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Abstract. The main goal of the paper is to show new stability and localization results for the
finite element solution of the Stokes system in W1 > and L® norms under standard assumptions on
the finite element spaces on quasi-uniform meshes in two and three dimensions. Although interior
error estimates are well-developed for the elliptic problem, they appear to be new for the Stokes sys-
tem on unstructured meshes. To obtain these results we extend previously known stability estimates
for the Stokes system using regularized Green’s functions.
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1. Introduction. In the introduction and the major part of the paper we focus
on the three-dimensional setting. However, our results are valid in two dimensions,
and we comment on that at the end of the paper. We assume Q C R? is a convex
polyhedral domain, on which we consider the following Stokes problem:

(1.1a) —AT+Vp=f inQ,
(1.1b) V.i=0 in,
(1.1c) =0 on 09,

with f = (f1, f2, f3) such that @ € (HYH(Q)NL>(Q))? for the pointwise error estimates
or, respectively, @ € (H}(Q) N WL>(Q))3 and p € L>*(Q) for the gradient error
estimates. The solution p is unique up to a constant; we choose p € L3(Q2), i.e., p has
ZEero mean.

This paper is the first in our series to establish best-approximation results for the
fully discrete approximations for transient Stokes systems in L> and W norms.
A similar program was carried out by the last two authors for the parabolic problems
in a series of papers [18, 19, 20, 21]. The approach there relies on stability of the
Ritz projection, resolvent estimates in L> and W1 norms, and discrete maximum
parabolic regularity. We intend to derive corresponding results for the Stokes systems.
In this paper, we give a new L stability result in the form

(1:2) liinlle @) < Cltn bl (I = () + hllpl () )
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In a second step we prove respective local versions of (1.2) and the corresponding
W12 results from [12, 14]. These estimates take the forms

(1.3)  IVinllLe(py) + IpallLo(Dy)
< C (Vi) + Pl (o) + Ca( IVl 2y + Il r2e))

and

(14)  N@nlloe () < Clnh| (€]l oo (py) + RlIpl L~ (Dy))
+ Calln | (@]l L2y + Pl ar @) + bllpliLe) »

where for £ € Q, D1 = B.(Z)NQ, Do = Bx(Z) NQ, 7 > r > 0, and Cy depends on
d=|r—7|>FEh.

Global pointwise error estimates for the Stokes system similar to (1.2) have been
thoroughly discussed in recent years. The three-dimensional W1 case was first
discussed in [2, 11] under smoothness assumptions on the domain or limiting angles
in nonsmooth domains. Later, using new results on convex polyhedral domains, e.g.,
from [22, 24, 29], the limitations on the domain were weakened in [12, 14]. The L
bounds were first discussed for Q C R? in [8] and for dimensions greater than one and
smooth domains in [2] but with the W1° norm appearing on the right-hand side and
using weighted norms, which is not sufficient for the applications we have in mind.

Interior (or local) maximum norm estimates are well-known for elliptic equations,
see, e.g., [17, 31], and are particularly useful when dealing with scenarios where the
solution has low regularity close to the boundary or on local subsets of €2, e.g., for
optimal control problems with pointwise state constraints, sparse optimal control,
and pointwise best approximation results for the time-dependent problem; see [5, 19,
27]. For the Stokes system, the only pointwise interior error estimates are available
on regular translation invariant meshes in two dimensions [25]. To the best of our
knowledge, the interior results presented here are novel and have not been discussed
before.

We want to point out that there are some differences between our local results
and the classical results of Schatz and Wahlbin [31, 32] for elliptic problems. There
the pollution terms are still in the discrete (or error) form, but in a weaker norm and
still local. In our results, the pollution terms are in continuous (or approximation)
global form, but in a weaker norm and valid all the way to the boundary. Although,
the pollution terms in the estimates of Schatz and Wahlbin appear to be sharper,
they are much more technical to obtain, and we see no apparent benefits for potential
applications. Such pollution terms still need to be estimated, usually by a global
duality argument.

Let us quickly comment on one property specific to the Stokes problem. Regu-
larity results typically appear as velocity-pressure pairs where the pressure has lower
norm, e.g., ||Vl g (o) and ||p[| (). This pair can then be estimated as in [12, 14].
Thus, we only supply estimates for |||z (o) in the max-norm estimate since bounds
for [|pn |y —1.00 (@) would add another layer of complexity and to the best of our knowl-
edge have no apparent advantages.

In three dimensions our proof of the local estimates is essentially based on L'
and weighted estimates of regularized Green’s functions. For W1 it is enough to
slightly adapt the results from [14] for the Green’s function of velocity and pressure.

In the case of L*°, we prove the respective estimates using the local energy esti-
mates given in [14] and estimates for Green’s matrix of the Stokes system; see, e.g.,
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[24]. Furthermore, another important element of the proof for L is a pointwise es-
timate of the Ritz projection [16, 18]. The stability results proven there significantly
simplify the analysis. Thus, we avoid the technical step of integrating by parts over
each element and dealing with jump terms as was done in [18].

In two dimensions our approach for the local estimates follows along the lines of
the three-dimensional case. Here the estimates for the regularized Green’s functions
and the Ritz projection are all known from the literature; see [8, 11, 30]. The results
from [8, 11] are derived using an alternative technique, the global weighted approach as
introduced in [26, 28]. For the global weighted approach, we need similar but slightly
different assumptions on the finite element space than for the local energy estimate
technique in the three-dimensional setting. Thus, to keep the notation simple, we
deal with the two-dimensional case in a separate section at the end of this work.

Several important applications, from Navier—Stokes free surface flows to the nu-
merical analysis of finite-element schemes for non-Newtonian flows, have already been
noted in [11]. As mentioned, interior estimates play a role specifically for optimal con-
trol problems with state constraints, e.g., in [5]. Stokes optimal control problems are
also closely related to subproblems in optimal control of Navier—Stokes systems, where
for Newton iterations one has to solve linearized optimal control subproblems in each
step; see, e.g., [4].

An outline of this paper is as follows. In section 2, we introduce notation and
state assumptions on the approximation operators as well as the main results of our
analysis. Section 3 gives key arguments for the proof of the main theorems for the
velocity and reduces them to the estimates of regularized Green’s functions, which are
derived in section 4. Based on these results, we deal with bounds for the pressure in
section 5. Finally, in the last section we show the local estimates in two dimensions.

2. Assumptions and main results in three dimensions.

2.1. Notation. We now introduce basic notation. Throughout this paper, we
use the usual notation for the Lebesgue, Sobolev, and Holder spaces. These spaces
can be extended in a straightforward manner to vector functions, with the same
notation but with the following modification for the norm in the non-Hilbert case: If
4 = (u1,ug,us), we then set

1/r
it e ey = [ / |ﬁ<f>|rdf] ,

where | - | denotes the Euclidean vector norm for vectors or the Frobenius norm for
tensors.

We denote by (-, -) the L?(€) inner product and specify subdomains by subscripts
in the event they are not equal to the whole domain. In the analysis, we also make
use of the weight o = oz, 1(Z) = \/|T — Zo|? + (kh)2, for which &, &, and h will be
defined later.

2.2. Basic estimates. Next we want to recall some results for solutions to
(1.1a)—(1.1c). Existence and uniqueness of the solutions to the problem on bounded
domains are shown in [10]. For the proof of the respective regularity estimates on
convex polyhedral domains, we refer the reader to [3, 23]. For f € H-1(Q)3, there
holds

@l g1y + P22 ) < Clflla-—1(0)-
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Furthermore, for f € L2(2), (@,p) are elements of (HL(Q) N H2())? x H'(), and
it holds that
(2.1) @l 2y + 1Pl a1 ) < Cllfllz2(0)-

2.2.1. Local H? stability estimates. In the following analysis we will also
require the following localized H? stability estimates.

LEMMA 2.1. Let Ay = B.(2)NQ, Ay = Bx(Z)NQ forz € Q, and 7 >r > 0. We
denote the difference of the radii by d = |7 —r|. Furthermore, let (i, p) be the solution
to (1.1a)—(1.1c). Then, it holds that

. - 1 . 1, . 1
il zr2ay + Pl 14y < C <|f||L2(A2) + gIIVUIIL%Az) + @IIUHL?(AQ) + dllpL2(A2)> :

Proof. Let w € C*°(Q2) be a smooth cut-off function with w =1 on A; and w =0
on O\ A, such that

1
(2.2) |VEW| ~ 7 fork=0,1,2.

We consider & = wi and p = wp. Then, we get the following weak formulation for
¢ € Hy(Q)*:
(Vi,Vg) = (Vw @ 4+ wVi, V)
=—(V-(Vw® i), + (Vi,V(wg)) — (Vi, Vw ® )
= (V- (Vo @ @),9) + wf, @) + (0. V- (@) ~ (Vi,Vw ® §)
= (V- (Vo ® @), ) + @], @) + (@p, V- &) + (Vwp, §) - (ViVw, §),

where we used (1.1a), and in addition, we get V-4 = Vw -@. Thus, @ and p solve the
following boundary value problem in the weak sense:

—Ai+Vp=wf—-V-(Vw® @)+ Vwp — ViVw in Q,
V.ii=Vw-i in Q,
on 0f).

=3}
I
=11

Thus, according to [3, Thm. 9.20] and the fact that V - @ is zero on 92, the H?((2)
regularity result (2.1) holds in this situation as well, and we obtain

]| 2 @) +|B] 1 (@)
< O(Hwﬂ|L2(Q) + [|[VwVid 20 + |V2wid]| 20y + ||VWPHL2(Q))

. 1, 1. . 1
< C(Ifll2can + 519l 2cas) + 35 1T 2y + 5 lPlaan ).
where we used (2.2). Hence,
(24)  llmzcar) + 1Pl = 1@l mzean + 1Bl a2 Ay < l@lla2@) + 15l 710
- 1. 1, 1
< (Il + 3 IVTcan + llocan + Glplizca ) - 0

Using a covering argument (see Corollary 2.16 for details), we may show the
following corollary.
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COROLLARY 2.2. Let Q; C Qo C Q with dist(Qq,09) > d. Then it holds for
(t,p) the solution to (1.1a)—(1.1c) that

R = 1, 1, 1
s ol < © (120 + 31Vli2n + 351 lan + Sl )

2.2.2. Green’s matrix estimate. We also need estimates of the respective
Green’s matrix for the Stokes problem. For this, we refer the reader to [24 section
11.5]. Let ¢ € C°°() vanish in a neighborhood of the edges, and let Jo #(B)dE =
1. The matrix G(Z,9) = (G;;(Z,¥))ij=1,2,34 is the Green’s matrix for problem
(1.1a)—(1.1c) if for every j = 1,2,3,4 the pair (G;,G,4) with the vector G; =
(G1,,G2,j,Gs ;) is the solution to the problem

N, GH(Z,G) + Vo Gaj(Z,7) = 8(F — §) (g, 12,5, 71,5)" for 7,7 € Q,
~V. - Gi(@,5) = (& —§) — (@))m,;  for £,7 € Q,
G;(#,9) =0 for 7 € 09,7 € Q,

where 0 denotes the Dirac delta function, and 7; ; is the Kronecker symbol. In addi-
tion, G4 ; satisfies the condition

/G4] (Z)dZ =0 forginQ,j=1,23,4.

For the existence and uniqueness of such a matrix, we again refer the reader to [24]. If
now f € H=1(Q)? and the uniquely determined solutions of the Stokes system given
by (ii,p) € HE(Q)? x Ly(f) satisfy the condition

(25) [ p@o@iz =o,
Q
then the components of (i, p) admit the representations
26) @@= | f§)-GuED i=1.23 p@) = /Q F(€) - Ga(€ 7)de.

To apply this result to our case, we need to find a suitable ¢ such that (2.5) holds.
We show this is possible for p € C%*(Q) N L3(Q2). By [24, Thm. 11.3.2] this is fulfilled
for data in C~1(Q).

Without loss of generality, we assume p # 0. Thus, since the mean value of p is
zero, there exist nonempty open sets A, B CC €2 such that p > 0 on A and p < 0 on
B. We then can choose ¢ such that ¢ =0 on Q\(AUB) and ¢ > 0 on A, B, and thus
¢ vanishing close to the edges of 2. Through suitable scaling on A and B, we get

/A P(3)d(F)d7 = — /B P(B)B(@)dz,

and hence we can conclude that (2.5) holds for ¢(Z). Finally, by assumption ¢ > 0,
we normalize ¢ with respect to the L'(2) norm to complete the construction. This
shows that we can apply the results for the Green’s matrix to (@, p). Furthermore, we
can also use the available results from [14].

We state estimates for the Green’s matrix specific to convex polyhedral domains
as can be found in [24, Thm. 11.5.5, Cor. 11.5.6].
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PROPOSITION 2.3. Let Q) be a convex polyhedral type domain. Then, the elements
of the matriz G(Z,€) satisfy the estimate

— —

|aza?Gi,j(fa 8| <z — §|_1—771:‘4—nj,4_|9‘_‘5‘

for 0] <1 —mn;4 and |B| <1 —mnj4. Furthermore, the following Hélder type estimate
holds in this setting:

108G 5(Z,€) — 02G (7, €)]

|7 — ]

< C(|f— gt mialol 4 |7 — g‘—l—a—m,rlﬂ\)_

2.3. Finite element approximation. Let 7; be a regular, quasi-uniform fam-
ily of triangulations of Q, made of closed tetrahedra T, where h is the global mesh-size
and LZ(Q) the space of L2(Q) functions with zero-mean value. Let Vj, ¢ HZ(Q)? and
M;, C L3(Q) be a pair of finite element spaces satisfying a uniform discrete inf-sup
condition,

Qhav 'Uh
sup (47) > Bllgnllz2)  Van € My,
s,ev, IVUrlzz@)

with a constant 3 > 0 independent of h. The respective discrete solution associated
with the velocity-pressure pair (i, p) € H}(Q)3 x L3(2) is defined as the pair (i@, pn) €
Vi, X M), that solves the weak form of (1.1a)—(1.1c) given by the bilinear form af(-,-),
which is defined as

(2.7) a((@n,pn), (Un,qn)) = (Vin, Von) — (pr, V - Un) + (V - Un, qn),
and the equation
(2.8) a((tn, pn), (Un, qn)) = (.f: Th)  Y(On,qn) € Vi X M.

2.4. Assumptions. Next, we make assumptions on the finite element spaces.
We assume there exist approximation operators P, and rp, as in [14], i.e., P, and
rp, fulfill the following properties. Let Q@ C Qg4 C 2, with d > Kh, for some fixed
& sufficiently large and Qq = {Z € Q : dist(Z,Q) < d}. For P, € L(HF ()3 V)
and 7, € L(L*(Q); My,) with M,, corresponding to M), without the zero-mean value
constraint, we assume the following assumptions hold.

ASSUMPTION 2.4 (stability of P, in H*(Q)3). There exists a constant C inde-
pendent of h such that

IV P (@)lz2(0y < ClIVili2e) Vi€ HA@)
ASSUMPTION 2.5 (preservation of discrete divergence for Pp,). It holds that
(V- (T— Pu(0),qn) =0 Vqn € My, Y€ H}(Q)>.

ASSUMPTION 2.6 (inverse inequality). There is a constant C independent of h
such that

|1Tnllwre@) < Ch™ Tl o (@uy Y0k € Va1 < p < c0.
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ASSUMPTION 2.7 (L? approximation). For anyv € H*(Q)3 and anyq € H'(Q),C
exists independent of h, U, and q such that

1P(0) = Tl 2 (@) + IV (PL(D) = §)ll12) < CR2IIVTll12(qu)
Irn(q) — all2(@) < ChlIVallL2(q.)-
In the following, €; denotes the ith standard basis vector in R3.
ASSUMPTION 2.8 (approximation in the Hélder spaces). For ¢ € (Ch*(Q) N
HE(Q))? and g € C™(9), it holds that
IV (P (0) = 0)l[ L= (@) < Ch[[T]l o1 (Qu)
71(q) — dll=(@) < Ch*||qllco.o(Qu)

where

[Tllcr+e@) = 1Tllcr @) +  sup
z,5€Q
1€{1,2,3}
ASSUMPTION 2.9 (superapproximation I). Let @, € Vi, and let w € C5°(Qa) be
a smooth cut-off function such that w =1 on Q and

[Viw| < Cd™°, s=0,1,
where Qq = {Z € Q: dist(Z,0Q) > d}. We assume

IV (w2 — Pr(w?n))ll22(q) < Cd™ [ OnllL2(Qu)-

For q € My, we assume

w?an — r(w?aqn) || 22(Q) < Chd™ |qnllz2(Q4)-

One common example of a finite element space satisfying the above assumptions
are the P, — Pr_; Taylor—Hood finite elements for £ > 3. For more details on these
spaces and the respective approximation operators, we refer the reader to [1, 11, 12,
13).

Remark 2.10. Here we restrict ourselves to the Pp — Pr_1 Taylor—Hood finite
element spaces since in the following arguments we use results for finite element ap-
proximations of elliptic problems. These results are available for the usual space of
Lagrange finite elements and can possibly be extended to other elements used for
the Stokes problem, like, e.g., the “mini” element, which also fulfills the assumptions
above. The above assumptions do not cover the lowest order Taylor-Hood elements,
since the existence of the divergence preserving operator Pj is still open. However,
using the approach in [15], a similar result can be shown for the lowest order Taylor—
Hood finite element spaces as well.

Next, we state a well-known energy error estimate for an approximation of the
Stokes system. For details on the proof, see, e.g., [9, Prop. 4.14].

PROPOSITION 2.11. Let (i,p) solve (1.1a)—(1.1c), and let (dy,pp) be its finite
element approzimation defined by (2.8). Under the assumptions above, there exists a
constant C' independent of h such that

4 = tnll g1 + lp = prllL2@) < C min (1E = nll a2 ) + lp = anll2 (o)) -
(Un,qn) EVa X Mp,
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2.5. Local energy estimates. Important tools in our analysis are the local
energy estimates from [14, Thm. 2].

PROPOSITION 2.12. Suppose (7,q) € HE(Q)? x L2(Q) and (Th,qn) € Vi x M),
satisfy

a((ﬁ_ gh7q - Qh)7 ()Zaw)) =0 V(}Z,U)) € Vh X Mh

for the bilinear form a(-,-) given in (2.7). Then, there exists a constant C' such that
for every pair of sets Ay C Ay C Q such that dist(Ay,0A2\00Q) > d > kh (for some
fized constant k sufficiently large) the following bound holds for every e > 0:

V(T = )l L2 (a,) < ClIV(T = Pu(0))ll2(4) + Cllg — (@) 2(a2)
C . . . L. c. . .
+ QHU — Po(0)|22(a,) + €llV(T = Un)ll22(a,) + QHU — UnllL2(a,)-

2.6. Main results. In the following statements, the constant C' is independent
of #, p, and h, but may depend on the parameter « related to the largest interior
angle of 9Q. We start with the W1 error estimates. The global stability result

IVan|| L) + Iprll L) < C IVl L= (o) + 1Pl @)

on convex polyhedral domains was established in [14] (see also [12]). Here, we establish
a localized version of it. In our results B,(Z) denotes a ball of radius r centered at
T el

THEOREM 2.13 (interior W1°° estimate for the velocity and L> estimate for the
pressure). Let the assumptions of subsections 2.3 and 2.4 hold. Put D1 = B.(Z)NQ,
Dy = Bi(Z) N Q, 7 > r > kh (with Kk large enough), d = 7 —r > kh. If (d,p) €
(W1o0(Dg)3 x L*°(Dyg)) N (HE(Q)2 x L3(Q)) is the solution to (1.1a)—(1.1c), and if
(tn,pp) is the solution to (2.8), then

IVtin|[ Lo (Dy) + IPrllLe (D)
<C (||V77||Loo(Dz) + ||p||L°°(D2)) =+ Cd(HVUHL?(Q) =+ ||pHL2(Q)>-
Here, the constant Cy depends on the distance of By (Z) from OB5(Z).

Next, we state similar results for the velocity in L norm.

THEOREM 2.14 (global L* estimate for the velocity). Under the assumptions
of subsections 2.3 and 2.4, for (ii,p) € (L>(Q)3 x L>=(Q)) N (HL(Q)3 x L3(Q)), the
solution to (1.1a)—(1.1c), and (Un,pr), the solution to (2.8), it holds that

liinllz @y < Clln bl (o) + Bllpl =) ).
We also get the respective local estimates.

THEOREM 2.15 (interior L™ error estimate for the velocity). Under the assump-
tions of subsections 2.3 and 2.4, with D1 = B.(£) NQ, Dy = Bx(Z) N, 7 > r > Kh
(with & large enough), d = 7 —r > Eh, and for (@,p) € (L>(D2)® x L°°(D3)) N
(HL(Q)3 x L3()), the solution to (1.1a)—(1.1c), and (in,pr), the solution to (2.8), it
holds that

l@nll Lo (pyy < Clln k| (|l Lo (py) + hllpll L (Ds))
+ Caln b (R||@] 1) + @l 2(0) + RlIPlL2) -
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Here, the constant Cyq depends on the distance of By (Z) from 0By (Z).

Based on these theorems, we can derive the following corollaries for general sub-
domains Q; C Qo C Q with dist(Q21,90) > d > Rh.

COROLLARY 2.16 (interior W1 estimate for the velocity and L> estimate for

the pressure). Under the assumptions of subsections 2.3 and 2.4, Q1 C Qy C Q with
dist(Qy,002) > d > Rh, and for (@,p) € (WH°(Qs)3 x L>=(Q2)) N (Hg ()% x L3()),
the solution to (1.1a)—(1.1c), and (dp,pn), the solution to (2.8), we have

IVin|| Lo () + IPnllLe< @1y < O (VLo 9,) + 1Pl L= (02))
+ Ca (IVll 20y + lIpllL2(0)) -

Here, the constant Cy depends on the distance to Q1 from 0.

Proof. We can construct a covering {K;}M, of Qy, with K; = By, (#;) N €y such
that

(1) & c Ui, Ki.

(2) Z; € for1 <i< M.

(3) Let L; = B,,(%;) NQg, where r; = 7; +d. There exists a fixed number N such

that each point ¥ € Ui\i1 L; is contained in at most N sets from {L;}}L;.

Now, since dist(€21,0Q,) > d and (2), we have that Ui\il L; C Q5. We can apply
Theorem 2.13 to the pairs K; C L;:

M

IViin | Lo @,) + [1Pnllzoe i) < ZIIVﬁhHLM(m) + [Ipnlle &)
=1

M
<> (C(IVallzw oy +pliern) + Ca (192 + Pl z2e) )
=1

< N(C (V@] Lo (2) + 1Pl () + Ca (V] 120y + 1Pl L2(02)) >,

where we used (3) in the third line. 0
Similarly, the following corollary follows with dist(Q,9s) > d.

COROLLARY 2.17 (interior L error estimate for the velocity). Under the as-
sumptions of subsections 2.3 and 2.4, Q1 C Qo C Q with dist(Qq,00s) > d > kh, and
for (i0,p) € (L>=(Q2)3 x L>(Q2)) N (H(Q)? x L3()), the solution to (1.1a)—(1.1c),
and (@p,pr), the solution to (2.8), we have

liinll @y < Cllnhl (|l o) + Bllpll =) )
+ Ca(Blllan o) + 20y + AlpllLa(e )
Here, the constant Cyq depends on the distance to 0y from 0.

Remark 2.18. We may also write the results above in terms of best approximation
estimates. For example, for L>° global bounds,

it — i)l gy < inf Clinhl (Ha — Tl ey + Pl — qh||Lw(Q)).

(Un,qn) €V x Mp,

Naturally, this also applies to other results in this section.
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Remark 2.19. Using the weighted discrete inf-sup condition from [7] it is possible
to extend the global estimate to the compressible case. However, for the applications
we have in mind the incompressible Stokes system is sufficient.

3. Proof of main theorems. In this section, we reduce the proofs of Theo-
rems 2.13 to 2.15 for the velocity to certain estimates for the regularized Green’s
functions. The estimates for the pressure are given in section 5. To introduce the
regularized Green’s function we first need to introduce a regularized delta function.
In addition we will require a certain weight function.

3.1. Regularized delta function and the weight function. Let R > 0 be
such that for any & € Q the ball Br (&) contains §2. Furthermore, let ¥y be an arbitrary
point of Q, and let zy € Ty, with Tz, € Tp. In the following sections, we estimate
|0, n,i(T0)|, |tin,i(Zo)| for arbitrary 1 <, j, < 3 and |p(Zo)|.

Next, we introduce the parameters for the weight function o(Z). Parameter £ > 1
is a constant that is chosen to be large enough. Furthermore, let h be suitably small
such that kh < R (see also [11, Remark 1.4]). In the following, we use a regularized
Green’s function to express the L°°(2) norm such that the problem is reduced to
estimating the discretization error of the Green’s function in the L!(€2) norm as in
[12, 14]. To that end, we define a smooth delta function &, € C}(T%,), which satisfies,

for every o), € Vp,,

(3.1) Un,i(Zo) = (Un, 6n€3) s,

(3.2) 18nllwx (1) < CRTF27HD 1< g<o0, k=0,1,....

The construction of such a dp, can be found in [32, Appendix]. We recall some prop-
erties for o and §;,. By construction, it follows that

3.3 inf () > #h.
(3:3) nf o(@) 2w

Next, we provide an estimate for the L?(2) norm of the product of §; and o.

LEMMA 3.1. There exists a constant C such that for v > 0,
0"V 6h || 1200y < 2//2CK" RV F32) |k =0,1.

Proof. This follows from the fact that d;, is only nonzero on T%,, o is bounded on
Tz, by V2kh, and (3.2). O

The general strategy for proving the local results is to partition the domain into
the local part and its complement. Then, we use regularized Green’s function esti-
mates in the L' norm on the local part and weighted L? norm on the complement.
For the L error estimates we additionally require a certain estimate for the Ritz
projection.

3.2. Estimates for W1>°(Q2). The proof of local W1:°°(§2) error estimates is
similar to the global case [12, 14] and is obtained by introducing a regularized Green’s
function.

3.2.1. Regularized Green’s function. For the W error estimates, we de-
fine the regularized Green’s function (g, A1) € HE(2)3 x L3(Q) as the solution to
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(3.4&) —Ag + V) = (a/pj (5h)é; in €,
(3.4b) V-q=0 in Q,
(3.4¢) g =0 on ON.

We also define the finite element approximation (i, A1,5) € Vh X My, by

(3.5) a((§1 — Gims At — Mip)s (Fnyqn)) =0 ¥(h,qn) € Vi X Mj,.

3.2.2. Auxiliary results for (§1,A1) and (G1,n, A1,n). To show our main
interior result W1:°° we need the regularized Green’s function error estimate in L*()
norm which is given in [14, Lem. 5.2].

LEMMA 3.2. There exists a constant C' independent of h and g1 such that

V(g1 — g1l < C.

In addition, we also need the following weighted estimate, the proof of which
follows by a minor modification of the proof in [14, Lem. 5.2].

COROLLARY 3.3. There exists a constant C independent of h and gy such that

1032V (g1 — Gi.n) |20 < C-

The details on the proof of this corollary are given in section 4, where we introduce
the respective dyadic decomposition.

Remark 3.4. Alternatively, similar results as in Lemma 3.2 and Corollary 3.3 may
be deduced as well from the results in [12]. But in [12] the authors use slightly different
assumptions compared to the assumptions made in section 2, which is why we provide
a proof in our setting.

3.2.3. Localization. We reduce the proof to estimates involving g, and g p.

Proof of Theorem 2.13 (velocity). Using the regularized Green’s function as de-
fined in (3.4a)—(3.4c), for &y € Tz, C D1, we have as in [14]

(by (3.1)) — Og, (tin)i(Zo) = (Un, (Oz,0n)€;)

(by (3.4a)) = (uh, —Ag1 + V)

= (Vip, V1) + (i, VA1)

= (Vin, V1) + (dn, VALn) + (Vin, V(G — G1))

= (Vip, Viin)

(
(3.5)) (
(
(
(
(

(by

(discrete divergence)
(by (1.1a) and (2.8)) = (Vi@,Vgin) + (p—pn, V- Gn)

( = (Vi,Vgin) + (0, V- gin)

( = (Vi,V(gi,n — 1)) + (Vi,Vgi) + (p, V- (G1,n — G1))
— I+ I + Is.

by (3.5) and (3.4b))

continuous divergence)

To treat I we use integration by parts, the Holder estimate, and (3.2) to obtain

I, = (ﬂ, —Aﬁl) + (’LT, V)q) = (ﬁ, (8175h)€_;) = ( 8zju one ) < C”VUHLoc Tao
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Since r — 7 > Rkh, this proves the result for I5.
For the other two terms, we split the domain into Dy and Q\D,. Using that
o=l > (R(F—7))"! on Q\ D, and the Hélder estimates, we have

I+ I3 < C IVl o< () + [Pl Lo (D)) IV (Grn = G0l ()
+C (o2 ill 2o\ p,) + lo ™ bl 2(000s) ) 102V G0 = G2) | 12(e
< C (|1l (0 + 1Pl (D)) IV (2 = G0l 130
+C(F—r)32 (||V17||L2(Q) + Hp||L2(Q)) 102 (1.0 = G1)ll 20

The result then follows from Lemma 3.2 and Corollary 3.3. O

3.3. Estimates for L°°(£2). For this case we use the stability of the Ritz pro-
jection in L*°(2) norm as shown in [18].

3.3.1. Regularized Green’s function. This time we define the approximate
Green’s function (g, Ao) € HE(2)? x L3() as the solution to

(36&) —Ago + Vg =0p€; in Q,
(3.6b) V-go=0 in Q,
(3.6¢) Go=0 on 0.

Here, €; is as before the ith standard basis vector in R3. We also define the finite
element approximation (go.n, Ao,n) € Va X M, by
(3.7) a((o — Go.ns Mo — Mon)s (Than)) =0 Y(Th,qn) € Vi x M.

Compared to (3.4a)—(3.4c), the right-hand side of (3.6a) is less singular, which means
we can expect faster convergence.

3.3.2. Auxiliary results for (go, o), (go,n,Ao,n), and the Ritz projec-
tion. Similar to the W1 case, we need certain error estimates for the discretization
of the regularized Green’s function (g, Ag). However, in contrast to (g1, A1), we could
not locate such results in the literature. For our purpose we need to establish the
following results, for which the proofs are given in section 4.

LEMMA 3.5. Let (Go, Ao) be the solution of (3.6a)—(3.6c), and let (Go.n, No,n) be
the respective discrete solution. Then, it holds that
V(g0 — Go,n)llLr(e) < Chllnhl.
The weighted norm estimate follows essentially from Lemma 3.5.

COROLLARY 3.6. Let (go, Ao) be the solution of (3.6a)—(3.6¢), and let (Go.n, Ao,n)
be the respective discrete solution. Then, it holds that

132 (Go — Go.n )|l r2() < Chlnhl.

As mentioned earlier, the proof is based on local and global max-norm estimates
for the Ritz projection R,Z of 7€ H}(2)3, which is given by

(VRLZ,VT,) = (VZ,VT,) Vi, € V.

We state the slightly modified results [16, Thm. 5.1], [17, Thm. 4.4], and [18, Thm. 12]
for the reader’s convenience.
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PROPOSITION 3.7. There exists a constant C independent of h such that, for Z €
HE ()3 N L>(Q)3, the solution of the Poisson problem, it holds that

| RpZ] Lo () < Cllh|"||2]| L (0,

where k =1 for k=1 and k =0 for k > 2.

PROPOSITION 3.8. Let D C Dy C Q, where Dy = {x € Q : dist(x,D) < d}.
Then, for Z € HE(Q)3 N L>(Q)3, the solution of the Poisson problem, there exists a
constant C, independent of h, such that

| Br |z (p) < Clinhl*|1Zl| e (py) + CallZll 2 ),

where Cy ~ d=3/%, and as above k=1 for k=1 and k = 0 for k > 2.
Remark 3.9. As we mentioned in the introduction, in the original paper of Schatz
and Wahlbin on smooth domains [31], the interior error estimate is of the form

1BnZl| o 0y < Cllnhl*|1Z] L (D) + Call Brlly -,

with D CC Dy CC Q2. We find that the main difference is that the pollution error
term CdHRhZ”Wp—l(Dd) is still in the form of the Ritz projection, but can be taken
in any negative norm and still be local. However, for our applications we do not see
any benefits from this form of the results, since such a pollution term needs to be
estimated by a duality argument, which essentially requires global estimates.

We will also require the following result.
LEMMA 3.10. Let (o, Ao) be the solution of (3.6a)—(3.6¢c). Then, it holds that

Vol < Clnh|Y2||6%2V ol 12() < C|Inhl.

The respective proof is given in section 4.

3.3.3. Max-norm estimate. With these tools at hand, we can go ahead with
the proof of the theorem.

Proof of Theorem 2.14 (velocity). We make the ansatz for &y € €,

(by Orthogonaht}’) Uh,l(fo) = a((ﬁhaph)? (§07h, Ao)h)) = a((ﬁ7p)? (§07h7 AO,h))
= (Vi,Vgo,n) — (0. V - Go,n)-

Since go,n € Vh we have (Vi, Vo n) = (VRy, Vo), and hence by using V - g = 0,
Up,i(%0) = (VRyt,Vgon) — (0, V- Gon) = (VRyU, Vgon) — (p, V- (go,n — go))-
We can use an inverse estimate on VR,u. Thus,

(VRy4, Vo) = (VRyi, V(Go,n — Go)) — (Rut, Ado)
= (VRyi, V(Go,n — Go)) — (Ruti, —ne; + Vo)
< WY Ryd|| o (o) IV (Go,n — Fo)ll L1 (e
+ Cl|Rnid]| Ly (1 + VAol L1 (@) -
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For the second term, we get by estimating the divergence by the gradient that

(2, V- (Jo.n — o)) < Cllpll L) IV (Fo,n — Go)llLr(e)-
Now we can apply our auxiliary results for ||V (go,n — o)1 () and [[VXol|£1 (). Thus,
we have by Lemmas 3.5 and 3.10 combined with Proposition 3.7 that
[tn,i(Z0)] < Clld]| oo (o) <h71||v(§o,h —go)llLre) +1+ ||>\0||L1(Q))
+ 1Pl 22 () 1V (Fo,n — Go) |1 ()
< O (]l <) + Bl o )- 0

3.3.4. Localization. The approach for the localization in the L* case is similar
to W1 but different in the sense that we again use the stability of R; in L® norm.

Proof of Theorem 2.15 (velocity). We only consider &y € Tz, C D;. As before,
using (2.7), (2.8), and (3.7) gives
(by orthogonality) Up,i(Zo) = a((Tn,pn), (Go.n, Ao,n)) = a((, p), (Jo,ns Ao,h))
= (V4,Vgo,n) = (0. V- Gon) =11 + L.
Using the properties of the Ritz projection, we first consider
I = (VRyU,Vgon)
(VRyii, Vo) + (VRyi, V(go,n — Go))
—(Rpti, Ago) + (VR V(go,n — Go))
= (Rpti, 0p6; — Vo) + (VRU, V(Go,n, — Go))-
Next, we apply (3.1) and split the domain into Dy and Q\ Da,

Iy < ||Rptll| Lo (1y) + [ BRl Lo (Do) [V Aol L1 (0) + [IVRRU Lo (D) [V (G0, — o)l 22(02)
+ lo ™32 Ry || 12 (00 Do) [|7* 2V X 12 (02)

+ lo 32V Ry L2 (0 ) 10%2V (Go,n — o)l 2(02)-
Using the properties of ¢ and applying an inverse inequality gives
Iy < C|| Ryt 1o (pa) (L4 VX0l L2y + 2 IV (Go.n — o)l ()
+ Cal| R 20y (10%2V Mol L2 () + B~ 0%V (Go.n — o)l 2(w)) -

To estimate Ry, in the L> and L? norm we can apply Proposition 3.8 and an estimate
for || Rpti — ]| 12(q) to see together with Lemma 3.5, Corollary 3.6, and Lemma 3.10
that

1y < Ol e oy (1 + b)) + Caltn b (il y + Bl 1))
< O bl < sy + Calln bl (1] 200 + Pl 1o ).
Using similar arguments, we get
Iy = —(p,V - (Jo,n — Go))

< Ollpllze () IV(Go,n — Go)llz1 (o) + Callpllzz loe®*V (Gon — go)llz2 )
< Cllnhlh|lpllLe=(p,) + Callnhlh|pll L2y,

which concludes the proof of the theorem. 0
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4. Estimates for the regularized Green’s function. In this section we prove
Corollaries 3.3 and 3.6 and Lemmas 3.5 and 3.10, which we need in order to establish
the main theorems.

4.1. Dyadic decomposition. For the proof of our results, we use a dyadic de-
composition of the domain €2, which we will introduce next. Without loss of generality,
we assume that the diameter of € is less than 1. We put d; = 277 and consider the

decomposition 2 = Q, U Uj:o Q;, where

Q. ={FeQ:|¥— 7y < Kh}, O ={FeQ:djy1 <|T—Zo| <d;},
K is a sufficiently large constant to be chosen later, and J is an integer such that
(4.1) 2~ < Kh <27/,

We keep track of the explicit dependence on K. Furthermore, we consider the follow-
ing enlargements of 2;:

Q; = {fe Q: dj+2 < |f_i:0‘ < djfl}’
Q;,’ = {fE Q: dj+3 < |ff‘f’0‘ < dj—Q}’
QF ={Z e Q:dja <|T—Zo| < dj_s}.

LeEMMA 4.1. There exists a constant C independent of d; such that for any ¥ €
0.

3

VGo(@)| + d5 |Go ()] + [Mo()] < Cd; .
Proof. Due to (2.6) and Proposition 2.3, it holds for & € §2; that

Ao ()] =

/Q G4(f,g>~5h<ﬁ>aidg| < /T G, D)0 (DN
o

o (7 . _ —
< C/ Lh(yq)gdy < Cd;?||0n| 10 < Cd; 2,
Tz, |7 — ]

where we used that dist(zo,§2;) > Cd;. Similarly, without loss of generality, consid-
ering the kth component, 1 < k < 3, we have

.01 @) = | [ 9@ -8u(edi] < [ 10l NI la7
Zo
s/ WD g5 < car2,
Tz, |9C - y|
The estimate for gy, (Z) is similar. |

As an immediate application of the above result and Corollary 2.2 we obtain the
following result.

COROLLARY 4.2. We have

7ol 2,y + IV Aol z2(a,) < Cd; 2
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Proof. By Corollary 2.2, the Holder estimates, and Lemma 4.1 (with Q; instead
of Q;), we obtain

1Goll 22, + VAol L2,y < Cd; ! (H)\OHLz(Q_;) +IVgoll2 (o) + dj_lﬂﬁoHL?(Q;))
1/2 N _ N
<cd) (||A0||Loom;) +IVgoll (o) + 4 1||go|\Loo<93.>)
< cd;*?.

4.2. L'(Q) interpolation estimate for \o.
THEOREM 4.3. For (go, Ao), the solution of (3.6a)—(3.6¢), it holds that

H)\o — ’I“h()\o)HLl(Q) < Ch|ln h|
Proof. Using the dyadic decomposition and the Cauchy—Schwarz inequality,
J
120 = 72 (X0) 1) < Ao = ra(Xo)llzrieny + Do = ra(Xo)llzre,)
j=1

J
(4.2) < (KR)*2|Iho — (o)l 22y + C D d3 1Mo = m(Xo) L2y
j=1

We apply Assumption 2.7 and the H? regularity as in (2.1), which gives
Ao = 7 (No) |22y < CRIIV Aol L2y < Chl6nl| L2 < Ch™Y2.

This implies, for the first term in (4.2), that

(KR)*2||Xo = 71(Xo) || 120y < CK3/?h.

For the second term, by the approximation estimate Assumption 2.7 and Corollary 4.2,
it follows that

1N = 7a(X0)llz2(,) < CAIIVXoll 2y < Chd; .

Hence, we can conclude that

J
ng/ A0 =71 (Ao) |l L2, Z Ch < ChlJ.

Jj=1
From (4.1), we see that J scales logarithmically in h; thus get the claimed result. 0O
4.3. Local duality argument. In the following theorem, we again consider the

subdomains §2; from the dyadic decomposition in a duality argument. For the error

1Go = Jo.nllL2cey) = sup (Jo — Go,n, V),
HvHLz(m<1
FECE (92))
we can make a duality argument using the triple problem

(4.3) —AW+Ve=7 inQ, V-w=0 inQ, @#=0 ondd
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THEOREM 4.4. For (go, Ao), the solution of (3.6a)—(3.6c), and « € (0,1), it holds
that

g0 = Go.nll L2 < ChlIV(go — Gon)ll2 0y + Ch“d;l/%allv(ﬁo —go.n)llr (o)
+CRMd 2 b,

Proof. By using (4.3), and that go and g, o are divergence free for r(y), the
bilinear form a(-,-) from (2.7), and Assumption 2.5, it follows that

(Go — Go,n, 0) = (V(Go — Jo,n), VW) — (0, V - (go — Go,n))
= (V(go — go, h) V(& — Pp(w)))
+ (V(Go — Go,n), VPL(W)) — (¢ = (), V- (o — Jo,n))
= (V(Jo — Go,n), V(& — Py ()))
+ (Ao = Ao,ny V- Pr(@)) — (¢ = m1(), V - (o — Go,n))
= (V(go — go,n), V(W — Pp()))
+ (Ao = 71(X0), V - (P (W) — @) — (¢ — rn(9), V- (go — Go,n))
=T + T2+ T3.

For 71, we split the term

71 = (V(go — Jo,n), V(& — Pp()))ar + (V(go — Jo,n), V(W — Pp())) ooz

= T11 + Ti2.
We then can estimate 711 using Assumption 2.7 for P, as follows:

11 < V(o — go.n) L2 [V (@ — Pr())]] 12
< ChlIV(Go — o)l L2y |0l 2 (2) < CRIV(Fo — Go.u)ll L2y

Now we use [14, (5.11)] and Assumption 2.8 to see that
m12 < Ch¥([V(go — Jo.n)l L1 @[] cr+e@\p) < Ched; >~V (o — Go.n) | (0-
Analogously, we split 7o:

72 = —(Ao = 71(X0), V- (W — Pu(d@)) oy — (Ao = 7a(Xo), V - (@ — Py () 02

I= To1 + To22.
Then again, we use approximation results and Corollary 4.2 to see
3/2
721 < Ch2[[ Vol 2@ ]l 20y < Ch2|[ Vol 12y < Ch2d; ™

For the second term, we apply again the Holder estimate, Theorem 4.3, and [14, eq.
(5.11)] to see that

(4.4) 722 < [[Ao = 7r(X0)l| L2 (o) V(@ — Pa ()| 2= @\077)
< O bl ||| cre @0y < Ch1+ad;1/27oc|1nh|.
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It remains to deal with 73; we split again

73 < (e = ral9), V- (Go = Gon))ay| + (e = rale), V- (Go — Go.n))ovey| := Ts1 + Ta2.
Analogously as before, we estimate

731 < [l = ra(@)ll L2 IV (Go — Go.n)ll L2y < CRIIV(Go — Gon)llL2yr)  and

. o —1/2— .
732 < [l = ra(@) Lo (0 IV (Go — Go,n)ll L1 (@) < Ch*d; P2V (Fo — Gon) 12 (-
The estimate for ||¢ — rh(go)”Loo(Q\Q;//) is given in [14, p. 17]. Summing up, we have

lL2(0,) < ChIIV(Go — Gou)llz2r) + Chdy ">~V (Go — Fon)l11 o)
+ k2 4 ORted A ).

lgo — Go,n

Now, because h < d; due to (4.1) and o < 1, it holds that hzd;3/2 < hl'*‘“d;l/%a.
Thus, we arrive at the conclusion of the theorem. 0

4.4. L'(Q) estimate and weighted estimate. Now we can proceed with the
proof of Lemma 3.5.

Proof of Lemma 3.5. We again use the dyadic decomposition and the Cauchy—
Schwarz inequality to see

J
IV (Go—Go.n)ll 2y < IV (Go = Fo.n) |1y + Y IV (Fo = Gon)llr ey
j=1
J
- - 2 - -
(4.5) < (Kh)*?(V(go — go.nllL2) + Cz d?/ V(go — go,n)llL2(;)-
j=1

Applying Proposition 2.11, Assumption 2.7, H? regularity as stated in (2.1), and (3.2)
leads to the following estimate for the first term:

W2V @ — Gon (@) < O (llgoll oo + o)
< Ch |64l L2 (1y,) < Ch.

In the following, we consider the second term for which we want to apply the local
energy estimate from Proposition 2.12:

19 = go) 2 < € (IV (G0 = PalGo))ll e + 100 = 1 00) 2 ey
+ C(ed;) " Hlgo — Pr(go)ll 2@y + €llV(go — Go,n)ll L2y
(46) + C(Edj)_lngo — gO,hl|L2(Q;.)-

For the first two terms we use approximation results and Corollary 4.2 to obtain

V(g0 = Pr(Go))ll2(e) + Ao = ra(Xo)ll L2(s) < Ch(”ﬁo“mmy) + ||>\0||H1(Q;f))
< Chd;**.
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The contribution to the sum is given by

J
S d (VG0 — Pu(go))ll 2y + 1A — 71(Mo) | z2(e)) < ChJ < Chllnhl,
j=1

where due to (4.1) we see that J ~ |Inh|. Similarly, we see
(4.7) (ed)™ o = Pa(d)ll ooy < O G

For a > 0, it holds that

J a J

h e j o agod —a

(4.8) Z(d]) <h Zzﬂ < Ch*2%) < CK™“.
j=1 Jj=1

Thus, we get by summing up (4.7) and using (4.8) with « = 1 that ijl Ce%jh <

C(Ke)~th. To summarize our results so far, we define M; = d§/2HV(§O7§07h)HL2(Qj),

M} = d?/2||V(§'0 - g‘o’h)HLz(Q;% and substitute into (4.6) that

J J J
ST M; < Chllnh| + C(Ke) th+e Y ML+ C > (edy) ™ d}?(|go — GonllLz)-

j=1 j=1 j=1

Next, we apply Theorem 4.4 to the last term,

<

J
> M, < Chlnh|+C(Ke)'h+ey M
j=1 j=1
J

-~ h1¢ h1¢
IZ< 420 Go—Gon) 122 m>+[ ] 19 Go—Gon)l o mh[ } |1nh|)
] ]

We expand the sum over the last three terms so that we get

h _
M; < C | hllnh| + (Ke)~ 1h+s;M’+d—J IZdS/QHV(go*QOh)||L2(Q~')

J J «
- h
12 [ ] V(go — Go.n)llL1() + Che™ 12 {d} [In A

j=1 -

M-

<
Il
—

Now we can again use (4.8) on the last two summands to arrive at

J J

> M; < Chlnh| + Ce>" M)+ CK =™ (9(Fo — Gon)llws oy + bl )
j=1 j=1

J
+C(Ke) ™ > d52 )1V (Go = Gon) 2z
j=1
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where we also used that h/d; < K~! and K > 1. Now for the second and last terms,
we easily see the following:

J

J J
> M+ Zd§/2l|V(§0 — Jo.n)llLzer) < C Y M+ C(KR)*?(|V(do — Fonllz2a.),
j=1 j=1 j=1

where the last term is again bounded by C'K3/2h. Combined, this means we have the
following for constant K > 1 and € > 0:

J J
> M; < Chllnh|+ C((Ke)™' +¢) Y M; + CK*?ch + CK'/?™'h
j=1

j=1
+ CK (9o — Go) |2y + hlin ).

We make Ce < 1/4 and C(Ke)~! < 1/4 by choosing € small and K big enough. After
kicking back the sum to the left-hand side, this leads to

J
> M; < Ck chlnh| + CE 7YV (Go — Go.n)ll 1 (-
j=1

We now treat € as a constant. Finally, substituting this into (4.5), we have

(4.9) V(go — o)1) < Cr.ehllnh|+ CK™%(V(go — go,n)llL1 ()

and choosing K large enough such that CK~% < 1/2, we get the result. ]
As a corollary to the theorem, we get the respective estimate for weighted norms.

Proof of Corollary 3.6. This corollary directly follows using the same techniques
as above and the fact o(Z) ~ d; on Q;. We start by splitting the left-hand side
according to the dyadic decomposition,

J

102V (Go—Go.n) I L2 () < 6%V (Go — o)l 2y + D _N0* V(G — Gon)llz2(a,)
=1

J
< C(kh)* V(G0 — Go.n) |l L2y + CZdi/QHV(Q’O = Go.n)llL2(a,)-

j=1

Without loss of generality, we can assume k = K. After going through the same steps
as in the proof of Lemma 3.5, particularly (4.5), we end up with the right-hand side
of (4.9),

10°/2% (G0 — Go.n) | 22() < ChIb| + CK V(G = Gi) |1 (0)-
Now applying Lemma 3.5 to estimate ||V(§ — gn)| r1(q) We arrive at the result. |
Similarly, we can conclude the following result.

Proof of Corollary 3.3. Again using the fact that (&) ~ d; on €2, we start by
splitting the left-hand side according to the dyadic decomposition,

102V (51 — Gin) |22

J
< C(sh)* 2|V (G — Grn)ll2n +C D APV (G — Gun)llzz(ay)-

j=1
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As before, we can assume k = K. This is equal to the term introduced by the dyadic
decomposition in the proof of [14]. Again, following the same steps, we get

1032V (g1 — Gin)lz2) < C + CIIV(G — Gn)llLr ()

where C' depends the constants introduced in the proof of [14]. Nonetheless, applying
Lemma 3.2 to estimate ||V(§ — gn)||z1 (), we arrive at the result. 0

4.5. Proof of Lemma 3.10.

Proof of Lemma 3.10. We use the dyadic decomposition introduced in the begin-
ning of section 4 to get the following estimate due to o ~ d; on Q; (¢ ~ Kh on

Q.):

J
1029 X012 () < ORIV Aol 720y + Zd?HV)\OH%z(Qj)'

Jj=1

The first summand is bound by a constant C' due to (2.1) and (3.2). By Corollary 4.2
we see that HV)\OH%Z(Q” < C’dj—3’ and as a result

J J
N @ Vol2eq, < CY 1=0CJ < Clnh|.
j=1

j=1

This proves the result for the weighted case, and by [|0=3/2||12(q) < [Inh|'/? the L
estimate. a

5. Estimates for the pressure. We now consider estimates for the remaining
component of our Stokes system, the pressure. Similarly as before, let §, denote a
smooth delta function on the tetrahedron, where the maximum for the pressure is
attained. We may define the following regularized Green’s function to deal with the
pressure

(5.1) ~AG+VA=0 inQ, V-G=6,—-¢ inQ, G=0 ond

By construction we have [, 6,(Z) — ¢(Z)dZ = 0. This also allows us to apply similar
arguments as in [12, 14], only with different bounds for the appearing ), terms.

The global case has already been discussed in [12, 14]; thus we now focus on
localized estimates. As before, we need some auxiliary results which we now state.

PROPOSITION 5.1. We present
IV(Pr(G) = Gl o) + lIrn(A) = All o) < C.

A proof of this is given in [14, Lem. 5.4]. The following corollary follows by the
same arguments as Corollaries 3.3 and 3.6.

COROLLARY 5.2. We present
|0%/2V (P (G) — é)”m(ﬂ) + [le® 2 (rp (A) — A)|lr2) < C.

Proof of Theorem 2.13 (pressure). For this we again split the domain into Do and
O\D; and only consider ¥y € Tz, C D;.
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The pointwise estimate of pj, can be expanded in the following way:

Pr(Zo) = (Pn,0n) = (Pn, 00 — @) + (Prs @) = (Pn, 00 — @) + (Pn — D, @) + (P, @).

We may estimate the last two terms using Proposition 2.11:

(on=p,8)+(p,6) < Clldll 2y (Ip—pnll 2@y + Pl 20 ) < C(IVllL2o)+pll 2@ )-

By assumption, ¢ is bounded on 2. For the first term, we can see by Assumption 2.5
that

(Pn0n — &) = (pn. V - G) = (p1, V - Pu(G))
=(p, V- Pu(G)) + (pn — p, V- Pu(G)) := T + L.
For I, we get the following estimate:
L= (p, V- (P(G) = G)) + (p,61 — 9)
< ol om) (19 (PH(G) — @llurcay + 63 ey + I3]0
+ Callpl|2(0) <||U3/2V(Ph(é) — )2 + 10°°6] L2 () + \\03/25h\|L2(Q))
< CllpllLe(p,) + Callpll2 (@)

To arrive at this bound, we used Lemma 3.1 and obtain that [|03/2¢||12(q) < ||8]lr2()
HJ3/2HL00(Q) < C. Using (2.8) and (5.1) we see for Iy that

—

I = (Vi — ity), VPu(G)) = (V(@ = @n), VG) + (Vi — iiy), V(Pi(G) = G))
—(A,V - (il = iln)) + (V(@ — @), V(PW(G) = G))
= —(A=7a(A), V- (i — ii)) + (V(i — iin), V(Pu(G) = G))
< (||VU||Loo b+ + IVin | oo (p)) (1A = 7r(A) | 10 + [V (PR(G) — é)”Ll(Q))

+ Ca(I9 = ) 2@ (0% = 1 (M)l 20y + 0%V (PL(C) = Dl 2qey ).

Here again we use that o' is bounded by d on Q\Dy and choose D* appropriately
such that we can apply Theorem 2.13 for the velocity, e.g., D* = B(Z),~ N Q with
r* =r+d/2. Finally, H' stability for i, follows by Proposition 2.11, and we get

I < C(IIV@l (b + 1Pl e (0s) ) + Ca( IVl 2(0) + Ipllz2(e) ).

This completes the proof. 0

6. Assumptions and main results in two dimensions. In this section we
give a short derivation of the respective local estimates in L> and W for the
two-dimensional case. Note that the arguments for the global and local scenario
made in the three-dimensional case are independent of the dimension apart from the
auxiliary estimates. For two dimensions the respective estimates of the regularized
Green’s functions and the Ritz projection are all available from the literature, albeit
under slightly different assumptions on the finite element space. Due to these slightly
different assumptions in [8], and to give a concise overview of the respective references,
we provide the results on polygons separately in this section.
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Remark 6.1. The technique used in the three-dimensional case to prove the aux-
iliary results in the previous sections should carry over to two dimensions. But to
make a rigorous argument one must discuss the local energy estimates in [14] and
respective Green’s function estimates (as in Proposition 2.3) in the two-dimensional
case. The first point seems to be attainable in a straightforward manner, and the
second point can be shown similarly to the Poisson problem in [6, Lem. 2.1]. Al-
though we are not aware of any such result in the literature, obtaining such results
is straightforward, but lengthy. Since the auxiliary results in two dimensions can be
shown using a weighted technique and are available in [8], we instead refer to them
in the form below.

In the following, we state the required assumptions, the necessary auxiliary re-
sults, their references, and finally the local estimates. From now on let  C R2?, a
convex polygonal domain, and consider the two-dimensional analogs u, p, f and their
finite element discretization, as well as the respective two-dimensional function and
finite element spaces. The basic results and requirements for the continuous problem
from subsections 2.2 and 2.3 still apply, as referenced in these sections.

As stated in [11], assume that we have approximation operators P, € L(Hg ()%
Vi) and 1, € L(L*(Q); Mp,) which fulfill the two-dimensional versions of Assump-
tions 2.4 to 2.7, and in addition the following superapproximation properties.

ASSUMPTION 6.2 (superapproximation II). Let p € [2,3], 0y € Vi, and 1/7 =
otuy; then
o~ #1290 = Pu(@)) 2@ < Cllo*28ullo@) Vo € Vi,
and if qn, € My, and & = o*qy, then

||0-_IL/2(£ — ’rh(g))HL2(Q) S Ch||0'#/2qh||L2(Q) VC]h S Mh'

As in the three-dimensional case, this holds for Taylor-Hood finite element spaces,
but for Py, — Pr_1 with k > 2; see, e.g., [11]. Apart from this, we need to adapt the
estimates for §, and o. For the two-dimensional versions we get

8nllws (1) < ChF207HD 1< g<o00,k=0,1,..., v>0, and
0" Vibnllr2(q) < 27/2Cr*h* K71 k=0,1.

Let (g1, A1) and (go, Ao) denote the two-dimensional regularized Green’s functions,
defined as in section 3 but for two dimensions. Then we get the following convergence
estimates for their discrete counterparts. The estimates needed when deriving W1
velocity estimates,

V(g1 = gin)llLr) < C, 1oV (g1 — Gin)llz2 ) < C,

follow from [11, Thm. 8.1] using (3.3) and similarly for the pressure estimates, where
we need

IV(PW(G) = G)|lr1a) + lIrn(A) — Al i) < O,
oV (P (G) — é)”m(sz) + lo(ra(A) = M2 < C,

which can be found in [11, p. 328]. In the L™ case for the velocity we get

IV (go — Go.n)llLr () < Chlnhl, 10V (Go — Go.n) || 2(0y < Chlnh|*/?
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from [8, Thm. 4.1, Proof of Thm. 4.2]. The equivalent version of Lemma 3.10 is given
by [8, Lem. 3.1]. Finally, the estimate for the Ritz projection Ry, in two dimensions is

| RpZ] Lo () < ClIh|"||2]| L (0,

where k = 1 for k = 1 and k = 0 for k > 2, as given in [30]. Note that the local
maximum norm estimates for L> from [17] hold as well in two dimensions. Thus,
using the same techniques as in section 3 we get the following theorems for  C R2.

THEOREM 6.3 (interior W1°° estimate for the velocity and L estimate for the
pressure). Under the assumptions above, 1 C Qo C Q with dist(Ql,aﬂg) > d > kh,
and if (ii,p) € (WH*(Q2)? x L>(Q)) N (HE(Q)? x L3(2)) is the solution to (1.1a)—
(1.1c), then it holds for (@n,pn), the solution to (2.8):

||VﬁhHLoo(Ql) + ||ph||L°°(Ql)
< C<||V17HL°°(Q2) + ||pHL°°(Qz)) + Cd(||vﬂ||L2(Q) + ”pHL?(Q)).

Here, the constant Cy depends on the distance to Q1 from 0.

THEOREM 6.4 (interior L™ error estimate for the velocity). Under the assump-
tions above, Q1 C Qo C Q with dist(Qy,002) > d > kh, and if (@,p) € (L>(2)? x
L ()N (HE ()2 x L3(Q)) is the solution to (1.1a)—(1.1c), then it holds for (i, pr)
the solution to (2.8):

liinll =@y < Ol (|l e ) + Bllpll =) )
+ Calin b2 (Bl s @) + @2y + Blplz2(o))-

Here the constant Cq depends on the distance to Q1 from 0Qs.

REFERENCES

[1] D. N. ArNoLD AND X. Liu, Local error estimates for finite element discretizations of the
Stokes equations, RAIRO Modél. Math. Anal. Numér., 29 (1995), pp. 367-389, https:
//doi.org/10.1051/m2an/1995290303671.

[2] H. CHEN, Pointwise error estimates for finite element solutions of the Stokes problem, STAM
J. Numer. Anal., 44 (2006), pp. 1-28, https://doi.org/10.1137/S0036142903438100.

[3] M. DAUGE, Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains
with corners. 1. Linearized equations, STAM J. Math. Anal., 20 (1989), pp. 74-97.

[4] J. C. DE Los REYEs AND K. KUNISCH, A semi-smooth Newton method for control constrained
boundary optimal control of the Navier-Stokes equations, Nonlinear Anal., 62 (2005),
pp. 1289-1316, https://doi.org/10.1016/j.na.2005.04.035.

[5] J. C. pE LOS REYES, C. MEYER, AND B. VEXLER, Finite element error analysis for state-
constrained optimal control of the Stokes equations, Control Cybernet., 37 (2008), pp. 251—
284.

[6] 1. DRELICHMAN, R. G. DURAN, AND 1. OJEA, A weighted setting for the numerical approzi-
mation of the Poisson problem with singular sources, SIAM J. Numer. Anal., 58 (2020),
pp. 590-606, https://doi.org/10.1137/18M1213105.

[7] R. G. DURAN AND M. A. MUSCHIETTI, An ezplicit Tight inverse of the divergence operator
which is continuous in weighted norms, Studia Math., 148 (2001), pp. 207-219.

[8] R. G. DURAN, R. H. NOCHETTO, AND J. P. WANG, Sharp mazimum norm error estimates
for finite element approzimations of the Stokes problem in 2-D, Math. Comp., 51 (1988),
pp. 491-506, https://doi.org/10.2307/2008760.

[9] A. ERN AND J. GUERMOND, Theory and Practice of Finite Elements, Appl. Math. Sci. 159,
Springer-Verlag, New York, 2004, https://doi.org/10.1007/978-1-4757-4355-5.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1051/m2an/1995290303671
https://doi.org/10.1051/m2an/1995290303671
https://doi.org/10.1137/S0036142903438100
https://doi.org/10.1016/j.na.2005.04.035
https://doi.org/10.1137/18M1213105
https://doi.org/10.2307/2008760
https://doi.org/10.1007/978-1-4757-4355-5

Downloaded 10/30/20 to 67.221.69.97. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

>

>

STOKES GLOBAL AND LOCAL POINTWISE ERROR ESTIMATES 1555

. P. GaLp1, An Introduction to the Mathematical Theory of the Navier-Stokes Equations,
2nd ed., Springer Monogr. Math., Springer, New York, 2011, https://doi.org/10.1007/
978-0-387-09620-9.

. GIrAULT, R. H. NOCHETTO, AND L. R. ScOoTT, Mazimum-norm stability of the finite element
Stokes projection, J. Math. Pures Appl. (9), 84 (2005), pp. 279-330, https://doi.org/10.
1016/j.matpur.2004.09.017.

. GIRAULT, R. H. NOCHETTO, AND L. R. SCOTT, Maz-norm estimates for Stokes and Navier-
Stokes approzimations in conver polyhedra, Numer. Math., 131 (2015), pp. 771-822.

. GIRAULT AND L. R. ScorT, A quasi-local interpolation operator preserving the discrete
divergence, Calcolo, 40 (2003), pp. 1-19, https://doi.org/10.1007/s100920300000.

. GUzZMAN AND D. LEYKEKHMAN, Pointwise error estimates of finite element approzimations

to the Stokes problem on convex polyhedra, Math. Comp., 81 (2012), pp. 1879-1902, https:
//doi.org/10.1090/S0025-5718-2012-02603-2.

. GUZMAN AND M. A. SANCHEZ, Maz-norm stability of low order Taylor-Hood elements

in three dimensions, J. Sci. Comput., 65 (2015), pp. 598-621, https://doi.org/10.1007/
$10915-014-9978-y.

. LEYKEKHMAN AND B. L1, Weak Discrete Maximum Principle of Finite Element Methods in
Convex Polyhedra, preprint, https://arxiv.org/abs/1909.06783, 2019.

. LEYKEKHMAN AND M. PRUITT, On the positivity of discrete harmonic functions and the
discrete Harnack inequality for piecewise linear finite elements, Math. Comp., 86 (2017),
pp. 1127-1145, https://doi.org/10.1090/mcom/3117.

. LEYKEKHMAN AND B. VEXLER, Finite element pointwise results on convex polyhedral
domains, SIAM J. Numer. Anal., 54 (2016), pp. 561-587, https://doi.org/10.1137/
15M1013912.

. LEYKEKHMAN AND B. VEXLER, Pointwise best approximation results for Galerkin finite
element solutions of parabolic problems, STAM J. Numer. Anal., 54 (2016), pp. 1365-1384,
https://doi.org/10.1137/15M103412X.

. LEYKEKHMAN AND B. VEXLER, Discrete mazimal parabolic regularity for Galerkin fi-
nite element methods, Numer. Math., 135 (2017), pp. 923-952, https://doi.org/10.1007/
s00211-016-0821-2.

. LEYKEKHMAN AND B. VEXLER, Global and interior pointwise best approximation results
for the gradient of Galerkin solutions for parabolic problems, STAM J. Numer. Anal., 55
(2017), pp. 2025-2049, https://doi.org/10.1137/16M1080252.

. MAz’yA AND B. PLAMENEVSKII, The first boundary value problem for classical equations of
mathematical physics in domains with piecewise-smooth boundaries, 1, Z. Anal. Anwen-
dungen, 2 (1983), pp. 335-359, https://doi.org/10.4171/ZAA/71.

. MAZ’YA AND J. ROSSMANN, L, estimates of solutions to mized boundary value problems for
the Stokes system in polyhedral domains, Math. Nachr., 280 (2007), pp. 751-793, https:
//doi.org/10.1002/mana.200610513.

. MAz’yA AND J. ROSSMANN, Elliptic Equations in Polyhedral Domains, Math. Surveys
Monogr. 162, American Mathematical Society, Providence, RI, 2010, https://doi.org/10.
1090/surv/162.

. NARASIMHAN AND I. BABUSKA, Interior mazimum morm estimates for finite element dis-
cretizations of the Stokes equations, Appl. Anal., 86 (2007), pp. 251-260, https://doi.org/
10.1080,/00036810601148240.

. NATTERER, Uber die punktweise Konvergenz finiter Elemente, Numer. Math., 25 (1974),

pp. 67-77, https://doi.org/10.1007/BF01419529.

. PIEPER AND B. VEXLER, A priori error analysis for discretization of sparse elliptic optimal
control problems in measure space, SIAM J. Control Optim., 51 (2013), pp. 2788-2808,
https://doi.org/10.1137,/120889137.

. RANNACHER, Zur L°°-Konvergenz linearer finiter Elemente beim Dirichlet-Problem, Math.
Z., 149 (1976), pp. 69-77, https://doi.org/10.1007/BF01301633.

. ROSSMANN, Green’s matriz of the Stokes system in a convexr polyhedron, Rostock. Math.

Kolloq., 65 (2010), pp. 15-28.
. H. ScHATZ, A weak discrete maximum principle and stability of the finite element method
in Loo on plane polygonal domains, I, Math. Comp., 34 (1980), pp. 77-91, https://doi.
org/10.2307/2006221.
H. ScuaTz AND L. B. WAHLBIN, Interior mazimum norm estimates for finite element
methods, Math. Comp., 31 (1977), pp. 414442, https://doi.org/10.2307/2006424.
. H. ScHATZ AND L. B. WAHLBIN, Interior mazimum-norm estimates for finite element meth-
ods, 11, Math. Comp., 64 (1995), pp. 907-928, https://doi.org/10.2307/2153476.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1007/978-0-387-09620-9
https://doi.org/10.1007/978-0-387-09620-9
https://doi.org/10.1016/j.matpur.2004.09.017
https://doi.org/10.1016/j.matpur.2004.09.017
https://doi.org/10.1007/s100920300000
https://doi.org/10.1090/S0025-5718-2012-02603-2
https://doi.org/10.1090/S0025-5718-2012-02603-2
https://doi.org/10.1007/s10915-014-9978-y
https://doi.org/10.1007/s10915-014-9978-y
https://arxiv.org/abs/1909.06783
https://doi.org/10.1090/mcom/3117
https://doi.org/10.1137/15M1013912
https://doi.org/10.1137/15M1013912
https://doi.org/10.1137/15M103412X
https://doi.org/10.1007/s00211-016-0821-2
https://doi.org/10.1007/s00211-016-0821-2
https://doi.org/10.1137/16M1080252
https://doi.org/10.4171/ZAA/71
https://doi.org/10.1002/mana.200610513
https://doi.org/10.1002/mana.200610513
https://doi.org/10.1090/surv/162
https://doi.org/10.1090/surv/162
https://doi.org/10.1080/00036810601148240
https://doi.org/10.1080/00036810601148240
https://doi.org/10.1007/BF01419529
https://doi.org/10.1137/120889137
https://doi.org/10.1007/BF01301633
https://doi.org/10.2307/2006221
https://doi.org/10.2307/2006221
https://doi.org/10.2307/2006424
https://doi.org/10.2307/2153476

	Introduction
	Assumptions and main results in three dimensions
	Notation
	Basic estimates
	Local H2 stability estimates
	Green's matrix estimate

	Finite element approximation
	Assumptions
	Local energy estimates
	Main results

	Proof of main theorems
	Regularized delta function and the weight function
	Estimates for W1,()
	Regularized Green's function
	Auxiliary results for (1,1) and (1,h,1,h)
	Localization

	Estimates for L()
	Regularized Green's function
	Auxiliary results for (0,0), (0,h,0,h), and the Ritz projection
	Max-norm estimate
	Localization


	Estimates for the regularized Green's function
	Dyadic decomposition
	L1() interpolation estimate for 0
	Local duality argument
	L1() estimate and weighted estimate
	Proof of lemma:lambda0

	Estimates for the pressure
	Assumptions and main results in two dimensions
	References

