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Abstract. RNA expression profiles contain information about the state
of a cell and specific gene expression changes are often associated with
disease. Classification of blood or similar samples based on RNA expres-
sion can thus be a powerful method for disease diagnosis. However, bas-
ing diagnostic decisions on RNA expression remains impractical for most
clinical applications because it requires costly and slow gene expression
profiling based on microarrays or next generation sequencing followed
by often complex in silico analysis. DNA-based molecular classifiers that
perform a computation over RNA inputs and summarize a diagnostic
result in situ have been developed to address this issue, but lack the
sensitivity required for use with actual biological samples. To address
this limitation, we here propose a DNA-based classification system that
takes advantage of PCR-based amplification for increased sensitivity. In
our initial scheme, the importance of a transcript for a diagnostic deci-
sion is proportional to the number of molecular probes bound to that
transcript. Although probe concentration is similar to that of the RNA
input, subsequent amplification of the probes with PCR can dramati-
cally increase the sensitivity of the assay. However, even slight biases
in PCR efficiency can distort weight information encoded by the origi-
nal probe set. To address this concern, we developed and mathematically
analyzed multiple strategies for mitigating the bias associated with PCR-
based amplification. We evaluate these amplified molecular classification
strategies through simulation using two distinct gene expression data
sets and associated disease categories as inputs. Through this analysis,
we arrive at a novel molecular classifier framework that naturally accom-
modates PCR bias and also uses a smaller number of molecular probes
than required in the initial, naive implementation.

1 Introduction

Detection and quantification of RNA molecules in blood or tissue can be a
powerful tool for disease diagnosis. Although detection of a single, differentially
expressed molecular marker might be ideal, such a distinctive marker may not
exist for a disease state of interest. Instead, a diagnostic decision may have to be
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based on panels of differentially expressed genes and may require careful weigh-
ing of the contributions of each gene in the panel. The conventional workflow
for building such multi-gene classifiers consists of experimentally measuring gene
expression in different “states” (e.g. healthy and disease) using microarrays or
high-throughput sequencing, followed by training of a computational classifier
that learns to assign labels to the samples based on differences in gene expression
between those states. Once the classifier is trained it can be used to label pre-
viously unseen samples based on their gene expression profiles, thus providing
a powerful tool for aiding diagnostics decisions. For example, an in silico whole
blood gene expression classifier has been developed to distinguish bacterial infec-
tions, viral infections, and non-infectious disease [1]. Similarly, an in silico blood
platelet gene expression classifier has been developed to distinguish six different
types of cancer [2]. Both of these classifiers were trained using support vector
machine (SVM) methods, and each involved more than 100 features (i.e. differ-
entially expressed genes) [1,2]. These examples provide proof-of-principle for the
power of a diagnostic approach based on analysing multi-gene panels but the
complexity and cost of gene expression classification has limited its implemen-
tation to a research setting and to a small subset of clinical problems.

Using molecular computation to implement a disease classifier could over-
come some of the limitations of existing technologies. In such an approach, the
molecular diagnostic “computer” could be mixed with the patient sample, per-
form an analysis of the sample through a sequence of molecular interactions
and then summarize the result into an easy-to-interpret signal that represents
the diagnosis. If realized, such an approach could accelerate the diagnosis by
simplifying the measurement process and eliminating the need for separate com-
putational analysis.

DNA-based circuits have long been proposed as a platform for performing
gene expression diagnostics [3]. In our own previous work, we demonstrated a
platform to translate a linear classifier into a DNA strand displacement circuit
that can operate on a set of RNA inputs and classify a sample by calculating a
weighted sum over those inputs [4]. However, our work was limited to a proof-of-
principle implementation with in vitro transcribed RNA since the concentration
of RNA molecules in biological samples is significantly below the detection limit
of that assay.

In this work, we propose a method for combining targeted RNA amplifi-
cation and molecular classification for gene expression diagnostics. We begin
by proposing a classifier design that combines computation with enzymatic
amplification (Sect. 2). In our approach, molecular probes are used to assign
weights to each RNA feature in the classifier and PCR-based amplification is
used to amplify the signal resulting from each probe. The workflow for such an
approach is shown in Fig. 1. We then demonstrate a computational approach,
starting from gene expression data, for learning a sparsely-featured classifier
that is well-suited for molecular implementation (Sect. 3). However, this formal
framework assumes that molecular classifier components behave ideally, while
in practice nucleic acid amplification mechanisms are biased, i.e. different probe
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sequences get amplified to varying degrees which distorts the classification result
(Sect. 4). We then explore the effects of amplification bias and developed strate-
gies to mitigate amplification bias and maintain classification accuracy. First, we
explore a strategy for averaging over multiple probes, each with an unknown bias
(Sect. 5). Although successful to an extent, we will argue that this naive strat-
egy is impractical because of the large number of probes required. Moreover,
because in practice the amplification bias is consistent across samples, it is pos-
sible to actually measure the probe bias and incorporate that information into
the classifier design. Second, we thus ask whether accurate classification can be
achieved if individual probes are biased but well-characterized (Sect. 6). We will
show that this approach results in a more compact molecular implementation of
the classifier but that classification accuracy is still limited compared to an ideal
classifier. Finally, we develop an approach wherein each weight associated with
a transcript is implemented by just two competing probes, one associated with
a negative and the other with a positive weight (Sect. 7). We show that even
with biased probes any target value of the weight can be closely approximated
as long as we have precise control over probe concentrations. We validate each
of our designs by simulating molecular classification of gene expression profiles
in the context of cancer and infectious disease diagnostics. Our results indicate
that probe characterization and subsequent selection enable the construction
of sensitive, accurate and cost-effective molecular classifiers for gene expression
diagnostics.

2 A Molecular Classifier with Built-In Amplification

Here, we lay out a strategy for creating a molecular classifier with a built-in
amplification mechanism. We first review our earlier classifier design that pro-
vides that basis for our work and then discuss how an enzymatic amplification
step can be used to dramatically increase the specificity of the earlier approach.

In the molecular classifiers reported in [4], the magnitude of a weight associ-
ated with a transcript is implemented by the number of probes designed to target
that transcript; an identity domain appended to the hybridization domain indi-
cates the sign of a each probe and thus of each weight. The total concentration
of all positive (negative) identity domains thus represents the sum of all positive
(negative) weights in the system. Identity domains interact with a downstream
DNA circuit that performs subtraction through pairwise annihilation of positive
and negative signal [4,5]. The remaining signal is converted to fluorescent out-
put. Alternatively, if reporter constructs labeled with distinct fluorophores are
used to separately read out the concentrations of positive and negative identity
domains, the subtraction can be performed in silico. In either case, this approach
requires weights to be small (<10) integers, because each unit weight requires a
unique binding site on a transcript. This design is demonstrated in Fig. 2. More-
over, in this framework, the output signal has similar magnitude to the input
signal, so sensitivity is low, and not sufficient for clinical disease diagnostics.
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Fig. 1. Workflow for combined amplification and classification of RNA samples. An in-
silico classifier is trained and validated on publicly available gene expression data. Then,
multiple probes are designed and synthesized to target the set of genes in the classifier.
This set of probes is amplified using an RNA sample with known gene expression data.
Using next-generation sequencing, the number of amplified probes can be counted in
batch in order to determine probe specific amplification bias. Subsequently, this data
informs a design for molecular classifier that will implement the desired classification
model.

Increasing Sensitivity. Amplification reactions based on strand displacement
cascades [6–9] provide one interesting approach to signal amplification and such
systems have even been used to create amplifiers with controllable gain that
can be combined into linear classifier circuits [10,11]. Still, the gain that can be
achieved with a single strand displacement-based catalytic amplifier is typically
limited and cascades of multiple amplifiers that might have higher gain are often
leaky or simply not robust enough for practical applications.

In order to address the lack of sensitivity intrinsic to our initial classifi-
cation scheme we thus compared several enzyme-based approaches for targeted
RNA amplification including NASBA [14], rolling-circle amplification [15,17,18],
RASL [12] and multiplex PCR [19]. Upon evaluating and characterizing several
of these methods, we decided to implement a molecular classification workflow
using RASL probes. RASL (RNA-mediated oligonucleotide annealing, selection,
and ligation) is commonly used for targeted RNA sequencing for the purpose of
gene expression quantification [12].

Probe Amplification with RASL. In the RASL protocol, shown in Fig. 3a,
custom probe pairs are designed for each RNA of interest. The two probes of
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Fig. 2. An example molecular implementation of a linear classifier with the approach
previously demonstrated in [4]. The red and blue domains represent positive and nega-
tive values respectively for downstream subtraction and reporting mechanisms. (Color
figure online)

a pair bind neighboring sites on an mRNA target such that they create a con-
tiguous sequence with a nick at the center. Adjacent probes are then ligated
together. Importantly, ligation can only occur if probes are bound to the RNA.
Each probe also contains universal amplification overhangs. PCR amplification
of the ligated probes enables accurate amplification of low total RNA amounts
(10 nanograms) for gene expression quantification using next-generation sequenc-
ing. Because only ligated probes can be efficiently amplified and because ligation
requires the RNA template, RASL is specific and quantitative method for RNA
detection.

A molecular classifier using RASL probes is shown in Fig. 3b. Different inte-
ger weights can be implemented by varying the number of probes per transcript.
To implement positive and negative weights, each probe also contains a sequence
barcode that triggers either a green or red fluorescent reporter during amplifi-
cation. The difference between the aggregate fluorescent signals from the two
channels is the classification output.

Amplification by RASL is consistent across samples, but is inconsistent
within samples, such that certain probes are amplified with greater propen-
sity than others [12]. As a result, n probes will not necessarily yield n times as
large a signal as a single probe representing unit weight, so molecular classifiers
designed with the approach of [4] will not behave similarly to the in silico clas-
sifier upon amplification. Below we discuss how such bias can be accounted for
in the classifier design.
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Fig. 3. Overview of existing RASL-seq and our modified method for molecular classifi-
cation. In panel A, the standard RASL-seq protocol for targeted gene expression count-
ing using next-generation sequencing is shown. Multiple probe pairs are hybridized to
their RNA targets followed by ligation of gaps. The yellow circled P’s indicate the 5’
phosphates required for ligation. The ligated products can be amplified using common
primers and then used as input for next generation sequencing. Sequencing data is then
used for gene expression analysis. In panel B, the protocol for molecular classification
using RASL is shown. Our modified RASL probes contain a positive or negative bar-
code (red or green domain) associated with each probe. The number of probes that
bind to each transcript can be varied to tune the effective amplification weight on each
transcript. During amplification, two fluorescent reporters (FAM and ROX) are trig-
gered based on the presence of each barcode. This fluorescent signal can then determine
the classification outcome for a given sample. (Color figure online)

3 Computational Design of Sparsely Featured Diagnostic
Classifiers

Before building a molecular classifier for gene expression diagnostics, we first
train an in silico disease classifier on available gene expression data. This com-
putational classifier is then mapped onto a molecular classifier. In a molecular
classifier, each feature corresponds to a target transcript, and probes are imple-
mented as oligonucleotides that can bind to a unique region within a transcript.
Although feasible in principle, molecular classifiers with large numbers of fea-
tures are currently not practical because of the large numbers of probes required
to implement them. As s first step in the classifier design workflow we thus aim
to create sparsely featured yet clinically valuable classifiers.

Using the publicly available data sets associated with [1] and [2], we identi-
fied reliable classifiers that have feasible molecular implementations by limiting
the scope of the classification problems and training support vector machines
with high feature selection penalties. Regularization parameters were determined
through iterative search, and a hard sparsity constraint of a maximum of 50 fea-
tures was used. In particular, we identified a sparsely-featured classifier that
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differentiates between bacterial infections and viral infections from whole blood
RNA samples, similar to that previously implemented as a molecular classifier
for in vitro use [4]. We also created a sparsely-featured classifier that discrimi-
nates between cancer and healthy patients based on platelet RNA samples. Both
classifiers were tested on validation sets that were disjoint from the training sets,
and consisted of approximately 1

6 the number of samples of the training sets, cor-
responding to validation sets of 35 and 56 samples respectively. The accuracy
of the classifiers on the validation set will henceforth be referred to as model
accuracy, and are shown in Table 1.

4 Simulating the Accuracy of a Molecular Classifier

The sequence dependent amplification bias in RASL is not well characterized,
but based on the evaluation of probe bias in [12], we will roughly approximate it
as a log2-normal distribution. The largest difference in amplification factor of the
25 probes tested in [12] is approximately 26, so we approximate the underlying
normal distribution of probe bias to have μ = 0, σ = 3.

We estimate the accuracy of a molecular implementation by generating ran-
dom amplification biases according to the previously described distribution for
each probe, then summing the biases of the probes for each target transcript
in order to determine an effective weight for each feature. The resulting set of
weights is then evaluated on the validation set to obtain an accuracy that can
be compared to the model accuracy. Several such simulations are executed to
determine an expected accuracy of a molecular implementation. The simulated
accuracy of molecular classifiers implemented with the approach of [4] are shown
in Table 1.

As mentioned before, the parameters of the distribution of probe bias are
rough estimates. In Fig. 4, we see the effect of the standard deviation of the
underlying normal distribution of probe bias on the simulated accuracy. This
indicates that unless we have σ < 1, the accuracy of the molecular implementa-
tion of a classifier deviates highly from the model accuracy. Based on the data
presented in [12], it seems unreasonable to expect that variation in amplification
bias is so small. As such, a method of mitigating the effect of amplification bias
is necessary.

Table 1. Properties of the sparsely-featured disease diagnostic classifiers. Basic molecu-
lar classifier accuracy is the estimated accuracy of the molecular classifiers implemented
with amplification and without bias mitigation, averaged over 500 simulations.

Task # of features In silico model
accuracy

Simulated basic molecular
classifier accuracy

Viral vs. bacterial 5 0.89 0.59

Cancer diagnosis 24 0.96 0.60
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(a) Bacterial vs. viral classifier (b) Cancer diagnosis classifier

Fig. 4. Effect of variation in amplification bias of DNA probes on simulated accuracy
of molecular classifiers implemented with no amplification bias mitigation. σ is the
standard deviation of the normal distribution underlying the log2-normal distribution
of probe bias, with a mean μ = 0. For each σ, 500 independent simulations were done,
and the shade of blue indicates the frequency of an outcome. (Color figure online)

5 Scaling up Weights to Reduce Bias Variation

The ideal method of mitigating amplification bias would involve no experimental
procedures beyond those previously characterized in molecular gene expression
classifiers. One such approach is to simply increase the number of probes used
to implement a unit weight, such that a weight of magnitude k would be imple-
mented by c ∗ k probes, where c is constant across all weights, as depicted in
Fig. 5. This is equivalent to scaling up all weights by a constant factor. Intuitively,
this will reduce the effect of probe bias because the average of c amplification
factors should be less variable than the amplification factor of a single probe.
The desired effect of this approach can be seen in the following mathematical
characterization:

For a molecular classifier with a set of target transcripts T , let

Pt = {pt
1, p

t
2, ...p

t
c∗|t|}

be the set of amplification factors of the probes used to implement desired weight
|t| of a transcript t ∈ T , where each pt

i represents the amplification factor of the
i-th probe targeting transcript t. We will define the effective weight of a target
transcript t as

Wt =
c∗|t|∑

i=1

pt
i

The effective weight is the weight implemented by the molecular classifier after
amplification. Using the approximation that amplification factors are distributed
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Fig. 5. Molecular implementation of bias mitigation through scaling up weights, with
scaling factor c = 2 for a simple toy classifier. Probes are not drawn to scale, and
represent the RASL-seq probes shown in Fig. 3.

as pt
i ∼ 2N (μ,σ), we see that for large c,

Wt ≈ c ∗ |t| ∗ 2μ

In order to implement the desired classifier, the effective weights do not need to
be the same as the desired weights – constantly scaled weights will yield identical
classification results. As a result, if the effective weights have the same relative
values as the desired weights, the implementation can be considered successful.
We see that for any pair of transcripts u, v ∈ T ,

Wu

Wv
≈ c ∗ |u| ∗ 2n

c ∗ |v| ∗ 2n
=

|u|
|v|

so the classifier will implement the desired weights, regardless of individual
amplification biases.

However, c cannot be arbitrarily large, as it is limited by the number of
unique binding sites per transcript and the cost of oligonucleotide synthesis.
Instead, we must determine if an experimentally feasible c will yield a sufficient
approximation for gene expression classification.

In Fig. 6, we see the effect of c on the simulated accuracy of a molecular
classifier. The plots indicate that for even c = 10, corresponding to up to 50
distinct probes per transcript, there is still a large disparity between the pre-
dicted implementation accuracy and the model accuracy. Based on these results,
it seems that knowledge of the amplification biases of the probes is necessary in
order to construct a molecular classifier.
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(a) Bacterial vs. viral classifier (b) Cancer diagnostic classifier

Fig. 6. Simulated accuracy of molecular classifiers using c probes to implement a unit
weight. The shade of blue indicates the frequency of an outcome. 500 independent
simulations were done for each c. (Color figure online)

6 Classifier Calibration by Screening Probes

A simple extension of the approach to implementing molecular classifiers pre-
sented in [4] is to measure the amplification biases of a set of probes for each
target transcript, then select a subset of these probes that will yield effective
weights that best approximate the desired weights, as shown in Fig. 7. This app-
roach can be mathematically characterized similarly to the approach described
in Sect. 5:

For a molecular classifier with a set of target transcripts T , let

Pt = {pt
1, p

t
2, ...p

t
n}

be the set of amplification factors of n probes targeting a transcript t ∈ T with
desired weight |t|, where pt

i represents the amplification factor of the i’th probe
targeting transcript t. Let ℘(Pt) be the power set of Pt, representing the set of
all weights that could be implemented using the given set of probes. The effective
weight of a subset of probes St ∈ ℘(Pt) is

Wt =
∑

pt
i∈St

pt
i

Our goal is to select subsets of probes St for all transcripts t ∈ T that yield

min

( ∑

u,v∈T
(
Wu

Wv
− |u|

|v| )
2

)

This minimization problem requires us to search |℘(Pt)||T | = 2n∗|T | possible
solutions. For the bacterial vs. viral classifier, with an experimentally reason-
able 10 probes per target transcript, there would be a massive 250 possible sets
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Fig. 7. Molecular implementation of classifier built by selecting optimal subset of
probes, with n = 3 probes per transcript, for a simple toy classifier, with probe biases
(denoted by the number next to the probe) selected for demonstration purposes. The
grey probes are omitted in the classifier implementation, and the colored probes are
the subset that best approximates the desired weight. Probes are not drawn to scale,
and represent the RASL-seq probes shown in Fig. 3. (Color figure online)

of weights, so it seems likely that the optimal selection of probes would yield
desired classifier behavior. However, the large solution space also makes identify-
ing the solution challenging. In order to estimate the accuracy of this approach
analogously to Fig. 6, with 500 simulations of randomly biased probes, it is not
feasible to search the entire solution space. Instead, for each transcript, we sim-
ply find the subset of probes whose sum is closest to the weight normalized to
n ∗ μ, where μ is the mean of the log2-normal distribution. In other words, we
select subsets of probes St for all transcripts t ∈ T that yield

min

( ∑

t∈T
(Wt − |t| ∗ μ)2

)

This minimization problem requires us to search |℘(Pt)| ∗ |T | = |T | ∗2n possible
solutions, which makes the search much more feasible for simulation purposes.
The accuracy of the classifier built with this selection of probes gives us a rea-
sonable lower bound on the accuracy of the optimal subset, which could feasibly
be identified when implementing a disease diagnostic classifier. These estimated
lower bounds of accuracy are shown for different n in Fig. 8. The lower bound
of expected molecular classifier accuracy begins to approach the model accuracy
at n = 10, which is experimentally feasible.
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(a) Bacterial vs. viral classifier (b) Cancer diagnostic classifier

Fig. 8. Simulated accuracies of molecular classifiers using subsets of n probes per tran-
script. The shade of blue indicates the frequency of an outcome. 500 independent
simulations were done for each n. (Color figure online)

7 Encoding Weights in Probe Concentration

In the previously described methods of implementing molecular classifiers, in
order to change the effective weights of the classifier, one must use a different
set of probes to construct the classifier. It may be possible to instead encode
classifier weights in probe concentration, similar to previous DNA-based neural
network constructions [13]. Because disease diagnostic molecular classifiers must
accept analog input, and we wish to minimize the number of strand displacement
reactions in the system, the mechanism of weight multiplication should be differ-
ent from previous DNA-based neural network constructions. An implementation
of analog multiplication by DNA strand displacement has been proposed [16],
but the design involves a complex reaction network that would likely be difficult
to experimentally construct for the purposes of in situ molecular classification.

We have designed a method of implementing arbitrary classifier weights with
a constant number of probes per transcript, by encoding classifier weights in the
concentration of the probes. For each transcript, we select exactly one binding
domain. For each binding domain, we design one positive probe and one negative
probe. When constructing the classifier, we add all probes in excess, while con-
trolling the ratios of each pair of positive and negative probes. The difference of
the relative concentrations of the probes will encode the weight of the transcript.
If a positive probe has the same concentration as its negative counterpart, then
the weight of their target transcript should be 0. Similarly, a larger concentra-
tion of positive probe will encode a positive weight, and a larger concentration
of negative probe will encode a negative weight. This weight implementation
strategy is depicted in Fig. 9.
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Fig. 9. Cartoon depiction of competitive hybridization based weight implementation
strategy. The arrows indicate complementary domains. Probes are not drawn to scale,
and represent the RASL-seq probes shown in Fig. 3. x = |positive probe|

|positive probe|+|negative probe| ,
the concentration of the positive probe normalized to the sum of the concentrations of
the positive and negative probe.

(a) Bacterial vs. viral classifier (b) Cancer diagnostic classifier

Fig. 10. Simulated accuracies for molecular classifiers built with weights encoded in
probe concentration. Decimals of precision indicates the control of the ratios. For exam-
ple, 1 decimal of precision means that only ratios with increments of ten percent can
be implemented.

Implementing weights in this fashion would allow for manipulation of classi-
fier weights without changing the probes used. One could measure probe biases,
then adjust the concentrations such that the effective weights are identical to the
weights of the in silico model. Since the effective weight is simply a linear func-
tion of the relative concentrations, the ability to implement arbitrary weights
is dependent on the ability to arbitrarily control the concentrations of probes.
The simulated accuracy of molecular classifiers built with this weight implemen-
tation strategy after bias mitigation are shown in Fig. 10 for different degrees
of concentration precision. We see that if ratios can be controlled to precision
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10−3 (i.e. being able to implement concentrations in ratio 0.501:0.499), then
we expect the molecular classifiers to approach the model accuracy. This seems
experimentally feasible, but in the case that such precision cannot be attained,
a larger number of probes per transcript can be characterized, and the probes
with the most similar biases can be selected to decrease the minimum difference
in concentration.

8 Discussion

Based on these analyses, both selecting subsets of probes and encoding classifier
weights in probe concentration appear to be viable approaches to mitigating
amplification bias in molecular classifiers. When mitigating bias by selecting
subsets of probes, one can use almost exactly the experimental construction
presented in [4]. The only additional steps involve characterizing probe bias.
For this reason, it is nearly certain that such a strategy could be used to build
molecular classifiers. However, it is possible that many probes will need to be
screened in order to identify a subset of probes that implements the desired
classifier.

While encoding the classifier weights in probe concentration requires a
slightly different, currently experimentally unverified construction, it would
likely use a much smaller set of probes in order to implement the desired clas-
sifier, and thus be more cost effective. Even with very limited implementation
precision, one could imagine having to screen far fewer probes than in the subset
selection method. Furthermore, it allows one to implement weights with more
specificity than the subset selection method, so provided that there is sufficient
implementation precision, it should allow for more accurate implementation of
an in silico classifier.

Gene expression profiling is increasingly an important clinical metric for diag-
nosis a wide number of human diseases. The approach presented here would
enable amplification and classification of RNA samples containing multiple
biomarkers in a single reaction with a two-channel fluorescent readout. This could
drastically reduce the complexity of gene expression classification and poten-
tially enable a point-of-care solution to this type of diagnostics. Even though
this approach would result in a more complex development stage, once a final
construction is found, the implementation is drastically simpler than existing
alternatives.
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