
1

2
(n− j − p)− 1

2
nti

}
log

{
1

2
(n− j − p)− 1

2
nti

}
− n− j − p

2
log

n− j − p
2

+
nti

2
+O(t+ t2).

Applying similar analysis, we obtain

log
Γ
{

1
2 (n− j − nti)

}
Γ
{

1
2 (n− j)

} =

(
n− j − nti

2

)
log

(
n− j − nti

2

)
− n− j

2
log

n− j
2

+
nti

2
+O(t+ t2).

It follows that logψ1(s) =
∑k−1
j=1{gj(nti/2)− gj(0)}+ µnsi/(nσn) +O(t+ t2), where we define in

this subsection that

gj(z) =

(
n− j − p

2
− z
)

log

(
n− j − p

2
− z
)
−
(
n− j

2
− z
)

log

(
n− j

2
− z
)
.

Following similar proof to that of Lemma D.3.3 (see Section D.3.4), we obtain

k−1∑
j=1

{gj(nti)− gj(0)} =
k−1∑
j=1

g
(1)
j (0)

nti

2
− n2t2

8

k−1∑
j=1

g
(2)
j (0) +O(pt3), (C.39)

where

g
(1)
j (0) = log

(
n− j

2

)
− log

(
n− j − p

2

)
, g

(2)
j (0) =

2

n− j − p
− 2

n− j
.

Note that

1

2

k−1∑
j=1

g
(2)
j (0) =

k−1∑
j=1

p

(n− j − p)(n− j)
=

p(k − 1)

(n− p− 1)n

{
1 +O

(
k

n

)}
,

and

2σ2
n = log

{
1 +

p(k − 1)

(n− k)(n− p− 1)

}
=

p(k − 1)

(n− p− 1)n

{
1 +O

(
k

n

)}
.

Thus
∑k−1
j=1 g

(2)
j (0)(4σ2

n)−1 = 1 +O(n−1). In addition,

k−1∑
j=1

g
(1)
j (0) = log

Γ(n− 1)

Γ(n− k)
− log

Γ(n− p− 1)

Γ(n− p− k)
.
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We then apply Lemma D.1.1 to expand the log Γ(·) function, and calculate

k−1∑
j=1

g
(1)
j (0) = −

(
n− p− k − 1

2

){
log

(
1− p

n− 1

)
− log

(
1− p

n− k

)}

− p log

(
1− k − 1

n− 1

)
− (k − 1) log

(
1− p

n− 1

)
+O(n−1).

Therefore
∑k−1
j=1 g

(1)
j (0) = −µn/n+O(n−1). Then by (C.39), t = s/(nσn), nσn = Θ(f1/2), and f =

Θ(p), we have

logψ1(s) =
{
− µn/n+O(n−1)

}
nti− n2σ2

nt
2

2

{
1 +O(n−1)

}
+ µnti+O

(
t+ t2 + pt3

)
= − s2

2
+O

(
1√
f

)
s+O

(
p

n
+

1

f

)
s2 +O

(
s3√
f

)
.

By logψ0(s) = −s2/2, (C.38) is proved.

C.4.4. Proof of Theorem A.3 (V): Testing the Equality of Several Covariance Matrices By (C.31) and
the analysis in Section C.3.4, we have

logψ1(s) = log
Γp
{

1
2 (n− k)

}
Γp
{

1
2 (n− k)(1− ti)

} +
k∑
j=1

log
Γp
{

1
2 (nj − 1)(1− ti)

}
Γp
{

1
2 (nj − 1)

}
− p

(n− k) log(n− k)−
k∑
j=1

(nj − 1) log(nj − 1)

 ti

2
+
µnsi

nσn
,

where t = s/(nσn). By Lemma D.3.1, we can expand log Γp(·) and obtain

logψ1(s) = − µnti−
n2σ2

nt
2

2
+ µnti+Rn(t), (C.40)

where the calculations of µn and σn are similar to that in Section A.5 of Jiang and Qi (2015), and thus
the details are skipped here. In (C.40), Rn(t) denotes the remainder term of the expansion. Since Lemma
D.3.1 is used, we know that the remainder term satisfies

Rn(t) = O
( p
n

)
s+

(
1

p
+
p

n

)
s2 +O

(
s3

p

)
.

By t = s/(nσn) and (C.40), (C.38) is obtained.

C.4.5. Proof of Theorem A.3 (VI): Joint Testing the Equality of Several Mean Vectors and Covariance
Matrices By Corollary 10.8.3 in Muirhead (2009),

logψ1(s) = log
Γp
{

1
2 (n− 1)

}
Γp
{

1
2 (n− 1)− 1

2nti
} +

k∑
j=1

log
Γp
{

1
2 (nj − 1)− 1

2njti
}

Γp
{

1
2 (nj − 1)

}
− p
(
n log n−

k∑
j=1

nj log nj

)
ti

2
+
µnsi

nσn
,
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where t = s/(nσn). By Lemma D.3.1,

log
Γp
{

1
2 (nj − 1)− 1

2njti
}

Γp
{

1
2 (nj − 1)

} =

[
2pnj +

(
nj − p−

3

2

)
nj log

(
1− p

nj − 1

)]
ti

2
(C.41)

+

{
p

nj − 1
+ log

(
1− p

nj − 1

)}
n2j t

2

4
+ %nj (t) +Rn(t),

where for an integer l, we define

%l(t) = p

{(
l − 1

2
+
lt

2

)
log

(
l − 1

2
+
lt

2

)
− l − 1

2
log

l − 1

2

}
, (C.42)

and Rn(t) denotes the remainder term and it is of the order of

Rn(t) = O

(
pt

n

)
+O

(
1

p
+
p

n

)
p2t2 +O

(
p2t3

)
. (C.43)

In addition, to evaluate logψ1(s), we also use Lemma C.4.1 below.

LEMMA C.4.1. Under the conditions of Theorem A.3, as p/n→ 0 and t = s/(nσn) = O(s/
√
f),

n2t2 log

(
1− p

n− 1

)
= n2t2 log

(
1− p

n

)
+O

( p
n

)
t2, (C.44){

(n− p− 3/2)n log

(
1− p

n− 1

)}
t =

{
(n− p− 3/2)n log

(
1− p

n

)}
t− pt+O

( p
n

)
t.

Moreover, for %l(t) defined in (C.42), we have

−%n(t) +

k∑
j=1

%nj (t) =

(
1− k − n log n+

k∑
j=1

nj log nj

)
tp

2
+O

(
pt

n
+ pt2

)
. (C.45)

Proof. Please see Section D.3.5 on Page 77. �

By Lemma C.4.1 and the expansions of gamma functions in (C.41), we calculate

logψ1(s) (C.46)

=

{
p−

(
n− p− 3

2

)
n log

(
1− p

n

)
+

k∑
j=1

(
nj − p−

3

2

)
nj log

(
1− p

nj − 1

)}
ti

2

−

n2Ln,p − k∑
j=1

n2jLnj−1,p

 t2

4
− p

(1− k)− n log n+

k∑
j=1

nj log nj

 ti

2

− p
(
n log n−

k∑
j=1

nj log nj

)
ti

2
+
µnsi

nσn
+Rn(t),

where Rn(t) denotes the remainder term of (C.46), which is of the order same as that in (C.43), whereas
we mention that the exact value of Rn(t) can change. Then we obtain (C.38) by t = s/(nσn) and nσn =
Θ(f1/2).

C.4.6. Proof of Theorem A.6 (VII): Testing Independence between Multiple Vectors By Theorem
11.2.3 in Muirhead (2009), we know

logψ1(s) = log
Γp{ 12 (n− 1)− 1

2nti}
Γp{ 12 (n− 1)}

+
k∑
j=1

Γpj{ 12 (n− 1)}
Γpj{ 12 (n− 1)− 1

2nti}
+
µnsi

nσn
,



52 HE ET AL.

where t = s/(nσn). By Lemma D.3.1, we can expand log Γp(·) and obtain

logψ1(s) =

2p+

(
n− p− 3

2

)
Ln−1,p −

k∑
j=1

{
2pj +

(
n− pj −

3

2

)
Ln−1,pj

} nti
2

+

 p

n− 1
+ Ln−1,p −

k∑
j=1

(
pj

n− 1
+ Ln−1,pj

) n2t2

4

+

(
p−

k∑
j=1

pj

){
n(1− ti)

2
log

n(1− ti)
2

− n

2
log

n

2

}
+
µnsi

nσn
+Rn(t),

where Rn(t) denotes the remainder term and its order satisfies

Rn(t) = O

(
pt

n

)
+O

(
1

p
+
p

n

)
p2t2 +O

(
p2t3

)
.

Then we obtain (C.38) by noticing p−
∑k
j=1 pj = 0 and t = O(s/p).

D. PROOFS OF ASSISTED LEMMAS

D.1. Results on Asymptotic Expansions of the Gamma Functions

In this section, we provide some results on asymptotic expansions of the gamma functions, which are
repeatedly used in the proofs. We first give the following Lemma D.1.1 on the expansion of log Γ(z),
which also provides the basis for other lemmas below. Lemma D.1.1 and its proof can be found in 12.33
of Whittaker and Watson (1996).

LEMMA D.1.1. Suppose that a complex number z satisfies Re(z) ≥ ε1 > 0 and |arg(z)| ≤ π/2− ε2
with ε1 > 0 and 0 < ε2 < π/4 being given in advance. When |z| → ∞, and an even integer L, we have

log Γ(z) =

(
z − 1

2

)
log z − z + log

√
2π +

L−1∑
l=1

(−1)l+1Bl+1(0)

l(l + 1)zl
+RL(z), (D.1)

where Bl+1(·) represents the Bernoulli polynomial of order l + 1, and

|RL(z)| = O

(
|BL+2(0)|

(L+ 1)(L+ 2)|z|L+1

)
.

Particularly, we know Bl(0) = 0 when l is odd and l ≥ 3.

In Lemma D.1.1, if we take L = 2 and z as a real number, by B2(0) = 1/6, we have

log Γ(z) =

(
z − 1

2

)
log z − z + log

√
2π +

1

12z
+O(z−2). (D.2)

Given Lemma D.1.1, we next prove two additional lemmas on asymptotic expansions of the gamma
functions.

LEMMA D.1.2. Suppose a complex number z + a satisfies Re(z + a) ≥ ε1 > 0 and |arg(z + a)| ≤
π/2− ε2 with ε1 > 0 and 0 < ε2 ≤ π/4 being given in advance. Assume |a| → ∞ as |z| → ∞ and |a| =
o(|z|). For a finite even L, when |a|L+1/|z|L → 0,

log Γ(z + a) =

(
z + a− 1

2

)
log z − z + log

√
2π +

L−1∑
l=1

(−1)l+1Bl+1(a)

l(l + 1)zl
+O

(
|a|L+1

|z|L

)
.
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Proof. Please see Section D.1.1 on Page 53. �

LEMMA D.1.3. For a real number x→∞ and a real number b = o(x),

log
Γ(x+ bi)

Γ(x)
= (x+ bi) log(x+ bi)− x log x− bi− bi

2x
+O

(
b+ b2

x2

)
,

where i denotes the imaginary unit.

Proof. Please see Section D.1.2 on Page 54. �

D.1.1. Proof of Lemma D.1.2 (on Page 52) By (D.1), for a finite even L, we have

log Γ(z + a) (D.3)

=

(
z + a− 1

2

)
log(z + a)− (z + a) + log

√
2π +

L−1∑
l=1

(−1)l+1Bl+1(0)

l(l + 1)(z + a)l
+O

(
|z + a|−L−1

)
=

(
z + a− 1

2

)
log z − z +

(
z + a− 1

2

)
log
(

1 +
a

z

)
− a+ log

√
2π

+
L−1∑
l=1

(−1)l+1Bl+1(0)

l(l + 1)zl

(
1 +

a

z

)−l
+O

(
|z + a|−L−1

)
.

By Taylor’s expansion,(
z + a− 1

2

)
log
(

1 +
a

z

)
− a =

L−1∑
k=1

(−1)k+1

zk

{
ak+1

k(k + 1)
− 1

2k
ak
}

+O

(
|a|L+1

|z|L

)
. (D.4)

Note that B0(0) = 1 and B1(0) = −1/2. Thus

(D.4) =

L−1∑
k=1

(−1)k+1

k(k + 1)zk

{
B0(0)ak+1 +

(
k + 1

1

)
B1(0)ak

}
+O

(
|a|L+1

|z|L

)
. (D.5)

In addition, by Taylor’s expansion, when L is finite,

L−1∑
l=1

(−1)l+1Bl+1(0)

l(l + 1)zl

(
1 +

a

z

)−l
(D.6)

=
L−1∑
l=1

(−1)l+1Bl+1(0)

l(l + 1)zl

{
L−1−l∑
s=0

(−1)s
(
l + s− 1

s

)
as

zs
+O

(
|a/z|L−l

)}

=
L−1∑
k=1

k∑
t=1

(−1)k+1Bt+1(0)

t(t+ 1)zk
(k − 1)!

(t− 1)!(k − t)!
ak−t +O

(
|a/z|L

)
=

L−1∑
k=1

k+1∑
t=2

(−1)k+1Bt(0)

k(k + 1)zk

(
k + 1

t

)
ak+1−t +O

(
|a/z|L

)
.

Combining (D.3), (D.5), and (D.6), we obtain

log Γ(z + a) =

(
z + a− 1

2

)
log z − z + log

√
2π

+
L−1∑
k=1

(−1)k+1

k(k + 1)zk

{
k+1∑
t=0

(
k + 1

t

)
Bt(0)ak+1−t

}
+O

(
|a|L+1

|z|L

)
.
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By the property of the Bernoulli polynomials,Bk+1(a) =
∑k+1
t=0 Bt(0)ak+1−t; see, e.g., Eq. (13) on Page

21 in Luke (1969). Therefore the lemma is proved.

D.1.2. Proof of Lemma D.1.3 (on Page 53) By Binet’s second formula of the gamma function, it can
be obtained that for a complex number z with positive real part, and any integer L ≥ 1,

log Γ(z) =

(
z − 1

2

)
log z − z + log

√
2π +

L∑
l=1

B2l(0)

(2l − 1)(2l)z2l−1
+

2(−1)L

z2L−1

∫ ∞
0

∫ t

0

u2Ldu

u2 + z2
dt

e2πt − 1
;

please see Page 252 in Whittaker and Watson (1996) for details. Take L = 1, and by B2(0) = 1/6, we
have

log Γ(x) =

(
x− 1

2

)
log x− x+ log

√
2π +

1

12x
− 2

x

∫ ∞
0

(∫ t

0

u2

x2 + u2
du

)
dt

e2πt − 1
.

Similarly, we have

log Γ(x+ bi) =

(
x+ bi− 1

2

)
log(x+ bi)− (x+ bi) + log

√
2π

+
1

12(x+ bi)
− 2

x+ bi

∫ ∞
0

(∫ t

0

u2

(x+ bi)2 + u2
du

)
dt

e2πt − 1
.

It follows that

log
Γ(x+ bi)

Γ(x)
(D.7)

= (x+ bi) log(x+ bi)− x log x− bi− 1

2
log

(
1 +

bi

x

)
+

1

12

(
1

x+ bi
− 1

x

)
+ R̃2,

where

R̃2 = −2

∫ ∞
0

∫ t

0

[
u2

(x+ bi){(x+ bi)2 + u2}
− u2

x(x2 + u2)

]
du

dt

e2πt − 1
.

To evaluate R̃2, we note that

u2

(x+ bi){(x+ bi)2 + u2}
− u2

x(x2 + u2)

= − u2

x3
× 2bxi− b2x + bxi{(1 + bxi)

2 + u2x}
(1 + bxi){(1 + bxi)2 + u2x}(1 + u2x)

= − u2bx
x3(1 + bxi)(1 + u2x)

×
[

2i− bx
(1 + bxi)2 + u2x

+ i

]
,

where for easy presentation, we let bx = b/x and ux = u/x. Since b = o(x), |(1 + bxi)
−1| is bounded.

Moreover, we also know (1 + u2x)−1 and |{(1 + bxi)
2 + u2x}−1| are bounded. It follows that there exists

a constant C such that

|R̃2| ≤
Cbx
x3

∫ ∞
0

(∫ t

0

u2du

)
dt

e2πt − 1
= O

(
b

x4

)
,

where we use
∫∞
0
t3(e2πt − 1)−1dt is a constant; see 7.2 in Whittaker and Watson (1996). Lemma D.1.3

is then obtained by (D.7) and

log

(
1 +

bi

x

)
=
bi

x
+O

(
b2

x2

)
,

1

x+ bi
− 1

x
= O

(
b

x2

)
.
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D.2. Lemmas for Theorems 2.2, A.2 & A.5
D.2.1. Proof of Lemma B.2.1 (on Page 25) By (B.1), we can write

log E{exp(−2itη log Λn)} = G1 +G2 +G3,

where in this subsection, we let

G1 = −iηnpt log

(
2e

n

)
, G2 = −np

2
(1− 2iηt) log(1− 2iηt),

G3 = log Γp

(
n− 1

2
− ηnit

)
− log Γp

(n− 1

2

)
.

By the property of multivariate gamma function; see, e.g., Theorem 2.1.12 in Muirhead (2009), we obtain

G3 =

p∑
j=1

log Γ

{
n

2
(1− 2ηit)− j

2

}
−

p∑
j=1

log Γ

(
n

2
− j

2

)

=

p∑
j=1

[
log Γ

{
ηn

2
(1− 2it) +

n(1− η)− j
2

}
− log Γ

{
ηn

2
+
n(1− η)− j

2

}]
.

We first examine G3. When η = 1 or η = ρ, for 1 ≤ j ≤ p, n(1− η)− j = O(p) and ηn = Θ(n).
As p = o(n), |{n(1− η)− j}{ηn(1− 2it)}−1| = O(p/n) = o(1). Then we can apply Lemma D.1.2 on
Page 52, and obtain

log Γ

{
ηn

2
(1− 2it) +

n(1− η)− j
2

}
=

{
ηn

2
(1− 2it) +

n(1− η)− j − 1

2

}
log
{ηn

2
(1− 2it)

}
− ηn

2
(1− 2it) + log

√
2π

+
L−1∑
l=1

(−1)l+1

l(l + 1)
Bl+1

{
n(1− η)

2
− j

2

}{ηn
2

(1− 2it)
}−l

+O

(
pL+1

nL

)
,

and

log Γ

{
ηn

2
+
n(1− η)− j

2

}
=

{
ηn

2
+
n(1− η)− j − 1

2

}
log

ηn

2
− ηn

2
+ log

√
2π

+
L−1∑
l=1

(−1)l+1

l(l + 1)
Bl+1

{
n(1− η)

2
− j

2

}(ηn
2

)−l
+O

(
pL+1

nL

)
.

It follows that

G3 = − ηpnti log
( n

2e

)
− pηnit log η +

pn

2
(1− 2iηt) log(1− 2it)−

p∑
j=1

j + 1

2
log(1− 2it)

+
L−1∑
l=1

(−1)l+1

l(l + 1)

p∑
j=1

Bl+1

{
n(1− η)

2
− j

2

}(ηn
2

)−l {
(1− 2it)−l − 1

}
+O

(
pL+2

nL

)
.
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We next examine G2. By 1− 2iηt = η(1− 2it) + 1− η, and Taylor’s expansion,

(1− 2iηt) log(1− 2iηt)

= {η(1− 2it) + 1− η} log{η(1− 2it)}

+ 1− η + (1− η)
L−1∑
l=1

(−1)l+1

l(l + 1)

(
1− η
η

)l
(1− 2it)−l +O

{
(1− η)L+1

}
.

As log(1) = (1− 2iη × 0) log(1− 2iη × 0) = 0, by applying Taylor’s expansion similarly as above,

(1− 2iηt) log(1− 2iηt)− log(1)

= − 2iηt log η(1− 2it) + log(1− 2it)

+ (1− η)
L−1∑
l=1

(−1)l+1

l(l + 1)

(
1− η
η

)l{
(1− 2it)−l − 1

}
+O{(1− η)L+1}.

As (1− η)/η = {(1− η)n/2}/(ηn/2),

G2 = −
L−1∑
l=1

(−1)l+1

l(l + 1)

p∑
j=1

{
(1− η)n

2

}l+1 (ηn
2

)−l {
(1− 2it)−l − 1

}
+ iηnpt log η(1− 2it)− np

2
log(1− 2it) +O

{
(1− η)L+1pn

}
.

In summary, as 1− η = O(p/n) when η = 1 or ρ, we have

G1 +G2 +G3 = −
p∑
j=1

j + 1

2
log(1− 2it) +

L−1∑
l=1

ςl
{

(1− 2it)−l − 1
}

+O

(
pL+2

nL

)
,

where

ςl =
(−1)l+1

l(l + 1)

p∑
j=1

[
Bl+1

{
(1− η)n

2
− j

2

}
−
{

(1− η)n

2

}l+1
](ηn

2

)−l
.

Particularly, as Bl+1(·) is a polynomial of order l + 1 and (1− η)n = O(p), we have ςl = O(pl+2n−l).

D.2.2. Notation of the finite difference and computation rules In the following, we prove Propositions
B.1 and B.2 and Lemma B.2.2 based on the calculus of the finite difference. To facilitate the proofs,
we introduce some notation. Given x, define a function with respect to the degrees of freedom f as
Fx(f) = P (χ2

f ≤ x). Let ∆2h represent a forward difference operator with step 2h, that is, ∆2h(Fx, f) =
Fx(f + 2h)− Fx(f). For an integer v ≥ 1, it follows that the v-th order forward difference is

∆v
2h(Fx, f) =

v∑
w=0

(
v

w

)
(−1)v−wF (f + 2hw),

where ∆1
2h(Fx, f) = ∆2h(Fx, f). Particularly, when h = 1, we have

∆v
2(Fx, f) =

v∑
w=0

(
v

w

)
(−1)v−wP (χ2

f+2w ≤ x);

when h = 2,

∆v
4(Fx, f) =

v∑
w=0

(
v

w

)
(−1)v−wP (χ2

f+4w ≤ x).

In the following proofs, we use several rules of the finite difference operator listed in Lemmas D.2.1–D.2.3
below, which can be found in Section 3.7 of Zwillinger (2002).



On the Phase Transition of Wilk’s Phenomenon 57

LEMMA D.2.1 (LEIBNIZ RULE). For two functions F (f) and G(f), and two positive integers v and
h,

∆v
h(FG, f) =

v∑
w=0

(
v

w

)
∆w
h (F, f)∆v−w

h (G, f + hw).

LEMMA D.2.2 (LINEARITY RULE). For two constants C1 and C2, two functions F (f) and G(f), and
two positive integers v and h, the linear combination C1F (f) + C2G(f) satisfies

∆v
h(C1F + C2G, f) = C1∆v

h(F ) + C2∆v
h(G).

LEMMA D.2.3. For a function F (f) and positive integers v1, v2, h1, and h2,

∆v2
h2

∆v1
h1

(F, f) = ∆v1
h1

∆v2
h2

(F, f) = ∆v2
h2

∆v1−1
h1
{∆h1

(F, f)} = ∆v1
h1

∆v2−1
h2
{∆h2

(F, f)}.

Based on the notation and lemmas on the finite difference, we first prove Lemma B.2.2 in Section D.2.3,
and then use Lemma B.2.2 to prove Propositions B.1 and B.2 in Sections D.2.4 and D.2.5, respectively.

D.2.3. Proof of Lemma B.2.2 (on Page 27) We prove (B.24) in Lemma B.2.2 from the cumulative
distribution function of the chi-squared distribution. In particular, by the probability density of χ2

f , we
have

Pr
(
χ2
f ≤ x

)
=
γ(f/2, x/2)

Γ(f/2)
,

where γ(m,x) is the lower incomplete gamma function defined as γ(m,x) =
∫ x
0
tm−1e−tdt, and Γ(m)

is the gamma function defined as Γ(m) =
∫∞
0
tm−1e−tdt; see, e.g., Section 6.2 in Press et al. (1992).

Thus for an integer h,

∆1
2h(Fx, f) =

Γ
(
f
2

)
γ
(
f
2 + h, x2

)
− Γ

(
f
2 + h

)
γ
(
f
2 ,

x
2

)
Γ
(
f
2 + h

)
Γ
(
f
2

) ,

where ∆1
2h(Fx, f) = Pr(χ2

f+2h ≤ x)− Pr(χ2
f ≤ x) following the notation in Section D.2.2. By integra-

tion by parts, we have

Γ(m+ 1) = mΓ(m), and then Γ(m+ h) =
h∏
k=1

(m+ h− k)Γ(m). (D.8)

Similarly, we have γ(m+ 1, x) = mγ(m,x)− xme−x, and then

γ(m+ h, x) =
h∏
k=1

(m+ h− k)γ(m,x)−
h∑
k=1

k−1∏
t=1

(m+ h− t)xm+h−ke−x;

this recurrence formulas can also be found in Sections 6.3 and 6.5 in Abramowitz and Stegun (1970). It
follows that

∆1
2h(Fx, f) = −

∑h
k=1

∏k−1
t=1 (f/2 + h− t)(x/2)

f
2 +h−ke−x/2∏h

t=1(f/2 + h− t)× Γ(f/2)
= −

h∑
k=1

(x/2)
f
2 +h−k e−x/2

Γ (f/2 + h− k + 1)
.

Therefore (B.24) is proved.
We next prove (B.25) in Lemma B.2.2 based on (B.24) by discussing h ∈ {1, 2, 3, 4}, respectively.

(1). We first consider h = 1. Under this case,

∆1
2(Fx, f) = − (x/2)f/2e−x/2

Γ(f/2 + 1)
. (D.9)
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By (D.2), as f →∞, Γ(f/2) = (f/2)f/2−1/2e−f/2
√

2π{1 +O(f−1)}. Moreover, by Γ(f/2 + 1) =
Γ(f/2)f/2, we have

1

Γ(f/2 + 1)
(x/2)f/2e−x/2 =

1√
fπ

(
x

f

)f/2
exp

{
f − x

2
+O(f−1)

}
=

1√
fπ

exp

{
f − x

2
+
f

2
log

(
1 +

x− f
f

)
+O(f−1)

}
.

When x = χ2
f (α), we have x = f +

√
2f{zα +O(f−1/2)} by (B.6). Then by Taylor’s series,

∆1
2(Fx, f) =

1√
fπ

exp

{
− (x− f)2

4f
+O(f−1/2)

}
=

1√
fπ

exp

(
−z

2
α

2

)
{1 +O(f−1/2)}.

(2). When h = 2, by (B.24), (D.8), and x = f +
√

2f{zα +O(f−1/2)}, we have

∆1
4(Fx, f) = −

x
2

f
2 + 1

×∆1
2(Fx, f) + ∆1

2(Fx, f) = − 2√
fπ

exp

(
−z

2
α

2

)
{1 +O(f−1/2)}.

(3). When h = 3, similarly by (B.24), (D.8), and x = f +
√

2f{zα +O(f−1/2)}, we have

∆1
6(Fx, f) = −

(x2 )2

( f2 + 2)( f2 + 1)
∆1

2(Fx, f) + ∆1
4(Fx, f) = − 3√

fπ
exp

(
−z

2
α

2

)
{1 +O(f−1/2)}.

(4). When h = 4, similarly by (B.24), (D.8), and x = f +
√

2f{zα +O(f−1/2)}, we have

∆1
8(Fx, f) = −

(x2 )3

( f2 + 3)( f2 + 2)( f2 + 1)
∆1

2(Fx, f) + ∆1
6(Fx, f)

= − 4√
fπ

exp

(
−z

2
α

2

)
{1 +O(f−1/2)}.

In summary, (B.25) is proved.

D.2.4. Proof of Proposition B.1 (on Page 27) We prove Proposition B.1 based on the notation in
Section D.2.2 and Lemma B.2.2, which is proved in Section D.2.3 above. Particularly, we write the left
hand side of (B.21) as ∆v

2h(Fx, f) below. By (B.25), we know (B.21) holds for v = 1 and h ∈ {1, 2, 3, 4}.
We next prove (B.21) for v ≥ 2 when h ∈ {1, 2, 3, 4}, respectively.

(Part I) Proof for h = 1. When v = 2, by (B.24), we have

∆2
2(Fx, f) = − 1

Γ( f2 + 2)

(x
2

) f
2 +1

e−x/2 +
1

Γ( f2 + 1)

(x
2

) f
2

e−x/2.

Then we can write ∆2
2(Fx, f) = A1(f)Q1(f), where we define

Q1(f) = ∆1
2(Fx, f), and A1(f) = x/(f + 2)− 1. (D.10)

Note that Q1(f) = O(f−1/2) by (B.25), and A1(f) = O(f−1/2) by (B.6) when x = χ2
f (α). Therefore,

(B.21) holds for h = 1 and v = 2.
We next prove (B.21) for h = 1 and v > 2 by the mathematical induction. Assume that there exists

some constant C such that uniformly for integers 1 ≤ k ≤ v − 1,

∆k
2(Fx, f) = O(k!Ckf−k/2),

that is, uniformly for integers 1 ≤ k ≤ v − 1,

∆k−1
2 (Q1, f) = O(k!Ckf−k/2). (D.11)
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We next prove ∆v
2(Fx, f) = O(v!Cvf−v/2). By the definition of Q1(f) and A1(f), we have

∆v
2(Fx, f) = ∆v−1

2 (Q1, f) = ∆v−2
2 (A1Q1, f).

By Lemma D.2.1,

∆v−2
2 (A1Q1, f) =

v−2∑
w=0

(
v − 2

w

)
∆w

2 (A1, f)∆v−2−w
2 (Q1, f + 2w). (D.12)

To evaluate (D.12), by (D.11), for 0 ≤ w ≤ v − 2, we have

∆v−2−w
2 (Q1, f + 2w) = O

{
(v − w − 1)!Cv−w−1f−(v−w−1)/2

}
.

In addition, to evaluate ∆w
2 (A1, f) in (D.12), we use the following Lemma D.2.4.

LEMMA D.2.4. When x = χ2
f (α) and f →∞, A1(f) =

√
2zαf

−1/2{1 +O(f−1)}, and for any in-
teger w ≥ 1,

∆w
2 (A1, f) = x× (−1)w2ww!

1∏w+1
k=1 (f + 2k)

. (D.13)

Thus there exists a constant C such that (D.13) is of the order of O(w!Cwf−w) as f →∞ uniformly for
w ≥ 1.

Proof. Please see Section D.2.6 on Page 67. �

By Lemma D.2.4, (D.12) gives that as f →∞,

∆v−2
2 (A1Q1, f) (D.14)

= O(f−1/2)×O
{

(v − 1)!Cv−1f−(v−1)/2
}

+

v−2∑
w=1

(
v − 2

w

)
O
(
w!Cwf−w

)
×O

{
(v − w − 1)!Cv−w−1f−(v−w−1)/2

}
= (v − 1)!Cv−1O(f−v/2) +

v−2∑
w=1

(v − 2)!(v − w − 1)Cv−1O{f−(w−1)/2 × f−v/2}

= O(v!Cvf−v/2),

where in the last equation, we use v − w − 1 ≤ v − 1 and O{f−(w−1)/2} = O(1) when w ≥ 1. We note
that there exists a constant C such that the last equation in (D.14) holds uniformly for v ≥ 1. In summary,
we obtain (B.21) for h = 1.

(Part II) Proof for h = 2. By (B.24), (D.9) and (D.10),

∆1
4(Fx, f) = Q2(f) +Q1(f), (D.15)

where we define

Q2(f) = − 1

Γ( f2 + 2)

(x
2

) f
2 +1

e−x/2.

Then by (D.15) and Lemma D.2.2, we have

∆v
4(Fx, f) = ∆v−1

4 (Q2, f) + ∆v−1
4 (Q1, f).

Therefore, to prove (B.21) for h = 2, it suffices to prove

∆v−1
4 (Q1, f) = O(v!Cvf−v/2),

∆v−1
4 (Q2, f) = O(v!Cvf−v/2). (D.16)
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As Q1(f) = Q2(f − 2), it suffices to prove (D.16), and we next use the mathematical induction. Note
that (D.16) holds for v = 1 since ∆0

4(Q2, f) = Q2(f) = O(f−1/2) by the proof of (B.25). In addition,
for v = 2, we have

∆1
4(Q2, f) = Q2(f + 4)−Q2(f) = A2(f)Q2(f), (D.17)

where

A2(f) =
(x2 )2

( f2 + 3)( f2 + 2)
− 1.

Note that Q2(f) = O(f−1/2), and when x = χ2
f (α), we have A2(f) = O(f−1/2) by (B.6). Therefore,

∆1
4(Q2, f) = O(f−1), i.e., (D.16) holds for v = 2. For v ≥ 3, we next use the mathematical induction,

where we assume for integers 0 ≤ w ≤ v − 2,

∆w
4 (Q2, f) = O{(w + 1)!Cw+1f−(w+1)/2}, (D.18)

and prove (D.16). By (D.17), ∆v−1
4 (Q2, f) = ∆v−2

4 (A2Q2, f). Then by Lemma D.2.1,

∆v−2
4 (A2Q2, f) =

v−2∑
w=0

(
v − 2

w

)
∆w

4 (A2, f)∆v−2−w
4 (Q2, f + 4w). (D.19)

We next prove (D.16) by (D.18), (D.19) and the following Lemma D.2.5.

LEMMA D.2.5. When x = χ2
f (α), A2(f) = 2

√
2zαf

−1/2{1 +O(f−1/2)}. Moreover, there exists a
constant C such that uniformly for any integer w ≥ 1,

∆w
4 (A2, f) = O

{
(w + 1)!Cw

w∏
t=1

(f + 2t)−1
}
. (D.20)

Proof. Please see Section D.2.7 on Page 67. �

By Lemma D.2.5 and (D.18), we have

(D.19) =O(f−1/2)×O
{

(v − 1)!Cv−1f−(v−1)/2
}

+

v−2∑
w=1

(
v − 2

w

)
O

{
(w + 1)!Cw

w∏
t=1

(f + 2t)−1(v − 1− w)!C(v−1−w)f−
v−1−w

2

}

=O
{

(v − 1)!Cv−1f−
v
2

}
+

v−2∑
w=1

O
{

(v − 2)!(v − 1− w)Cv−1f−
v
2

} (w + 1)f
w+1

2∏w
t=1(f + 2t)

. (D.21)

To evaluate (D.21), we note that when w = 1 and 2, (w + 1)f (w+1)/2{
∏w
t=1(f + 2t)}−1 =

O(f (1−w)/2); when w ≥ 3, as f →∞,

(w + 1)f (w+1)/2∏w
t=1(f + 2t)

≤ w + 1

2w

f (w+1)/2

fw−1
= O(1)

uniformly over w ≥ 3. Moreover, by
∑v−2
w=1(v − 2)!(v − 1− w) ≤ v!, we obtain (D.19) =

O(v!Cvf−v/2).

(Part III) Proof for h = 3. By (B.24),

∆1
6(Fx, f) = Q3(f) +Q2(f) +Q1(f), (D.22)

where we define

Q3(f) = − 1

Γ( f2 + 3)

(x
2

) f
2 +2

e−x/2.



On the Phase Transition of Wilk’s Phenomenon 61

Then by (D.22) and Lemma D.2.2,

∆v
6(Fx, f) = ∆v−1

6 (Q3, f) + ∆v−1
6 (Q2, f) + ∆v−1

6 (Q1, f).

Since Q2(f) = Q3(f − 2) and Q1(f) = Q3(f − 4), it suffices to prove

∆v−1
6 (Q3, f) = O(v!Cvf−v/2). (D.23)

We next prove (D.23) by the mathematical induction. Note that (D.23) holds for v = 1 since
∆0

6(Q3, f) = Q3(f) = O(f−1/2) by the proof of (B.25) in Section D.2.3. In addition, for v = 2,

∆1
6(Q3, f) = Q3(f + 6)−Q3(f) = A3(f)Q3(f), (D.24)

where

A3(f) =
3∏
k=1

A3,k(f)− 1, A3,k(f) =
x

f + 4 + 2k
.

Note thatA3(f) = O(f−1/2) when x = χ2
f (α) by (B.6). Moreover, asQ3(f) = O(f−1/2), ∆1

6(Q3, f) =

O(f−1), i.e., (D.23) holds for v = 2. For v ≥ 3, we next use the mathematical induction, where we assume
for integers 0 ≤ w ≤ v − 2,

∆w
6 (Q3, f) = O{(w + 1)!Cw+1f−(w+1)/2}, (D.25)

and prove (D.23). By (D.24), ∆v−1
6 (Q3, f) = ∆v−2

6 (A3Q3, f). Then by Lemma D.2.1,

∆v−2
6 (A3Q3, f) =

v−2∑
w=0

(
v − 2

w

)
∆w

6 (A3, f)∆v−2−w
6 (Q3, f + 6w). (D.26)

We next prove (D.26) by (D.25) and the following Lemma D.2.6.

LEMMA D.2.6. When x = χ2
f (α), A3(f) = 3

√
2zαf

−1/2{1 +O(f−1/2)}. Moreover, there exists a
constant C such that uniformly for any integer w ≥ 1,

∆w
6 (A3, f) = O

{
(w + 2)!Cw

w∏
t=1

(f + 2t)−1
}
.

Proof. Please see Section D.2.8 on Page 68. �

Then by (D.25) and Lemma D.2.6,

(D.26) = O(f−1/2)×O
{

(v − 1)!Cv−1f−(v−1)/2
}

+
v−2∑
w=1

(
v − 2

w

)
O

{
(w + 2)!Cw

w∏
t=1

(f + 2t)−1(v − 1− w)!Cv−1−wf−(v−1−w)/2

}

= O
{

(v − 1)!Cv−1f−v/2
}

+
v−2∑
w=1

O
{

(v − 1)!Cvf−v/2
} (w + 2)(w + 1)f (w+1)/2∏w

t=1(f + 2t)
.

Note that when w ≤ 4, (w + 2)(w + 1)f (w+1)/2
∏w
t=1(f + 2t)−1 = O{f (1−w)/2}; when w ≥ 5,

(w + 2)(w + 1)f (w+1)/2∏w
t=1(f + 2t)

≤ (w + 2)(w + 1)

w(w − 1)
f (5−w)/2 = O(1)

as f →∞ uniformly over w ≥ 5. It follows that (D.26) = O(v!Cvf−v) and thus (D.23) is proved.

(Part IV) Proof for h = 4. By (B.24),

∆1
8(Fx, f) = Q4(f) +Q3(f) +Q2(f) +Q1(f), (D.27)
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where we define

Q4(f) = − 1

Γ( f2 + 4)

(x
2

) f
2 +3

e−x/2.

Then by (D.27) and Lemma D.2.1,

∆v
8(Fx, f) = ∆v−1

8 (Q4, f) + ∆v−1
8 (Q3, f) + ∆v−1

8 (Q2, f) + ∆v−1
8 (Q1, f).

Since Q3(f) = Q4(f − 2), Q2(f) = Q4(f − 4), and Q1(f) = Q4(f − 6), it suffices to prove

∆v−1
8 (Q4, f) = O(v!Cvf−v/2). (D.28)

We next prove (D.28) by the mathematical induction. Note that (D.28) holds for v = 1 since
∆0

8(Q4, f) = Q4(f) = O(f−1/2) by the proof of (B.25) in Section D.2.3. In addition, for v = 2, we
have

∆1
8(Q4, f) = Q4(f + 8)−Q4(f) = A4(f)Q4(f), (D.29)

where

A4(f) =

4∏
k=1

A4,k(f)− 1, A4,k(f) =
x

f + 6 + 2k
.

Note that A4(f) = O(f−1/2) as x = f +
√

2f{zα +O(f−1/2)}. Moreover, as Q4(f) = O(f−1/2),
∆1

8(Q4, f) = O(f−1), i.e., (D.28) holds for v = 2. For v ≥ 3, we next use the mathematical induction,
where we assume for integers 0 ≤ w ≤ v − 2,

∆w
8 (Q4, f) = O{(w + 1)!Cw+1f−(w+1)/2}, (D.30)

and prove (D.28). By (D.29), ∆v−1
8 (Q4, f) = ∆v−2

8 (A4Q4, f). Then by Lemma D.2.1,

∆v−2
8 (A4Q4, f) =

v−2∑
w=0

(
v − 2

w

)
∆w

8 (A4, f)∆v−2−w
8 (Q4, f + 8w). (D.31)

We next prove (D.31) by (D.30), (D.31) and the following Lemma D.2.7.

LEMMA D.2.7. When x = χ2
f (α), A4(f) = 4

√
2zαf

−1/2{1 +O(f−1/2)}. Moreover, there exists a
constant C such that as f →∞,

∆w
8 (A4, f) = O

{
(w + 3)!Cw

w∏
t=1

(f + 2t)−1
}

holds uniformly for any integer w ≥ 1

Proof. Please see Section D.2.9 on Page 68. �

Then by (D.30) and Lemma D.2.7,

(D.31) = O(f−1/2)×O
{

(v − 1)!Cv−1f−(v−1)/2
}

+
v−2∑
w=1

(
v − 2

w

)
O

{
(w + 3)!Cw

w∏
t=1

(f + 2t)−1(v − 1− w)!Cv−1−wf−(v−1−w)/2

}

= O
{

(v − 1)!Cv−1f−v/2
}

+
v−2∑
w=1

O
{

(v − 1)!Cvf−v/2
} (w + 3)(w + 2)(w + 1)f

w+1
2∏w

t=1(f + 2t)
.
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Note that when w ≤ 6, (w + 3)(w + 2)(w + 1)f (w+1)/2
∏w
t=1(f + 2t)−1 = O{f (1−w)/2}; when w ≥

7, as f →∞,

(w + 3)(w + 2)(w + 1)f (w+1)/2∏w
t=1(f + 2t)

≤ (w + 3)(w + 2)(w + 1)

w(w − 1)(w − 2)
f (7−w)/2 = O(1)

holds uniformly over w ≥ 7. It follows that (D.31) = O(v!Cvf−v) and thus (D.28) is proved.

D.2.5. Proof of Proposition B.2 (on Page 27) Similar to the proof of Proposition B.1 in Section
D.2.5, we prove Proposition B.2 using the notation in Section D.2.2 and Lemma B.2.2. We next discuss
(h1, h2) = (1, 2) and (h1, h2) = (2, 3) in (Part I) and (Part II) below, respectively.

(Part I) Proof for h1 = 1 and h2 = 2. Based on the notation in Section D.2.2, it is equivalent to prove
that there exists some constant C such that when x = χ2

f (α), as f →∞,

∆v2
4 ∆v1

2 (Fx, f) = O
{
v1!v2!Cv1+v2f−(v1+v2)/2

}
, (D.32)

uniformly for integers v1, v2 ≥ 1.
When v1 = 0 or v2 = 0, (D.32) holds by Proposition B.1. When v1 = v2 = 1, by (D.9), we have

∆1
4∆1

2(Fx, f) = − 1

Γ( f2 + 3)

(x
2

) f
2 +2

e−x/2 +
1

Γ( f2 + 1)

(x
2

) f
2

e−x/2 = D2,4(f)∆1
2(Fx, f),

where

D2,4(f) =
x2

(f + 4)(f + 2)
− 1. (D.33)

As D2,4(f) = O(f−1/2) and ∆1
2(Fx, f) = O(f−1/2), (D.32) holds for v1 = v2 = 1. We next prove

(D.32) by the mathematical induction. Particularly, we assume for integers s1 ≤ v1 and s2 ≤ v2,

∆s2
4 ∆s1

2 (Fx, f) = O
{
s1!s2!Cs1+s2f−(s1+s2)/2

}
, (D.34)

and prove that (D.34) also holds for (s1, s2) = (v1 + 1, v2) and (s1, s2) = (v1, v2 + 1), i.e.,
∆v2

4 ∆v1+1
2 (Fx, f) and ∆v2+1

4 ∆v1
2 (Fx, f), respectively.

Step I.1. ∆v2
4 ∆v1+1

2 (Fx, f). Recall that we define Q1(f) = ∆1
2(Fx, f). It follows that (D.34) gives that

for integers s1 ≤ v1 − 1 and s2 ≤ v2
∆s2

4 ∆s1
2 (Q1, f) = O

{
(s1 + 1)!s2!Cs1+s2+1f−(s1+s2+1)/2

}
. (D.35)

It is then equivalent to prove that (D.35) holds for (s1, s2) = (v1, v2), i.e., ∆v2
4 ∆v1

2 (Q1, f). By
∆1

2(Q1, f) = A1(f)Q1(f), (see the definitions in (D.10)), and Lemmas D.2.1 and D.2.2,

∆v2
4 ∆v1

2 (Q1, f)

=

v1−1∑
w1=0

(
v1 − 1

w1

)
∆v2

4

{
∆w1

2 (A1, f)∆v1−1−w1
2 (Q1, f + 2w1)

}

=

v1−1∑
w1=0

(
v1 − 1

w1

) v2∑
w2=0

(
v2
w2

)
∆w2

4 ∆w1
2 (A1, f)∆v2−w2

4 ∆v1−1−w1
2 (Q1, f + 2w1 + 4w2). (D.36)

To evaluate (D.36), we use the following Lemma D.2.8.

LEMMA D.2.8. For two integersw1 andw2 satisfyingw1 + w2 ≥ 1, there exists some constantC such
that as f →∞,

∆w2
4 ∆w1

2 (A1, f) = (w1 + w2)!O

(
Cw1+w2

w1+w2∏
k=1

1

f + 2k

)
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uniformly over w1 + w2 ≥ 1.

Proof. Please see Section D.2.10 on Page 69. �

By Lemma D.2.8 and the assumption (D.35), we have

(D.36) =

v1−1∑
w1=0

(
v1 − 1

w1

) v2∑
w2=0

(
v2
w2

)
(w1 + w2)!O

(
w1+w2∏
k=1

1

f + 2k

)
Cv1+v2+1

× (v2 − w2)!(v1 − w1)!O
{

(f + 2w1 + 4w2)−(v1−w1+v2−w2)/2
}

=

v1−1∑
w1=0

(v1 − 1)!(v1 − w1)

v2∑
w2=0

v2!Cv1+v2+1O{f−(v1+v2+1)/2}

× (w1 + w2)!

w1!w2!

w1+w2∏
k=1

1

f + 2k
× f (w1+w2+1)/2.

We next use the following Lemma D.2.9.

LEMMA D.2.9. For integers w1, w2, and f ,

(w1 + w2)!

w1!w2!

w1+w2∏
k=1

1

f + 2k
× f (w1+w2+1)/2 = O

{
2−(w1+w2−1)/2

}
.

Proof. Please see Section D.2.11 on Page 70. �

It follows that by Lemma D.2.9,

(D.36) =

v1−1∑
w1=0

(v1 − 1)!(v1 − w1)

v2∑
w2=0

v2!
1

(
√

2)w1+w2−1
Cv1+v2+1O{f−(v1+v2+1)/2}

= O{v1!v2!Cv1+v2+1f−(v1+v2+1)/2}, (D.37)

which is O{(v1 + 1)!v2!Cv1+v2+1f−(v1+v2+1)/2} as v1 < v1 + 1. Therefore, we obtain
∆v2

4 ∆v1
2 (Q1, f) = O{(v1 + 1)!v2!Cv1+v2+1f−(v1+v2+1)/2}.

Step I.2. ∆v2+1
4 ∆v1

2 (Fx, f). By (D.15),

∆v2+1
4 ∆v1

2 (Fx, f) = ∆v1
2 ∆v2+1

4 (Fx, f) = ∆v1
2 ∆v2

4 (Q2, f) + ∆v2
4 ∆v1+1

2 (Fx, f).

By (D.37), we have ∆v2
4 ∆v1+1

2 (Fx, f) = O{v1!v2!Cv1+v2+1f−(v1+v2+1)/2}. Therefore, it remains to
prove ∆v1

2 ∆v2
4 (Q2, f) = O{v1!(v2 + 1)!Cv1+v2+1f−(v1+v2+1)/2}. By (D.17) and Lemma D.2.1,

∆v1
2 ∆v2

4 (Q2, f)

= ∆v1
2

{
v2−1∑
w2=0

(
v2 − 1

w2

)
∆w2

4 (A2, f)∆v2−1−w2
4 (Q2, f + 4w2)

}

=

v2−1∑
w2=0

(
v2 − 1

w2

) v1∑
w1=0

(
v1
w1

)
∆w1

2 ∆w2
4 (A2, f)∆v1−w1

2 ∆v2−1−w2
4 (Q2, f + 4w2 + 2w1). (D.38)

To evaluate (D.38) through the mathematical induction, by (D.15) and (D.34), we can assume that or
integers s1 ≤ v1 and s2 ≤ v2 − 1,

∆s1
2 ∆s2

4 (Q2, f) = O
{
s1!(s2 + 1)!Cs1+s2+1f−(s1+s2+1)/2

}
. (D.39)

In addition, we use the following Lemma D.2.10.
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LEMMA D.2.10. For two integers w1 and w2 satisfying w1 + w2 ≥ 1,

∆w2
4 ∆w1

2 (A2, f) = (w1 + w2 + 1)!O

(
Cw1+w2+1

w1+w2∏
k=1

1

f + 2k

)
.

Proof. Please see Section D.2.12 on Page 71. �

Combining (D.39) and Lemma D.2.10, we obtain ∆v1
2 ∆v2

4 (Q2, f) = O{v1!v2!Cv1+v2+1f−(v1+v2+1)/2}
similarly to (D.37) in Step I.1. As v2 < v2 + 1, we have ∆v1

2 ∆v2
4 (Q2, f) = O{v1!(v2 + 1)!Cv1+v2+1 ×

f−(v1+v2+1)/2}.

(Part II) Proof for h1 = 2 and h2 = 3. In this part, we prove

∆v2
6 ∆v1

4 (Fx, f) = O
{
v1!v2!Cv1+v2f−(v1+v2)/2

}
, (D.40)

as f →∞ and uniformly for integers v1, v2 ≥ 1.
When v1 = 0 or v2 = 0, (D.40) holds by Proposition B.1. When v1 = v2 = 1, note that ∆1

4(Fx, f) =
Q1(f) +Q2(f) by (D.15). Then we have ∆1

6∆1
4(Fx, f) = ∆1

6(Q1, f) + ∆1
6(Q2, f). Particularly,

∆1
6(Q1, f) = D2,6(f)Q1(f), D2,6(f) =

x3

(f + 6)(f + 4)(f + 2)
− 1; (D.41)

∆1
6(Q2, f) = D4,6(f)Q2(f), D4,6(f) =

x3

(f + 8)(f + 6)(f + 4)
− 1.

By the proof of (B.25),Q1(f) = O(f−1/2) andQ2(f) = O(f−1/2). In addition, for x = χ2
f (α), by (B.6),

D2,6(f) = O(f−1/2) and D4,6(f) = O(f−1/2). Therefore, (D.40) holds for v1 = 1 and v2 = 1. When
v1 > 1 or v2 > 1, by (D.15),

∆v2
6 ∆v1

4 (Fx, f) = ∆v2
6 ∆v1−1

4 (Q1, f) + ∆v2
6 ∆v1−1

4 (Q2, f).

It suffices to prove

∆v2
6 ∆v1−1

4 (Q1, f) = O
{
v1!v2!Cv1+v2f−(v1+v2)/2

}
, (D.42)

∆v2
6 ∆v1−1

4 (Q2, f) = O
{
v1!v2!Cv1+v2f−(v1+v2)/2

}
. (D.43)

We next prove (D.42) and (D.43) by the mathematical induction, respectively.

First, to prove (D.42), we apply the mathematical induction considering increasing v1 and v2 in the
following Step II.1 and Step II.2, respectively.

Step II.1. We assume for 0 ≤ s1 ≤ v1 − 2 and 0 ≤ s2 ≤ v2,

∆s2
6 ∆s1

4 (Q1, f) = O{(s1 + 1)!s2!Cs1+s2+1f−(s1+s2+1)/2}, (D.44)

and then prove (D.42). Note that ∆1
4(Q1, f) = D2,4(f)Q1(f), where D2,4(f) is defined in (D.33). Then

by the Leibniz rule in Lemma D.2.1,

∆v2
6 ∆v1−1

4 (Q1, f)

= ∆v2
6 ∆v1−2

4 (D2,4Q1, f)

=

v2∑
k2=0

v1−2∑
k1=0

(
v1 − 2

k1

)(
v2
k2

)
∆k2

6 ∆k1
4 (D2,4, f)×∆v2−k2

6 ∆v1−2−k1
4 (Q1, f + 4k1 + 6k2). (D.45)

To evaluate (D.45), we use the following Lemma D.2.11.
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LEMMA D.2.11. For integers k1 + k2 ≥ 1, there exists some constant C such that

∆k2
6 ∆k1

4 (D2,4, f) = (k1 + k2 + 1)!O

(
Ck1+k2

k1+k2∏
t=1

1

f + 2t

)
,

as f →∞ and uniformly over k1 + k2 ≥ 1.

Proof. Please see Section D.2.13 on Page 72. �

Then applying similar analysis to that of (D.36) and (D.37) in Part I above, we obtain (D.42) by the
assumption (D.44) and Lemma D.2.11.

Step II.2. We assume for 0 ≤ s1 ≤ v1 − 1 and 0 ≤ s2 ≤ v2 − 1, (D.44) holds, and then prove (D.42).
By (D.41) and the Leibniz rule in Lemma D.2.1,

∆v2
6 ∆v1−1

4 (Q1, f) (D.46)

= ∆v1−1
4 ∆v2−1

6 (D2,6Q1, f)

=

v1−1∑
k1=0

v2−1∑
k2=0

(
v1 − 1

k1

)(
v2 − 1

k2

)
∆k2

6 ∆k1
4 (D2,6, f)×∆v2−1−k2

6 ∆v1−1−k1
4 (Q1, f + 4k1 + 6k2).

Similarly to the analysis of (D.45), we use the following Lemma D.2.12 to evaluate (D.46).

LEMMA D.2.12. For integers k1 + k2 ≥ 1, there exists a constant C such that

∆k2
6 ∆k1

4 (D2,6, f) = (k1 + k2 + 2)!O

(
Ck1+k2

k1+k2∏
t=1

1

f + 2t

)
,

as f →∞ and uniformly over k1 + k2 ≥ 1.

Proof. Please see Section D.2.14 on Page 72. �

Since we assume (D.44) holds for 0 ≤ s1 ≤ v1 − 1 and 0 ≤ s2 ≤ v2 − 1, then by Lemma D.2.12,

(D.46) =

v1−1∑
k1=0

v2−1∑
k2=0

(
v1 − 1

k1

)(
v2 − 1

k2

)
(k1 + k2 + 2)!(v2 − 1− k2)!(v1 − k1)!

× Cv1+v2f−(v1+v2)/2O

(
f−(k1+k2+1)/2

k1+k2∏
t=1

1

f + 2t

)

= Cv1+v2f−(v1+v2)/2(v1 − 1)!(v2 − 1)!

v2∑
k2=0

v1−1∑
k1=0

(v1 − k1)

× (k1 + k2 + 2)!

k1!k2!
O

(
f−(k1+k2+1)/2

k1+k2∏
t=1

1

f + 2t

)
.

We next use the following Lemma D.2.13 to evaluate (D.46).

LEMMA D.2.13. For integers k1 + k2 ≥ 1, as f →∞,

(k1 + k2 + 2)!

k1!k2!
O

{
f−(k1+k2+1)/2

k1+k2∏
t=1

1

f + 2t

}
= O{2−(k1+k2−1)/2}.

Proof. Please see Section D.2.15 on Page 72. �

Then by Lemma D.2.13, we obtain ∆v2
6 ∆v1−1

4 (Q1, f) = O{v1!v2!Cv1+v2f−(v1+v2)/2} similarly to
(D.37). In summary, combining Step II.1 and Step II.2, we finish the proof of (D.42).
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Second, to prove (D.43), we can use the mathematical induction similarly to the proof of (D.42). The
analysis would be very similar and the details are thus skipped.

D.2.6. Proof of Lemma D.2.4 (on Page 59) When x = χ2
f (α), by (B.6), we have x = f +

√
2f{zα +

O(f−1/2)}, and then A1(f) =
√

2zαf
−1/2{1 +O(f−1)}. We next prove (D.13) by the mathematical

induction. For w = 1, we compute

∆1
2(A1, f) = A1(f + 2)−A1(f) = −x× 2× 1

(f + 2)(f + 4)
.

Therefore (D.13) holds when w = 1. We next assume (D.13) holds, and prove the conclusion holds for
∆w+1

2 (A1, f). Particularly,

∆w+1
2 (A1, f) = x× (−1)w2ww!

{
1∏w+2

k=2 (f + 2k)
− 1∏w+1

k=1 (f + 2k)

}

= x× (−1)w+12w+1(w + 1)!
1∏w+2

k=1 (f + 2k)
.

In summary, Lemma D.2.4 is proved.

D.2.7. Proof of Lemma D.2.5 (on Page 60) When x = χ2
f (α), by (B.6), we have x = f +

√
2f{zα +

O(f−1/2)}, and thenA2(f) = 2
√

2zαf
−1/2{1 +O(f−1)}. We next prove (D.20). Note that we can write

A2(f) = A2,1(f)A2,2(f)− 1, where we define

A2,1(f) =
x

f + 4
and A2,2(f) =

x

f + 6
.

By Lemmas D.2.1 and D.2.2, when w ≥ 1,

∆w
4 (A2, f) = ∆w

4 (A2,1A2,2, f) =
w∑
k=0

(
w

k

)
∆k

4(A2,1, f)∆w−k
4 (A2,2, f + 4k). (D.47)

To prove (D.47) = O(w!Cwf−w), we next evaluate ∆k
4(A2,1, f) and ∆w−k

4 (A2,2, f + 4k).
In particular, we prove that

∆k
4(A2,1, f) = (−1)k4kk!x× 1∏k+1

t=1 (f + 4t)
(D.48)

by the mathematical induction. When k = 1,

∆1
4(A2,1, f) =

x

f + 8
− x

f + 4
=

x× (−4)

(f + 4)(f + 8)
.

Thus (D.48) holds for k = 1. We next assume (D.48) holds and prove the conclusion for ∆k+1
4 (A2,1, f).

Specifically,

∆k+1
4 (A2,1, f) = (−1)k4kk!x

{
1∏k+2

t=2 (f + 4t)
− 1∏k+1

t=1 (f + 4t)

}

= (−1)k+14k+1(k + 1)!x
1∏k+2

t=1 (f + 4t)
.

In summary, (D.48) is proved. Moreover, as A2,2(f) = A2,1(f + 2), we have

∆k
4(A2,2, f) = ∆k

4(A2,1, f + 2) = (−1)k4kk!x
1∏k+1

t=1 (f + 2 + 4t)
.
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It follows that ∆w−k
4 (A2,2, f + 4k) = (−1)w−k4w−k(w − k)!x{

∏w+1
t=k+1(f + 2 + 4t)}−1. Then by

(D.47), there exists a constant C such that

∣∣∆w
4 (A2,1A2,2, f)

∣∣ =

∣∣∣∣∣
w∑
k=0

(
w

k

)
(−4)wk!(w − k)!x2∏k+1

t=1 (f + 4t)
∏w+1
t=k+1(f + 2 + 4t)

∣∣∣∣∣ ≤ w!Cw
w∑
k=0

x2∏w+2
t=1 (f + 2t)

.

As x = χ2
f (α) = O(f), we obtain that (D.20) holds as f →∞ and uniformly for any integer w ≥ 1.

D.2.8. Proof of Lemma D.2.6 (on Page 61) When x = χ2
f (α), by (B.6), we have x = f +

√
2f{zα +

O(f−1/2)}, and then A3(f) = 3
√

2zαf
−1/2{1 +O(f−1/2)}. We next consider ∆w

6 (A3, f) for w ≥ 1.

As A3(f) =
∏3
l=1A3,l(f)− 1,

∆w
6 (A3, f) =

w∑
k1=0

k1∑
k2=0

(
k1
k2

)(
w

k1

)
∆k2

6 (A3,1, f)∆k1−k2
6 (A3,2, f + 6k2)∆w−k1

6 (A3,3, f + 6k1).

Similarly to the proofs of Lemma D.2.4 in Section D.2.6, for A3,l(f), l ∈ {1, 2, 3}, we can obtain that for
any integer w ≥ 1 and l ∈ {1, 2, 3}

∆w
6 (A3,l, f) = (−6)ww!x× 1∏w

t=0(f + 4 + 2l + 6t)
.

It follows that

∆w
6 (A3, f) =

w∑
k1=0

k1∑
k2=0

(
k1
k2

)(
w

k1

)
(−6)wk2!(k1 − k2)!(w − k1)!

× x3
{
k2+1∏
t=1

(f + 6t)

k1+1∏
t=k2+1

(f + 6t+ 2)
w+1∏

t=k1+1

(f + 6t+ 4)

}−1
.

As
(
k1
k2

)(
w
k1

)
k2!(k1 − k2)!(w − k1)! = w!,

∑w
k1=0

∑k1
k2=0 1 ≤ (w + 1)2, and x = χ2

f (α) = O(f), there
exists a constant C such that as f →∞ and uniformly over w ≥ 1,

∆w
6 (A3, f) = O

{
(w + 2)!Cw

w∏
t=1

(f + 2t)−1
}
.

D.2.9. Proof of Lemma D.2.7 (on Page 62) When x = χ2
f (α), by (B.6), we have x = f +

√
2f{zα +

O(f−1/2)}, and then A4(f) = 4
√

2zαf
−1/2{1 +O(f−1/2)}. We next prove the conclusion for w ≥ 1.

As A4(f) =
∏4
l=1A4,l(f)− 1,

∆w
8 (A4, f) =

w∑
k1=0

k1∑
k2=0

k2∑
k3=0

(
w

k1

)(
k1
k2

)(
k2
k3

)
∆k3

8 (A4,1, f)×∆k2−k3
8 (A4,2, f + 8k3)

×∆k1−k2
8 (A4,3, f + 8k2)×∆w−k1

8 (A4,4, f + 8k1).

Similarly to the proof of Lemma D.2.4 in Section D.2.6, for A4,l(f), l ∈ {1, 2, 3, 4}, we can obtain that
for any integer w ≥ 1,

∆w
8 (A4,l, f) = (−8)ww!x× 1∏w

t=0(f + 6 + 2l + 8t)
.
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It follows that

∆w
8 (A4, f) =

w∑
k1=0

k1∑
k2=0

k2∑
k3=0

(
w

k1

)(
k1
k2

)(
k2
k3

)
(−8)wk3!(k2 − k3)!(k1 − k2)!(w − k1)!

× x4
{ k3+1∏

t=1

(f + 8t)

k2+1∏
t=k3+1

(f + 8t+ 2)

k1+1∏
t=k2+1

(f + 8t+ 4)
w+1∏
k1+1

(f + 8t+ 6)

}−1
.

As
(
w
k1

)(
k1
k2

)(
k2
k3

)
k3!(k2 − k3)!(k1 − k2)!(w − k1)! = w!,

∑w
k1=0

∑k1
k2=0

∑k2
k3=0 1 ≤ (w + 1)3, and x =

O(f), there exists a constant C such that

∆w
8 (A4, f) = O

{
(w + 3)!Cw

w∏
t=1

(f + 2t)−1
}
.

D.2.10. Proof of Lemma D.2.8 (on Page 63) By the proof of Lemma D.2.4, we have

∆w1
2 (A1, f) = (−1)w12w1w1!x

w1+1∏
s=1

A1,s(f),

where A1,s(f) = 1/(f + 2s). It follows that

∆w2
4

{
∆w1

2 (A1, f)
}

= x(−2)w1w1!∆w2
4

{
w1+1∏
s=1

A1,s(f)

}
. (D.49)

To prove Lemma D.2.8, by x = χ2
f (α) = O(f) and (D.49), it suffices to prove

∆w2
4

{
w1+1∏
s=1

A1,s(f)

}
=

(w1 + w2)!

w1!
O

{
Cw1+w2

w1+w2+1∏
s=1

(f + 2s)−1

}
. (D.50)

We next prove (D.50) by the mathematical induction. Consider w1 = 0 first. Similarly to the proof of
Lemma D.2.4, for each integer 1 ≤ s ≤ w1 + 1, we have

∆w2
4 (A1,s, f) = w2!(−4)w2

w2∏
k=0

(f + 2s+ 4k). (D.51)

Thus (D.50) holds for w1 = 0. We then assume for integers 1 ≤ l ≤ w1,

∆w2
4

{
l∏

s=1

A1,s(f)

}
=

(w2 + l − 1)!

(l − 1)!
O

{
w2+l∏
k=1

(f + 2k)−1

}
, (D.52)

and prove (D.50). By the Leibniz rule in Lemma D.2.1,

∆w2
4

{
w1+1∏
s=1

A1,s(f)

}
=

w2∑
k2=0

(
w2

k2

)
∆k2

4

{
w1∏
s1=1

A1,s1(f)

}
∆w2−k2

4 (A1,w1+1, f + 4k2). (D.53)
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Then by (D.51) and (D.52), we obtain

(D.53) =

w2∑
k2=0

(
w2

k2

)
(k2 + w1 − 1)!

(w1 − 1)!
O

(
Cw1+k2

w1+k2∏
s1=1

1

f + 2s1

)

×O

{
(w2 − k2)!Cw2−k2

w2−k2∏
s2=0

1

f + 4k2 + 2(w1 + 1) + 4s2

}

= Cw1+w2

w2∑
k2=0

w2!

(
k2 + w1 − 1

k2

)
O

(
w1+w2+1∏

s=1

1

f + 2s

)
.

By the hockey-stick identity,
∑w2

k2=0

(
k2+w1−1

k2

)
=
(
w1+w2

w2

)
. Therefore, (D.50) is proved and then (D.49)

follows.

D.2.11. Proof of Lemma D.2.9 (on Page 64) We next prove Lemma D.2.9 by discussing the cases
when w1 + w2 is odd and even, respectively.
(1) When w1 + w2 is odd, (w1 + w2 + 1)/2 is an integer, and then

(w1 + w2)!

w1+w2∏
k=1

1

f + 2k
× f (w1+w2+1)/2 ≤ (w1 + w2)!

w1+w2∏
k=(w1+w2+1)/2+1

1

2k

≤ 2−(w1+w2−1)/2
(w1+w2+1)/2∏

k=1

k.

To prove Lemma D.2.9, it now suffices to prove that there exists a constant C such that

1

w1!w2!

(w1+w2+1)/2∏
k=1

k ≤ C. (D.54)

To prove (D.54), we use the following Lemma D.2.14.

LEMMA D.2.14 (FACTORIAL BOUND). For any integer w ≥ 1,(w
e

)w
e ≤ w! ≤

(
w + 1

e

)w+1

e.

Proof. This is a known bound on factorial in literature, and is obtained by
∫ w
1

lnxdx ≤
∑w
x=1 lnx ≤∫ w

0
ln(x+ 1)dx . �

Assume without loss of generality that w2 ≥ w1, and then by Lemma D.2.14,

1

w1!w2!

(w1+w2+1)/2∏
k=1

k

≤ 1

e

(
e

w1

)w1
(
e

w2

)w2
(
w1 + w2 + 3

2e

)(w1+w2+3)/2

=
1

e

(
e2

w1w2

w1 + w2 + 3

2e

)w1
(
e2

w2
2

w1 + w2 + 3

2e

)(w2−w1)/2(w1 + w2 + 3

2e

)3/2

. (D.55)

As w1 + w2 + 3 ≤ 4w2, there exists a constant C such that

(D.55) ≤ C
(

2e

w1

)w1
(

2e

w2

)(w2−w1)/2

(w1 + w2 + 3)3/2.
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When w2 − w1 ≥ 3,

(D.55) ≤ C
(

2e

w1

)w1
(

2e

w2

)(w2−w1−3)/2{2e(w1 + w2 + 3)

w2

}3/2

,

which is bounded. When 0 ≤ w2 − w1 ≤ 2,

(D.55) ≤ C
(

2e

w1

)w1

(2w1 + 5)3/2,

which is also bounded. In summary, (D.55) is bounded.

(2) When w1 + w2 is even, similarly, we have

(w1 + w2)!

w1+w2∏
k=1

1

f + 2k
× f (w1+w2+1)/2 ≤ 2−(w1+w2)/2−1

(w1+w2)/2+1∏
k=1

k.

To prove Lemma D.2.9, it now suffices to prove that there exists a constant C such that

1

w1!w2!

(w1+w2)/2+1∏
k=1

k ≤ C.

Similar analysis can be applied and the conclusions follow.

D.2.12. Proof of Lemma D.2.10 (on Page 65) When w1 = 0, we know Lemma D.2.10 holds
by Lemma D.2.5. Recall that we write A2(f) = A2,1(f)A2,2(f)− 1 in Section D.2.7. Thus when
w1 + w2 ≥ 1,

∆w1
2 ∆w2

4 (A2, f) = ∆w1
2 ∆w2

4 (A2,1A2,2, f).

By the Leibniz rule in Lemma D.2.1,

∆w1
2 ∆w2

4 (A2,1A2,2, f)

=

w1∑
k1=0

w2∑
k2=0

(
w1

k1

)(
w2

k2

)
∆k1

2 ∆k2
4 (A2,1, f)∆w1−k1

2 ∆w2−k2
4 (A2,2, f + 2k1 + 4k2). (D.56)

Following the proof of Lemma D.2.8, we have when k1 + k2 ≥ 1,

∆k1
2 ∆k2

4 (A2,1, f) = (k1 + k2)!O

(
Ck1+k2

k1+k2∏
s=1

1

f + 2s

)
,

and when w1 + w2 − k1 − k2 ≥ 1,

∆w1−k1
2 ∆w2−k2

4 (A2,2, f + 2k1 + 4k2) = (w1 + w2 − k1 − k2)!O

(
Cw1+w2−k1−k2

w1+w2∏
s=k1+k2+1

1

f + 2s

)
.

Therefore,

(D.56) = w1!w2!

w1∑
k1=0

w2∑
k2=0

(
k1 + k2
k1

)(
w1 + w2 − k1 − k2

w1 − k1

)
O

(
Cw1+w2

w1+w2∏
s=1

1

f + 2s

)
.

By the ChuVandermonde identity,
w1∑
k1=0

w2∑
k2=0

(
k1 + k2
k1

)(
w1 + w2 − k1 − k2

w1 − k1

)
=

w1+w2∑
m=0

w1∑
s1=0

(
m

s1

)(
w1 + w2 −m
w1 − s1

)
= (w1 + w2 + 1)

(
w1 + w2

w1

)
.
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Then ∆w1
2 ∆w2

4 (A2, f) = (w1 + w2 + 1)!O{Cw1+w2
∏w1+w2

s=1 (f + 2s)−1}.

D.2.13. Proof of Lemma D.2.11 (on Page 65) By the definition of D2,4(f), when k1 + k2 ≥ 1,

∆k2
6 ∆k1

4 (D2,4, f) = x2∆k2
6 ∆k1

4 (A1,1A1,2, f),

where recall that we define A1,t = 1/(f + 2t) for integers t. By the Leibniz rule in Lemma D.2.1,

∆k2
6 ∆k1

4 (A1,1A1,2, f) =

k2∑
s2=0

k1∑
s1=0

(
k1
s1

)(
k2
s2

)
∆s2

6 ∆s1
4 (A1,1, f)∆k2−s2

6 ∆k1−s1
4 (A1,2, f + 4s1 + 6k2)

Following the proof of Lemma D.2.8 in Section D.2.10, we similarly have

∆s2
6 ∆s1

4 (A1,1, f) = (s1 + s2)!O

(
Cs1+s2

s1+s2+1∏
k=1

1

f + 2k

)
.

Then following the proof of Lemma D.2.10 in Section D.2.12, we obtain Lemma D.2.11. The analysis
will be very similar and thus the details are skipped.

D.2.14. Proof of Lemma D.2.12 (on Page 66) Note that we can write D2,6(f) = x3
∏3
k=1A1,k(f)−

1. By the Leibniz rule in Lemma D.2.1,

∆k1
4 ∆k2

6 (D2,6, f) =

k2∑
s1=0

s1∑
s2=0

(
k1
s1

)(
s1
s2

) k1∑
t1=0

t1∑
t2=0

(
k2
t1

)(
t1
t2

)
x3 ×∆t2

4 ∆s2
6 (A3,1, f)

×∆t1−t2
4 ∆s1−s2

6 (A3,2, f + 6s2 + 4t2)∆k1−t1
4 ∆k2−s1

6 (A3,3, f + 6s1 + 4t1).

Following the proof of Lemma D.2.8 in Section D.2.10, we similarly have that for integers t+ s ≥ 1, and
l ∈ {1, 2, 3},

∆t
4∆s

6(A3,l) = (t+ s)!O

(
Ct+s

t+s+1∏
m=1

1

f + 2m

)
.

By x = χ2
f (α) = O(f),

∆k1
4 ∆k2

6 (D2,6, f) =

k2∑
s1=0

s1∑
s2=0

k1∑
t1=0

t1∑
t2=0

(
k1
s1

)(
s1
s2

)(
k2
t1

)(
t1
t2

)
(t2 + s2)!(t1 + s1 − t2 − s2)!

× (k1 + k2 − t1 − s1)×O

(
k1+k2∏
m=1

1

f + 2m

)
.

Similarly to the proof of Lemma D.2.10 in Section D.2.12, by the ChuVandermonde identity, we obtain

∆k1
4 ∆k2

6 (D2,6, f) =

k2∑
s1=0

k1∑
t1=0

k1!k2!

(
k1 + k2 − s1 − t1

k1 − s1

)(
s1 + t1
s1

)
(s1 + t1 + 1)

= (k1 + k2 + 2)!×O

(
k1+k2∏
m=1

1

f + 2m

)
,

where we use s1 + s2 + 1 ≤ k1 + k2 + 1 in the second equation.

D.2.15. Proof of Lemma D.2.13 (on Page 66) We prove Lemma D.2.13 similarly to the proof of
Lemma D.2.9 in Section D.2.11 by discussing k1 + k2 is odd and even, respectively.



On the Phase Transition of Wilk’s Phenomenon 73

(1) When k1 + k2 is odd, similarly to the analysis of (D.55), we assume without loss of generality that
k2 ≥ k1, and obtain

(k1 + k2 + 2)!

k1!k2!
O

(
f−(k1+k2+1)/2

k1+k2∏
t=1

1

f + 2t

)

≤ 2−(k1+k2−1)/2

k1!k2!
(k1 + k2 + 2)(k1 + k2 + 1)

(k1+k2+1)/2∏
t=1

t. (D.57)

Note that

(k1 + k2 + 2)(k1 + k2 + 1)

k1!k2!

(k1+k2+1)/2∏
t=1

t

≤ C
(

e2

k1k2

k1 + k2 + 3

2e

)k1 ( e2
k22

k1 + k2 + 3

2e

)(k2−k1)/2

(k1 + k2 + 3)5/2

≤ C
(

2e

k1

)k1 (2e

k2

)(k2−k1−5)/2{2e(k1 + k2 + 3)

k2

}5/2

. (D.58)

When k2 − k1 ≥ 5, we can see that (D.58) is bounded. When k2 − k1 ≤ 4, we have

(D.58) ≤ C
(
k2
k1

)(5−k2+k1)/2(2e

k1

)(k1+k2−5)/2(k1 + k2 + 3

k2

)5/2

,

which suggests that (D.58) is bounded. In summary, we know (D.58) is bounded, and therefore (D.57) =
O{2−(k1+k2−1)/2}.

(2) When k1 + k2 is even, similar analysis can be applied, and then Lemma D.2.13 is proved.

D.2.16. Proof of Lemma C.3.1 (on Page 41) We prove Lemma C.3.1 based on (C.31). In each testing
problem, we have |τ1,k + υ1,k|/|ηξ1,k| = o(1); see Sections C.3.1–C.3.6. Then under the conditions of
Lemma C.3.1, we can apply Lemma D.1.2 and obtain for 1 ≤ k ≤ K1,

log Γ
{
ηξ1,k(1− 2it) + τ1,k + υ1,k

}
=

{
ηξ1,k(1− 2it) + τ1,k + υ1,k −

1

2

}
log
{
ηξ1,k(1− 2it)

}
− ηξ1,k(1− 2it) + log

√
2π

+
L−1∑
l=1

(−1)l+1Bl+1(τ1,k + υ1,k)

l(l + 1)

{
ηξ1,k(1− 2it)

}−l
+O

(
|τ1,k + υ1,k|L+1/|ηξ1,k|L

)
.

Applying similar expansion to log Γ(ηξ1,k + τ1,k + υ1,k), we obtain

log Γ
{
ηξ1,k(1− 2it) + τ1,k + υ1,k

}
− log Γ

(
ηξ1,k + τ1,k + υ1,k

)
=

(
ηξ1,k + τ1,k + υ1,k −

1

2

)
log(1− 2it)− 2itηξ1,k log

{
ηξ1,k(1− 2it)

}
+ 2itηξ1,k

+
L−1∑
l=1

(−1)l+1Bl+1(τ1,k + υ1,k)

l(l + 1)(ηξ1,k)l

{
(1− 2it)−l − 1

}
+O

(
|τ1,k + υ1,k|L+1/|ηξ1,k|L

)
.
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Similarly, for 1 ≤ j ≤ K2, we have

log Γ
{
ηξ2,j(1− 2it) + τ2,j + υ2,j

}
− log Γ

(
ηξ2,j + τ2,j + υ2,j

)
=

(
ηξ2,j + τ2,j + υ2,j −

1

2

)
log(1− 2it)− 2itηξ2,j log

{
ηξ2,j(1− 2it)

}
+ 2itηξ2,j

+
L−1∑
l=1

(−1)l+1Bl+1(τ2,j + υ2,j)

l(l + 1)(ηξ2,j)l

{
(1− 2it)−l − 1

}
+O

(
|τ2,j + υ2,j |L+1/|ηξ2,j |L

)
.

Then by the form of ϕ(t) in (C.31), we calculate

(C.31) = 2itη

K1∑
k=1

ξ1,k log ξ1,k −
K2∑
j=1

ξ2,j log ξ2,j


+

{ K1∑
k=1

(ξ1,k + τ1,k + υ1,k − 1/2)−
K2∑
j=1

(ξ2,j + τ2,j + υ2,j − 1/2)

}
log(1− 2it)

− 2itη

K1∑
k=1

ξ1,k log ξ1,k −
K2∑
j=1

ξ2,j log ξ2,j

− 2itη(log η − 1)

K1∑
k=1

ξ1,k −
K2∑
j=1

ξ2,j


+
L−1∑
l=1

ςl

{
(1− 2it)−l − 1

}
+O

(
K1∑
k=1

|τ1,k + υ1,k|L+1

|ηξ1,k|L
+

K2∑
j=1

|τ2,j + υ2,j |L+1

|ηξ2,j |L

)
.

By the facts that τ1,k = ηξ1,k, τ2,j = ηξ2,j , and
∑K1

k=1 ξ1,k =
∑K2

j=1 ξ2,k, Lemma C.3.1 is proved.

D.3. Lemmas for Theorems 2.3, A.3, & A.6
D.3.1. Proof of Lemma B.3.2 (on Page 29) By (B.30) on Page 28,

logψ1(s) = −pnti
2

log
2e

n
− pn(1− ti)

2
log(1− ti) + log

Γp{(n− 1)/2− nti/2}
Γp{(n− 1)/2}

+ µnti,

where t = s/(nσn). We next examine logψ1(s) by the following Lemma D.3.1.

LEMMA D.3.1. Let {p = pn;n ≥ 1} , {m = mn;n ≥ 1}, {tn;n ≥ 1}, and {sn;n ≥ 1} satisfy that (i)
pn →∞ and pn = o(n); (ii) there exists ε ∈ (0, 1) such that ε ≤ mn/n ≤ ε−1; (iii) t = tn = O(ns/p);
(iv) s = sn = o(min{(n/p)1/2, f1/6}). Then as n→∞,

log
Γp
(
m−1
2 + ti

)
Γp
(
m−1
2

)
= βm,1ti− βm,2t2 + βm,3(ti) +O

(
p2t

m2

)
+

(
1

p
+

p

m

)
O

(
p2t2

m2

)
+O

(p2t3
m3

)
,

where

βm,1 = −
{

2p+

(
m− p− 3

2

)
log

(
1− p

m− 1

)}
; βm,2 = −

{
p

m− 1
+ log

(
1− p

m− 1

)}
;

βm,3(ti) = p

{(
m− 1

2
+ ti

)
log

(
m− 1

2
+ ti

)
− m− 1

2
log

m− 1

2

}
.

Proof. Please see Section D.3.2 on Page 75. �
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By (B.7) and f = Θ(p2), we know t = s/(nσn) = O(s/p). Thus we can apply Lemma D.3.1 and expand

log
Γp{(n− 1)/2− nti/2}

Γp{(n− 1)/2}
= − nβn,1ti

2
− βn,2n

2t2

4
+ βn,3

(
−nti

2

)
+O

(
p2t

n

)
+

(
1

p
+
p

n

)
O
(
p2t2

)
+O

(
p2t3

)
.

We next use the following Lemma D.3.2 to evaluate βn,3(−nti/2).

LEMMA D.3.2. When p = pn →∞, p = o(n), and t = tn = O(s/p) with s = sn =
o(min{(n/p)1/2, f1/6}),

βn,3

(
− nti

2

)
= −pnti

2
log

n

2
+
pn(1− ti)

2
log(1− ti) +

pti

2
+O

(
pt2 +

pt

n

)
.

Proof. Please see Section D.3.3 on Page 76. �

It follows that

logψ1(s) = − {p(n− 1) + nβn,1}ti
2

− βn,2n
2t2

4
+ µnti

+O

(
p2t

n

)
+

(
1

p
+
p

n

)
O
(
p2t2

)
+O

(
p2t3

)
.

Since σ2
n = βn,2/2, µn = {p(n− 1) + nβn,1}/2, and t = s/(nσn),

logψ1(s) = −s
2

2
+O

(
ps

n

)
+

(
1

p
+
p

n

)
O(s2) +O

(
s3

p

)
,

where we use t = O(s/p). As logψ0(s) = −s2/2, (B.31) is proved.

D.3.2. Proof of Lemma D.3.1 (on Page 74) By the property of the multivariate gamma function; see,
e.g., Theorem 2.1.12 in Muirhead (2009),

log
Γp
(
m−1
2 + ti

)
Γp
(
m−1
2

) =

p∑
j=1

log
Γ
(
m−j
2 + ti

)
Γ
(
m−j
2

) . (D.59)

Then by Lemma D.1.3 on Page 53,

log
Γ
(
m−j
2 + ti

)
Γ
(
m−j
2

) =

p∑
j=1

[(
m− j

2
+ ti

)
log

(
m− j

2
+ ti

)
−
(
m− j

2

)
log

(
m− j

2

)
(D.60)

− ti− ti

m− j
+O

{
t+ t2

(m− j)2

}]
,

as m→∞ uniformly for all 1 ≤ j ≤ p. Note that t/(m− j) = t/m+ (t/m)× {j/(m− j)}, and then
p∑
j=1

ti

m− j
=
pti

m
+O

(
p2

m2

)
ti. (D.61)

By (D.60) and (D.61), we obtain as m→∞,

(D.59) =

p∑
j=1

[(
m− j

2
+ ti

)
log

(
m− j

2
+ ti

)
−
(
m− j

2

)
log

(
m− j

2

)]
(D.62)

− (m+ 1)pti

m
+O

(
p2

m2
t+

p

m2
t2
)
.
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For 1 ≤ j ≤ p, define

gj(z) =

(
m− j

2
+ z

)
log

(
m− j

2
+ z

)
−
(
m− 1

2
+ z

)
log

(
m− 1

2
+ z

)
,

where the real part of z > −(m− p)/2. It follows that the “
∑p
j=1” term in the first row of (D.62) is equal

to

p

{(
m− 1

2
+ ti

)
log

(
m− 1

2
+ ti

)
− m− 1

2
log

m− 1

2

}
+

p∑
j=1

{gj(ti)− gj(0)}. (D.63)

To evaluate (D.63), we use the following Lemma D.3.3.

LEMMA D.3.3. Let p = pm such that 1 ≤ p < m, p→∞ and p/m→ 0 as m→∞. When t = tm =
O(ms/p) with s = sm = o(min{(m/p)1/2, p1/3}), we have that, as m→∞,

p∑
j=1

{gj(ti)− gj(0)} = ν1,mti−
ν22,m

2
t2 +O

(
p2t

m2

)
+

(
1

p
+

p

m

)
O

(
p2t2

m2

)
+O

(p2t3
m3

)
,

where

ν1,m =

(
p−m+

3

2

)
log

(
1− p

m− 1

)
− m− 1

m
p, (D.64)

ν22,m = − 2

{
p

m− 1
+ log

(
1− p

m− 1

)}
.

Proof. Please see Section D.3.4 on Page 77. �

Then by Lemma D.3.3,

(D.63) = p

{(
m− 1

2
+ ti

)
log

(
m− 1

2
+ ti

)
− m− 1

2
log

m− 1

2

}
+ ν1,mti−

ν22,m
2

t2 +O

(
p2t

m2

)
+

(
1

p
+

p

m

)
O

(
p2t2

m2

)
+O

(p2t3
m3

)
.

In summary, Lemma D.3.1 can be proved by noticing

βm,1 = ν1,m −
(m+ 1)p

m
, βm,2 = ν22,m/2

βm,3(ti) = p

{(
m− 1

2
+ ti

)
log

(
m− 1

2
+ ti

)
− m− 1

2
log

m− 1

2

}
.

D.3.3. Proof of Lemma D.3.2 (on Page 75) By Taylor’s series,

p−1βn,3(−nti/2) = − nti

2
log

n

2
− nti

2
log

(
1− ti− 1

n

)
+
n− 1

2
log

(
1− ti− ti

n− 1

)
= − nti

2
log

n

2
− nti

2
log(1− ti) +

nti

2n(1− ti)
+O

(
nt

n2

)
+
n− 1

2
log(1− ti)− n− 1

2

ti

(n− 1)(1− ti)
+
n− 1

2
O

(
t2

n2

)
= − nti

2
log

n

2
+
n(1− ti)− 1

2
log(1− ti) +O

(
t+ t2

n

)
.
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It follows that

βn,3(−nti/2) = −pnti
2

log
n

2
+
pn(1− ti)

2
log(1− ti) +

pti

2
+O

(
pt2 +

pt

n

)
.

D.3.4. Proof of Lemma D.3.3 (on Page 76) The first-order derivatives of gj(z) is

g
(1)
j (z) = log

(
m− j

2
+ z

)
− log

(
m− 1

2
+ z

)
,

and for l ≥ 2, the l-th order derivatives of gj(z) is

g
(l)
j (z) = (−1)l−2(l − 2)!

{(
m− j

2
+ z

)−(l−1)
−
(
m− 1

2
+ z

)−(l−1)}

= (−1)l−2(l − 2)!

(
m− 1

2
+ z

)−(l−1) l−1∑
v=1

(
l − 1

v

)(
j − 1

m− j + 2z

)v
.

By Taylor’s expansion, gj(ti)− gj(0) =
∑∞
l=1 g

(l)
j (0)zl/l!. In particular,

g
(1)
j (0) = log(m− j)− log(m− 1), g

(2)
j (0) =

2

m− j
− 2

m− 1
.

When z = ti, t = tm = O(ms/p), and l ≥ 3, as j − 1/(m− j + 2z) = O(p/m) = o(1),

g
(l)
j (0)zl/l! = O

(
1

ml−1
p

m
tl
)

= O

(
p

ml

)
tl.

As t/m = O(s/p) = o(1),

p∑
j=1

{gj(ti)− gj(0)} =

p∑
j=1

g
(1)
j (0)ti− 1

2

p∑
j=1

g
(2)
j (0)t2 +O

(p2t3
m3

)
.

By Lemma A.2 in Jiang and Qi (2015),

p∑
j=1

g
(1)
j (0) = ν1,m +O(ν22,m),

p∑
j=1

g
(2)
j (0) = ν22,m

{
1 +O

(
1

p
+

p

m

)}
,

where ν1,m and ν22,m are defined in (D.64). In summary,

p∑
j=1

{gj(ti)− gj(0)} = ν1,mti−
ν22,m

2
t2 +O(ν22,m)t+ ν22,mO

(
1

p
+
p

n

)
t2 +O

(p2t3
m3

)
.

Then Lemma D.3.3 follows by ν22,m = O(p2/m2).

D.3.5. Proof of Lemma C.4.1 (on Page 51) By Taylor’s series, we have (C.44). In addition, for (C.45),
note that we can write

p−1%l(t) =
l − 1

2
log

(
1 +

lt

l − 1

)
+
lt

2
log

(
l − 1

2
+
lt

2

)
.
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By Taylor’s series log x = log a+
∑L−1
l=1 (−1)l−1l−1(x/a− 1)l +O{(x/a− 1)L}, we obtain

%l(t)

p
=
l

2
log

(
1 + t+

t

l − 1

)
− 1

2
log

(
1 +

lt

l − 1

)
+
lt

2
log

{
l(1 + t)

2
− 1

2

}
=
l

2
log(1 + t) +

lt

2(l − 1)(1 + t)
− lt

2(l − 1)
+
lt

2
log

l(1 + t)

2
− t

2(1 + t)
+O

(
t

l
+ t2

)
=
l(1 + t)

2
log(1 + t) +

lt

2
log

l

2
− t

2
+O

(
t

l
+ t2

)
.

Then by n =
∑k
j=1 nj , we have

−%n(t) +
k∑
j=1

%nj (t) =

(
1− k − n log n+

k∑
j=1

nj log nj

)
tp

2
+O

(
pt

n
+ pt2

)
.
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