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A B S T R A C T

This study makes progress towards a data-driven parameterization for mesoscale oceanic eddies. To demon-
strate the concept and reveal accompanying caveats, we aimed at replacing a computationally expensive,
standard high-resolution ocean model with its inexpensive low-resolution analogue augmented by the pa-
rameterization. We considered eddy-resolving and non-eddy-resolving double-gyre ocean circulation models
characterized by drastically different solutions due to the nonlinear mesoscale eddy effects. The key step of
the proposed approach is to extract from the high-resolution reference solution its eddy field varying in space
and time, and then to use this information to improve the low-resolution analogue model.

By interactively coupling both the continuously supplied history of the eddy field and the explicitly
modeled low-resolution large-scale flow, we obtained the additional eddy forcing term which modified the
low-resolution model and significantly augmented its solutions. This eddy forcing term represents the action
of the eddy field, its coupling with the large-scale flow and is a key dynamical constraint imposed on the
augmentation procedure.

Although the augmentation drastically improved the low-resolution circulation patterns, it did not recover
the robust, intrinsic, large-scale low-frequency variability (LFV), which is an important feature of the high-
resolution solution. This is by itself an important (negative) result that has significant implication for any
data-driven eddy parameterization, especially, given the fact that we used the most complete information
about the space–time history of the eddy fields. Note, when we supplied the reference (true) eddy forcing,
rather than just the eddy field, the LFV was recovered. This suggests that the LFV is crucially dependent on
the details of the space–time eddy forcing/large-scale flow correlations, which are not fully respected by the
proposed augmentation procedure.

In order to overcome the deficiency and recover the LFV, we statistically filtered the augmented low-
resolution model solution by projecting it onto the leading Empirical Orthogonal Functions (EOFs) of the
large-scale component of the high-resolution reference solution. This operation allowed us to remove spurious
effects associated with higher EOFs. We tested and confirmed that without using the data-driven eddy
information this filtering alone cannot augment the low-resolution solution; but in conjunction with the eddy
information, it produced desirable outcome.

Moreover, as a natural step towards parameterization, we took advantage of data-driven stochastic inverse
modeling to obtain inexpensive emulators of the eddy field and showed generally promising results of
augmenting the coarse-resolution model with the obtained emulators. Our results showed that obtaining the
LFV characteristics for the eddy parameterization, which is already capable of reproducing the large-scale flow
pattern, should become a standard parameterization requirement, but it can be challenging to meet.
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1. Introduction

Numerical model solutions of complex oceanic flows are highly
sensitive to the spatial grid resolution (Shevchenko and Berloff, 2015;
Shevchenko et al., 2016). If the resolution is too coarse for representing
mesoscale eddy dynamics, the resulting errors can be accumulated on
large scales, which are nominally well-resolved even with dynamically
coarse grids. On the one hand, this problem is now well understood
in the ocean modeling community (Marshall et al., 2012; Bachman
et al., 2017); on the other hand, resolving all the dynamically important
scales is an insurmountable task, and many parameterizations aiming
to circumvent this have been proposed and implemented (Gent and
McWilliams, 1990; Frederiksen, 1999; Frederiksen et al., 2012; Porta
Mana and Zanna, 2014; Berloff, 2015, 2016; Zanna et al., 2017; Berloff,
2018; Mak et al., 2018; Ryzhov et al., 2019). However, there is still
no unified framework because different approaches are designed to ac-
count for different processes, and also each parameterization accounts
for the effects of a certain range of scales.

Progress with parameterizations is hampered because the ocean cir-
culation does not have spectral gaps between different ranges of scales;
however, many theoretical insights rely on simple conceptual models
with clear scale separation (e.g., the Lorentz toy model (Majda et al.,
1999; Fatkullin and Vanden-Eijnden, 2004; Kravtsov et al., 2005; Crom-
melin and Vanden-Eijnden, 2008; Arnold et al., 2013; Chorin and Lu,
2015)). Furthermore, different scales are nonlinearly tangled and ac-
counting for this by understanding their interactions is difficult (Bach-
man et al., 2017) but ultimately needed. The above-mentioned two
aspects make the problem of flow scale decomposition for the purposes
of parameterizations open and important. For now, the main constraint
for a flow decomposition is rather intuitive and vague: given the
resolution of a coarse-grid model, we assume that the unrepresented
and dynamically distorted scales range from the Kolmogorov scale to
about 10 intervals of the computational grid; and the scales larger than
the grid interval are increasingly better accounted for by the model
dynamics.

More specifically, in this paper we consider the classical, wind-
driven, midlatitude ocean circulation model featuring two large-scale
counter-rotating gyres with the western boundary currents, and with
their intense eastward jet extension that separates the gyres. Our fo-
cus is on the eastward jet region, where the solutions of the model
most critically depend on the spatial grid resolution (Shevchenko and
Berloff, 2015). With an inadequate resolution, misrepresentation of the
mesoscale eddy dynamics results in an underdeveloped and even absent
eastward jet extension, whereas with a proper resolution, the east-
ward jet reappears as a pronounced, meandering and vortex-shedding
large-scale feature characterized by vigorous eddy dynamics and in-
tensive eddy/large-scale interactions. Note, that the flow decomposi-
tion into the large- and small-scale (i.e., mesoscale eddy) components
is not unique because of both the absence of the spectral gap and
the highly nonlinear dynamics — this complicates the analyses and
parameterizations of the eddy effects.

Our goal is to improve the analogue coarse-resolution double-gyre
model by feeding it with information obtained from solutions of the
high-resolution model, which is treated as the reference truth or the
observed data. Ideally, this data-driven approach should enable us
to reproduce in the coarse-resolution model the main characteristics
of the high-resolution reference solution: (a) the large-scale circula-
tion pattern (specifically, the eastward jet extension with its adjacent
recirculation zones) and (b) its intrinsic, large-scale low-frequency vari-
ability (LFV). As we show in this paper, the latter characteristic proves
more elusive to rectify, even if the augmentation makes use of the
full eddy information. To be precise, one should aim at comparing the
augmented coarse-resolution solution with the large-scale component
of the high-resolution solution, which is obtained by statistical filtering.
Nevertheless, we focus on rectifying the large-scale circulation patterns
and LFV, which are interconnected, that are clearly transparent in the
full high-resolution solution as well, so we use it for the comparison.

Recently, Ryzhov et al. (2019) introduced a novel approach for
augmenting the coarse-resolution analogue model with data inferred
from the high-resolution truth; it involves the following main steps: (i)
running the high-resolution model, saving the solution data and verify-
ing that the analogue low-resolution model significantly misrepresents
certain key features of the large-scale circulation; (ii) decomposing
the high-resolution data into some large-scale and small-scale (eddy)
fields; (iii) producing the eddy forcing term, which is based on the
decomposed fields and provides an important dynamical constraint, in
order to exert extra forcing and augment the low-resolution model in
a dynamically consistent way. Overall, an advantage of this approach
is in combining its data-driven nature with the transparent dynamical
constraint, and this is strengthened by significant flexibility of its
practical implementations.

In this paper our goal is to extend the approach of Ryzhov et al.
(2019) by significantly reducing and simplifying the information sup-
plied from the high-resolution reference truth. Now, instead of aug-
menting the model with the true eddy forcing history coarse grained
on the low-resolution grid, we supply only the true eddy field (and its
statistical emulation by a space–time stochastic process in a separate
experiment). This means that the eddy forcing term is now interactively
and continuously calculated online from the supplied eddy field history
and the dynamical low-resolution solution, which is treated as the
prognostic large-scale circulation. The approach is based on the implicit
assumption that the low-resolution model, if it is properly augmented,
is adequate for representing the large-scale circulation patterns and the
LFV.

2. Double-gyre model

2.1. Governing equations

We use the same model configuration as in Ryzhov et al. (2019).
The model has been extensively tested both in eddy-permitting and
eddy-resolving regimes (Marshall et al., 2012; Maddison et al., 2015;
Shevchenko and Berloff, 2015; Shevchenko et al., 2016; Ying et al.,
2019). A brief description is as follows. The quasi-geostrophic (QG)
potential vorticity (PV) evolution in 3 stacked isopycnal layers (𝑖 = 1..3

from top to bottom) with densities 𝜌𝑖 (𝜌1 = 1000, 𝜌2 = 1001.498,
𝜌3 = 1001.62 kg m−3) and heights 𝐻𝑖 (𝐻1 = 250, 𝐻2 = 750, 𝐻3 = 3000

m) is given by

𝜕𝑞𝑖
𝜕𝑡

+ 𝐽 (𝜓𝑖, 𝑞𝑖) + 𝛽
𝜕𝜓𝑖
𝜕𝑥

=
𝑊 (𝑥, 𝑦)

𝜌𝑖𝐻𝑖

𝛿1𝑖 − 𝛾𝛥𝜓𝑖𝛿3𝑖 + 𝜈𝛥
2𝜓𝑖 , (1)

where 𝑞𝑖 is the PV anomaly, 𝜓𝑖 is the streamfunction, 𝐽 (⋅, ⋅) is the
Jacobian operator, 𝛿𝑖𝑗 is the Kronecker delta, 𝛥 is the horizontal Lapla-
cian, 𝛽 = 2 ⋅ 10−11 m−1 s−1 is the planetary vorticity gradient, 𝜈 is
the eddy viscosity (varies for different spatial resolutions used in the
study), 𝛾 = 4 ⋅ 10−8 s−1 is the bottom friction parameter. The basin is
north–south oriented square −𝐿 ≤ 𝑥, 𝑦 ≤ 𝐿, where 2𝐿 = 3840 km.

The upper-ocean layer is forced by the stationary asymmetric wind
stress curl

𝑊 (𝑥, 𝑦) =

⎧⎪⎨⎪⎩

−
𝜋𝜏0𝐴

𝐿
sin

𝜋(𝐿+𝑦)

𝐿+𝐵𝑥
, 𝑦 ≤ 𝐵𝑥 ,

𝜋𝜏0
𝐿𝐴

sin
𝜋(𝑦−𝐵𝑥)

𝐿−𝐵𝑥
, 𝑦 > 𝐵𝑥 ,

(2)

where the asymmetry, tilt, and wind stress magnitude parameters are
𝐴 = 0.9, 𝐵 = 0.2, and 𝜏0 = 0.08 N m−2, respectively.

The PV anomalies and streamfunctions are related through

𝑞1 = 𝛥𝜓1 + 𝑆1(𝜓2 − 𝜓1) ,

𝑞2 = 𝛥𝜓2 + 𝑆21(𝜓1 − 𝜓2) + 𝑆22(𝜓3 − 𝜓2) ,

𝑞3 = 𝛥𝜓3 + 𝑆3(𝜓2 − 𝜓3) , (3)

where the stratification parameters 𝑆1, 𝑆21, 𝑆22, 𝑆3 are chosen to
yield the first and second baroclinic Rossby deformation radii of 40
and 23 km, respectively. The boundary conditions are no-flow-through
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and partial-slip (with the partial-slip length scale equal to 120 km);
the mass is conserved in each layer. The model is solved using the
high-resolution CABARET method that features a second-order, non-
dissipative and low-dispersive, conservative advection scheme
(Karabasov et al., 2009).

Given an adequately fine spatial resolution, the model is capable
of resolving the eddies that maintain the well-developed eastward jet
extension of the western boundary current. Otherwise, the eastward
jet extension is under-predicted or even absent because the backscatter
process of the energy transfer from the eddies to the large-sale flow
is under-resolved by the model (Jansen and Held, 2014; Jansen et al.,
2015; Shevchenko and Berloff, 2016; Berloff, 2018).

2.2. Differences of flow structures in eddy-resolving and eddy-permitting
regimes

We consider two spatial grid resolutions for simulating the eddy-
permitting (low-resolution) and eddy-resolving (high-resolution) flow
regimes: 129 × 129 and 513 × 513, respectively. For resolving the west-
ern boundary layer (Berloff and McWilliams, 1999), the low-resolution
configuration is run with the viscosity 𝜈 = 50 m2 s−1, whilst the high-
resolution one has 𝜈 = 2m2 s−1. In both cases, the model is first spun-up
for 100 years until a statistically equilibrated state is achieved; then, its
daily output is saved for another 90 years for further analyses.

The differences in the resulting flows are well-documented
(Shevchenko and Berloff, 2015; Ryzhov et al., 2019), so here we only
note that the low-resolution model does not induce a proper eastward
jet extension (Fig. 1a), whereas the high-resolution one features a well-
pronounced, eddy-driven eastward jet with the adjacent recirculation
zones (Fig. 1b). Throughout the paper we make use of the standard
deviation instead of the time-mean when address the problem of
rectifying the large-scale circulation patterns. The standard deviation
accentuates more saliently the differences also easily seen in time-mean
patterns.

Not only the spatial patterns but also the temporal variabilities
of the reference solutions are different. To reveal details of the lat-
ter, we used the Data-Adaptive Harmonic Decomposition (DAHD)
method (Chekroun and Kondrashov, 2017; Kondrashov et al., 2018a),
which characterizes a complex and multiscale spatio-temporal vari-
ability by extracting spatial data-adaptive harmonic modes (DAHMs)
such that each one of them oscillates at a single temporal frequency
and is spatially orthogonal to all other modes at that frequency (see
Appendix A for details). The DAHD has been successfully applied to
characterize variabilities in different geophysical datasets including
ocean circulation (Kondrashov et al., 2018a; Ryzhov et al., 2019;
Kondrashov et al., 2020), sea ice (Kondrashov et al., 2018c,b), and
space physics (Kondrashov and Chekroun, 2018).

Here, we applied the DAHD to the upper-ocean PV anomaly fields of
the reference solutions. To make our analysis computationally
tractable, first, these fields were compressed using the standard prin-
cipal component analysis (PCA) (Preisendorfer, 1988) to retain the
leading 𝑑 = 2000 empirical orthogonal function (EOF) modes. These
modes capture 98% and 95% of the variance in the low- and high-
resolution solutions, respectively. Next, the original PV anomaly fields
were projected onto the retained EOFs to obtain the corresponding
principal components (PCs). These 𝑑 = 2000 PCs were used as inputs for
the DAHD frequency-domain formulation, which is tailored for analysis
of high-dimensional datasets (Chekroun and Kondrashov, 2017; Ryzhov
et al., 2019) and based on the singular value decomposition (SVD) of
the 𝑑 × 𝑑 symmetrized complex cross-spectral matrix S(𝑓 ):

S𝑝,𝑞 =

{
𝜌𝑝,𝑞(𝑓 ) if 𝑞 ≥ 𝑝,

𝜌𝑞,𝑝(𝑓 ) if 𝑞 < 𝑝,
(4)

where 1 ≤ 𝑝, 𝑞 ≤ 𝑑; and 𝜌𝑝,𝑞(𝑓 ) is the Fourier transform of the double-
sided cross-correlation coefficients 𝜌(𝑝,𝑞)(𝑚) estimated for all pairs of the
channels (PCs) 𝑝 and 𝑞, and for the time lag 𝑚, up to its maximum

𝑀 − 1; i.e. −(𝑀 − 1) ≤ 𝑚 ≤ 𝑀 − 1. Each singular value 𝜎𝑘(𝑓 ) of S(𝑓 )

is associated with a pair of negative/positive eigenvalues (𝜆+
𝑘
(𝑓 ), 𝜆−

𝑘
(𝑓 ))

obtained by using the standard DAHD time-domain formulation and an
eigen-decomposition of a matrix formed of the elements 𝜌(𝑝,𝑞)(𝑚) (Kon-
drashov et al., 2018a; Ryzhov et al., 2019; Kondrashov et al., 2020):

𝜆+
𝑘
(𝑓 ) = −𝜆−

𝑘
(𝑓 ) = 𝜎𝑘(𝑓 ), 1 ≤ 𝑘 ≤ 𝑑, (5)

The DAHD power spectrum is obtained by plotting eigenvalues |𝜆(𝑓 )|
which represent energy conveyed by associated DAHMs; the frequency
𝑓 is equally spaced with the Nyquist interval [0, 0.5] across the 𝑀
values:

𝑓 = 0.5
(𝓁 − 1)

𝑀 − 1
, 𝓁 = 1,… ,𝑀 . (6)

The adequate spectral resolution in the low-frequency part is
achieved by considering 30K days long PCs, sub-sampled every 5

days. Thus, we have 𝑁 = 6000 samples and use the largest possible
embedding window 𝑀 = 𝑁∕2 = 3000 for the maximum spectral
resolution in the frequency domain.

Despite the overall similarity of the DAHD spectra shown in Fig. 2
and characterized by the bands of higher values separated by the gaps
from the broadly distributed bands of lower values, as well as by the
power-law behaviors in the high-frequency range, the low-resolution
solution spectrum has significantly smaller magnitudes, which indicate
the reduced eddy activity. In the upper band, there are two |𝜆| values at
each frequency, each of them corresponding to a negative–positive pair
(see Eq. (5)). The observed gap in the spectrum can be interpreted as
a dominance of a particular physical mechanism of energy distribution
and transfer across all the temporal frequencies. However, the exact
interpretation of the spectra is significantly hindered by the nonlinear
character of the underlying physical interactions. Here, we use the
spectra to diagnose the LFV and its profound effect on the spectrum.

The striking difference is the pronounced LFV in the high-resolution
solution (see the blue dots in Fig. 2b at the period ≈ 17 years), and
its complete absence in the low-resolution solution (Fig. 2a). This
interdecadal LFV was studied elsewhere (Berloff and McWilliams, 1999;
Berloff et al., 2007; Shevchenko et al., 2016), and here we just note that
the quality of an augmented low-resolution model can be tested by the
model’s capability to simulate this LFV.

2.3. Low-frequency variability as an indicator of properly resolved small
scales

As we pointed out in the previous section, one of the most re-
markable dynamical features which differentiate the low- and high-
resolution solutions is the LFV in the latter. The LFV manifests itself
as the total energy modulation with the period ≈ 17 years (Berloff
and McWilliams, 1999; Kondrashov and Berloff, 2015). A peculiar
characteristic of the LFV is that it appears only if the double-gyre model
resolves the eddies and hence activates the essential eddy backscat-
ter mechanism (Berloff et al., 2007; Shevchenko and Berloff, 2016).
The backscatter here means that the energy from the small scales is
transferred to the large scales and thus impacts the large-scale circu-
lation. If the spatial resolution is too coarse (even in eddy-permitting
regimes), the small scales are not resolved and in turn the large scales
are also under-saturated, which introduces many inconsistencies in
the flow when comparing solutions corresponding to differing spatial
resolutions.

Ryzhov et al. (2019) demonstrated that the low-resolution model is
in principle capable of inducing the LFV, provided that it is augmented
with the eddy forcing history provided by the high-resolution data. Our
goal now is to reduce the amount of the information inferred from the
high-resolution data, but still be able to capture the LFV and induce
it in the augmented low-resolution model. Thus, instead of using the
complete high-resolution data for estimating the true eddy forcing and
using it to augment the low-resolution model, we intend to use only
the true eddy component of the flow, and to calculate the augmenting
eddy forcing interactively by using the large-scale flow predicted by the
augmented low-resolution model.
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Fig. 1. Standard deviation of the upper-layer PV anomaly (𝑞1) produced by the (a) low-resolution (129
2) and (b) high-resolution (5132) models. The solutions emphasize the crucial

effect of the spatial resolution. Nondimensional color scale units (PV is normalized using the length scale 3 × 104 m, corresponding to the low-resolution grid interval, and the
velocity scale 0.01 m∕s) are the same across all the figures.

Fig. 2. Temporal spectral content of the reference solutions with: (a) 1292 and (b) 5132 grids. Shown are the 30 largest values of |𝜆| per frequency, as given by the DAHD power
spectrum of the upper-layer PV anomalies. The blue dots in panel (b) indicate maximum of the broadband spectral peak corresponding to the low-frequency variability (LFV)
≈ 17 yr in the high-resolution solution; this LFV is absent in the low-resolution solution (panel (a)).

3. Scale decomposition of the high-resolution solution

The high-resolution solution, which is treated as the truth, should
be decomposed into a combination of large-scale and small-scale (eddy)
components. The former one should be adequately captured by an
augmented low-resolution model; whilst the latter one may remain
largely unresolved. However, we know that the true eddy forcing
adequately augments the low-resolution model, and this is a necessary
condition for our next steps.

An issue of significant concern is that the large-scale/eddy flow de-
composition, which is central to the proposed augmentation scenarios,
is neither unique nor clearly constrained by dynamical or statistical
arguments. For now, various methods assume (Hasselmann, 1988; von
Storch et al., 1995; Schmid, 2010; Li and von Storch, 2013; Dijkstra,
2013, 2018; Viebahn et al., 2019; Agarwal et al., 2020) that the
implemented flow decomposition (i.e., scale separation) is practically
meaningful, and then build upon this assumption; our work is fully
within this framework.

A formal scale decomposition for an arbitrary 2D time-dependent
field 𝛯 (in our case, 𝛯 stands for the layer-wise streamfunctions 𝜓𝑖 and
PV anomalies 𝑞𝑖) reads

𝛯 (𝑥, 𝑦, 𝑡) = 𝛯 (𝑥, 𝑦, 𝑡) + 𝛯′ (𝑥, 𝑦, 𝑡) , (7)

where the overbar and prime indicate the large-scale and eddy com-
ponents, respectively. With this in mind, we decomposed the high-
resolution streamfunctions 𝜓𝑖 by the moving-average square filter of
size 𝑊 ; and the corresponding PV anomalies are obtained by dif-
ferentiation (akin Eq. (3)). We justify our choice of 𝑊 by focusing
on mesoscale eddies, which are scaled by the first baroclinic Rossby
deformation radius, but we also admit that the problem contains many
length scales and they vary geographically making the flow decompo-
sition a difficult and open problem. The problem stems from the fact
that for linear flows (when all the active scales are well separated in
the Fourier spectra), the filter size should linearly depend on the ratio
between the fine – and coarse – resolution grids. However, in our case,
there is no separation between the active scales and the filter size is
chosen based on the expected dynamical features we would like to filter
out assuming the coarse-resolution model being unable to resolve them.
In our case, these features are mesoscale eddies with length scales of
order of the first baroclinic Rossby deformation radius (≈ 10−100 km).

Preliminary analyses (Ryzhov et al., 2019) suggest that the filter size
of 𝑊 = 21 of high-resolution grid intervals (≈ 150 km in physical units)
is adequate, but we also tested 𝑊 = 41 as a tribute to the unavoidable
sensitivity analysis. The eddy fields (calculated on the high-resolution
spatial grid 513 × 513) were coarse-grained to be fed into the low-
resolution (129 × 129) model by averaging over four adjacent grid cells
in each spatial direction.
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Fig. 3. Statistics of the upper-layer PV anomaly field for the low-resolution augmented solution (1292 grid) obtained by feeding the true eddy field extracted with the 𝑊 = 21

filter): (a) standard deviation showing partial reconstruction of the eastward jet extension; (b) temporal spectral content provided by DAHD; the LFV (blue dots) is not reproduced,
compared to the reference truth in Fig. 2b. Panels (c)–(d) are same as (a)–(b), but for the eddies extracted with the filter size 𝑊 = 41; the eastward jet extension is now well
reproduced, but there is still no LFV.

Guided by the fact that the LFV is eddy-driven, we substituted (7)
into the governing equation (1) and for each layer obtained:

𝜕𝑞𝑖
𝜕𝑡

+ 𝐽 (𝜓 𝑖, 𝑞𝑖) = 𝑖

(
𝜓 𝑖, 𝑞𝑖, 𝜓

′
𝑖 , 𝑞

′
𝑖

)
+𝑖(𝜓 𝑖, 𝑞𝑖) + 𝑖(𝜓

′
𝑖 , 𝑞

′
𝑖 ) , (8)

where the operator 𝑖 contains all terms involving only the large-scale
components; the linear operator 𝑖 contains the eddy tendency term
and all linear terms involving the eddy components; and the remaining
term,

𝑖 = −
(
𝐽 (𝜓 𝑖, 𝑞

′
𝑖 ) + 𝐽 (𝜓

′
𝑖 , 𝑞𝑖) + 𝐽 (𝜓

′
𝑖 , 𝑞

′
𝑖 )
)
, (9)

is the eddy forcing (Berloff, 2005) due to nonlinear coupling of the
large-scale and eddy components. The linear eddy term 𝑖 can be
neglected, since its contribution to the eastward jet (as we checked)
is about 2% of that of the eddy forcing.

Ryzhov et al. (2019) established that the eddy-forcing term, when
properly preprocessed with respect to the low-resolution dynamics, can
be effectively added into the low-resolution model to improve signifi-
cantly the mean flow and transient (spectrally treated) characteristics
of its solutions. In this work, our goal is to reduce the amount of
the high-resolution information by feeding the eddies rather than the
eddy forcing information (which depends on both the eddies and large
scales) into the augmented model.

4. Feeding the eddy field into the low-resolution model

With only the eddies being fed to the augmented model, the external
information is subtler, which makes it harder for the low-resolution

model to resolve desired dynamics resembling the fine-resolution refer-
ence solution such that the eastward extension of the jet is noticeably
rectified and the low-frequency variability is present. At the same
time, gauging the possibility of reducing the amount of data neces-
sary for successful parameterization and errors introduced due to the
incompleteness of the data is practically important.

The governing equations for the augmented low-resolution model
are, thus:

𝜕𝑞𝑖
𝜕𝑡

+ 𝐽 (𝜓𝑖, 𝑞𝑖) = 𝑖

(
𝜓𝑖, 𝑞𝑖, 𝜓

′
𝑖 , 𝑞

′
𝑖

)
+𝑖(𝜓𝑖, 𝑞𝑖) , (10)

where the small-scale (eddy) fields 𝜓 ′
𝑖
, 𝑞′

𝑖
are taken from the high-

resolution data, and the prognostic low-resolution, large-scale variables
𝜓𝑖, 𝑞𝑖 are continuously updated online during numerical integration of
the model. We used all 90 years of the daily output to extract the eddy
fields and then linearly interpolated them in time in-between the data
records. An important issue of determining the minimal length of the
eddy history for the quality augmentation of the low-resolution model
is left outside the scope of the paper and will be addressed elsewhere.

We assessed the quality of the augmented low-resolution solution
by looking into the simulated eastward jet region, focusing on its
large-scale circulation patterns (evinced by the standard deviation in
time) and LFV. The augmented-model eastward jet has improved but
is still substantially different from the reference truth, as can be seen
by comparing Figs. 3a and 1a. Similarly large discrepancies are seen
in the augmented-model DAHD spectrum (Fig. 3b), which completely
lacks the LFV. The interactive eddy forcing (Fig. 4a) can be significantly
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Fig. 4. Standard deviations of different eddy forcings: (a) on-line eddy forcing from the solution augmented with eddies extracted with filter size 𝑊 = 21; (b) same as (a), but for
𝑊 = 41; (c) true (offline) eddy forcing, as in Ryzhov et al. (2019)). The on-line eddy forcing in (a) is about 4 times weaker than the off-line forcing, which is one of the reasons
for the augmentation failure.

less efficient because it is noticeably weaker than the true eddy forcing
(Fig. 4c). We checked this by considering the more energetic eddy field
extracted with the larger filter size 𝑊 = 41 (Fig. 4b), but although the
resulting eddy forcing is as intensive as the true one, the augmented
model is still incapable of generating the LFV as implied by the DAHD
spectrum (Fig. 3d). From this, we conclude that feeding even the
most complete eddy fields into the model is still not sufficient for
augmenting the solution. So, one has to use additional information from
the high-resolution data to induce the LFV.

It has been already established (Ryzhov et al., 2019) that the true
(off-line) eddy-forcing (Fig. 4b) generates the LFV in the augmented
solution; therefore, we know that one way or another the model can be
successfully augmented with the right amount of the extra information.
One way to add this information is by interactively projecting the
augmented solution onto the leading, true large-scale EOFs, and this
can be viewed as a weak statistical constraint imposed by the filtering.
The corresponding set of EOFs are obtained through the standard
singular value decomposition, such that

𝑸
𝑖

𝐻𝑅 = 𝑷𝑪 𝑖
⋅ 𝑬𝑶𝑭 𝑖 , (11)

where 𝑸
𝑖

𝐻𝑅 is the large-scale true PV anomaly in the 𝑖th layer and
in the matrix form rearranged so, that the rows correspond to the
spatial degrees of freedom, whilst the columns represent their time
evolutions; 𝑷𝑪 𝑖 = 𝑼 𝑖

⋅ 𝑺 𝑖, 𝑬𝑶𝑭 𝑖 =
(
𝑽 𝑖

)∗
, where 𝑼 𝑖, 𝑺 𝑖, 𝑽 𝑖 are the

left eigenvector, diagonal singular value, and the right eigenvector
matrices, respectively; ⋅∗ is matrix transpose.

Projection of the on-line augmented PV anomaly 𝑸𝑖 onto some 𝑛
EOFs 𝑬𝑶𝑭 𝑖

𝑛 takes the form:

𝑸
𝑖

𝑛 = 𝑸𝑖
⋅
(
𝑬𝑶𝑭 𝑖

𝑛

)∗
⋅ 𝑬𝑶𝑭 𝑖

𝑛 , (12)

and the updated field 𝑸
𝑖
is used on the next time step of the model

(Eq. (10)).

There are two key parameters at the projection step: the number
𝑛 of EOFs and the time interval 𝑇𝑝𝑟𝑜𝑗 between successive projections;
these parameters are chosen empirically, for optimizing both the results
and computational costs. We found by sensitivity experiments that
the number of the EOFs should be relatively large, and 2000 out of
1292 = 16641 total EOFs are good enough; and 𝑇𝑝𝑟𝑜𝑗 should not be
much longer than 100 model days, used here as the benchmark value.
With these parameters, the augmented model recovered not only more
than 95% of the LFV spectral power but also the correct frequencies.
We varied the number of the EOFs and obtained qualitatively similar
results within the 500–2000 range, and the lower values degrade the
solution. Since the EOF projections are made infrequently, the filtering
process is computationally inexpensive.

The additionally filtered model solutions now exhibit the LFV as
diagnosed by DAHD spectra shown in Fig. 5a for 𝑊 = 21 and Fig. 5b
for 𝑊 = 41. It is worth noting that even in the solution augmented
with weaker eddies (𝑊 = 21) the LFV is also reproduced, albeit it is
not as energetic as with the stronger eddies (𝑊 = 41). The eastward jet
extension is also reproduced similarly to the case without large-scale
filtering (see Fig. 3).

In addition to the detailed DAHD spectral space–time diagnostic
of PV anomaly field, it is also useful to consider the manifestation of
LFV in the total potential energy, which is a global characteristic of
the solution. Fig. 6 shows the Fourier spectral analysis of the poten-
tial energy time series by the standard Multitaper method (Percival
and Walden, 1993), which reveals broadband LFV peaks at frequency
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Fig. 5. The DAHD temporal spectra of the upper-layer PV anomaly field in augmented and additionally filtered model solutions: (a) 𝑊 = 21 (weaker eddies) ; (b) 𝑊 = 41 (stronger
eddies). The LFV (see the peaks with the blue dots) is now present in both solutions, and it is more intensive with stronger eddies.

Fig. 6. Power spectrum density (PSD) of the potential energy by the Multitaper
method, featuring the energetic and broadband LFV with the main period of ≈ 17 years,
in both the reference high-resolution solution and augmented low-resolution solution
(supplied by the eddy field obtained with filter 𝑊 = 41 and periodically projected onto
2000 EOFs of the large-scale ‘‘truth’’ basis), as opposed to the lack of such LFV in the
reference low-resolution solution.

≈ 0.06 year−1 (about 17 years period), both for the reference high-
resolution and augmented low-resolution solutions, whilst the reference
low-resolution solution features no LFV with a mostly flat spectrum.
Due to the projection, the augmented solution acquires oversaturated
high frequencies near the LFV peak; this may be dealt with by carefully
selecting the projection basis of the filtering procedure so to filter out
spurious small-scale effects and is beyond the scope of the current study
as we aimed at imbuing the coarse-resolution solution with the correct
LFV.

Finally, we would like to emphasize that feeding the eddies to in-
duce the augmenting eddy forcing in the low-resolution model (Eq. (9))
is absolutely necessary for generating the LFV, and we verified this by
turning it off. If the filtering based on the EOF projection procedure is
applied alone, it does not augment the solution thus confirming that
the main component of the parameterization is the eddy forcing.

5. Statistical emulation of the eddy field

Here we developed data-driven statistical emulators of the true eddy
field for feeding them into the low-resolution model instead of the
original high-resolution eddy fields. The number of statistical emu-
lation methods has recently surged, including stochastic approaches
in climate science (Penland and Matrosova, 2001; Strounine et al.,

2010; Franzke et al., 2015; Kondrashov et al., 2015; Chen et al., 2016;
Palmer, 2019; Seleznev et al., 2019; Foster et al., 2020), as well as
other machine-learning (deep learning) methods developed for fluid
dynamics applications (Brunton et al., 2020; Bolton and Zanna, 2019).
The detailed analysis of emulated eddy fields is beyond the scope of
this study, and in the context of assessing the skill of our emulators
we focus solely on one of the central problems in climate ocean model
simulations, namely, the correct rectification of the eddy field’s impact
on the large-scale circulation. Thus we aimed for the solution of the
low-resolution model, when augmented by an emulated eddy field,
to be able to reproduce the long-term statistics of the high-resolution
reference solution. We utilized the same skill measures as for the true
eddy field explored in previous section. These are the geometrical shape
of the large-scale circulation patterns, as well as the manifestation of
the LFV.

We used a 30 000-day long high-resolution dataset of the eddy
stream function 𝛹̂ for the three layers combined. The dataset is then
coarse-grained onto the low spatial resolution (129 × 129), and further
compressed by the PCA. We retained the leading 1000 PCs that account
for ≈ 98% of the variability.

As a basic and most straightforward emulator, we considered a
linear stochastic regression model (Kravtsov et al., 2005, 2006; Kon-
drashov et al., 2005, 2015) in the following discrete form:

𝝃𝑡+1 − 𝝃𝑡 = 𝑨𝝃𝑡 + 𝒓
(0)
𝑡 , (13)

where 𝑡 is the time index (in days), 𝝃 is a vector of PCs, and 𝑨 is a matrix
of the regression coefficients. While Eq. (13) can include additional
model layers of hidden variables obtained in a sequential regression
procedure, it is not necessary here since the regression residual 𝒓(0)𝑡 is
well approximated by a spatially correlated white noise, 𝒓(0)𝑡 = 𝜮𝑾̇ ,
where 𝑾 is a Wiener process and 𝜮 is the Cholesky decomposition of
the correlation matrix of the residuals from the model fitting.

The emulated PCs are obtained by initializing the model from the
first data point of the training interval and by running it for 30 000
days. The eddy field is reconstructed in space from the emulated PCs
by using the EOF basis, and then it is fed into the low resolution model
in our augmentation procedure. While this basic emulator of the eddy
field yields a fairly reasonable geometrical structure of the jet extension
in the augmented solution (Fig. 7a), it does not induce the LFV as
evident by the flat spectral density curve of the full potential energy
(Fig. 7b), which is also similar to the non-augmented low-resolution
solution.

A closer analysis shows that the lack of the LFV in the augmented
solution is related to the spectral content of the emulated eddy field,
in which energy at low frequencies is underestimated in comparison
to the true eddy field. In turn, because the LFV in the true eddy
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Fig. 7. (a) Standard deviation of the upper-layer PV anomalies in the augmented solution with an artificial eddy field emulated by a PCA-based linear model (Eq. (13)) (the
periodical projection onto the 2000 EOFs of the large-scale ‘‘truth’’ basis is applied as well). The pattern of the standard deviation for the case of the DAHD model (Eq. (14)) is
similar (however, its magnitude is noticeably larger) and is not shown for brevity; (b) Power spectrum densities of the potential energy by the Multitapering method: the LFV is
reproduced much better in the case of the DAHD-emulated eddy field.

field is considerably weaker than in the true reference solution, it is
challenging to capture it by an emulator based on PCA PCs, which
typically mix different temporal scales.

The DAHD method (Section 2.2 and Appendix A) provides a novel
emulation alternative, as it combines identification of frequency-ranked
modes and their efficient modeling. It extracts pairs of data-adaptive
harmonic modes (DAHMs) that form an orthonormal set of spatial
patterns oscillating harmonically in time, and, thus, represent global
monochromatic space–time filters. Projection of the dataset onto
DAHMs yields pairs of narrowband time series of data-adaptive har-
monic coefficients (DAHCs), which are modulated in amplitude, but do
not mix temporal scales.

Chekroun and Kondrashov (2017) showed that the Stuart–Landau
(SL) stochastic oscillator — a nonlinear oscillating system near a Hopf
bifurcation and driven by an additive noise, is best suited to model
amplitude modulations and frequency for the narrowband and in-phase
quadrature time series of a DAHC pair (𝜁+𝑡 (𝑓 ), 𝜁

−
𝑡 (𝑓 )), associated with

a given spectral pair (𝜆+(𝑓 ), 𝜆−(𝑓 )) (see Section 2.2 and Appendix B),
here written in a compact form with a complex number notation:

𝑧𝑡+1(𝑓 ) − 𝑧𝑡(𝑓 ) = (𝜇(𝑓 ) + 𝑖𝛾(𝑓 ))𝑧𝑡(𝑓 ) − (1 + 𝑖𝛽(𝑓 ))|𝑧𝑡(𝑓 )|2𝑧𝑡(𝑓 ) + 𝜖𝑡 , (14)

where 𝑧𝑡(𝑓 ) = 𝜁+𝑡 (𝑓 ) + 𝑖𝜁−𝑡 (𝑓 ), 𝜇(𝑓 ), 𝛾(𝑓 ) and 𝛽(𝑓 ) are real parame-
ters and 𝜖𝑡 is an additive noise. Furthermore, multiple SL-oscillators
associated with the same non-zero frequency are linearly coupled and
synchronized across frequencies by the pairwise-correlated white noise,
while the model parameters are estimated by a regression with con-
straints (see Appendix B for numerical details). The original dataset
with its multiple time scales can be modeled in a computationally
efficient manner since the contribution of each temporal frequency is
simulated in parallel.

Kondrashov et al. (2018a) developed a stochastic DAHD emulator
for the LFV in the model considered, and here we extended these
results to the eddies. We used the leading 𝑑 = 100 PCs of the eddy
streamfunction capturing ≈ 70% of the variance and applied the DAHD
with the embedding window of 𝑀 = 100 days. Then, we fit the model
of coupled 𝑑 = 100 stochastic oscillators for the DAHCs and obtained
their emulations for the 𝑀 = 100 frequencies. After emulated DAHCs
were back-transformed into the space–time eddy field by using DAHMs
and EOFs, and combined across all the emulated frequencies, we fed
the outcome into the augmented model. The geometrical shape of the
augmented solution is again reproduced fairly well, and it is very
similar to Fig. 7a (not shown for brevity). Furthermore, since the LFV
is now better captured in the emulated eddy field (compare to the
high-resolution ‘‘truth’’), it is also induced in the augmented solution
(Fig. 7b), albeit it is less energetic then when the true eddy field is used
(see Fig. 6).

6. Conclusions

In this paper we focused on improving solutions of an eddy-
permitting low-resolution model by augmenting it with the information
from the reference high-resolution model solution, which was treated
as the observed truth. Our approach can be viewed as a basis for
developing data-driven parameterizations for the mesoscale oceanic
eddies and their effects, and in perspective for other types of turbulent
fluid motions. Ultimately, the parameterization should involve statisti-
cal emulations of the key unresolved or under-resolved flow features.
We adopted a systematic approach towards such a parameterization
framework; this paper is the second one in the series, after Ryzhov et al.
(2019).

For the ocean circulation model, we considered the classical, wind-
driven double gyres in the quasigeostrophic approximation with 3
active isopycnal layers, and in an idealized, closed, midlatitude basin
configuration. Solutions of the double-gyre model are notoriously sensi-
tive to the spatial grid resolution, which is typical for the general ocean
circulation models. Two prominent flow features, which are crucially
dependent on the resolution, are in the focus of our study: (1) the
eastward jet extension of the western boundary currents with its adja-
cent recirculation zones, and (2) the intrinsic, large-scale low-frequency
(interdecadal) variability of the gyres that is most pronounced in the
eastward jet region. Both of these features are essentially mesoscale
eddy-driven, therefore, for their dynamical representation in the model
the eddies have to be either properly resolved, which is computa-
tionally expensive, or adequately parameterized in terms of a simpler
model.

In the high-resolution reference solution both of the key features are
well represented, whereas the low-resolution reference solution lacks
any of them. Motivation for including (1) is straightforward, because
any eddy parameterization is, first of all, tested for its ability to simulate
the large-scale climatological fields. Motivation for including (2) is
to test the ability of the parameterization to simulate intrinsic cli-
mate variabilities similar to the relatively well understood interdecadal
variability featured in our model. Our hope is that testing mesoscale
eddy parameterization skills will eventually include climate variability
signals as the standard test beds.

Our model augmentation procedure involves the following main
steps. First, the high-resolution (true) solution is decomposed into
large-scale and small-scale (eddy) flow components by simple moving-
average filtering in space. This flow decomposition is neither unique
nor obviously constrained by dynamical or statistical arguments. Here,
we only assumed that the filter width should be about scaled with
the first baroclinic Rossby deformation radius, since our study targets
mesoscale eddies.
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In the prequel study (Ryzhov et al., 2019), the decomposed flow
components were used to find the history of the eddy forcing, which
is just part of the advection operator that involves the eddy field;
then, this history was coarse-grained and applied to augment the low-
resolution model with many analyses and sensitivity studies attached
to this statement and reported in the paper. In the present study we
extended the approach by supplying the primary eddy fields instead
of the eddy forcing, which is a higher-level and subtler information.
Moreover, we tested the augmentation procedure skills in terms of
the challenging reproduction of the LFV. The eddy field component
was interactively coupled with the corresponding low-resolution model
solution, which was treated as the simulated large-scale flow compo-
nent, via the (on-line) eddy forcing operator, which can be viewed
as an additional dynamical constraint imposed on the augmentation
procedure.

We found that the augmentation significantly improved representa-
tion of the eastward jet extension, but the LFV was still missing. The
immediate hypothesis was that this was because the eddies are too
weak, hence, the interactive eddy forcing was too weak to generate
the LFV. We tested this hypothesis by increasing the filter size used
to extract the eddies, and the resulting new eddy forcing turned out
to be of the same intensity as the true eddy forcing; however, this
further improved the modeled eastward jet but did not generate the
LFV. From this we concluded that the LFV was crucially dependent
on the correlations between the large-scale flow and the eddy forcing,
which were not fully respected by the augmentation procedure.

We also realized that the eddy history alone was not sufficient,
and some additional information had to be supplied as part of the
augmentation. We do not yet have the ultimate answer on what this
information should be, but in order to make progress we decided to
supply some large-scale flow information in terms of interactive, weak
filtering of the simulated large-scale flow towards the observed truth.
This idea was implemented as a statistical filtration — interactively
projecting the simulated transient flow anomalies onto the leading em-
pirical orthogonal functions (EOFs) of the reference (high-resolution)
true flow.

This approach worked well, and we experimentally found the op-
timal number of the EOFs and the optimal frequency of the applied
filtering procedure, so that the LFV was almost fully recovered. Since
the filtering can be applied infrequently (about every 100 days in our
case) rather than continuously, which is also possible, its computational
cost is nearly negligible. However, the exact amount of information
needed from the high-resolution ‘‘truth’’ for a correct rectification of
the LFV remains unknown and its assessment should be addressed
elsewhere. We hypothesized that this information should contain cor-
rect correlations between the eddy and large-scale fields. We also
demonstrated that the filtering was of secondary importance relative
to the supplied eddy forcing, because when the latter was switched off,
the filtering alone was not capable of augmenting the solution to any
acceptable level.

Finally, we developed a statistical emulation of the eddy field
as spatio-temporal stochastic process, and used it in our augmented
procedure. Results showed that the frequency-ranked data-adaptive
harmonic decomposition (DAHD) emulator reproduces the LFV sub-
stantially better than the PCA-based linear stochastic model.

An agenda for further research stemming from this paper is to
build on and improve statistical emulators for the eddy field, as well
as to consider extending the proposed approach beyond the relatively
simple quasigeostrophic approximation to comprehensive general cir-
culation models. Constraining the large-scale/eddy flow decomposition
and making it consistent with the low-resolution ocean model is also
very important. Finally, adding new criteria (e.g., higher-order sta-
tistical moments and spatio-temporal correlations) for assessing eddy
parameterization skills should not be too far away.
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Appendix A. Data-adaptive harmonic decomposition (DAHD)

Here we present a brief summary of the DAHD frequency-domain
implementation and stochastic emulation methodology following
(Chekroun and Kondrashov, 2017; Kondrashov and Chekroun, 2018;
Kondrashov et al., 2018a,b) and tailored to high-dimensional datasets.
We consider a multivariate time series 𝑿(𝑡) =

(
𝑋1(𝑡),… , 𝑋𝑑 (𝑡)

)
formed

with 𝑑 spatial channels and 𝑡 = 1,… , 𝑁 time points (sampled evenly).
Double-sided (unbiased) cross-correlation coefficients 𝜌(𝑝,𝑞)(𝑚) are es-
timated for all the pairs of channels 𝑝 and 𝑞 and time lag 𝑚 up to a
maximum 𝑀 − 1:

𝜌(𝑝,𝑞)(𝑚) =

⎧
⎪⎨⎪⎩

1

𝑁−𝑚

∑𝑁−𝑚
𝑡=1 𝑋𝑝(𝑡 + 𝑚)𝑋𝑞(𝑡), 0 ≤ 𝑚 ≤𝑀 − 1,

𝜌(𝑞,𝑝)(−𝑚), 𝑚 < 0.
(15)

where 𝑀 is the embedding window and each of 𝜌(𝑝,𝑞)(𝑚) sequences is
of length 𝑀 ′ = 2𝑀 − 1. The DAHD numerical algorithm computes
its spectral elements (𝜆𝑗 ,𝐖𝑗 , 𝑗 = 1,… , 𝑑(2𝑀 − 1)) by utilizing a
𝑑 × 𝑑 symmetrized complex cross-spectral matrix S(𝑓 ) built from the
Fourier transforms of the cross-correlation sequences (see Eq. (4)). The
data-adaptive harmonic modes (DAHMs) represent collection of spatio-
temporal patterns𝐖𝑗 = (𝐄

𝑗

1
,… ,𝐄

𝑗
𝑑
) oscillating with different but single

frequency 𝑓 in time-embedded space 1 ≤ 𝑚 ≤𝑀 ′:

𝐄
𝑗
𝑘
(𝑚) = 𝐵

𝑗
𝑘
cos(2𝜋𝑓𝑚 + 𝜃

𝑗
𝑘
), 1 ≤ 𝑘 ≤ 𝑑, (16)

where the amplitudes 𝐵𝑗
𝑘
and phases 𝜃𝑗

𝑘
are data-adaptive, 𝑓 takes

distinct 𝑀 values that are equally spaced in Nyquist interval [0 0.5],

𝑓 =
(𝓁 − 1)

𝑀 ′ − 1
, 𝓁 = 1,… ,

𝑀 ′ + 1

2
, (17)

and |𝜆𝑗 | informs on energy conveyed by𝐖𝑗 . In particular, for each 𝑓 ≠

0, there are 2𝑑 positive–negative eigenelements which are necessarily
paired as (𝜆+

𝑘
(𝑓 ) = −𝜆−

𝑘
(𝑓 ), 𝑘 = 1,… , 𝑑), while the phases for the

associated DAHM pair (𝑾 +
𝒌
(𝑓 ),𝑾 −

𝒌
(𝑓 )) satisfy 𝜃+

𝑘
= 𝜃−

𝑘
+𝜋∕2, i.e. these

modes are shifted by one fourth of the period and are thus always
in exact phase quadrature, similar to the sine-and-cosine pair in the
Fourier analysis, but in a data-adaptive and global-in-space fashion.
There are also 𝑑 (non paired) spectral elements (𝜆𝑘,𝐖𝑘) associated
with the frequency 𝑓 = 0. The Fourier transforms of the DAHMs
are computed as eigenvectors of the matrix S(𝑓 )S(𝑓 ) (Chekroun and
Kondrashov, 2017, Theorem V.1 and Eq.74):

S(𝑓 )S(𝑓 )𝑊𝑘(𝑓 ) = 𝜆2
𝑘
𝑊𝑘(𝑓 ) (18)
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and spatiotemporal patterns of (𝑾 +
𝒌
(𝑓 ),𝑾 −

𝒌
(𝑓 )) are obtained then by

the inverse Fourier transform. A projection of 𝑋 onto given 𝐖𝑗 yields
the time series of the DAHD expansion coefficients (DAHCs):

𝜁𝑗 (𝑡) =

𝑀 ′∑
𝑚=1

𝑑∑
𝑘=1

𝑋𝑘(𝑡 + 𝑚 − 1)𝐄
𝑗
𝑘
(𝑚) (19)

where 1 ≤ 𝑡 ≤ 𝑁 − 𝑀 ′ + 1. The time series of a given DAHC
pair (𝜁+

𝑘
(𝑡), 𝜁−

𝑘
(𝑡)) associated with the modes (𝑾 +

𝒌
(𝑓 ),𝑾 −

𝒌
(𝑓 )) at the

frequency 𝑓 ≠ 0, are narrowband, nearly in phase quadrature and
heavily modulated in amplitude.

Appendix B. Frequency-ranked stochastic emulators

The collective behavior of the 𝑑 pairs at the frequency 𝑓 ≠ 0 (see
Appendix A) is simulated by a system of linearly coupled Stuart–Landau
stochastic oscillators:

𝑑𝜁+
𝑘

𝑑𝑡
= 𝛽𝑘(𝑓 )𝜁

+
𝑘
− 𝛼𝑘(𝑓 )𝜁

−
𝑘
− 𝜎𝑘(𝑓 )𝜁

+
𝑘
((𝜁+

𝑘
)2 + (𝜁−

𝑘
)2)

+

𝑑∑
𝑖≠𝑘

𝑎𝑖𝑘(𝑓 )𝜁
+
𝑖 +

𝑑∑
𝑖≠𝑘

𝑏𝑖𝑘(𝑓 )𝜁
−
𝑖 + 𝜖+

𝑘
,

𝑑𝜁−
𝑘

𝑑𝑡
= 𝛼𝑘(𝑓 )𝜁

+
𝑘
+ 𝛽𝑘(𝑓 )𝜁

−
𝑘
− 𝜎𝑘(𝑓 )𝜁

−
𝑘
((𝜁+

𝑘
)2 + (𝜁−

𝑘
)2)

+

𝑑∑
𝑖≠𝑘

𝑐𝑖𝑘(𝑓 )𝜁
+
𝑖 +

𝑑∑
𝑖≠𝑘

𝑑𝑖𝑘(𝑓 )𝜁
−
𝑖 + 𝜖−

𝑘
,

(20)

where 1 ≤ 𝑘 ≤ 𝑑; the model parameters are estimated by a pairwise
multiple linear regression with linear constraints on 𝛼𝑘(𝑓 ) and 𝛽𝑘(𝑓 ) to
ensure antisymmetry for the linear coupling within a given pair, as well
as equal and positive values 𝜎𝑘(𝑓 ) > 0 to ensure numerical stability. The
stochastic forcing in Eq. (20) is informed by regression residuals from

the model fitting, namely

[
𝝐+
𝒕

𝝐−
𝒕

]
= 𝜮𝑑𝑾 , where 𝜮 is the 2𝑑×2𝑑 Cholesky

decomposition of the correlation matrix of the residuals and 𝑑𝑾 is a
2𝑑-valued Wiener process. The linear stochastic emulator (Eq. (13)) is
used to model the time series of the DAHCs associated with 𝑓 ≡ 0,
which are not paired.

Any subset of DAHCs can be convolved with its corresponding set
of DAHMs, to produce a partial or full reconstruction of the original
dataset. Thus, the following 𝑗th reconstructed component (RC) at time
𝑡 and for channel 𝑘 is defined as:

𝑅
𝑗
𝑘
(𝑡) =

1

𝑀𝑡

𝑈𝑡∑
𝑚=𝐿𝑡

𝜁𝑗 (𝑡 − 𝑚 + 1)𝐄
𝑗
𝑘
(𝑚), 1 ≤ 𝑚 ≤𝑀 ′ (21)

where 𝐿𝑡 (𝑈𝑡) is a lower (upper) bound in {1,… ,𝑀 ′} that depends on
time and the normalization factor 𝑀𝑡 equals 𝑀

′ except near the ends
of the time series. The sum of all the RCs across all the frequencies
recovers the original time series, and stochastically emulated DAHCs
are back-transformed to the phase-space of the original dataset by using
Eq. (21).
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