
Shape Expressions for Specifying
and Extracting Signal Features

Dejan Ničković1, Xin Qin2, Thomas Ferrère3, Cristinel Mateis1, and Jyotirmoy
Deshmukh2

1 AIT Austrian Institute of Technology
2 University of Southern California

3 IST Austria

Abstract. Cyber-physical systems (CPS) and the Internet-of-Things
(IoT) result in a tremendous amount of generated, measured and recorded
time-series data. Extracting temporal segments that encode patterns
with useful information out of these huge amounts of data is an extremely
difficult problem. We propose shape expressions as a declarative formal-
ism for specifying, querying and extracting sophisticated temporal pat-
terns from possibly noisy data. Shape expressions are regular expressions
with arbitrary (linear, exponential, sinusoidal, etc.) shapes with parame-
ters as atomic predicates and additional constraints on these parameters.
We equip shape expressions with a novel noisy semantics that combines
regular expression matching semantics with statistical regression. We
characterize essential properties of the formalism and propose an efficient
approximate shape expression matching procedure. We demonstrate the
wide applicability of this technique on two case studies.

1 Introduction

Cyber-physical systems (CPS) and Internet-of-Things (IoT) applications are ev-
erywhere around us - smart buildings that adapt heating control to the user’s
habit, intelligent transportation systems that optimize traffic based on the con-
tinuous monitoring of the road conditions, wearable health monitoring devices,
and medical devices that fine-tune a given therapy depending on sensing a pa-
tient’s health. These applications are inherently data-driven – the decisions of
the system rely on the measurement and analysis of the dynamic behavior of
the environment. Low-cost sensing solutions combined with the availability of
powerful edge and cloud devices to store and process data has led to a tremen-
dous increase in the generation, measurement and recording of time-series data.
Processing these huge streams of available data in an efficient manner to extract
useful information is challenging. It is often the case that only specific segments
of the time series contain interesting and relevant patterns. For instance, an elec-
tricity provider may be interested in observing spikes or oscillations in the voltage
signals. A medical device manufacturer may want to detect anomalous cardiac
behavior. A wearable device maker would like to associate specific patterns in
the measurements from accelerometer and gyroscope sensors to a concrete user
activity, such as running or walking.

Such patterns can be often characterized with geometric shapes observed in
the time-series data; e.g., a spike can be specified as an “upward triangle”, i.e. a
sequence of two contiguous line segments with slopes that have opposite signs.
There are also instances where the time-series data is multi-dimensional (say
(x(t), y(t))), and the user may be interested in knowing if a “pulse” shape in
x(t) is followed by an “exponential decay” shape in y(t).

We propose shape expressions, a novel declarative language for specifying
sophisticated temporal patterns over (possibly multi-dimensional) time series.
A shape expression is in essence a regular expression where atomic predicates
are arbitrary (linear, exponential, sinusoidal, etc.) shapes with (slope, offset, fre-
quency, etc.) parameters, and with additional parameter constraints. We asso-
ciate to shape expressions a noisy language that allows observed data to approx-
imately match the expression. The noisy expression semantics combines classical
regular expression semantics with statistical regression, which is used to match
atomic shapes and infer parameter valuations that minimize the noise between
the ideal shape and the observation. We allow either using mean squared error
(MSE) or the coefficient of determination (CoD), statistical measures of how
close the observed data are to the fitted regression (atomic) shape, as our noise
metric. We define shape automata as an executable formalism for matching shape
expressions and propose a heuristic for querying time series with shape expres-
sions efficiently. We apply this algorithm to two case studies from different CPS
and IoT domains to demonstrate its applicability.

Illustrating Example We use the example depicted in Figure 1 to illustrate
the concepts presented in this paper. This figure shows a raw noisy signal that
contains two pulses. The two pulses differ both in duration, depth and offset,
but have the same qualitative shape that characterizes them as pulses. Fig. 1b
shows a specification of an ideal pulse. We characterize a pulse as a sequence
of 5 segments: (1) constant segment at some b; (2) linearly decreasing segment
with slope a2 < 0; (3) constant segment at some b3; (4) linearly increasing
segment with slope a4 > 0; and (5) constant segment at b. We observe that the
above specification uses parametric shapes, where the parameters are possibly
constrained (e.g. a2 < 0) or shared between shapes (e.g. b), and describes a
perfect shape without accounting for noise.

(a) Two pulse shapes

b

t2 t3 t4 t5 t6t1

b2

b3

(b) Idealized Pulse shape
Fig. 1

Related Work Regular expressions and temporal logics are the most common
general purpose specification languages for expressing temporal patterns in the
formal methods community. However, specifying temporal patterns in data is a
problem that has been pervasively studied. For instance, specification and recog-
nition of a pulse in pulse-based communications is an IEEE standard [1] in its
own right. Extracting unspecified motifs in time series has been studied in data-
mining [21], and feature extraction using patterns has been studied in machine
learning [20, 12]. More recently, time series shapelets were introduced in [29] as
a data mining primitive. A shapelet is a time series segment representing a cer-
tain shape identified from data. Our work is partially motivated by the concept
of shapelets. In contrast to shapelets that are extracted from unlabelled data,
shape expressions provide a more supervised feature extraction mechanism, in
which domain-specific knowledge is used to express shapes of interest.

In the context of CPS, timed regular expressions (TRE) [7, 6], quantitative
regular expressions (QRE) [3, 2, 4, 19], Signal Temporal Logic (STL) [18] and var-
ious stream languages [10, 11, 17, 15, 16] have been used as popular formalisms for
specifying properties of CPS behaviors. QREs is a powerful formalism that com-
bines quantitative computations over data with regular expression-based match-
ing. An offline algorithm for matching TREs was proposed in [23, 22]. This thread
of work was extended to online pattern matching in [24]. Automata-based match-
ing for TREs has been developed in [25–27]. In contrast to our approach, pattern
matching with QREs and TREs is sensitive to noise in data. The problem of un-
certainty has been studied through parameterized TRE specifications, either by
having parameters in time bounds [5] or in spatial atomic predicates [8]. These
approaches are orthogonal to ours – instead of having parameters on standard
TRE operators, we focus on a rich class of parameterized atomic shapes. Finally,
a sophisticated algorithm to incrementally detect exponential decay patterns in
CO2 measurements was proposed in [28] in the context of smart building appli-
cations. We adapt and extend this basic idea to a general purpose specification
language that allows combining such atomic shapes with regular operators.

2 Shape Expressions and Automata

In this section, we define shape expressions as our pattern specification language.
In essence, they are regular expressions over parametrized signal shapes, such as
linear, exponential or sine segments, and with additional parameter constraints.
We then define shape automata, which translate shape expressions and provide
an executable formalism for recognizing composite signals made of several types
of segments. This executable formalism captures exactly the notion of shape
expression, and will allow us to define a family of pattern matching algorithms
as we will see in Section 3. We first give a few basic definitions necessary to our
framework, such as notions of signals, parameters, and shapes.

2.1 Definitions

Let P = {p1, . . . , pn} be a set of parameters. A parameter valuation v maps
parameters p ∈ P to values v(p) ∈ R ∪ {⊥}, where ⊥ represents the undefined

value. We use the shortcut v(P) to denote {v(p1), . . . , v(pn)}. A constraint γ
over P is a Boolean combination of inequalities over P . We write v |= γ when
the constraint γ is satisfied by the valuation v. Given p ∈ P and p ◦ k for
◦ ∈ {=, <,≤, >,≥} and some k ∈ R, we have that v(p) = ⊥ implies that
v 6|= p ◦ k. We denote by Γ (P) the set of all constraints over P .

Let X be a set of signal variables. A signal w over X is a function w : X ×
[0, d)→ R, where [0, d) is the time domain of w, which we assume to be discrete,
hence a subset of Z. We denote by |w| = d the length of w.

Given two signals w1 : X×[0, d1)→ R and w2 : X×[0, d2)→ R, we denote
by w ≡ w1 ·w2 their concatenation w : X×[0, d1+d2)→ R, where for all x ∈ X,
w(x, t) = w1(x, t) if t ∈ [0, d1) and w(x, t) = w2(x, t − d1) if t ∈ [d1, d1 + d2).
Let w : X × [0, d)→ R be a signal, and d1 and d2 be two constants such that
0 ≤ d1 < d2 ≤ d. We denote by w[d1,d2) : X × [0, d2 − d1) → R the restriction
of w to the time domain [d1, d2), such that for all x ∈ X and t ∈ [0, d2 − d1),
w[d1,d2)(x, t) = w(x, t+d1). We allow signals of null duration d = 0, which results
in the unique signal with the empty time domain1.

Consider two sequences y = y1, . . . , yn and f = f1, . . . , fn of values, where
y represents a sequence of observations and f the corresponding sequence of
predictions given by a model which approximates the distribution of y. The
mean squared error MSE(y, f) of f relative to y is a statistical measure of how
well the predictions of a (regression) model approximates the observations, and
is defined as follows.

MSE(y, f) =
1

n
Σn
i=1(yi − fi)2

Another statistical measure in a regression analysis of how well the predic-
tions of a (regression) model approximates the observations is the coefficient of
determination R2, defined in terms of the mean ȳ of the sequence y, its total
sum of squares SStot and the residual sum of squares SSres as follows:

R2(y, f) = 1− SSres(y,f)
SStot(y)

ȳ = 1
nΣ

n
i=1yi

SStot(y) = Σn
i=1(yi − ȳ)2 SSres(y, f) = Σn

i=1(yi − fi)2

The coefficient of determination R2 typically ranges from 0 to 1. An R2 of 1
indicates that the predictions are a perfect match of the observations. On the
contrary, an R2 of 0 indicates that the model explains none of the variability
of the response data around its mean. Negative values of R2 can occur if the
predictions fit the observations worse than a horizontal hyperplane.

2.2 Shape Expressions

We now define the syntax and semantics of shape expressions defined over the
set X of signals and the set P of parameter variables. A shape σx(P ′) is an
expression that maps parameter variables P ′ ⊆ P and the signal variable x ∈ X
to a parameterized family of idealized signals. To every shape σx, we associate a

1 The signal with the empty time domain is equivalent to the empty word in the
classical language theory

special duration variable lσ,x that is included in the set P of parameter variables.2

Consider the basic shapes below.

linx(a, b, l) ≡ {w | ∃v.|w| = v(l) ∧ w(x, t) = t · v(a) + v(b)} (1)

expx(a, b, c, l) ≡ {w | ∃v.|w| = v(l) ∧ w(x, t) = v(a) + v(b)et·v(c)} (2)

sinx(a, b, c, d, l) ≡ {w | ∃v.|w| = v(l) ∧ w(x, t) = v(a) + v(b) sin(v(c)t+ v(d))}(3)

In (1), we describe a line segment parameterized by its slope a, and in-
tercept b. In (2), we describe an exponential shape with parameters a, b, c,
and l, while (3) describes a parameterized family of sinusoidal shapes with the
specified parameters3. Given a valuation v and a shape σx(P ′), we denote by
w(x) = σx(v(P ′)) the signal w that instantiates the shape σx to concrete pa-
rameter values defined by v. We assume a finite set Σ of shapes, without impos-
ing further restrictions. Shape expressions (SE) are regular expressions, where
shapes with unknown parameters play the role of atomic primitives, and which
have an additional restriction operator for enforcing parameter constraints.

Definition 1 (SE syntax). The shape expressions are given by the grammar

ϕ ::= ε | σx(P ′) | ϕ1 ∪ ϕ2 | ϕ1 · ϕ2 | ϕ∗ | ϕ : γ

where σ ∈ Σ, x ∈ X, P ′ ⊆ P , and γ ∈ Γ (P).

The symbol ε denotes the empty word, the operators ϕ1 ∪ ϕ2, ϕ1 · ϕ2 and ϕ∗

denote the classical regular expression union, concatenation and Kleene star
respectively, while ϕ : γ says that ϕ is constrained by γ. We write ϕi as an
abbreviation of ϕ · · ·ϕ (i times). We denote by ΣX(P) the set of expressions of
the form σx(P ′) for σ ∈ Σ, x ∈ X and P ′ ⊆ P . The set of shape expressions
over P and X is denoted Φ(P,X).

Example 1. Consider the visual pulse specification from Figure 1b. We describe
an ideal pulse as a shape expression ϕpulse as follows4:

ϕ ≡ linx(0, b) · linx(a2, b2) : a2 < 0 · linx(0, b3) · linx(a4, b4) : a4 > 0 · linx(0, b)

The semantics of shape expressions is given as a relation between signals
and parameter valuations, which we call a language. We associate with every
shape expression a noisy language Lν for some noise tolerance threshold ν ≥ 0,
capturing the ν-approximate meaning of the expression. The exact language L
capturing the precise meaning of the expression is obtained by setting ν to zero.

2 We use l instead of lσ,x whenever its association to σx is clear from the context, and
omit lσ,x altogether when not interested in the duration of the shape.

3 We omit the duration variable l whenever we are not interested in the duration of a
shape - for instance we then use the notation sin(a, b, c, d).

4 We abuse the notation and replace a parameter variable by a constant, for instance
linx(0, b), as a shortcut for linx(a1, b) : a1 = 0.

To define the noisy language of an expression, we associate a goodness of fit
measure of a signal to an ideal shape, describing how far is the observed signal
from the ideal shape. We derive this measure by combining mean squared error
(MSE) computed on atomic shapes. The overall measure gives the quality of a
match to a shape expression. We formally define the noisy language as follows.

Definition 2 (SE noisy language). Let ν ∈ R≥0 be a noise tolerance thresh-
old. The noisy language Lν of a shape expression is defined as follows:

Lν(ε) = {(w, v) | |w| = 0}
Lν(σx(P ′)) = {(w, v) | |w| = v(l) and µ(w(x), σx(v(P ′))) ≤ ν}
Lν(ϕ1 · ϕ2) = {(w1 · w2, v) | (w1, v) ∈ Lν(ϕ1) and (w2, v) ∈ Lν(ϕ2)}
Lν(ϕ1 ∪ ϕ2) = Lν(ϕ1) ∪ Lν(ϕ2)

Lν(ϕ∗) =

∞⋃
i=0

Lν(ϕi)

Lν(ϕ : γ) = {(w, v) | (w, v) ∈ Lν(ϕ) and v |= γ}

where µ(y, f) is substituted by either MSE(y, f) or 1− CoD(y, f).

The noisy SE language is defined as the set of all signal/parameter valuation
pairs, such that the distance of the signal from the ideal shape signal defined by
the shape expression and instantiated by the parameter valuation is smaller or
equal than the noise threshold.

Example 2. Consider the shape expression ϕpulse specifying a pulse, the signal
w depicted in Figure 1a, and the signal w′ = wI the restriction of w to the
interval I = [7, 26). Let us consider v = (v(a2), v(a4), v(b), v(b2), v(b3), v(b4)) =
(−0.67, 0.67, 9, 17, 7,−5) the valuation of parameter variables in ϕpulse that in-
stantiates the ideal shape (red line) of the first pulse depicted in Figure 1a. Let
w1 = w[7,12), w2 = w12,15), w3 = w[15,18), w4 = w[18,21) and w5 = w[21,26), with:

MSE(w1(x), linx(0, v(b))) = 0.04 MSE(w4(x), linx(v(a4), v(b4))) = 0.35
MSE(w2(x), linx(v(a2), v(b2))) = 0.49 MSE(w5(x), linx(0, v(b))) = 0.10
MSE(w3(x), linx(0, v(b3))) = 0.13

It follows that (w′, v) ∈ L0.5(ϕpulse) but (w′, v) 6∈ L0.1(ϕpulse).

2.3 Shape Automata

We now define shape automata, which will act as recognizers for shape expres-
sions. They are akin to finite state automata in which edges are labeled by shape
expressions with unknown parameters, and parameter constraints. We will then
show that they are inter-translatable to shape expressions.

Definition 3 (Shape automata). A shape automaton is a tuple 〈P,X,Q,∆, S, F 〉,
where (1) P is the set of parameters, (2) X is the set of real-valued signal vari-
ables, (3) Q is the set of control locations, (4) ∆ ⊆ Q×ΣX(P)× Γ (P)×Q is

linx(0, b)
q0 q1 q2 q3 q4 q5

linx(0, b)

a2 < 0

linx(a2, b2) linx(0, b3) linx(a4, b4)

a4 > 0

Fig. 2: Shape automaton Apulse

the set of edges, (5) S ⊆ Q is the set of starting locations, and (6) F ⊆ Q is
the set of final locations.

Example 3. The shape automaton Apulse, shown in Figure 2 recognizes pulse
shapes specified by the shape expression ϕpulse.

A state in a shape automaton is a pair (q, v) where q is a location and v is a
parameter valuation. The runs of shape automata are akin to those in weighted
automata and defined as follows. For a signal w we define transitions

w−→
c

between

two states as follows. We have (q, v)
w−→
c

(q′, v′) if there exists (q, σx(P ′), γ, q′) ∈ ∆
such that P ′ ⊆ P , c = µ(w(x), σx(v′(P ′))), v′ |= γ, v′(p) = v(p) for all p ∈ P\P ′
and v′(p) = v(p) also for all p ∈ P ∩ P ′ such that v(p) 6= ⊥. The semantics of a
shape automaton are given as follows.

Definition 4 (Shape automaton run). A run of a shape automaton over
some signal w is a sequence of transitions

(q0, v0)
w1−−→
c1

(q1, v1)
w2−−→
c2

. . .
wn−−→
cn

(qn, vn)

such that q0 ∈ S, v0 = (⊥, . . . ,⊥) and qn ∈ F , where w1 · w2 . . . wn is a de-
composition of w. Such a run ρ induces cost(ρ) = maxni=1 ci and the parameter
valuation val(ρ) = vn.

The set of runs of a shape automaton A over some signal w is denoted R(A, w).
A shape automaton A associates any given signal w to a similarity measure that
is the minimum among the similarity measures of all runs.

Definition 5 (SA language and noisy language). The noisy language of
a shape automaton for a given noise tolerance threshold ν ∈ R+ is Lν(A) =
{(w, v) | ∃ρ ∈ R(A, w) s.t. val(ρ) = v and cost(ρ) ≤ ν}. The exact language of
a shape automaton is L(A) = L0(A).

Example 4. Consider the signal w′ = w1w2w3w4w5 from Example 2 and let:

v1 = (⊥,⊥, 9,⊥,⊥,⊥) c1 = 0.04 v4 = (−0.67, 0.67, 9, 17, 7,−5) c4 = 0.35
v2 = (−0.67,⊥, 9, 17,⊥,⊥) c2 = 0.49 v5 = (−0.67, 0.67, 9, 17, 7,−5) c5 = 0.10
v3 = (−0.67,⊥, 9,⊥, 7,⊥) c3 = 0.13

We then have, assuming v0 = (⊥,⊥,⊥,⊥,⊥,⊥), that

ρ = (q0, v0)
w1−−→
c1

(q1, v1)
w2−−→
c2
· · · w5−−→

c5
(q5, v5)

is a run of Apulse over w′ with cost(ρ) = 0.49 and w′ ∈ L0.5(Apulse).

We now formally show the equivalence between shape expressions and shape
automata. The first direction of the theorem allows to construct automata recog-
nizers for arbitrary expressions. The second direction of the theorem shows that
shape expressions are expressively complete relative to the class of automata
under consideration.

Theorem 1 (SE ⇔ SA). For any shape expression ϕ there exists a shape au-
tomaton Aϕ such that Lν(Aϕ) = Lν(ϕ) for all ν ≥ 0. For any shape automaton
A there exists a shape expression ϕA such that Lν(ϕA) = Lν(A) for all ν ≥ 0.

3 Pattern Matching

In Section 2.3, we introduced shape automata to recognize signals that are close
to a specified shape. However, a shape expression is not intended to represent
a whole signal, but only a segment thereof. In this section, we extend shape
automata to enable them identifying all signal segments that match specific
shapes. We first define the notion of noisy match sets.

Definition 6 (Noisy match set). For any signal w defined over a time domain
T = [0, d), shape expression ϕ and noise tolerance threshold ν, we define the
match set M(ϕ,w) and the noisy match set Mν(ϕ,w) as follows:

Mν(ϕ,w) = {(t, t′) ∈ T2 | t ≤ t′ and w[t,t′) ∈ Lν(ϕ)}

Given a shape automatonA, its associated shape pattern matching automaton
Â is another shape automaton that extends A with dedicated initial and final
locations, which allow Â to silently consume a prefix and a suffix of a signal.
The construction follows [9] and is given in the definition below.

Definition 7 (Shape pattern matching automaton). Let A = 〈P,X,Q,∆, S, F 〉
be a shape automaton. Then the corresponding shape pattern matching automa-
ton is Â = 〈P,X, Q̂, ∆̂, Ŝ, F̂ 〉, where

– Q̂ = Q ∪ {ŝ, f̂}, Ŝ = {ŝ}, F̂ = {f̂},
– ∆̂ = ∆ ∪ {(ŝ, any, true, q) | q ∈ S} ∪ {(q, any, true, f̂) | q ∈ F}, where any

is a special shape such that µ(w, any) = 0 for all w.

Intuitively, given a signal w, a shape expression ϕ and its associated shape
pattern matching automaton Âϕ, an accepting run ρ over w decomposed into

w0 · w1 · · ·wn+1 in Âϕ

(ŝ, v0)
w0−−→
0

(q0, v0)
w1−−→
c1

. . .
wn−−→
cn

(qn, vn)
wn+1−−−→

0
(f̂ , vn)

represents one potential match (defined by segment (t, t′) in w where t = |w0|
and t′ = |w| − |wn+1|) with one specific parameter instantiation (vn) and its
associated similarity measure cost(ρ) = maxni=1 ci. We denote by λ(ρ) = (t, t′)

the label of run ρ over w in Â. We first note that for a given decomposition of w,

there is an infinite number of runs over w in Âϕ that follow that decomposition
due to the parameters being valued as real numbers. We also note that for a
given signal w, there is a finite (but large) number of its decompositions.

Example 5. Figure 3 shows three runs ρ1, ρ2 and ρ3 over w in Âpulse and the
corresponding ideal shapes defined by the valuations computed during the runs.
We can see that each run identifies one segment of w that could be a potential
match of the shape expression ϕpulse with specific parameter values and cost. In
particular, we can observe that runs ρ1 and ρ2 decompose w in the same manner
but with different parameter valuations, resulting in cost(ρ1) < cost(ρ2).

Fig. 3: Pulse train - three runs ρ1, ρ2 and ρ3 over w in Âpulse.

From the above observations, we obtain that the labeling of the set of runs
associated to a shape pattern matching automaton Â and a signal w gives us
exactly the match set of L(A) relative to w.

Theorem 2. Let ϕ be a shape expression, Âϕ the corresponding shape pattern
matching automaton, w a signal and ν a noise tolerance threshold. We have that
Mν(ϕ,w) = {(t, t′) | ∃ρ ∈ R(Âϕ, w) s.t. λ(ρ) = (t, t′) and cost(ρ) ≤ ν}.

We observe that while this in principle solves the SE pattern-matching prob-
lem, the complexity in terms of signal length is not practical. Let us define the
dot-depth of some expression ϕ the maximal number of concatenations featured
on any branch of its syntax tree.

Theorem 3. The size of the set of runs of a shape matching automaton Âϕ is
Ω(nk+2), where n is the size of the trace, and k is the dot-depth of ϕ.

The dot-depth of any expression is nonnegative, hence this lower bound is at least
quadratic in the length of the signal. This means that any exhaustive algorithm

will not scale in many practical applications, where typical signal can be over
106 samples long.

We propose two ways to handle complexity: (1) bound the length of matches,
or (2) develop heuristics to efficiently match shape expressions. Bounding the
length of matches is reflected in the following definition.

Definition 8 (Bounded shape expressions). A shape expression is said to
be bounded (by k) when for all words w we have that w ∈ L(ϕ) implies |w| ≤ k.

Theorem 4 (Linear-time upper bound). For an expression ϕ bounded by
k the size of the set of accepting runs of the shape matching automaton can be
represented by a dag of size O(nk2m·k

m

), where n is the length of the trace and
m is the length of the expression.

4 Policy Scheduler for Shape Matching Automata

In this section, we propose a heuristic in the form of a policy scheduler that
efficiently approximates the complete match set by computing a representative
subset of non-overlapping matches.

Let w be a signal defined over X and σx(P ′) a shape with x ∈ X. We denote
by reg the statistical regression with constraints which returns the pair of the
parameter values v(P ′) which minimizes MSE under the constraint γ and the
associated µ(w, σx(v(P ′))), defined as follows:

reg(w, σx, γ) = (argminv{MSE(w, σx(v(P ′))) | v |= γ}, µ(w, σx(v(P ′)))) .

We now show that µ (MSE and CoD) can be computed in an online fashion.
Given the two sequences y = y1, . . . , yn and f = f1, . . . , fn of observations and
predictions, we define a recursive definition of MSE and CoD as follows.

MSE(y, f, n+ 1) = n
n+1 MSE(y, f, n) + 1

n+1 (yn+1 − fn+1)2

ȳ(n+ 1) = n
n+1 ȳ(n) + 1

n+1yn+1

SStot(y, n+ 1) = SStot(y, n) + (yn+1 − ȳ(n))(yn+1 − ȳ(n+ 1))
SSres(y, f, n+ 1) = SSres(y, f, n) + (yn+1 − fn+1)2

R2(y, f, n+ 1) = 1− SSres(y,f,n+1)
SStot(y,n+1)

We require a minimum length λ > 1 for atomic shape matches5. We define
the auxiliary method out∆ as follows:

out∆(S) = {δ | ∃ δ = (q, σx, γ, q
′) ∈ ∆ for some q ∈ S}

The method policy scheduler searches for non-overlapping SE matches in w from
time 0, using method expression match. The call of expression match at time t
returns another time t′. If t′ > t, the segment [t, t′] successfully matches the

5 We also assume that the SMA Â, the signal w, the noise tolerance threshold ν and
the minimum match length λ are given as global parameters to the main procedure
policy scheduler and are implicitly propagated to all the other methods

Algorithm 1: Shape expression match expression match

Input: Set of locations S, current end match time t
Output: New end match time t′

1 t′ ← −∞
2 if S ∩ F 6= ∅ then t′ ← t
3 else if t < |w| then
4 foreach δ = (q, σx, γ, q

′) ∈ out∆(S) do
5 τ ← atomic match(δ, t)
6 if τ > −∞ then τ ′ ← expression match({q′}, τ)
7 t′ ← max{t′, τ ′}

8 return t′

expression. The segment [t, t′] is added to the set of matches and the procedure
expression match is invoked again at time t′ + 1. If t′ ≤ t, it means that the
expression could not be matched from time t. The procedure expression match is
invoked again at time t+ 1.

The shape matching procedure expression match (see Algorithm 1) attempts
in a recursive fashion to reach a final location from a set of locations S and time
index t. The procedure returns another time index t′, where t′ ≥ t if a final
location can be reached in t′ − t steps from a location in S, or t′ = −∞ (the
initial value of t′, see line 1) otherwise. If one of the locations is a final location,
we have that t′ = t (lines 2). If none of the locations in S is final, and we have
not yet reached the end of w (lines 3− 7), the procedure does the following. For
every transition with a source location in S, labeled by σx and γ (lines 4 − 7),
atomic match computes the end time τ of the longest match of σx that satisfies
γ and starts at t (line 5). If there is no such match, τ equals to −∞, otherwise
τ ≥ t + λ6. For all the transitions that result in a match ending at time τ , we
recursively call expression match with the target location q′ and time τ as inputs,
and τ ′ as output (line 6). The procedure keeps the longest from the successful
expression matches (line 7). This effectively allows the procedure to concurrently
follow multiple paths and select the one that provides the longest match.

The atomic shape matching procedure atomic match, shown in Algorithm 2,
efficiently computes the longest match of an atomic shape starting from a given
time index. It takes as inputs a transition δ = (q, σx, γ, q

′) and the time index t,
and returns the end time t′ of the longest σx ν-noisy match [t, t′] that satisfies
γ. The algorithm starts by fitting the shape σx to the segment w′ = w[t,t+τ)

under the constraint γ, using the regression method reg, and thus estimating
the parameters v (lines 3). The procedure reg also returns the corresponding
µ-value c of the performed regression. If the associated µ-value c is greater than
the allowed noise tolerance ν, the procedure returns t′ = −∞, meaning that
the segment is not a good candidate for matching the shape. Otherwise, the
algorithm iteratively extends the size τ of the segment as long as the µ-value
between the extended prefix and σx(v(P ′)) instantiated with the fixed parameter

6 Recall that we require atomic matches of minimum length λ.

Algorithm 2: Atomic shape match atomic match.

Input: Transition δ = (q, σx, γ, q
′), start match time index t

Output: End match time t′

1 t′ ← −∞
2 if t+ λ ≤ |w| then
3 τ ← λ; w′ ← w[t,t+τ); (v, c)← reg(w′, σx(P ′), γ)
4 while c ≤ ν do
5 t′ ← t+ τ
6 if t′ < |w| then
7 τ ← τ + 1; w′ ← w′ · w(t′)
8 c← µ(w′, σx(v(P ′)))
9 if c > ν then (v, c)← reg(w′, σx(P ′), γ)

10 else break

11 return t′

valuation v remains lower than or equal to ν (lines 4 − 10). We note that each
extension of the signal prefix updates µ but not the parameter valuation. There
are two possible reasons for µ becoming greater than ν: (i) either the estimated
parameter valuation v needs to be updated, or (ii) the current prefix does not
fit the shape under the constraint ν anymore with any valuation v. In the first
case, the procedure re-estimates the new parameter valuation and re-computes
µ (line 9). If the re-computed µ is smaller than or equal to ν and we didn’t reach
the end of the signal, we repeat the match extension procedure. Otherwise, we
terminate the procedure and return the time index t′ where the current match
(if any, otherwise t′ equals to −∞) ended.

5 Implementation and Evaluation

We implemented the Algo. 2 into a prototype tool using the Python program-
ming language. We employed pattern matching of shape expressions to two ap-
plications – detection of patterns in electro-cardiograms (ECG) and oscillatory
behaviors in an aircraft elevator control system. All experiments were run on
MacBook Pro with the Intel Core i7 2.6 GHz processor and 16GB RAM.

5.1 Detection of Anomalous Patterns in ECG

In this case study, we consider ECG signals from the PhysioBank database [14],
which contains 549 records from 290 subjects (209 male and 81 female, aged from
17 to 87). Each record includes 15 simultaneously measured signals, digitized at
1,000 samples per second, with 16-bit resolution over a range of ±16.384mV. The
diagnostic classes for the subjects participating in the recordings include cardio-
vascular diseases such as myocardial infarction, cardiomyopathy, dysrythmia and
myocardial hypertrophy.

(a) RBBB characteristics
on channels v1, v6

(b) Signal on v6 channel (c) Magnified anomalous pulse

Fig. 4: Recognizing pulses in ECG signals

Specification of an Anomalous Heart Pulse. We consider the right bundle
branch block (RBBB) heart condition, in which the right ventricle is not directly
activated by impulses traveling through the right bundle branch. Fig. 4a depicts
a visual characterization of the RBBB heart condition as it can be observed
on channels v1 and v67. In this work, we concentrate on specifying the shape
of the pulse depicted in v6 using shape expressions. The specification ϕ of the
anomalous v6 pulse consists of a sequence of 7 atomic shapes:

ϕ = exp(a1, b1, c1) : b1 > 0 · exp(a2, b2, c2) : b2 < 0·
lin(a3, b3) : a3 > 0 · lin(a4, b4) : a4 < 0 · lin(a5, b5) : a5 > 0·
exp(a6, b6, c6) : b6 > 0 · exp(a7, b7, c7) : b7 < 0

Evaluation. We evaluated our SE matching procedure with respect to the
recordings of a 70 year old patient that suffers from RBBB condition. The v6
channel recording of the patient, shown in Figure 4b, has 10,000 samples. In this
experiment, we use CoD as our noise metric8. With noise threshold ν = 0.02, we
were able to identify all the segments that match ϕ in 28.98s. The matches are
depicted as colored vertical bands in Figure 4b. Figure 4c zooms in on a single
match and shows the ideal shape that was inferred to match the pattern.

We now experimentally study how sensitive is the quality of the procedure
outcome with respect to the noise threshold and the constraints on the param-
eters, and how well the procedure scales with the size of the input.

Sensitivity to the noise threshold and the constraints on the parameters. Domain
knowledge in a particular application field can be used to derive more precise
specifications. In the case of anomalous v6 pulses for patients with RBBB con-
dition, such knowledge can be for instance used to refine its specification ϕ by
further constraining the slope a3 to be greater than 0.5, resulting in specification
ϕ′. We demonstrate the impact of the noise threshold to the quality of pattern
matching in the cases of under-specified (ϕ) and over-specified (ϕ′) shape expres-
sions. Table 1a shows the results of the experiments, where column |H| denotes

7 The figure is under copyright by A. Rad.
8 We recall that ν = 0 denotes zero noise tolerance and ν = 1 allows arbitrary level of

noise.

Table 1: Experimental Results
(a) Sensitivity to the noise threshold

ν |H| |Mν(ϕ)| |Mν(ϕ′)|
0.70 4 9 4
0.24 4 7 4
0.20 4 5 4
0.10 4 4 4
0.02 4 4 4
0.01 4 0 0

(b) Runtime and memory requirements

Num. Runtime Mem.
Samples (s) (MB)

1,000 0.46 33.13
2,500 1.43 48.82
5,000 3.39 70.80
7,500 6.39 72.83

10,000 10.12 89.18

the number of segments matched by the inspection of the signal by a human with
domain knowledge and columns |Mν(ϕ)| and |Mν(ϕ′)| denotes the number of
the segments matching the expressions ϕ and ϕ′ by our procedure, respectively.

We first observe that domain knowledge iimproves the quality of both the
specification the robustness of the monitor. Second, our approach can result in
missing patterns or detecting false patterns. This result is expected – very low ν
enables to only match shapes that are very close to the ideal one, while very high
ν results in matching shapes that are far away from the specification. Hence, our
procedure may require tuning parameters.

Scalability. We now evaluate the scalability of our procedure with respect to the
size of the signal, taking into account the computation time and the memory
requirements. Table 1b summarizes the results. The computation time in this
experiment exhibits an almost linear behavior, while the memory consumption
appears to grow in a sub-linear fashion with respect to the size of the input.

5.2 Detection of Ringing in an Aircraft Elevator Control System

In many electronics applications, step response is used to study how the system
responds to sudden changes in inputs. Ringing is an oscillation in the output
signal, which is encountered in response to a step in input. It is considered to be
an undesirable behavior, which nevertheless cannot be fully avoided. It is hence
important to investigate properties of the oscillations (amplitude, frequency, etc.)
to determine the quality of the output response.

We use SEs to detect and study ringing behavior in an aircraft elevator
control system [13]. It is a Simulink model of a redundant actuator control system
with one elevator on the left and one on the right side. In essence, the pilot gives
a command with the intended position of the aircraft, which must be followed by
the left and right elevators. When the pilot gives a step command, this results
in the ringing response by the control system, as shown in Figure 5 (a).

Specification of a Ringing Behavior. We are interested in detecting both the
rising and falling edge and the subsequent ringing behavior. We chose to specify

such behavior as a line, followed by a sinc wave (sinc(a, b, c, d, t) = a+b sin(ct+d)ct+d).

ϕ = linx(a1, b1) : a1 > 0.5 · sincx(a2, b2, c2, d2).

(a) Step response of the system. (b) Segments matching ringing pat-
terns.

Fig. 5: Aircraft Elevator Control System Step Response

Amp a1 b1 a2 b2 c2 d2

1 1.36 -8.98 -0.40 3.03 -2.05 17.73
2 2.83 -18.55 -1.51 2.83 -3.31 25.80
3 4.75 -30.75 -2.78 -8.76 -5.21 13.09

Table 2: Parameters inferred from seg-
ments matching ϕ.

Inferring Parameters of Ringing
Patterns. Fig. 5 (b) shows the seg-
ments in the output response of the
aircraft elevator control system that
match the ringing pattern. We stimu-
late the system with input steps of dif-
ferent amplitudes and show how this
change in inputs affects the step re-
sponse and the resulting ringing oscil-
lations. For each response signal, we report the inferred parameters in Table 2.
We can observe that the rising edge of the step response becomes steeper with
input steps of higher amplitude. We can also see that both the amplitude and
the frequency of the sinc monotonically decrease with the input amplitude.

6 Conclusion

In this paper, we proposed shape expressions as a language for specification of
rich and complex temporal patterns. We studied essential properties of shape
expressions and developed an efficient heuristic pattern matching procedure for
this specification language. We believe that this work explores the expressiveness
boundaries of declarative specification languages.

We will pursue this work in several directions. We will apply our technique
to examples from more application domains. We will study more sophisticated
matching methods that will minimize the need of tuning parameter constraints.
We will compare more closely our approach to the work on classical regular
expression matching on one hand, and purely machine learning feature extraction
methods on the other hand. We will finally investigate the application of shape
expressions in testing CPS with the particular focus on generating test cases
from such a specification language.

Acknowledgments This research was supported in part by the Austrian Sci-
ence Fund (FWF) under grants 27 S11402-N23 (RiSE/SHiNE) and Z211-N23

(Wittgenstein Award), and project (ECSEL 737459), and the National Science
Foundation through the FMitF program under Grant CCF-1837131.

References

1. IEEE standard on pulse ment and analysis by objective techniques. IEEE Std.
181-1977, 1977.

2. Houssam Abbas, Alena Rodionova, Ezio Bartocci, Scott A Smolka, and Radu
Grosu. Quantitative regular expressions for arrhythmia detection algorithms. In
International Conference on Computational Methods in Systems Biology, pages
23–39. Springer, 2017.

3. Rajeev Alur, Dana Fisman, and Mukund Raghothaman. Regular programming for
quantitative properties of data streams. In European Symposium on Programming,
pages 15–40. Springer, 2016.

4. Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford. Modular quantitative
monitoring. Proceedings of the ACM on Programming Languages, 3(POPL):50,
2019.

5. Étienne André, Ichiro Hasuo, and Masaki Waga. Offline timed pattern matching
under uncertainty. In 23rd International Conference on Engineering of Complex
Computer Systems, ICECCS 2018, Melbourne, Australia, December 12-14, 2018,
pages 10–20, 2018.

6. Eugene Asarin, Paul Caspi, and Oded Maler. A Kleene theorem for timed au-
tomata. In Logic in Computer Science (LICS), pages 160–171, 1997.

7. Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. Journal
of ACM, 49(2):172–206, 2002.

8. Alexey Bakhirkin, Thomas Ferrère, Oded Maler, and Dogan Ulus. On the quanti-
tative semantics of regular expressions over real-valued signals. In Formal Modeling
and Analysis of Timed Systems - 15th International Conference, FORMATS 2017,
Berlin, Germany, September 5-7, 2017, Proceedings, pages 189–206, 2017.

9. Alexey Bakhirkin, Thomas Ferrère, Dejan Nickovic, Oded Maler, and Eugene
Asarin. Online timed pattern matching using automata. In International Confer-
ence on Formal Modeling and Analysis of Timed Systems, pages 215–232. Springer,
2018.

10. Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd
Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. LOLA: run-
time monitoring of synchronous systems. In 12th International Symposium on
Temporal Representation and Reasoning (TIME 2005), 23-25 June 2005, Burling-
ton, Vermont, USA, pages 166–174, 2005.

11. Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer, and Hazem Torfah. A
stream-based specification language for network monitoring. In Runtime Verifica-
tion - 16th International Conference, RV 2016, Madrid, Spain, September 23-30,
2016, Proceedings, pages 152–168, 2016.

12. Pierre Geurts. Pattern extraction for time series classification. In European Con-
ference on Principles of Data Mining and Knowledge Discovery, pages 115–127.
Springer, 2001.

13. Jason Ghidella and Pieter Mosterman. Requirements-based testing in aircraft
control design. In AIAA Modeling and Simulation Technologies Conference and
Exhibit, page 5886, 2005.

14. Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch
Ivanov, Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and

H Eugene Stanley. Physiobank, physiotoolkit, and physionet: components of a new
research resource for complex physiologic signals. Circulation, 101(23):e215–e220,
2000.

15. Felipe Gorostiaga and César Sánchez. Striver: Stream runtime verification for real-
time event-streams. In Runtime Verification - 18th International Conference, RV
2018, Limassol, Cyprus, November 10-13, 2018, Proceedings, pages 282–298, 2018.

16. Sylvain Hallé and Raphaël Khoury. Event stream processing with beepbeep 3. In
RV-CuBES 2017. An International Workshop on Competitions, Usability, Bench-
marks, Evaluation, and Standardisation for Runtime Verification Tools, September
15, 2017, Seattle, WA, USA, pages 81–88, 2017.

17. Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and Alexander
Schramm. Tessla: runtime verification of non-synchronized real-time streams. In
Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC
2018, Pau, France, April 09-13, 2018, pages 1925–1933, 2018.

18. Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous sig-
nals. In Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant
Systems, Joint International Conferences on Formal Modelling and Analysis of
Timed Systems, FORMATS 2004 and Formal Techniques in Real-Time and Fault-
Tolerant Systems, FTRTFT 2004, Grenoble, France, September 22-24, 2004, Pro-
ceedings, pages 152–166, 2004.

19. Konstantinos Mamouras, Mukund Raghothaman, Rajeev Alur, Zachary G Ives,
and Sanjeev Khanna. StreamQRE: Modular specification and efficient evaluation
of quantitative queries over streaming data. In ACM SIGPLAN Notices, volume 52,
pages 693–708. ACM, 2017.

20. Robert T Olszewski. Generalized feature extraction for structural pattern recogni-
tion in time-series data. Technical report, Carnegie-Mellon Univ. School of Com-
puter Science, 2001.

21. Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista,
Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. Searching
and mining trillions of time series subsequences under dynamic time warping. In
Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 262–270. ACM, 2012.

22. Dogan Ulus. Montre: A tool for monitoring timed regular expressions. In Com-
puter Aided Verification - 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part I, pages 329–335, 2017.

23. Dogan Ulus, Thomas Ferrère, Eugene Asarin, and Oded Maler. Timed pattern
matching. In Formal Modeling and Analysis of Timed Systems (FORMATS), pages
222–236, 2014.

24. Dogan Ulus, Thomas Ferrère, Eugene Asarin, and Oded Maler. Online timed pat-
tern matching using derivatives. In Tools and Algorithms for the Construction and
Analysis of Systems - 22nd International Conference, TACAS 2016, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, pages 736–751,
2016.

25. Masaki Waga and Ichiro Hasuo. Moore-machine filtering for timed and untimed
pattern matching. IEEE Trans. on CAD of Integrated Circuits and Systems,
37(11):2649–2660, 2018.

26. Masaki Waga, Ichiro Hasuo, and Kohei Suenaga. Efficient online timed pat-
tern matching by automata-based skipping. In Formal Modeling and Analysis
of Timed Systems - 15th International Conference, FORMATS 2017, Berlin, Ger-
many, September 5-7, 2017, Proceedings, pages 224–243, 2017.

27. Masaki Waga, Ichiro Hasuo, and Kohei Suenaga. MONAA: A tool for timed pattern
matching with automata-based acceleration. In 3rd Workshop on Monitoring and
Testing of Cyber-Physical Systems, MT@CPSWeek 2018, Porto, Portugal, April
10, 2018, pages 14–15, 2018.

28. Florian Wenig, Peter Klanatsky, Christian Heschl, Cristinel Mateis, and Nickovic
Dejan. Exponential pattern recognition for deriving air change rates from CO2
data. In 26th IEEE International Symposium on Industrial Electronics, ISIE 2017,
Edinburgh, United Kingdom, June 19-21, 2017, pages 1507–1512, 2017.

29. Lexiang Ye and Eamonn J. Keogh. Time series shapelets: a new primitive for data
mining. In Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1, 2009,
pages 947–956, 2009.

