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Abstract. The main goal of the paper is to show new stability and localization results for the
finite element solution of the Stokes system in W 1,\infty and L\infty norms under standard assumptions on
the finite element spaces on quasi-uniform meshes in two and three dimensions. Although interior
error estimates are well-developed for the elliptic problem, they appear to be new for the Stokes sys-
tem on unstructured meshes. To obtain these results we extend previously known stability estimates
for the Stokes system using regularized Green's functions.
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1. Introduction. In the introduction and the major part of the paper we focus
on the three-dimensional setting. However, our results are valid in two dimensions,
and we comment on that at the end of the paper. We assume \Omega \subset \BbbR 3 is a convex
polyhedral domain, on which we consider the following Stokes problem:

 - \Delta \vec{}u+\nabla p = \vec{}f in \Omega ,(1.1a)

\nabla \cdot \vec{}u = 0 in \Omega ,(1.1b)

\vec{}u = \vec{}0 on \partial \Omega ,(1.1c)

with \vec{}f = (f1, f2, f3) such that \vec{}u \in (H1
0 (\Omega )\cap L\infty (\Omega ))3 for the pointwise error estimates

or, respectively, \vec{}u \in (H1
0 (\Omega ) \cap W 1,\infty (\Omega ))3 and p \in L\infty (\Omega ) for the gradient error

estimates. The solution p is unique up to a constant; we choose p \in L2
0(\Omega ), i.e., p has

zero mean.
This paper is the first in our series to establish best-approximation results for the

fully discrete approximations for transient Stokes systems in L\infty and W 1,\infty norms.
A similar program was carried out by the last two authors for the parabolic problems
in a series of papers [18, 19, 20, 21]. The approach there relies on stability of the
Ritz projection, resolvent estimates in L\infty and W 1,\infty norms, and discrete maximum
parabolic regularity. We intend to derive corresponding results for the Stokes systems.
In this paper, we give a new L\infty stability result in the form

(1.2) \| \vec{}uh\| L\infty (\Omega ) \leq C| lnh| 
\Bigl( 
\| \vec{}u\| L\infty (\Omega ) + h\| p\| L\infty (\Omega )

\Bigr) 
.
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1532 N. BEHRINGER, D. LEYKEKHMAN, AND B. VEXLER

In a second step we prove respective local versions of (1.2) and the corresponding
W 1,\infty results from [12, 14]. These estimates take the forms

(1.3) \| \nabla \vec{}uh\| L\infty (D1) + \| ph\| L\infty (D1)

\leq C
\bigl( 
\| \nabla \vec{}u\| L\infty (D2) + \| p\| L\infty (D2)

\bigr) 
+ Cd

\Bigl( 
\| \nabla \vec{}u\| L2(\Omega ) + \| p\| L2(\Omega )

\Bigr) 
and

(1.4) \| \vec{}uh\| L\infty (D1) \leq C| lnh| 
\bigl( 
\| \vec{}u\| L\infty (D2) + h\| p\| L\infty (D2)

\bigr) 
+ Cd| lnh| 

\bigl( 
\| \vec{}u\| L2(\Omega ) + h\| \vec{}u\| H1(\Omega ) + h\| p\| L2(\Omega )

\bigr) 
,

where for \~x \in \Omega , D1 = Br(\~x) \cap \Omega , D2 = B\~r(\~x) \cap \Omega , \~r > r > 0, and Cd depends on
d = | r  - \~r| > \=\kappa h.

Global pointwise error estimates for the Stokes system similar to (1.2) have been
thoroughly discussed in recent years. The three-dimensional W 1,\infty case was first
discussed in [2, 11] under smoothness assumptions on the domain or limiting angles
in nonsmooth domains. Later, using new results on convex polyhedral domains, e.g.,
from [22, 24, 29], the limitations on the domain were weakened in [12, 14]. The L\infty 

bounds were first discussed for \Omega \subset \BbbR 2 in [8] and for dimensions greater than one and
smooth domains in [2] but with the W 1,\infty norm appearing on the right-hand side and
using weighted norms, which is not sufficient for the applications we have in mind.

Interior (or local) maximum norm estimates are well-known for elliptic equations,
see, e.g., [17, 31], and are particularly useful when dealing with scenarios where the
solution has low regularity close to the boundary or on local subsets of \Omega , e.g., for
optimal control problems with pointwise state constraints, sparse optimal control,
and pointwise best approximation results for the time-dependent problem; see [5, 19,
27]. For the Stokes system, the only pointwise interior error estimates are available
on regular translation invariant meshes in two dimensions [25]. To the best of our
knowledge, the interior results presented here are novel and have not been discussed
before.

We want to point out that there are some differences between our local results
and the classical results of Schatz and Wahlbin [31, 32] for elliptic problems. There
the pollution terms are still in the discrete (or error) form, but in a weaker norm and
still local. In our results, the pollution terms are in continuous (or approximation)
global form, but in a weaker norm and valid all the way to the boundary. Although,
the pollution terms in the estimates of Schatz and Wahlbin appear to be sharper,
they are much more technical to obtain, and we see no apparent benefits for potential
applications. Such pollution terms still need to be estimated, usually by a global
duality argument.

Let us quickly comment on one property specific to the Stokes problem. Regu-
larity results typically appear as velocity-pressure pairs where the pressure has lower
norm, e.g., \| \nabla \vec{}u\| L\infty (\Omega ) and \| p\| L\infty (\Omega ). This pair can then be estimated as in [12, 14].
Thus, we only supply estimates for \| \vec{}uh\| L\infty (\Omega ) in the max-norm estimate since bounds
for \| ph\| W - 1,\infty (\Omega ) would add another layer of complexity and to the best of our knowl-
edge have no apparent advantages.

In three dimensions our proof of the local estimates is essentially based on L1

and weighted estimates of regularized Green's functions. For W 1,\infty it is enough to
slightly adapt the results from [14] for the Green's function of velocity and pressure.

In the case of L\infty , we prove the respective estimates using the local energy esti-
mates given in [14] and estimates for Green's matrix of the Stokes system; see, e.g.,
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STOKES GLOBAL AND LOCAL POINTWISE ERROR ESTIMATES 1533

[24]. Furthermore, another important element of the proof for L\infty is a pointwise es-
timate of the Ritz projection [16, 18]. The stability results proven there significantly
simplify the analysis. Thus, we avoid the technical step of integrating by parts over
each element and dealing with jump terms as was done in [18].

In two dimensions our approach for the local estimates follows along the lines of
the three-dimensional case. Here the estimates for the regularized Green's functions
and the Ritz projection are all known from the literature; see [8, 11, 30]. The results
from [8, 11] are derived using an alternative technique, the global weighted approach as
introduced in [26, 28]. For the global weighted approach, we need similar but slightly
different assumptions on the finite element space than for the local energy estimate
technique in the three-dimensional setting. Thus, to keep the notation simple, we
deal with the two-dimensional case in a separate section at the end of this work.

Several important applications, from Navier--Stokes free surface flows to the nu-
merical analysis of finite-element schemes for non-Newtonian flows, have already been
noted in [11]. As mentioned, interior estimates play a role specifically for optimal con-
trol problems with state constraints, e.g., in [5]. Stokes optimal control problems are
also closely related to subproblems in optimal control of Navier--Stokes systems, where
for Newton iterations one has to solve linearized optimal control subproblems in each
step; see, e.g., [4].

An outline of this paper is as follows. In section 2, we introduce notation and
state assumptions on the approximation operators as well as the main results of our
analysis. Section 3 gives key arguments for the proof of the main theorems for the
velocity and reduces them to the estimates of regularized Green's functions, which are
derived in section 4. Based on these results, we deal with bounds for the pressure in
section 5. Finally, in the last section we show the local estimates in two dimensions.

2. Assumptions and main results in three dimensions.

2.1. Notation. We now introduce basic notation. Throughout this paper, we
use the usual notation for the Lebesgue, Sobolev, and H\"older spaces. These spaces
can be extended in a straightforward manner to vector functions, with the same
notation but with the following modification for the norm in the non-Hilbert case: If
\vec{}u = (u1, u2, u3), we then set

\| \vec{}u\| Lr(\Omega ) =

\biggl[ \int 
\Omega 

| \vec{}u(\vec{}x)| rd\vec{}x
\biggr] 1/r

,

where | \cdot | denotes the Euclidean vector norm for vectors or the Frobenius norm for
tensors.

We denote by (\cdot , \cdot ) the L2(\Omega ) inner product and specify subdomains by subscripts
in the event they are not equal to the whole domain. In the analysis, we also make
use of the weight \sigma = \sigma \vec{}x0,h(\vec{}x) =

\sqrt{} 
| \vec{}x - \vec{}x0| 2 + (\kappa h)2, for which \vec{}x0, \kappa , and h will be

defined later.

2.2. Basic estimates. Next we want to recall some results for solutions to
(1.1a)--(1.1c). Existence and uniqueness of the solutions to the problem on bounded
domains are shown in [10]. For the proof of the respective regularity estimates on

convex polyhedral domains, we refer the reader to [3, 23]. For \vec{}f \in H - 1(\Omega )3, there
holds

\| \vec{}u\| H1(\Omega ) + \| p\| L2(\Omega ) \leq C\| \vec{}f\| H - 1(\Omega ).
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1534 N. BEHRINGER, D. LEYKEKHMAN, AND B. VEXLER

Furthermore, for \vec{}f \in L2(\Omega ), (\vec{}u, p) are elements of (H1
0 (\Omega ) \cap H2(\Omega ))3 \times H1(\Omega ), and

it holds that

(2.1) \| \vec{}u\| H2(\Omega ) + \| p\| H1(\Omega ) \leq C\| \vec{}f\| L2(\Omega ).

2.2.1. Local \bfitH \bftwo stability estimates. In the following analysis we will also
require the following localized H2 stability estimates.

Lemma 2.1. Let A1 = Br(\~x)\cap \Omega , A2 = B\~r(\~x)\cap \Omega for \~x \in \Omega , and \~r > r > 0. We
denote the difference of the radii by d = | \~r - r| . Furthermore, let (\vec{}u, p) be the solution
to (1.1a)--(1.1c). Then, it holds that

\| \vec{}u\| H2(A1)+\| p\| H1(A1) \leq C

\biggl( 
\| \vec{}f\| L2(A2) +

1

d
\| \nabla \vec{}u\| L2(A2) +

1

d2
\| \vec{}u\| L2(A2) +

1

d
\| p\| L2(A2)

\biggr) 
.

Proof. Let \omega \in C\infty (\Omega ) be a smooth cut-off function with \omega = 1 on A1 and \omega = 0
on \Omega \setminus A2 such that

(2.2) | \nabla k\omega | \sim 1

dk
for k = 0, 1, 2.

We consider \~u = \omega \vec{}u and \~p = \omega p. Then, we get the following weak formulation for
\vec{}\varphi \in H1

0 (\Omega )
3:

(\nabla \~u,\nabla \vec{}\varphi ) = (\nabla \omega \otimes \vec{}u+ \omega \nabla \vec{}u,\nabla \vec{}\varphi )
=  - (\nabla \cdot (\nabla \omega \otimes \vec{}u), \vec{}\varphi ) + (\nabla \vec{}u,\nabla (\omega \vec{}\varphi )) - (\nabla \vec{}u,\nabla \omega \otimes \vec{}\varphi )

=  - (\nabla \cdot (\nabla \omega \otimes \vec{}u), \vec{}\varphi ) + (\omega \vec{}f, \vec{}\varphi ) + (p,\nabla \cdot (\omega \vec{}\varphi )) - (\nabla \vec{}u,\nabla \omega \otimes \vec{}\varphi )

=  - (\nabla \cdot (\nabla \omega \otimes \vec{}u), \vec{}\varphi ) + (\omega \vec{}f, \vec{}\varphi ) + (\omega p,\nabla \cdot \vec{}\varphi ) + (\nabla \omega p, \vec{}\varphi ) - (\nabla \vec{}u\nabla \omega , \vec{}\varphi ),

where we used (1.1a), and in addition, we get \nabla \cdot \~u = \nabla \omega \cdot \vec{}u. Thus, \~u and \~p solve the
following boundary value problem in the weak sense:

 - \Delta \~u+\nabla \~p = \omega \vec{}f  - \nabla \cdot (\nabla \omega \otimes \vec{}u) +\nabla \omega p - \nabla \vec{}u\nabla \omega in \Omega ,

\nabla \cdot \~u = \nabla \omega \cdot \vec{}u in \Omega ,

\~u = \vec{}0 on \partial \Omega .

Thus, according to [3, Thm. 9.20] and the fact that \nabla \cdot \~u is zero on \partial \Omega , the H2(\Omega )
regularity result (2.1) holds in this situation as well, and we obtain

\| \~u\| H2(\Omega )+\| \~p\| H1(\Omega )

\leq C
\Bigl( 
\| \omega \vec{}f\| L2(\Omega ) + \| \nabla \omega \nabla \vec{}u\| L2(\Omega ) + \| \nabla 2\omega \vec{}u\| L2(\Omega ) + \| \nabla \omega p\| L2(\Omega )

\Bigr) 
\leq C

\Bigl( 
\| \vec{}f\| L2(A2) +

1

d
\| \nabla \vec{}u\| L2(A2) +

1

d2
\| \vec{}u\| L2(A2) +

1

d
\| p\| L2(A2)

\Bigr) 
,

where we used (2.2). Hence,

(2.4) \| \vec{}u\| H2(A1) + \| p\| H1(A1) = \| \~u\| H2(A1) + \| \~p\| H1(A1) \leq \| \~u\| H2(\Omega ) + \| \~p\| H1(\Omega )

\leq C

\biggl( 
\| \vec{}f\| L2(A2) +

1

d
\| \nabla \vec{}u\| L2(A2) +

1

d2
\| \vec{}u\| L2(A2) +

1

d
\| p\| L2(A2)

\biggr) 
.

Using a covering argument (see Corollary 2.16 for details), we may show the
following corollary.
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Corollary 2.2. Let \Omega 1 \subset \Omega 2 \subset \Omega with dist(\=\Omega 1, \partial \Omega 2) \geq d. Then it holds for
(\vec{}u, p) the solution to (1.1a)--(1.1c) that

\| \vec{}u\| H2(\Omega 1)+\| p\| H1(\Omega 1) \leq C

\biggl( 
\| \vec{}f\| L2(\Omega 2) +

1

d
\| \nabla \vec{}u\| L2(\Omega 2) +

1

d2
\| \vec{}u\| L2(\Omega 2) +

1

d
\| p\| L2(\Omega 2)

\biggr) 
.

2.2.2. Green's matrix estimate. We also need estimates of the respective
Green's matrix for the Stokes problem. For this, we refer the reader to [24, section
11.5]. Let \phi \in C\infty (\=\Omega ) vanish in a neighborhood of the edges, and let

\int 
\Omega 
\phi (\vec{}x)d\vec{}x =

1. The matrix G(\vec{}x, \vec{}y) = (Gi,j(\vec{}x, \vec{}y))i,j=1,2,3,4 is the Green's matrix for problem
(1.1a)--(1.1c) if for every j = 1, 2, 3, 4 the pair (Gj , Gj,4) with the vector Gj =
(G1,j , G2,j , G3,j) is the solution to the problem

 - \Delta x
\vec{}Gj(\vec{}x, \vec{}y) +\nabla xG4,j(\vec{}x, \vec{}y) = \delta (\vec{}x - \vec{}y)(\eta 1,j , \eta 2,j , \eta 3,j)

t for \vec{}x, \vec{}y \in \Omega ,

 - \nabla x \cdot \vec{}Gj(\vec{}x, \vec{}y) = (\delta (\vec{}x - \vec{}y) - \phi (\vec{}x))\eta 4,j for \vec{}x, \vec{}y \in \Omega ,

\vec{}Gj(\vec{}x, \vec{}y) = \vec{}0 for \vec{}x \in \partial \Omega , \vec{}y \in \Omega ,

where \delta denotes the Dirac delta function, and \eta i,j is the Kronecker symbol. In addi-
tion, G4,j satisfies the condition\int 

\Omega 

\vec{}G4,j(\vec{}x, \vec{}y)\phi (\vec{}x)d\vec{}x = 0 for \vec{}y in \Omega , j = 1, 2, 3, 4.

For the existence and uniqueness of such a matrix, we again refer the reader to [24]. If
now f \in H - 1(\Omega )3 and the uniquely determined solutions of the Stokes system given
by (\vec{}u, p) \in H1

0 (\Omega )
3 \times L2(\Omega ) satisfy the condition

(2.5)

\int 
\Omega 

p(\vec{}x)\phi (\vec{}x)d\vec{}x = 0,

then the components of (\vec{}u, p) admit the representations

(2.6) \vec{}ui(\vec{}x) =

\int 
\Omega 

\vec{}f(\vec{}\xi ) \cdot \vec{}Gi(\vec{}\xi , \vec{}x)d\vec{}\xi , i = 1, 2, 3, p(\vec{}x) =

\int 
\Omega 

\vec{}f(\vec{}\xi ) \cdot \vec{}G4(\vec{}\xi , \vec{}x)d\vec{}\xi .

To apply this result to our case, we need to find a suitable \=\phi such that (2.5) holds.
We show this is possible for p \in C0,\alpha (\Omega )\cap L2

0(\Omega ). By [24, Thm. 11.3.2] this is fulfilled
for data in C - 1,\alpha (\Omega ).

Without loss of generality, we assume p \not = 0. Thus, since the mean value of p is
zero, there exist nonempty open sets A,B \subset \subset \Omega such that p > 0 on A and p < 0 on
B. We then can choose \=\phi such that \=\phi = 0 on \Omega \setminus (A\cup B) and \=\phi > 0 on A, B, and thus
\=\phi vanishing close to the edges of \Omega . Through suitable scaling on A and B, we get\int 

A

p(\vec{}x)\=\phi (\vec{}x)d\vec{}x =  - 
\int 
B

p(\vec{}x)\=\phi (\vec{}x)d\vec{}x,

and hence we can conclude that (2.5) holds for \=\phi (\vec{}x). Finally, by assumption \=\phi > 0,
we normalize \=\phi with respect to the L1(\Omega ) norm to complete the construction. This
shows that we can apply the results for the Green's matrix to (\vec{}u, p). Furthermore, we
can also use the available results from [14].

We state estimates for the Green's matrix specific to convex polyhedral domains
as can be found in [24, Thm. 11.5.5, Cor. 11.5.6].
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Proposition 2.3. Let \Omega be a convex polyhedral type domain. Then, the elements
of the matrix G(\vec{}x, \vec{}\xi ) satisfy the estimate

| \partial \theta x\partial 
\beta 
\xi Gi,j(\vec{}x, \vec{}\xi )| \leq c| \vec{}x - \vec{}\xi |  - 1 - \eta i,4 - \eta j,4 - | \theta |  - | \beta | 

for | \theta | \leq 1 - \eta i,4 and | \beta | \leq 1 - \eta j,4. Furthermore, the following H\"older type estimate
holds in this setting:

| \partial \theta \xi Gi,j(\vec{}x, \vec{}\xi ) - \partial \theta \xi Gi,j(\vec{}y, \vec{}\xi )| 
| \vec{}x - \vec{}y| \alpha 

\leq C
\Bigl( 
| \vec{}x - \vec{}\xi |  - 1 - \alpha  - \eta j,4 - | \theta | + | \vec{}y  - \vec{}\xi |  - 1 - \alpha  - \eta j,4 - | \theta | 

\Bigr) 
.

2.3. Finite element approximation. Let \scrT h be a regular, quasi-uniform fam-
ily of triangulations of \=\Omega , made of closed tetrahedra T , where h is the global mesh-size
and L2

0(\Omega ) the space of L2(\Omega ) functions with zero-mean value. Let \vec{}Vh \subset H1
0 (\Omega )

3 and
Mh \subset L2

0(\Omega ) be a pair of finite element spaces satisfying a uniform discrete inf-sup
condition,

sup
\vec{}vh\in \vec{}Vh

(qh,\nabla \cdot \vec{}vh)
\| \nabla \vec{}vh\| L2(\Omega )

\geq \beta \| qh\| L2(\Omega ) \forall qh \in Mh,

with a constant \~\beta > 0 independent of h. The respective discrete solution associated
with the velocity-pressure pair (\vec{}u, p) \in H1

0 (\Omega )
3\times L2

0(\Omega ) is defined as the pair (\vec{}uh, ph) \in 
\vec{}Vh \times Mh that solves the weak form of (1.1a)--(1.1c) given by the bilinear form a(\cdot , \cdot ),
which is defined as

(2.7) a((\vec{}uh, ph), (\vec{}vh, qh)) = (\nabla \vec{}uh,\nabla \vec{}vh) - (ph,\nabla \cdot \vec{}vh) + (\nabla \cdot \vec{}uh, qh),

and the equation

(2.8) a((\vec{}uh, ph), (\vec{}vh, qh)) = (\vec{}f,\vec{}vh) \forall (\vec{}vh, qh) \in \vec{}Vh \times Mh.

2.4. Assumptions. Next, we make assumptions on the finite element spaces.
We assume there exist approximation operators Ph and rh as in [14], i.e., Ph and
rh fulfill the following properties. Let Q \subset Qd \subset \Omega , with d \geq \=\kappa h, for some fixed
\=\kappa sufficiently large and Qd = \{ \vec{}x \in \Omega : dist(\vec{}x,Q) \leq d\} . For Ph \in \scrL (H1

0 (\Omega )
3;Vh)

and rh \in \scrL (L2(\Omega ); \=Mh) with \=Mh corresponding to Mh without the zero-mean value
constraint, we assume the following assumptions hold.

Assumption 2.4 (stability of Ph in H1(\Omega )3). There exists a constant C inde-
pendent of h such that

\| \nabla Ph(\vec{}v)\| L2(\Omega ) \leq C\| \nabla \vec{}v\| L2(\Omega ) \forall \vec{}v \in H1
0 (\Omega )

3.

Assumption 2.5 (preservation of discrete divergence for Ph). It holds that

(\nabla \cdot (\vec{}v  - Ph(\vec{}v)), qh) = 0 \forall qh \in \=Mh, \forall \vec{}v \in H1
0 (\Omega )

3.

Assumption 2.6 (inverse inequality). There is a constant C independent of h
such that

\| \vec{}vh\| W 1,p(Q) \leq Ch - 1\| \vec{}vh\| Lp(Qd) \forall \vec{}vh \in \vec{}Vh, 1 \leq p \leq \infty .
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Assumption 2.7 (L2 approximation). For any \vec{}v \in H2(\Omega )3 and any q \in H1(\Omega ), C
exists independent of h, \vec{}v, and q such that

\| Ph(\vec{}v) - \vec{}v\| L2(Q) + h\| \nabla (Ph(\vec{}v) - \vec{}v)\| L2(Q) \leq Ch2\| \nabla 2\vec{}v\| L2(Qd),

\| rh(q) - q\| L2(Q) \leq Ch\| \nabla q\| L2(Qd).

In the following, \vec{}ei denotes the ith standard basis vector in \BbbR 3.

Assumption 2.8 (approximation in the H\"older spaces). For \vec{}v \in 
\bigl( 
C1,\alpha (\Omega ) \cap 

H1
0 (\Omega )

\bigr) 3
and q \in C0,\alpha (\Omega ), it holds that

\| \nabla (Ph(\vec{}v) - \vec{}v)\| L\infty (Q) \leq Ch\alpha \| \vec{}v\| C1,\alpha (Qd),

\| rh(q) - q\| L\infty (Q) \leq Ch\alpha \| q\| C0,\alpha (Qd),

where

\| \vec{}v\| C1+\alpha (Q) = \| \vec{}v\| C1(Q) + sup
\vec{}x,\vec{}y\in Q

i\in \{ 1,2,3\} 

| \vec{}ei \cdot \nabla (\vec{}v(\vec{}x) - \vec{}v(\vec{}y))| 
| \vec{}x - \vec{}y| \alpha 

.

Assumption 2.9 (superapproximation I). Let \vec{}vh \in \vec{}Vh, and let \omega \in C\infty 
0 (Qd) be

a smooth cut-off function such that \omega \equiv 1 on Q and

| \nabla s\omega | \leq Cd - s, s = 0, 1,

where Qd = \{ \vec{}x \in \Omega : dist(\vec{}x, \partial Q) \geq d\} . We assume

\| \nabla (\omega 2\vec{}vh  - Ph(\omega 
2\vec{}vh))\| L2(Q) \leq Cd - 1\| \vec{}vh\| L2(Qd).

For qh \in \=Mh, we assume

\| \omega 2qh  - rh(\omega 
2qh)\| L2(Q) \leq Chd - 1\| qh\| L2(Qd).

One common example of a finite element space satisfying the above assumptions
are the \BbbP k  - \BbbP k - 1 Taylor--Hood finite elements for k \geq 3. For more details on these
spaces and the respective approximation operators, we refer the reader to [1, 11, 12,
13].

Remark 2.10. Here we restrict ourselves to the \BbbP k  - \BbbP k - 1 Taylor--Hood finite
element spaces since in the following arguments we use results for finite element ap-
proximations of elliptic problems. These results are available for the usual space of
Lagrange finite elements and can possibly be extended to other elements used for
the Stokes problem, like, e.g., the ``mini"" element, which also fulfills the assumptions
above. The above assumptions do not cover the lowest order Taylor--Hood elements,
since the existence of the divergence preserving operator Ph is still open. However,
using the approach in [15], a similar result can be shown for the lowest order Taylor--
Hood finite element spaces as well.

Next, we state a well-known energy error estimate for an approximation of the
Stokes system. For details on the proof, see, e.g., [9, Prop. 4.14].

Proposition 2.11. Let (\vec{}u, p) solve (1.1a)--(1.1c), and let (\vec{}uh, ph) be its finite
element approximation defined by (2.8). Under the assumptions above, there exists a
constant C independent of h such that

\| \vec{}u - \vec{}uh\| H1(\Omega ) + \| p - ph\| L2(\Omega ) \leq C min
(\vec{}vh,qh)\in \vec{}Vh\times Mh

\bigl( 
\| \vec{}u - \vec{}vh\| H1(\Omega ) + \| p - qh\| L2(\Omega )

\bigr) 
.
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2.5. Local energy estimates. Important tools in our analysis are the local
energy estimates from [14, Thm. 2].

Proposition 2.12. Suppose (\vec{}v, q) \in H1
0 (\Omega )

3 \times L2(\Omega ) and (\vec{}vh, qh) \in \vec{}Vh \times Mh

satisfy

a((\vec{}v  - \vec{}vh, q  - qh), (\vec{}\chi ,w)) = 0 \forall (\vec{}\chi ,w) \in \vec{}Vh \times Mh

for the bilinear form a(\cdot , \cdot ) given in (2.7). Then, there exists a constant C such that
for every pair of sets A1 \subset A2 \subset \Omega such that dist( \=A1, \partial A2\setminus \partial \Omega ) \geq d \geq \=\kappa h (for some
fixed constant \=\kappa sufficiently large) the following bound holds for every \varepsilon > 0:

\| \nabla (\vec{}v  - \vec{}vh)\| L2(A1) \leq C\| \nabla (\vec{}v  - Ph(\vec{}v))\| L2(A2) + C\| q  - rh(q)\| L2(A2)

+
C

\varepsilon d
\| \vec{}v  - Ph(\vec{}v)\| L2(A2) + \varepsilon \| \nabla (\vec{}v  - \vec{}vh)\| L2(A2) +

C

\varepsilon d
\| \vec{}v  - \vec{}vh\| L2(A2).

2.6. Main results. In the following statements, the constant C is independent
of \vec{}u, p, and h, but may depend on the parameter \alpha related to the largest interior
angle of \partial \Omega . We start with the W 1,\infty error estimates. The global stability result

\| \nabla \vec{}uh\| L\infty (\Omega ) + \| ph\| L\infty (\Omega ) \leq C
\bigl( 
\| \nabla \vec{}u\| L\infty (\Omega ) + \| p\| L\infty (\Omega )

\bigr) 
on convex polyhedral domains was established in [14] (see also [12]). Here, we establish
a localized version of it. In our results Br(\~x) denotes a ball of radius r centered at
\~x \in \Omega .

Theorem 2.13 (interior W 1,\infty estimate for the velocity and L\infty estimate for the
pressure). Let the assumptions of subsections 2.3 and 2.4 hold. Put D1 = Br(\~x)\cap \Omega ,
D2 = B\~r(\~x) \cap \Omega , \~r > r > \=\kappa h (with \=\kappa large enough), d = \~r  - r \geq \=\kappa h. If (\vec{}u, p) \in 
(W 1,\infty (D2)

3 \times L\infty (D2)) \cap (H1
0 (\Omega )

3 \times L2
0(\Omega )) is the solution to (1.1a)--(1.1c), and if

(\vec{}uh, ph) is the solution to (2.8), then

\| \nabla \vec{}uh\| L\infty (D1) + \| ph\| L\infty (D1)

\leq C
\bigl( 
\| \nabla \vec{}u\| L\infty (D2) + \| p\| L\infty (D2)

\bigr) 
+ Cd

\Bigl( 
\| \nabla \vec{}u\| L2(\Omega ) + \| p\| L2(\Omega )

\Bigr) 
.

Here, the constant Cd depends on the distance of Br(\~x) from \partial B\~r(\~x).

Next, we state similar results for the velocity in L\infty norm.

Theorem 2.14 (global L\infty estimate for the velocity). Under the assumptions
of subsections 2.3 and 2.4, for (\vec{}u, p) \in (L\infty (\Omega )3 \times L\infty (\Omega )) \cap (H1

0 (\Omega )
3 \times L2

0(\Omega )), the
solution to (1.1a)--(1.1c), and (\vec{}uh, ph), the solution to (2.8), it holds that

\| \vec{}uh\| L\infty (\Omega ) \leq C| lnh| 
\Bigl( 
\| \vec{}u\| L\infty (\Omega ) + h\| p\| L\infty (\Omega )

\Bigr) 
.

We also get the respective local estimates.

Theorem 2.15 (interior L\infty error estimate for the velocity). Under the assump-
tions of subsections 2.3 and 2.4, with D1 = Br(\~x) \cap \Omega , D2 = B\~r(\~x) \cap \Omega , \~r > r > \=\kappa h
(with \=\kappa large enough), d = \~r  - r \geq \=\kappa h, and for (\vec{}u, p) \in (L\infty (D2)

3 \times L\infty (D2)) \cap 
(H1

0 (\Omega )
3 \times L2

0(\Omega )), the solution to (1.1a)--(1.1c), and (\vec{}uh, ph), the solution to (2.8), it
holds that

\| \vec{}uh\| L\infty (D1) \leq C| lnh| 
\bigl( 
\| \vec{}u\| L\infty (D2) + h\| p\| L\infty (D2)

\bigr) 
+ Cd| lnh| 

\bigl( 
h\| \vec{}u\| H1(\Omega ) + \| \vec{}u\| L2(\Omega ) + h\| p\| L2(\Omega )

\bigr) 
.
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Here, the constant Cd depends on the distance of Br(\~x) from \partial B\~r(\~x).

Based on these theorems, we can derive the following corollaries for general sub-
domains \Omega 1 \subset \Omega 2 \subset \Omega with dist(\=\Omega 1, \partial \Omega 2) \geq d \geq \=\kappa h.

Corollary 2.16 (interior W 1,\infty estimate for the velocity and L\infty estimate for
the pressure). Under the assumptions of subsections 2.3 and 2.4, \Omega 1 \subset \Omega 2 \subset \Omega with
dist(\=\Omega 1, \partial \Omega 2) \geq d \geq \=\kappa h, and for (\vec{}u, p) \in (W 1,\infty (\Omega 2)

3\times L\infty (\Omega 2))\cap (H1
0 (\Omega )

3\times L2
0(\Omega )),

the solution to (1.1a)--(1.1c), and (\vec{}uh, ph), the solution to (2.8), we have

\| \nabla \vec{}uh\| L\infty (\Omega 1) + \| ph\| L\infty (\Omega 1) \leq C
\bigl( 
\| \nabla \vec{}u\| L\infty (\Omega 2) + \| p\| L\infty (\Omega 2)

\bigr) 
+ Cd

\bigl( 
\| \nabla \vec{}u\| L2(\Omega ) + \| p\| L2(\Omega )

\bigr) 
.

Here, the constant Cd depends on the distance to \Omega 1 from \partial \Omega 2.

Proof. We can construct a covering \{ Ki\} Mi=1 of \Omega 1, with Ki = B\~ri(\~xi) \cap \Omega 1 such
that

(1) \Omega 1 \subset 
\bigcup M

i=1Ki.
(2) \~xi \in \=\Omega 1 for 1 \leq i \leq M .
(3) Let Li = Bri(\~xi)\cap \Omega 2, where ri = \~ri+d. There exists a fixed number N such

that each point \vec{}x \in 
\bigcup M

i=1 Li is contained in at most N sets from \{ Lj\} Mj=1.

Now, since dist(\=\Omega 1, \partial \Omega 2) \geq d and (2), we have that
\bigcup M

i=1 Li \subset \Omega 2. We can apply
Theorem 2.13 to the pairs Ki \subset Li:

\| \nabla \vec{}uh\| L\infty (\Omega 1) + \| ph\| L\infty (\Omega 1) \leq 
M\sum 
i=1

\| \nabla \vec{}uh\| L\infty (Ki) + \| ph\| L\infty (Ki)

\leq 
M\sum 
i=1

\Bigl( 
C
\bigl( 
\| \nabla \vec{}u\| L\infty (Li) + \| p\| L\infty (Li)

\bigr) 
+ Cd

\bigl( 
\| \nabla \vec{}u\| L2(\Omega ) + \| p\| L2(\Omega )

\bigr) \Bigr) 
\leq N

\Bigl( 
C
\bigl( 
\| \nabla \vec{}u\| L\infty (\Omega 2) + \| p\| L\infty (\Omega 2)

\bigr) 
+ Cd

\bigl( 
\| \nabla \vec{}u\| L2(\Omega ) + \| p\| L2(\Omega )

\bigr) \Bigr) 
,

where we used (3) in the third line.

Similarly, the following corollary follows with dist(\=\Omega 1, \partial \Omega 2) \geq d.

Corollary 2.17 (interior L\infty error estimate for the velocity). Under the as-
sumptions of subsections 2.3 and 2.4, \Omega 1 \subset \Omega 2 \subset \Omega with dist(\=\Omega 1, \partial \Omega 2) \geq d \geq \=\kappa h, and
for (\vec{}u, p) \in (L\infty (\Omega 2)

3 \times L\infty (\Omega 2)) \cap (H1
0 (\Omega )

3 \times L2
0(\Omega )), the solution to (1.1a)--(1.1c),

and (\vec{}uh, ph), the solution to (2.8), we have

\| \vec{}uh\| L\infty (\Omega 1) \leq C| lnh| 
\Bigl( 
\| \vec{}u\| L\infty (\Omega 2) + h\| p\| L\infty (\Omega 2)

\Bigr) 
+ Cd

\Bigl( 
h\| \vec{}u\| H1(\Omega ) + \| \vec{}u\| L2(\Omega ) + h\| p\| L2(\Omega )

\Bigr) 
.

Here, the constant Cd depends on the distance to \Omega 1 from \partial \Omega 2.

Remark 2.18. We may also write the results above in terms of best approximation
estimates. For example, for L\infty global bounds,

\| \vec{}u - \vec{}uh\| L\infty (\Omega ) \leq inf
(\vec{}vh,qh)\in \vec{}Vh\times Mh

C| lnh| 
\Bigl( 
\| \vec{}u - \vec{}vh\| L\infty (\Omega ) + h\| p - qh\| L\infty (\Omega )

\Bigr) 
.

Naturally, this also applies to other results in this section.
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Remark 2.19. Using the weighted discrete inf-sup condition from [7] it is possible
to extend the global estimate to the compressible case. However, for the applications
we have in mind the incompressible Stokes system is sufficient.

3. Proof of main theorems. In this section, we reduce the proofs of Theo-
rems 2.13 to 2.15 for the velocity to certain estimates for the regularized Green's
functions. The estimates for the pressure are given in section 5. To introduce the
regularized Green's function we first need to introduce a regularized delta function.
In addition we will require a certain weight function.

3.1. Regularized delta function and the weight function. Let R > 0 be
such that for any \vec{}x \in \Omega the ball BR(\vec{}x) contains \Omega . Furthermore, let \vec{}x0 be an arbitrary
point of \=\Omega , and let x0 \in T\vec{}x0

with T\vec{}x0
\in \scrT h. In the following sections, we estimate

| \partial xj\vec{}uh,i(\vec{}x0)| , | \vec{}uh,i(\vec{}x0)| for arbitrary 1 \leq i, j,\leq 3 and | p(\vec{}x0)| .
Next, we introduce the parameters for the weight function \sigma (\vec{}x). Parameter \kappa > 1

is a constant that is chosen to be large enough. Furthermore, let h be suitably small
such that \kappa h \leq R (see also [11, Remark 1.4]). In the following, we use a regularized
Green's function to express the L\infty (\Omega ) norm such that the problem is reduced to
estimating the discretization error of the Green's function in the L1(\Omega ) norm as in
[12, 14]. To that end, we define a smooth delta function \delta h \in C1

0 (T\vec{}x0
), which satisfies,

for every \vec{}vh \in \vec{}Vh,

\vec{}vh,i(\vec{}x0) = (\vec{}vh, \delta h\vec{}ei)T\vec{}x0
,(3.1)

\| \delta h\| Wk
q (T\vec{}x0

) \leq Ch - k - 3(1 - 1/q), 1 \leq q \leq \infty , k = 0, 1, . . . .(3.2)

The construction of such a \delta h can be found in [32, Appendix]. We recall some prop-
erties for \sigma and \delta h. By construction, it follows that

(3.3) inf
\vec{}x\in \Omega 

\sigma (\vec{}x) \geq \kappa h.

Next, we provide an estimate for the L2(\Omega ) norm of the product of \delta h and \sigma .

Lemma 3.1. There exists a constant C such that for \nu > 0,

\| \sigma \nu \nabla k\delta h\| L2(\Omega ) \leq 2\nu /2C\kappa \nu h\nu  - k - 3/2, k = 0, 1.

Proof. This follows from the fact that \delta h is only nonzero on T\vec{}x0
, \sigma is bounded on

T\vec{}x0
by

\surd 
2\kappa h, and (3.2).

The general strategy for proving the local results is to partition the domain into
the local part and its complement. Then, we use regularized Green's function esti-
mates in the L1 norm on the local part and weighted L2 norm on the complement.
For the L\infty error estimates we additionally require a certain estimate for the Ritz
projection.

3.2. Estimates for \bfitW \bfone ,\infty (\Omega ). The proof of local W 1,\infty (\Omega ) error estimates is
similar to the global case [12, 14] and is obtained by introducing a regularized Green's
function.

3.2.1. Regularized Green's function. For the W 1,\infty error estimates, we de-
fine the regularized Green's function (\vec{}g1, \lambda 1) \in H1

0 (\Omega )
3 \times L2

0(\Omega ) as the solution to
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 - \Delta \vec{}g1 +\nabla \lambda 1 = (\partial xj
\delta h)\vec{}ei in \Omega ,(3.4a)

\nabla \cdot \vec{}g1 = 0 in \Omega ,(3.4b)

\vec{}g1 = \vec{}0 on \partial \Omega .(3.4c)

We also define the finite element approximation (\vec{}g1,h, \lambda 1,h) \in \vec{}Vh \times Mh by

(3.5) a((\vec{}g1  - \vec{}g1,h, \lambda 1  - \lambda 1,h), (\vec{}vh, qh)) = 0 \forall (\vec{}vh, qh) \in \vec{}Vh \times Mh.

3.2.2. Auxiliary results for (\vec{}\bfitg \bfone , \bfitlambda \bfone ) and (\vec{}\bfitg \bfone ,\bfith , \bfitlambda \bfone ,\bfith ). To show our main
interior resultW 1,\infty , we need the regularized Green's function error estimate in L1(\Omega )
norm which is given in [14, Lem. 5.2].

Lemma 3.2. There exists a constant C independent of h and \vec{}g1 such that

\| \nabla (\vec{}g1  - \vec{}g1,h)\| L1(\Omega ) \leq C.

In addition, we also need the following weighted estimate, the proof of which
follows by a minor modification of the proof in [14, Lem. 5.2].

Corollary 3.3. There exists a constant C independent of h and \vec{}g1 such that

\| \sigma 3/2\nabla (\vec{}g1  - \vec{}g1,h)\| L2(\Omega ) \leq C.

The details on the proof of this corollary are given in section 4, where we introduce
the respective dyadic decomposition.

Remark 3.4. Alternatively, similar results as in Lemma 3.2 and Corollary 3.3 may
be deduced as well from the results in [12]. But in [12] the authors use slightly different
assumptions compared to the assumptions made in section 2, which is why we provide
a proof in our setting.

3.2.3. Localization. We reduce the proof to estimates involving \vec{}g1 and \vec{}g1,h.

Proof of Theorem 2.13 (velocity). Using the regularized Green's function as de-
fined in (3.4a)--(3.4c), for \vec{}x0 \in T\vec{}x0

\subset D1, we have as in [14]

 - \partial xj
(\vec{}uh)i(\vec{}x0) = (\vec{}uh, (\partial xj

\delta h)\vec{}ei)(by (3.1))

= (\vec{}uh, - \Delta \vec{}g1 +\nabla \lambda 1)(by (3.4a))

= (\nabla \vec{}uh,\nabla \vec{}g1) + (\vec{}uh,\nabla \lambda 1)
= (\nabla \vec{}uh,\nabla \vec{}g1) + (\vec{}uh,\nabla \lambda 1,h) + (\nabla \vec{}uh,\nabla (\vec{}g1,h  - \vec{}g1))(by (3.5))

= (\nabla \vec{}uh,\nabla \vec{}g1,h)(discrete divergence)

= (\nabla \vec{}u,\nabla \vec{}g1,h) + (p - ph,\nabla \cdot \vec{}g1,h)(by (1.1a) and (2.8))

= (\nabla \vec{}u,\nabla \vec{}g1,h) + (p,\nabla \cdot \vec{}g1,h)(by (3.5) and (3.4b))

= (\nabla \vec{}u,\nabla (\vec{}g1,h  - \vec{}g1)) + (\nabla \vec{}u,\nabla \vec{}g1) + (p,\nabla \cdot (\vec{}g1,h  - \vec{}g1))(continuous divergence)

:= I1 + I2 + I3.

To treat I2 we use integration by parts, the H\"older estimate, and (3.2) to obtain

I2 = (\vec{}u, - \Delta \vec{}g1) + (\vec{}u,\nabla \lambda 1) = (\vec{}u, (\partial xj
\delta h)\vec{}ei) = ( - \partial xj

\vec{}u, \delta h\vec{}ei) \leq C\| \nabla \vec{}u\| L\infty (T\vec{}x0
).
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Since r  - \~r > \=\kappa h, this proves the result for I2.
For the other two terms, we split the domain into D2 and \Omega \setminus D2. Using that

\sigma  - 1 > (\=\kappa (\~r  - r)) - 1 on \Omega \setminus D2 and the H\"older estimates, we have

I1 + I3 \leq C
\bigl( 
\| \nabla \vec{}u\| L\infty (D2) + \| p\| L\infty (D2)

\bigr) 
\| \nabla (\vec{}g1,h  - \vec{}g1)\| L1(\Omega )

+ C
\Bigl( 
\| \sigma  - 3/2\nabla \vec{}u\| L2(\Omega \setminus D2) + \| \sigma  - 3/2p\| L2(\Omega \setminus D2)

\Bigr) 
\| \sigma 3/2\nabla (\vec{}g1,h  - \vec{}g1)\| L2(\Omega )

\leq C
\Bigl( 
\| \nabla \vec{}u\| L\infty (D2) + \| p\| L\infty (D2)

\Bigr) 
\| \nabla (\vec{}g1,h  - \vec{}g1)\| L1(\Omega )

+ C(\~r  - r) - 3/2
\Bigl( 
\| \nabla \vec{}u\| L2(\Omega ) + \| p\| L2(\Omega )

\Bigr) 
\| \sigma 3/2\nabla (\vec{}g1,h  - \vec{}g1)\| L2(\Omega ).

The result then follows from Lemma 3.2 and Corollary 3.3.

3.3. Estimates for \bfitL \infty (\Omega ). For this case we use the stability of the Ritz pro-
jection in L\infty (\Omega ) norm as shown in [18].

3.3.1. Regularized Green's function. This time we define the approximate
Green's function (\vec{}g0, \lambda 0) \in H1

0 (\Omega )
3 \times L2

0(\Omega ) as the solution to

 - \Delta \vec{}g0 +\nabla \lambda 0 = \delta h\vec{}ei in \Omega ,(3.6a)

\nabla \cdot \vec{}g0 = 0 in \Omega ,(3.6b)

\vec{}g0 = \vec{}0 on \partial \Omega .(3.6c)

Here, \vec{}ei is as before the ith standard basis vector in \BbbR 3. We also define the finite
element approximation (\vec{}g0,h, \lambda 0,h) \in \vec{}Vh \times Mh by

(3.7) a((\vec{}g0  - \vec{}g0,h, \lambda 0  - \lambda 0,h), (\vec{}vh, qh)) = 0 \forall (\vec{}vh, qh) \in \vec{}Vh \times Mh.

Compared to (3.4a)--(3.4c), the right-hand side of (3.6a) is less singular, which means
we can expect faster convergence.

3.3.2. Auxiliary results for (\vec{}\bfitg \bfzero , \bfitlambda \bfzero ), (\vec{}\bfitg \bfzero ,\bfith , \bfitlambda \bfzero ,\bfith ), and the Ritz projec-
tion. Similar to the W 1,\infty case, we need certain error estimates for the discretization
of the regularized Green's function (\vec{}g0, \lambda 0). However, in contrast to (\vec{}g1, \lambda 1), we could
not locate such results in the literature. For our purpose we need to establish the
following results, for which the proofs are given in section 4.

Lemma 3.5. Let (\vec{}g0, \lambda 0) be the solution of (3.6a)--(3.6c), and let (\vec{}g0,h, \lambda 0,h) be
the respective discrete solution. Then, it holds that

\| \nabla (\vec{}g0  - \vec{}g0,h)\| L1(\Omega ) \leq Ch| lnh| .

The weighted norm estimate follows essentially from Lemma 3.5.

Corollary 3.6. Let (\vec{}g0, \lambda 0) be the solution of (3.6a)--(3.6c), and let (\vec{}g0,h, \lambda 0,h)
be the respective discrete solution. Then, it holds that

\| \sigma 3/2\nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega ) \leq Ch| lnh| .

As mentioned earlier, the proof is based on local and global max-norm estimates
for the Ritz projection Rh\vec{}z of \vec{}z \in H1

0 (\Omega )
3, which is given by

(\nabla Rh\vec{}z,\nabla \vec{}vh) = (\nabla \vec{}z,\nabla \vec{}vh) \forall \vec{}vh \in \vec{}Vh.

We state the slightly modified results [16, Thm. 5.1], [17, Thm. 4.4], and [18, Thm. 12]
for the reader's convenience.
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Proposition 3.7. There exists a constant C independent of h such that, for \vec{}z \in 
H1

0 (\Omega )
3 \cap L\infty (\Omega )3, the solution of the Poisson problem, it holds that

\| Rh\vec{}z\| L\infty (\Omega ) \leq C| lnh| \=k\| \vec{}z\| L\infty (\Omega ),

where \=k = 1 for k = 1 and \=k = 0 for k \geq 2.

Proposition 3.8. Let D \subset Dd \subset \Omega , where Dd = \{ x \in \Omega : dist(x,D) \leq d\} .
Then, for \vec{}z \in H1

0 (\Omega )
3 \cap L\infty (\Omega )3, the solution of the Poisson problem, there exists a

constant C, independent of h, such that

\| Rh\vec{}z\| L\infty (D) \leq C| lnh| \=k\| \vec{}z\| L\infty (Dd) + Cdh\| \vec{}z\| H1(\Omega ),

where Cd \sim d - 3/2, and as above \=k = 1 for k = 1 and \=k = 0 for k \geq 2.

Remark 3.9. As we mentioned in the introduction, in the original paper of Schatz
and Wahlbin on smooth domains [31], the interior error estimate is of the form

\| Rh\vec{}z\| L\infty (D) \leq C| lnh| \=k\| \vec{}z\| L\infty (Dd) + Cd\| Rh\vec{}z\| W - l
p (Dd)

,

with D \subset \subset Dd \subset \subset \Omega . We find that the main difference is that the pollution error
term Cd\| Rh\vec{}z\| W - l

p (Dd)
is still in the form of the Ritz projection, but can be taken

in any negative norm and still be local. However, for our applications we do not see
any benefits from this form of the results, since such a pollution term needs to be
estimated by a duality argument, which essentially requires global estimates.

We will also require the following result.

Lemma 3.10. Let (\vec{}g0, \lambda 0) be the solution of (3.6a)--(3.6c). Then, it holds that

\| \nabla \lambda 0\| L1(\Omega ) \leq C| lnh| 1/2\| \sigma 3/2\nabla \lambda 0\| L2(\Omega ) \leq C| lnh| .

The respective proof is given in section 4.

3.3.3. Max-norm estimate. With these tools at hand, we can go ahead with
the proof of the theorem.

Proof of Theorem 2.14 (velocity). We make the ansatz for \vec{}x0 \in \=\Omega ,

\vec{}uh,i(\vec{}x0) = a((\vec{}uh, ph), (\vec{}g0,h, \lambda 0,h)) = a((\vec{}u, p), (\vec{}g0,h, \lambda 0,h))(by orthogonality)

= (\nabla \vec{}u,\nabla \vec{}g0,h) - (p,\nabla \cdot \vec{}g0,h).

Since \vec{}g0,h \in \vec{}Vh we have (\nabla \vec{}u,\nabla \vec{}g0,h) = (\nabla Rh\vec{}u,\nabla \vec{}g0,h), and hence by using \nabla \cdot \vec{}g0 = 0,

\vec{}uh,i(\vec{}x0) = (\nabla Rh\vec{}u,\nabla \vec{}g0,h) - (p,\nabla \cdot \vec{}g0,h) = (\nabla Rh\vec{}u,\nabla \vec{}g0,h) - (p,\nabla \cdot (\vec{}g0,h  - \vec{}g0)).

We can use an inverse estimate on \nabla Rh\vec{}u. Thus,

(\nabla Rh\vec{}u,\nabla \vec{}g0,h) = (\nabla Rh\vec{}u,\nabla (\vec{}g0,h  - \vec{}g0)) - (Rh\vec{}u,\Delta \vec{}g0)

= (\nabla Rh\vec{}u,\nabla (\vec{}g0,h  - \vec{}g0)) - (Rh\vec{}u, - \delta h\vec{}ei +\nabla \lambda 0)
\leq h - 1\| Rh\vec{}u\| L\infty (\Omega )\| \nabla (\vec{}g0,h  - \vec{}g0)\| L1(\Omega )

+ C\| Rh\vec{}u\| L\infty (\Omega )

\bigl( 
1 + \| \nabla \lambda 0\| L1(\Omega )

\bigr) 
.
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For the second term, we get by estimating the divergence by the gradient that

(p,\nabla \cdot (\vec{}g0,h  - \vec{}g0)) \leq C\| p\| L\infty (\Omega )\| \nabla (\vec{}g0,h  - \vec{}g0)\| L1(\Omega ).

Now we can apply our auxiliary results for \| \nabla (\vec{}g0,h - \vec{}g0)\| L1(\Omega ) and \| \nabla \lambda 0\| L1(\Omega ). Thus,
we have by Lemmas 3.5 and 3.10 combined with Proposition 3.7 that

| \vec{}uh,i(\vec{}x0)| \leq C\| \vec{}u\| L\infty (\Omega )

\Bigl( 
h - 1\| \nabla (\vec{}g0,h  - \vec{}g0)\| L1(\Omega ) + 1 + \| \lambda 0\| L1(\Omega )

\Bigr) 
+ \| p\| L\infty (\Omega )\| \nabla (\vec{}g0,h  - \vec{}g0)\| L1(\Omega )

\leq C| lnh| 
\Bigl( 
\| \vec{}u\| L\infty (\Omega ) + h\| p\| L\infty (\Omega )

\Bigr) 
.

3.3.4. Localization. The approach for the localization in the L\infty case is similar
to W 1,\infty but different in the sense that we again use the stability of Rh in L\infty norm.

Proof of Theorem 2.15 (velocity). We only consider \vec{}x0 \in T\vec{}x0
\subset D1. As before,

using (2.7), (2.8), and (3.7) gives

\vec{}uh,i(\vec{}x0) = a((\vec{}uh, ph), (\vec{}g0,h, \lambda 0,h)) = a((\vec{}u, p), (\vec{}g0,h, \lambda 0,h))(by orthogonality)

= (\nabla \vec{}u,\nabla \vec{}g0,h) - (p,\nabla \cdot \vec{}g0,h) := I1 + I2.

Using the properties of the Ritz projection, we first consider

I1 = (\nabla Rh\vec{}u,\nabla \vec{}g0,h)
= (\nabla Rh\vec{}u,\nabla \vec{}g0) + (\nabla Rh\vec{}u,\nabla (\vec{}g0,h  - \vec{}g0))

=  - (Rh\vec{}u,\Delta \vec{}g0) + (\nabla Rh\vec{}u,\nabla (\vec{}g0,h  - \vec{}g0))

= (Rh\vec{}u, \delta h\vec{}ei  - \nabla \lambda 0) + (\nabla Rh\vec{}u,\nabla (\vec{}g0,h  - \vec{}g0)).

Next, we apply (3.1) and split the domain into D2 and \Omega \setminus D2,

I1 \leq \| Rh\vec{}u\| L\infty (T\vec{}x0
) + \| Rh\vec{}u\| L\infty (D2)\| \nabla \lambda 0\| L1(\Omega ) + \| \nabla Rh\vec{}u\| L\infty (D2)\| \nabla (\vec{}g0,h  - \vec{}g0)\| L1(\Omega )

+ \| \sigma  - 3/2Rh\vec{}u\| L2(\Omega \setminus D2)\| \sigma 
3/2\nabla \lambda 0\| L2(\Omega )

+ \| \sigma  - 3/2\nabla Rh\vec{}u\| L2(\Omega \setminus D2)\| \sigma 
3/2\nabla (\vec{}g0,h  - \vec{}g0)\| L2(\Omega ).

Using the properties of \sigma and applying an inverse inequality gives

I1 \leq C\| Rh\vec{}u\| L\infty (D2)

\bigl( 
1 + \| \nabla \lambda 0\| L1(\Omega ) + h - 1\| \nabla (\vec{}g0,h  - \vec{}g0)\| L1(\Omega )

\bigr) 
+ Cd\| Rh\vec{}u\| L2(\Omega )

\bigl( 
\| \sigma 3/2\nabla \lambda 0\| L2(\Omega ) + h - 1\| \sigma 3/2\nabla (\vec{}g0,h  - \vec{}g0)\| L2(\Omega )

\bigr) 
.

To estimate Rh\vec{}u in the L\infty and L2 norm we can apply Proposition 3.8 and an estimate
for \| Rh\vec{}u - \vec{}u\| L2(\Omega ) to see together with Lemma 3.5, Corollary 3.6, and Lemma 3.10
that

I1 \leq C\| \vec{}u\| L\infty (D2)(1 + | lnh| ) + Cd| lnh| 
\Bigl( 
\| \vec{}u\| L2(\Omega ) + h\| \vec{}u\| H1(\Omega )

\Bigr) 
\leq C| lnh| \| \vec{}u\| L\infty (D2) + Cd| lnh| 

\Bigl( 
\| \vec{}u\| L2(\Omega ) + h\| \vec{}u\| H1(\Omega )

\Bigr) 
.

Using similar arguments, we get

I2 =  - (p,\nabla \cdot (\vec{}g0,h  - \vec{}g0))

\leq C\| p\| L\infty (D2)\| \nabla (\vec{}g0,h  - \vec{}g0)\| L1(\Omega ) + Cd\| p\| L2(\Omega )\| \sigma 3/2\nabla (\vec{}g0,h  - \vec{}g0)\| L2(\Omega )

\leq C| lnh| h\| p\| L\infty (D2) + Cd| lnh| h\| p\| L2(\Omega ),

which concludes the proof of the theorem.
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4. Estimates for the regularized Green's function. In this section we prove
Corollaries 3.3 and 3.6 and Lemmas 3.5 and 3.10, which we need in order to establish
the main theorems.

4.1. Dyadic decomposition. For the proof of our results, we use a dyadic de-
composition of the domain \Omega , which we will introduce next. Without loss of generality,
we assume that the diameter of \Omega is less than 1. We put dj = 2 - j and consider the

decomposition \Omega = \Omega \ast \cup 
\bigcup J

j=0 \Omega j , where

\Omega \ast = \{ \vec{}x \in \Omega : | \vec{}x - \vec{}x0| \leq Kh\} , \Omega j = \{ \vec{}x \in \Omega : dj+1 \leq | \vec{}x - \vec{}x0| \leq dj\} ,

K is a sufficiently large constant to be chosen later, and J is an integer such that

(4.1) 2 - (J+1) \leq Kh \leq 2 - J .

We keep track of the explicit dependence on K. Furthermore, we consider the follow-
ing enlargements of \Omega j :

\Omega \prime 
j = \{ \vec{}x \in \Omega : dj+2 \leq | \vec{}x - \vec{}x0| \leq dj - 1\} ,

\Omega \prime \prime 
j = \{ \vec{}x \in \Omega : dj+3 \leq | \vec{}x - \vec{}x0| \leq dj - 2\} ,

\Omega \prime \prime \prime 
j = \{ \vec{}x \in \Omega : dj+4 \leq | \vec{}x - \vec{}x0| \leq dj - 3\} .

Lemma 4.1. There exists a constant C independent of dj such that for any \vec{}x \in 
\Omega j,

| \nabla \vec{}g0(\vec{}x)| + d - 1
j | \vec{}g0(\vec{}x)| + | \lambda 0(\vec{}x)| \leq Cd - 2

j .

Proof. Due to (2.6) and Proposition 2.3, it holds for \vec{}x \in \Omega j that

| \lambda 0(\vec{}x)| =
\bigm| \bigm| \bigm| \bigm| \int 

\Omega 

G4(\vec{}x, \vec{}y) \cdot \delta h(\vec{}y)\vec{}eid\vec{}y
\bigm| \bigm| \bigm| \bigm| \leq \int 

T\vec{}x0

| Gi,4(\vec{}x, \vec{}y)| | \delta h(\vec{}y)| d\vec{}y

\leq C

\int 
T\vec{}x0

| \delta h(\vec{}y)| 
| \vec{}x - \vec{}y| 2

d\vec{}y \leq Cd - 2
j \| \delta h\| L1(\Omega ) \leq Cd - 2

j ,

where we used that dist(x0,\Omega j) \geq Cdj . Similarly, without loss of generality, consid-
ering the kth component, 1 \leq k \leq 3, we have

| \partial x\vec{}g0,k(\vec{}x)| =
\bigm| \bigm| \bigm| \bigm| \int 

\Omega 

\partial xGk(\vec{}x, \vec{}y) \cdot \delta h(\vec{}y)\vec{}eid\vec{}y
\bigm| \bigm| \bigm| \bigm| \leq \int 

T\vec{}x0

| \partial xGi,k(\vec{}x, \vec{}y)| | \delta h(\vec{}y)| d\vec{}y

\leq 
\int 
T\vec{}x0

| \delta h(\vec{}y)| 
| \vec{}x - \vec{}y| 2

d\vec{}y \leq Cd - 2
j .

The estimate for \vec{}g0,k(\vec{}x) is similar.

As an immediate application of the above result and Corollary 2.2 we obtain the
following result.

Corollary 4.2. We have

\| \vec{}g0\| H2(\Omega j) + \| \nabla \lambda 0\| L2(\Omega j) \leq Cd
 - 3/2
j .

D
ow

nl
oa

de
d 

10
/3

0/
20

 to
 6

7.
22

1.
69

.9
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1546 N. BEHRINGER, D. LEYKEKHMAN, AND B. VEXLER

Proof. By Corollary 2.2, the H\"older estimates, and Lemma 4.1 (with \Omega \prime 
j instead

of \Omega j), we obtain

\| \vec{}g0\| H2(\Omega j) + \| \nabla \lambda 0\| L2(\Omega j) \leq Cd - 1
j

\Bigl( 
\| \lambda 0\| L2(\Omega \prime 

j)
+ \| \nabla \vec{}g0\| L2(\Omega \prime 

j)
+ d - 1

j \| \vec{}g0\| L2(\Omega \prime 
j)

\Bigr) 
\leq Cd

1/2
j

\Bigl( 
\| \lambda 0\| L\infty (\Omega \prime 

j)
+ \| \nabla \vec{}g0\| L\infty (\Omega \prime 

j)
+ d - 1

j \| \vec{}g0\| L\infty (\Omega \prime 
j)

\Bigr) 
\leq Cd

 - 3/2
j .

4.2. \bfitL \bfone (\Omega ) interpolation estimate for \bfitlambda \bfzero .

Theorem 4.3. For (\vec{}g0, \lambda 0), the solution of (3.6a)--(3.6c), it holds that

\| \lambda 0  - rh(\lambda 0)\| L1(\Omega ) \leq Ch| lnh| .

Proof. Using the dyadic decomposition and the Cauchy--Schwarz inequality,

\| \lambda 0  - rh(\lambda 0)\| L1(\Omega ) \leq \| \lambda 0  - rh(\lambda 0)\| L1(\Omega \ast ) +

J\sum 
j=1

\| \lambda 0  - rh(\lambda 0)\| L1(\Omega j)

\leq (Kh)3/2\| \lambda 0  - rh(\lambda 0)\| L2(\Omega \ast ) + C

J\sum 
j=1

d
3/2
j \| \lambda 0  - rh(\lambda 0)\| L2(\Omega j).(4.2)

We apply Assumption 2.7 and the H2 regularity as in (2.1), which gives

\| \lambda 0  - rh(\lambda 0)\| L2(\Omega ) \leq Ch\| \nabla \lambda 0\| L2(\Omega ) \leq Ch\| \delta h\| L2(\Omega ) \leq Ch - 1/2.

This implies, for the first term in (4.2), that

(Kh)3/2\| \lambda 0  - rh(\lambda 0)\| L2(\Omega \ast ) \leq CK3/2h.

For the second term, by the approximation estimate Assumption 2.7 and Corollary 4.2,
it follows that

\| \lambda 0  - rh(\lambda 0)\| L2(\Omega j) \leq Ch\| \nabla \lambda 0\| L2(\Omega \prime 
j)

\leq Chd
 - 3/2
j .

Hence, we can conclude that

J\sum 
j=1

d
3/2
j \| \lambda 0  - rh(\lambda 0)\| L2(\Omega j) \leq 

J\sum 
j=1

Ch \leq ChJ.

From (4.1), we see that J scales logarithmically in h; thus get the claimed result.

4.3. Local duality argument. In the following theorem, we again consider the
subdomains \Omega j from the dyadic decomposition in a duality argument. For the error

\| \vec{}g0  - \vec{}g0,h\| L2(\Omega \prime 
j)

= sup
\| \vec{}v\| L2(\Omega )\leq 1

\vec{}v\in C\infty 
0 (\Omega \prime 

j)

(\vec{}g0  - \vec{}g0,h, \vec{}v),

we can make a duality argument using the triple problem

(4.3)  - \Delta \vec{}w +\nabla \varphi = \vec{}v in \Omega , \nabla \cdot \vec{}w = 0 in \Omega , \vec{}w = 0 on \partial \Omega .
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Theorem 4.4. For (\vec{}g0, \lambda 0), the solution of (3.6a)--(3.6c), and \alpha \in (0, 1), it holds
that

\| \vec{}g0  - \vec{}g0,h\| L2(\Omega \prime 
j)

\leq Ch\| \nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega \prime \prime \prime 
j ) + Ch\alpha d

 - 1/2 - \alpha 
j \| \nabla (\vec{}g0  - \vec{}g0,h)\| L1(\Omega )

+Ch1+\alpha d
 - 1/2 - \alpha 
j | lnh| .

Proof. By using (4.3), and that \vec{}g0 and \vec{}gh,0 are divergence free for rh(\varphi ), the
bilinear form a(\cdot , \cdot ) from (2.7), and Assumption 2.5, it follows that

(\vec{}g0  - \vec{}g0,h, \vec{}v) = (\nabla (\vec{}g0  - \vec{}g0,h),\nabla \vec{}w) - (\varphi ,\nabla \cdot (\vec{}g0  - \vec{}g0,h))

= (\nabla (\vec{}g0  - \vec{}g0,h),\nabla (\vec{}w  - Ph(\vec{}w)))

+ (\nabla (\vec{}g0  - \vec{}g0,h),\nabla Ph(\vec{}w)) - (\varphi  - rh(\varphi ),\nabla \cdot (\vec{}g0  - \vec{}g0,h))

= (\nabla (\vec{}g0  - \vec{}g0,h),\nabla (\vec{}w  - Ph(\vec{}w)))

+ (\lambda 0  - \lambda 0,h,\nabla \cdot Ph(\vec{}w)) - (\varphi  - rh(\varphi ),\nabla \cdot (\vec{}g0  - \vec{}g0,h))

= (\nabla (\vec{}g0  - \vec{}g0,h),\nabla (\vec{}w  - Ph(\vec{}w)))

+ (\lambda 0  - rh(\lambda 0),\nabla \cdot (Ph(\vec{}w) - \vec{}w)) - (\varphi  - rh(\varphi ),\nabla \cdot (\vec{}g0  - \vec{}g0,h))

:= \tau 1 + \tau 2 + \tau 3.

For \tau 1, we split the term

\tau 1 = (\nabla (\vec{}g0  - \vec{}g0,h),\nabla (\vec{}w  - Ph(\vec{}w)))\Omega \prime \prime \prime 
j
+ (\nabla (\vec{}g0  - \vec{}g0,h),\nabla (\vec{}w  - Ph(\vec{}w)))\Omega \setminus \Omega \prime \prime \prime 

j

:= \tau 11 + \tau 12.

We then can estimate \tau 11 using Assumption 2.7 for Ph, as follows:

\tau 11 \leq \| \nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega \prime \prime \prime 
j )\| \nabla (\vec{}w  - Ph(\vec{}w))\| L2(\Omega )

\leq Ch\| \nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega \prime \prime \prime 
j )\| \vec{}w\| H2(\Omega ) \leq Ch\| \nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega \prime \prime \prime 

j ).

Now we use [14, (5.11)] and Assumption 2.8 to see that

\tau 12 \leq Ch\alpha \| \nabla (\vec{}g0  - \vec{}g0,h)\| L1(\Omega )\| \vec{}w\| C1+\alpha (\Omega \setminus \Omega \prime \prime 
j )

\leq Ch\alpha d
 - 1/2 - \alpha 
j \| \nabla (\vec{}g0  - \vec{}g0,h)\| L1(\Omega ).

Analogously, we split \tau 2:

\tau 2 =  - (\lambda 0  - rh(\lambda 0),\nabla \cdot (\vec{}w  - Ph(\vec{}w))\Omega \prime \prime \prime 
j
 - (\lambda 0  - rh(\lambda 0),\nabla \cdot (\vec{}w  - Ph(\vec{}w))\Omega \setminus \Omega \prime \prime \prime 

j

:= \tau 21 + \tau 22.

Then again, we use approximation results and Corollary 4.2 to see

\tau 21 \leq Ch2\| \nabla \lambda 0\| L2(\Omega \prime \prime 
j )
\| \vec{}w\| H2(\Omega ) \leq Ch2\| \nabla \lambda 0\| L2(\Omega \prime \prime 

j )
\leq Ch2d

 - 3/2
j .

For the second term, we apply again the H\"older estimate, Theorem 4.3, and [14, eq.
(5.11)] to see that

(4.4) \tau 22 \leq \| \lambda 0  - rh(\lambda 0)\| L1(\Omega )\| \nabla (\vec{}w  - Ph(\vec{}w))\| L\infty (\Omega \setminus \Omega \prime \prime \prime 
j )

\leq Ch1+\alpha | lnh| \| \vec{}w\| C1+\alpha (\Omega \setminus \Omega \prime \prime 
j )

\leq Ch1+\alpha d
 - 1/2 - \alpha 
j | lnh| .
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It remains to deal with \tau 3; we split again

\tau 3 \leq | (\varphi  - rh(\varphi ),\nabla \cdot (\vec{}g0  - \vec{}g0,h))\Omega \prime \prime \prime 
j
| + | (\varphi  - rh(\varphi ),\nabla \cdot (\vec{}g0  - \vec{}g0,h))\Omega \setminus \Omega \prime \prime \prime 

j
| := \tau 31 + \tau 32.

Analogously as before, we estimate

\tau 31 \leq \| \varphi  - rh(\varphi )\| L2(\Omega \prime \prime \prime 
j )\| \nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega \prime \prime \prime 

j ) \leq Ch\| \nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega \prime \prime \prime 
j ) and

\tau 32 \leq \| \varphi  - rh(\varphi )\| L\infty (\Omega \setminus \Omega \prime \prime \prime 
j )\| \nabla (\vec{}g0  - \vec{}g0,h)\| L1(\Omega ) \leq Ch\alpha d

 - 1/2 - \alpha 
j \| \nabla (\vec{}g0  - \vec{}g0,h)\| L1(\Omega ).

The estimate for \| \varphi  - rh(\varphi )\| L\infty (\Omega \setminus \Omega \prime \prime \prime 
j ) is given in [14, p. 17]. Summing up, we have

\| \vec{}g0  - \vec{}g0,h\| L2(\Omega j) \leq Ch\| \nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega \prime \prime \prime 
j ) + Ch\alpha d

 - 1/2 - \alpha 
j \| \nabla (\vec{}g0  - \vec{}g0,h)\| L1(\Omega )

+ h2d
 - 3/2
j + Ch1+\alpha d

 - 1/2 - \alpha 
j | lnh| .

Now, because h \leq dj due to (4.1) and \alpha \leq 1, it holds that h2d
 - 3/2
j \leq h1+\alpha d

 - 1/2 - \alpha 
j .

Thus, we arrive at the conclusion of the theorem.

4.4. \bfitL \bfone (\Omega ) estimate and weighted estimate. Now we can proceed with the
proof of Lemma 3.5.

Proof of Lemma 3.5. We again use the dyadic decomposition and the Cauchy--
Schwarz inequality to see

\| \nabla (\vec{}g0 - \vec{}g0,h)\| L1(\Omega ) \leq \| \nabla (\vec{}g0  - \vec{}g0,h)\| L1(\Omega \ast ) +

J\sum 
j=1

\| \nabla (\vec{}g0  - \vec{}g0,h)\| L1(\Omega j)

\leq (Kh)3/2\| \nabla (\vec{}g0  - \vec{}g0,h\| L2(\Omega ) + C

J\sum 
j=1

d
3/2
j \| \nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega j).(4.5)

Applying Proposition 2.11, Assumption 2.7, H2 regularity as stated in (2.1), and (3.2)
leads to the following estimate for the first term:

h3/2\| \nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega ) \leq Ch5/2
\Bigl( 
\| \vec{}g0\| H2(\Omega ) + \| \lambda 0\| H1(\Omega )

\Bigr) 
\leq Ch5/2\| \delta h\| L2(T\vec{}x0

) \leq Ch.

In the following, we consider the second term for which we want to apply the local
energy estimate from Proposition 2.12:

\| \nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega j) \leq C
\Bigl( 
\| \nabla (\vec{}g0  - Ph(\vec{}g0))\| L2(\Omega \prime 

j)
+ \| \lambda 0  - rh(\lambda 0)\| L2(\Omega \prime 

j)

\Bigr) 
+ C(\varepsilon dj)

 - 1\| \vec{}g0  - Ph(\vec{}g0)\| L2(\Omega \prime 
j)
+ \varepsilon \| \nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega \prime 

j)

+ C(\varepsilon dj)
 - 1\| \vec{}g0  - \vec{}g0,h\| L2(\Omega \prime 

j)
.(4.6)

For the first two terms we use approximation results and Corollary 4.2 to obtain

\| \nabla (\vec{}g0  - Ph(\vec{}g0))\| L2(\Omega \prime 
j)
+ \| \lambda 0  - rh(\lambda 0)\| L2(\Omega \prime 

j)
\leq Ch

\Bigl( 
\| \vec{}g0\| H2(\Omega \prime \prime 

j )
+ \| \lambda 0\| H1(\Omega \prime \prime 

j )

\Bigr) 
\leq Chd

 - 3/2
j .

D
ow

nl
oa

de
d 

10
/3

0/
20

 to
 6

7.
22

1.
69

.9
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOKES GLOBAL AND LOCAL POINTWISE ERROR ESTIMATES 1549

The contribution to the sum is given by

J\sum 
j=1

d
3/2
j (\| \nabla (\vec{}g0  - Ph(\vec{}g0))\| L2(\Omega \prime 

j)
+ \| \lambda 0  - rh(\lambda 0)\| L2(\Omega \prime 

j)
) \leq ChJ \leq Ch| lnh| ,

where due to (4.1) we see that J \sim | lnh| . Similarly, we see

(4.7) (\varepsilon dj)
 - 1\| \vec{}g0  - Ph(\vec{}g0)\| L2(\Omega \prime 

j)
\leq C

h

\varepsilon dj
hd

 - 3/2
j .

For \alpha > 0, it holds that

(4.8)

J\sum 
j=1

\biggl( 
h

dj

\biggr) \alpha 

\leq h\alpha 
J\sum 

j=1

2j\alpha \leq Ch\alpha 2\alpha J \leq CK - \alpha .

Thus, we get by summing up (4.7) and using (4.8) with \alpha = 1 that
\sum J

j=1 C
h
\varepsilon dj
h \leq 

C(K\varepsilon ) - 1h. To summarize our results so far, we defineMj = d
3/2
j \| \nabla (\vec{}g0 - \vec{}g0,h)\| L2(\Omega j),

M \prime 
j = d

3/2
j \| \nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega \prime 

j)
, and substitute into (4.6) that

J\sum 
j=1

Mj \leq Ch| lnh| + C(K\varepsilon ) - 1h+ \varepsilon 

J\sum 
j=1

M \prime 
j + C

J\sum 
j=1

(\varepsilon dj)
 - 1d

3/2
j \| \vec{}g0  - \vec{}g0,h\| L2(\Omega \prime 

j)
.

Next, we apply Theorem 4.4 to the last term,

J\sum 
j=1

Mj \leq Ch| lnh| + C(K\varepsilon ) - 1h+ \varepsilon 

J\sum 
j=1

M \prime 
j

+C\varepsilon  - 1
J\sum 

j=1

\biggl( 
d
1/2
j h\| \nabla (\vec{}g0 - \vec{}g0,h)\| L2(\Omega \prime \prime \prime 

j )+

\biggl[ 
h

dj

\biggr] \alpha 
\| \nabla (\vec{}g0 - \vec{}g0,h)\| L1(\Omega )+h

\biggl[ 
h

dj

\biggr] \alpha 
| lnh| 

\biggr) 
.

We expand the sum over the last three terms so that we get

J\sum 
j=1

Mj \leq C

\left(  h| lnh| + (K\varepsilon ) - 1h+ \varepsilon 

J\sum 
j=1

M \prime 
j +

h

dJ
\varepsilon  - 1

J\sum 
j=1

d
3/2
j \| \nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega \prime \prime \prime 

j )

\right)  
+ C\varepsilon  - 1

J\sum 
j=1

\biggl[ 
h

dj

\biggr] \alpha 
\| \nabla (\vec{}g0  - \vec{}g0,h)\| L1(\Omega ) + Ch\varepsilon  - 1

J\sum 
j=1

\biggl[ 
h

dj

\biggr] \alpha 
| lnh| .

Now we can again use (4.8) on the last two summands to arrive at

J\sum 
j=1

Mj \leq Ch| lnh| + C\varepsilon 

J\sum 
j=1

M \prime 
j + CK - \alpha \varepsilon  - 1

\Bigl( 
\| \nabla (\vec{}g0  - \vec{}g0,h)\| L1(\Omega ) + h| lnh| 

\Bigr) 

+ C(K\varepsilon ) - 1
J\sum 

j=1

d
3/2
j \| \nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega \prime \prime \prime 

j ),
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where we also used that h/dJ \leq K - 1 and K > 1. Now for the second and last terms,
we easily see the following:

J\sum 
j=1

M \prime 
j +

J\sum 
j=1

d
3/2
j \| \nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega \prime \prime \prime 

j ) \leq C

J\sum 
j=1

Mj + C(Kh)3/2\| \nabla (\vec{}g0  - \vec{}g0,h\| L2(\Omega \ast ),

where the last term is again bounded by CK3/2h. Combined, this means we have the
following for constant K > 1 and \varepsilon > 0:

J\sum 
j=1

Mj \leq Ch| lnh| + C((K\varepsilon ) - 1 + \varepsilon )

J\sum 
j=1

Mj + CK3/2\varepsilon h+ CK1/2\varepsilon  - 1h

+ CK - \alpha \varepsilon  - 1
\Bigl( 
\| \nabla (\vec{}g0  - \vec{}g0,h)\| L1(\Omega ) + h| lnh| 

\Bigr) 
.

We make C\varepsilon < 1/4 and C(K\varepsilon ) - 1 < 1/4 by choosing \varepsilon small and K big enough. After
kicking back the sum to the left-hand side, this leads to

J\sum 
j=1

Mj \leq CK,\varepsilon h| lnh| + CK - \alpha \varepsilon  - 1\| \nabla (\vec{}g0  - \vec{}g0,h)\| L1(\Omega ).

We now treat \varepsilon as a constant. Finally, substituting this into (4.5), we have

(4.9) \| \nabla (\vec{}g0  - \vec{}g0,h)\| L1(\Omega ) \leq CK,\varepsilon h| lnh| + CK - \alpha \| \nabla (\vec{}g0  - \vec{}g0,h)\| L1(\Omega ),

and choosing K large enough such that CK - \alpha < 1/2, we get the result.

As a corollary to the theorem, we get the respective estimate for weighted norms.

Proof of Corollary 3.6. This corollary directly follows using the same techniques
as above and the fact \sigma (\vec{}x) \sim dj on \Omega j . We start by splitting the left-hand side
according to the dyadic decomposition,

\| \sigma 3/2\nabla (\vec{}g0 - \vec{}g0,h)\| L2(\Omega ) \leq \| \sigma 3/2\nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega \ast ) +

J\sum 
j=1

\| \sigma 3/2\nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega j)

\leq C(\kappa h)3/2\| \nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega \ast ) + C

J\sum 
j=1

d
3/2
j \| \nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega j).

Without loss of generality, we can assume \kappa = K. After going through the same steps
as in the proof of Lemma 3.5, particularly (4.5), we end up with the right-hand side
of (4.9),

\| \sigma 3/2\nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega ) \leq Ch| lnh| + CK - \alpha \| \nabla (\vec{}g  - \vec{}gh)\| L1(\Omega ).

Now applying Lemma 3.5 to estimate \| \nabla (\vec{}g  - \vec{}gh)\| L1(\Omega ) we arrive at the result.

Similarly, we can conclude the following result.

Proof of Corollary 3.3. Again using the fact that \sigma (\vec{}x) \sim dj on \Omega j , we start by
splitting the left-hand side according to the dyadic decomposition,

\| \sigma 3/2\nabla (\vec{}g1  - \vec{}g1,h)\| L2(\Omega )

\leq C(\kappa h)3/2\| \nabla (\vec{}g1  - \vec{}g1,h)\| L2(\Omega \ast ) + C

J\sum 
j=1

d
3/2
j \| \nabla (\vec{}g1  - \vec{}g1,h)\| L2(\Omega j).
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As before, we can assume \kappa = K. This is equal to the term introduced by the dyadic
decomposition in the proof of [14]. Again, following the same steps, we get

\| \sigma 3/2\nabla (\vec{}g1  - \vec{}g1,h)\| L2(\Omega ) \leq C + C\| \nabla (\vec{}g  - \vec{}gh)\| L1(\Omega ),

where C depends the constants introduced in the proof of [14]. Nonetheless, applying
Lemma 3.2 to estimate \| \nabla (\vec{}g  - \vec{}gh)\| L1(\Omega ), we arrive at the result.

4.5. Proof of Lemma 3.10.

Proof of Lemma 3.10. We use the dyadic decomposition introduced in the begin-
ning of section 4 to get the following estimate due to \sigma \sim dj on \Omega j (\sigma \sim Kh on
\Omega \ast ):

\| \sigma 3/2\nabla \lambda 0\| 2L2(\Omega ) \leq Ch3\| \nabla \lambda 0\| 2L2(\Omega ) +

J\sum 
j=1

d3j\| \nabla \lambda 0\| 2L2(\Omega j)
.

The first summand is bound by a constant C due to (2.1) and (3.2). By Corollary 4.2
we see that \| \nabla \lambda 0\| 2L2(\Omega j)

\leq Cd - 3
j , and as a result

J\sum 
j=1

d3j\| \nabla \lambda 0\| 2L2(\Omega j)
\leq C

J\sum 
j=1

1 = CJ \leq C| lnh| .

This proves the result for the weighted case, and by \| \sigma  - 3/2\| L2(\Omega ) \leq | lnh| 1/2 the L1

estimate.

5. Estimates for the pressure. We now consider estimates for the remaining
component of our Stokes system, the pressure. Similarly as before, let \delta h denote a
smooth delta function on the tetrahedron, where the maximum for the pressure is
attained. We may define the following regularized Green's function to deal with the
pressure

(5.1)  - \Delta \vec{}G+\nabla \Lambda = 0 in \Omega , \nabla \cdot \vec{}G = \delta h  - \phi in \Omega , \vec{}G = 0 on \partial \Omega .

By construction we have
\int 
\Omega 
\delta h(\vec{}x) - \phi (\vec{}x)d\vec{}x = 0. This also allows us to apply similar

arguments as in [12, 14], only with different bounds for the appearing \vec{}uh terms.
The global case has already been discussed in [12, 14]; thus we now focus on

localized estimates. As before, we need some auxiliary results which we now state.

Proposition 5.1. We present

\| \nabla (Ph(\vec{}G) - \vec{}G)\| L1(\Omega ) + \| rh(\Lambda ) - \Lambda \| L1(\Omega ) \leq C.

A proof of this is given in [14, Lem. 5.4]. The following corollary follows by the
same arguments as Corollaries 3.3 and 3.6.

Corollary 5.2. We present

\| \sigma 3/2\nabla (Ph(\vec{}G) - \vec{}G)\| L2(\Omega ) + \| \sigma 3/2(rh(\Lambda ) - \Lambda )\| L2(\Omega ) \leq C.

Proof of Theorem 2.13 (pressure). For this we again split the domain intoD2 and
\Omega \setminus D2 and only consider \vec{}x0 \in T\vec{}x0

\subset D1.
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The pointwise estimate of ph can be expanded in the following way:

ph(\vec{}x0) = (ph, \delta h) = (ph, \delta h  - \phi ) + (ph, \phi ) = (ph, \delta h  - \phi ) + (ph  - p, \phi ) + (p, \phi ).

We may estimate the last two terms using Proposition 2.11:

(ph - p, \phi )+(p, \phi ) \leq C\| \phi \| L2(\Omega )

\Bigl( 
\| p - ph\| L2(\Omega )+\| p\| L2(\Omega )

\Bigr) 
\leq C

\Bigl( 
\| \nabla \vec{}u\| L2(\Omega )+\| p\| L2(\Omega )

\Bigr) 
.

By assumption, \phi is bounded on \Omega . For the first term, we can see by Assumption 2.5
that

(ph, \delta h  - \phi ) = (ph,\nabla \cdot \vec{}G) = (ph,\nabla \cdot Ph(\vec{}G))

= (p,\nabla \cdot Ph(\vec{}G)) + (ph  - p,\nabla \cdot Ph(\vec{}G)) := I1 + I2.

For I1, we get the following estimate:

I1 = (p,\nabla \cdot (Ph(\vec{}G) - \vec{}G)) + (p, \delta h  - \phi )

\leq \| p\| L\infty (D2)

\Bigl( 
\| \nabla (Ph(\vec{}G) - \vec{}G)\| L1(\Omega ) + \| \phi \| L1(\Omega ) + \| \delta h\| L1(\Omega )

\Bigr) 
+ Cd\| p\| L2(\Omega )

\Bigl( 
\| \sigma 3/2\nabla (Ph(\vec{}G) - \vec{}G)\| L2(\Omega ) + \| \sigma 3/2\phi \| L2(\Omega ) + \| \sigma 3/2\delta h\| L2(\Omega )

\Bigr) 
\leq C\| p\| L\infty (D2) + Cd\| p\| L2(\Omega ).

To arrive at this bound, we used Lemma 3.1 and obtain that \| \sigma 3/2\phi \| L2(\Omega ) \leq \| \phi \| L2(\Omega )

\| \sigma 3/2\| L\infty (\Omega ) \leq C. Using (2.8) and (5.1) we see for I2 that

I2 = (\nabla (\vec{}u - \vec{}uh),\nabla Ph(\vec{}G)) = (\nabla (\vec{}u - \vec{}uh),\nabla \vec{}G) + (\nabla (\vec{}u - \vec{}uh),\nabla (Ph(\vec{}G) - \vec{}G))

=  - (\Lambda ,\nabla \cdot (\vec{}u - \vec{}uh)) + (\nabla (\vec{}u - \vec{}uh),\nabla (Ph(\vec{}G) - \vec{}G))

=  - (\Lambda  - rh(\Lambda ),\nabla \cdot (\vec{}u - \vec{}uh)) + (\nabla (\vec{}u - \vec{}uh),\nabla (Ph(\vec{}G) - \vec{}G))

\leq 
\Bigl( 
\| \nabla \vec{}u\| L\infty (D\ast ) + \| \nabla \vec{}uh\| L\infty (D\ast ))(\| \Lambda  - rh(\Lambda )\| L1(\Omega ) + \| \nabla (Ph(\vec{}G) - \vec{}G)\| L1(\Omega )

\Bigr) 
+ Cd

\Bigl( 
\| \nabla (\vec{}u - \vec{}uh)\| L2(\Omega ))(\| \sigma 3/2(\Lambda  - rh(\Lambda ))\| L2(\Omega ) + \| \sigma 3/2\nabla (Ph(\vec{}G) - \vec{}G)\| L2(\Omega )

\Bigr) 
.

Here again we use that \sigma  - 1 is bounded by d on \Omega \setminus D2 and choose D\ast appropriately
such that we can apply Theorem 2.13 for the velocity, e.g., D\ast = B(\~x)r\ast \cap \Omega with
r\ast = r + d/2. Finally, H1 stability for \vec{}uh follows by Proposition 2.11, and we get

I2 \leq C
\Bigl( 
\| \nabla \vec{}u\| L\infty (D2) + \| p\| L\infty (D2)

\Bigr) 
+ Cd

\Bigl( 
\| \nabla \vec{}u\| L2(\Omega ) + \| p\| L2(\Omega )

\Bigr) 
.

This completes the proof.

6. Assumptions and main results in two dimensions. In this section we
give a short derivation of the respective local estimates in L\infty and W 1,\infty for the
two-dimensional case. Note that the arguments for the global and local scenario
made in the three-dimensional case are independent of the dimension apart from the
auxiliary estimates. For two dimensions the respective estimates of the regularized
Green's functions and the Ritz projection are all available from the literature, albeit
under slightly different assumptions on the finite element space. Due to these slightly
different assumptions in [8], and to give a concise overview of the respective references,
we provide the results on polygons separately in this section.
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Remark 6.1. The technique used in the three-dimensional case to prove the aux-
iliary results in the previous sections should carry over to two dimensions. But to
make a rigorous argument one must discuss the local energy estimates in [14] and
respective Green's function estimates (as in Proposition 2.3) in the two-dimensional
case. The first point seems to be attainable in a straightforward manner, and the
second point can be shown similarly to the Poisson problem in [6, Lem. 2.1]. Al-
though we are not aware of any such result in the literature, obtaining such results
is straightforward, but lengthy. Since the auxiliary results in two dimensions can be
shown using a weighted technique and are available in [8], we instead refer to them
in the form below.

In the following, we state the required assumptions, the necessary auxiliary re-
sults, their references, and finally the local estimates. From now on let \Omega \subset \BbbR 2, a
convex polygonal domain, and consider the two-dimensional analogs \vec{}u, p, \vec{}f and their
finite element discretization, as well as the respective two-dimensional function and
finite element spaces. The basic results and requirements for the continuous problem
from subsections 2.2 and 2.3 still apply, as referenced in these sections.

As stated in [11], assume that we have approximation operators Ph \in \scrL (H1
0 (\Omega )

2;
Vh) and rh \in \scrL (L2(\Omega ); \=Mh) which fulfill the two-dimensional versions of Assump-
tions 2.4 to 2.7, and in addition the following superapproximation properties.

Assumption 6.2 (superapproximation II). Let \mu \in [2, 3], \vec{}vh \in \vec{}Vh, and \vec{}\psi =
\sigma \mu \vec{}vh; then

\| \sigma  - \mu /2\nabla (\vec{}\psi  - Ph(\vec{}\psi ))\| L2(\Omega ) \leq C\| \sigma \mu /2\vec{}vh\| L2(\Omega ) \forall \vec{}vh \in \vec{}Vh,

and if qh \in \=Mh and \xi = \sigma \mu qh, then

\| \sigma  - \mu /2(\xi  - rh(\xi ))\| L2(\Omega ) \leq Ch\| \sigma \mu /2qh\| L2(\Omega ) \forall qh \in \=Mh.

As in the three-dimensional case, this holds for Taylor--Hood finite element spaces,
but for \BbbP k  - \BbbP k - 1 with k \geq 2; see, e.g., [11]. Apart from this, we need to adapt the
estimates for \delta h and \sigma . For the two-dimensional versions we get

\| \delta h\| Wk
q (T\vec{}x0

) \leq Ch - k - 2(1 - 1/q), 1 \leq q \leq \infty , k = 0, 1, . . . , \nu > 0, and

\| \sigma \nu \nabla k\delta h\| L2(\Omega ) \leq 2\nu /2C\kappa \nu h\nu  - k - 1, k = 0, 1.

Let (\vec{}g1, \lambda 1) and (\vec{}g0, \lambda 0) denote the two-dimensional regularized Green's functions,
defined as in section 3 but for two dimensions. Then we get the following convergence
estimates for their discrete counterparts. The estimates needed when deriving W 1,\infty 

velocity estimates,

\| \nabla (\vec{}g1  - \vec{}g1,h)\| L1(\Omega ) \leq C, \| \sigma \nabla (\vec{}g1  - \vec{}g1,h)\| L2(\Omega ) \leq C,

follow from [11, Thm. 8.1] using (3.3) and similarly for the pressure estimates, where
we need

\| \nabla (Ph(\vec{}G) - \vec{}G)\| L1(\Omega ) + \| rh(\Lambda ) - \Lambda \| L1(\Omega ) \leq C,

\| \sigma \nabla (Ph(\vec{}G) - \vec{}G)\| L2(\Omega ) + \| \sigma (rh(\Lambda ) - \Lambda )\| L2(\Omega ) \leq C,

which can be found in [11, p. 328]. In the L\infty case for the velocity we get

\| \nabla (\vec{}g0  - \vec{}g0,h)\| L1(\Omega ) \leq Ch| lnh| , \| \sigma \nabla (\vec{}g0  - \vec{}g0,h)\| L2(\Omega ) \leq Ch| lnh| 1/2
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from [8, Thm. 4.1, Proof of Thm. 4.2]. The equivalent version of Lemma 3.10 is given
by [8, Lem. 3.1]. Finally, the estimate for the Ritz projection Rh in two dimensions is

\| Rh\vec{}z\| L\infty (\Omega ) \leq C| lnh| \=k\| \vec{}z\| L\infty (\Omega ),

where \=k = 1 for k = 1 and \=k = 0 for k \geq 2, as given in [30]. Note that the local
maximum norm estimates for L\infty from [17] hold as well in two dimensions. Thus,
using the same techniques as in section 3 we get the following theorems for \Omega \subset \BbbR 2.

Theorem 6.3 (interior W 1,\infty estimate for the velocity and L\infty estimate for the
pressure). Under the assumptions above, \Omega 1 \subset \Omega 2 \subset \Omega with dist(\=\Omega 1, \partial \Omega 2) \geq d \geq \=\kappa h,
and if (\vec{}u, p) \in (W 1,\infty (\Omega 2)

2 \times L\infty (\Omega 2)) \cap (H1
0 (\Omega )

2 \times L2
0(\Omega )) is the solution to (1.1a)--

(1.1c), then it holds for (\vec{}uh, ph), the solution to (2.8):

\| \nabla \vec{}uh\| L\infty (\Omega 1) + \| ph\| L\infty (\Omega 1)

\leq C
\Bigl( 
\| \nabla \vec{}u\| L\infty (\Omega 2) + \| p\| L\infty (\Omega 2)

\Bigr) 
+ Cd

\Bigl( 
\| \nabla \vec{}u\| L2(\Omega ) + \| p\| L2(\Omega )

\Bigr) 
.

Here, the constant Cd depends on the distance to \Omega 1 from \partial \Omega 2.

Theorem 6.4 (interior L\infty error estimate for the velocity). Under the assump-
tions above, \Omega 1 \subset \Omega 2 \subset \Omega with dist(\=\Omega 1, \partial \Omega 2) \geq d \geq \=\kappa h, and if (\vec{}u, p) \in (L\infty (\Omega 2)

2 \times 
L\infty (\Omega 2))\cap (H1

0 (\Omega )
2\times L2

0(\Omega )) is the solution to (1.1a)--(1.1c), then it holds for (\vec{}uh, ph)
the solution to (2.8):

\| \vec{}uh\| L\infty (\Omega 1) \leq C| lnh| 
\Bigl( 
\| \vec{}u\| L\infty (\Omega 2) + h\| p\| L\infty (\Omega 2)

\Bigr) 
+ Cd| lnh| 1/2

\Bigl( 
h\| \vec{}u\| H1(\Omega ) + \| \vec{}u\| L2(\Omega ) + h\| p\| L2(\Omega )

\Bigr) 
.

Here the constant Cd depends on the distance to \Omega 1 from \partial \Omega 2.
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