
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020 3809

Mining Shape Expressions From Positive Examples
Ezio Bartocci, Jyotirmoy Deshmukh, Felix Gigler, Cristinel Mateis, Dejan Ničković, and Xin Qin

Abstract—Shape expressions (SEs) is a novel specification lan-
guage that was recently introduced to express behavioral patterns
over real-valued signals observed during the execution of cyber-
physical systems. An SE is a regular expression composed of
arbitrary parameterized shapes, such as lines, exponential curves,
and sinusoids as atomic symbols with symbolic constraints on
the shape parameters. SEs enable a natural and intuitive speci-
fication of complex temporal patterns over possibly noisy data.
In this article, we propose a novel method for mining a broad
and interesting fragment of SEs from time-series data using a
combination of techniques from linear regression, unsupervised
clustering, and learning finite automata from positive examples.
The learned SE for a given dataset provides an explainable and
intuitive model of the observed system behavior. We demon-
strate the applicability of our approach on two case studies from
different application domains and experimentally evaluate the
implemented specification mining procedure.

Index Terms—Computational and artificial intelligence, com-
puter science, computers and information processing, data
mining, formal languages, learning automata, learning systems,
pattern recognition.

I. INTRODUCTION

FROM self-driving cars and service robots to the rapidly
proliferating Internet-of-Things (IoT) devices [1], cyber-

physical systems (CPSs) are becoming pervasive in every
aspect of our daily life. CPS applications embed compu-
tational units with physical entities, such as sensors and
actuators designed to tightly interact with some physical com-
ponent or the real-world environment. With the recent strides
in artificial intelligence and machine learning, CPS applica-
tions are evolving to be tremendously complex systems that
can operate (autonomously) in sophisticated and unpredictable
environments.

It is common in CPS applications to use many different
kinds of sensors and monitors to gather time-series data about
various aspects of the application’s operation. This includes
data about the device’s environment, its internal system vari-
ables, or the physical characteristics of the device (such as

Manuscript received April 17, 2020; revised June 17, 2020; accepted
July 6, 2020. Date of publication October 2, 2020; date of current version
October 27, 2020. This work was supported in part by the IKT der Zukunft
Austrian FFG Project ADVANCED under Grant 874044, and in part by the
National Science Foundation through the FMitF under Grant CCF-1837131.
This article was presented in the International Conference on Embedded
Software 2020 and appears as part of the ESWEEK-TCAD special issue.
(Corresponding author: Dejan Ničković.)

Ezio Bartocci is with the Cyber-Physical System Research Division, TU
Wien, 1040 Vienna, Austria.

Jyotirmoy Deshmukh and Xin Qin are with the Department of Computer
Science, University of Southern California, Los Angeles, CA 90007 USA.

Felix Gigler, Cristinel Mateis, and Dejan Ničković are with the Center
for Digital Safety and Security, AIT Austrian Institute of Technology,
1210 Vienna, Austria (e-mail: dejan.nickovic@ait.ac.at).

Digital Object Identifier 10.1109/TCAD.2020.3012240

power, speed, and temperature). A quandary facing many of
the application developers is that there is a veritable deluge
of gathered data in these systems, and designers are strug-
gling to analyze, utilize, and characterize the gathered data.
One solution is to consider the vast literature on time-series
analysis in the machine learning community. In the context
of (unsupervised) learning, most of the work in the ML com-
munity focuses on identifying distance metrics on time-series
data that enable effective clustering algorithms [2], [3], or
identifying features from the data itself [4]–[6]. Most ML
techniques, however, suffer from lack of interpretability: for
example, it is almost impossible to relate the computations per-
formed by successive layers of deep neural networks to the
humanly comprehensible reasoning steps. In the last years,
several papers [7]–[10] have highlighted the need to rec-
oncile ML techniques with symbolic AI such as logic and
formal languages to complement and to address this short-
coming. Symbolic representations benefit of their declarative
nature. They are reusable, data efficient, and compositional.
They provide a high-level and abstract framework that facil-
itates generalization. Furthermore, since they are language-
like, they are verifiable and generally closer to human
understanding.

One of the goals of this article is similar to that of
ML methods: to extract information from data. However,
the specific usage scenarios that we discuss in this article
require information mining techniques that result in struc-
tured artifacts that are interpretable, by the human or by the
machine. Consider the problems of mining temporal and logi-
cal information about a particular system variable or a physical
quantity (i.e., the specification mining problem), the problem
of mining the temporal and logical conditions on environ-
ment signals that ensures correct system behavior (i.e., the
assumption mining problem), or the problem of automatically
mining logical patterns from data (i.e., the explainable clus-
tering problem). In each of these applications, explainability
has a high value.

Our research hypothesis in this article is that the recently
developed language of shape expressions (SEs) [11] is an
explainable and interpretable formalism to perform effective
mining from a time-series dataset. SEs essentially allow us
to express mean behaviors in the presence of noise. We vali-
date our research hypothesis by developing a new procedure
for mining SEs from (positive examples of) time-series data.
In the CPS context, each time-series datum is a sequence of
time-value pairs encoding system behaviors or a discrete-time
trace of the value of a particular system variable (e.g., sensor
output, actuator input, state variable, etc.). Given a set of such
time-series data, our specification mining procedure performs
three main steps.

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on October 30,2020 at 23:46:52 UTC from IEEE Xplore. Restrictions apply.

3810 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

1) Segmentation: This step transforms each time-series
datum into a (minimal) sequence of linear segments
that can optimally approximate the original data within a
given error threshold. The algorithm to accomplish this
combines linear regression with a recursive procedure to
create such a piecewise-linear (PWL) sequence, where
for each inferred piece, we learn the parameters: slope,
offset, and duration.

2) Abstraction: This step clusters linear segments based on
the similarity between their parameter values into some
finite number of clusters. For each resulting cluster, we
assign a unique symbol; thus the symbol representing a
cluster conservatively approximates all the line segments
in the cluster. This step defines an abstraction function
from line segments to the finite alphabet of symbols, and
thereby allows us to map raw time series into abstract
sequences of symbols (finite words) over this alphabet.

3) Learning: This step infers temporal properties from
the abstract traces by using a standard algorithm for
learning deterministic finite automaton (DFA) from pos-
itive examples. Finally, we map the DFA to the SE
representation.

The resulting SE provides a structured model of the
observed system behavior that can be explained and inter-
preted by a human or a machine. The resulting model can
group similar and repeating patterns within the behavior.
Learning SEs from multiple classes of data can facilitate
characterizing similarities and differences between different
classes. The presented approach is a natural fit for min-
ing specifications from behaviors of the system that exhibit
piecewise linear behavior but can be also used to approxi-
mate nonlinear behavior. Approximating complex nonlinear
dynamics with PWL [12]–[15] or multiaffine functions [16]
is also a common practice in literature for system identifi-
cation and for learning hybrid models amenable to formal
analysis. We demonstrate the applicability of our approach
on two case studies from different application domains and
experimentally evaluate the implemented specification mining
procedure.

Illustrating Example: We use noisy pulses shown in Fig. 1
to illustrate the various steps in our specification mining
approach. Such analog pulses are common in many elec-
tronic applications. Distributed standard interface (DSI3) is
one such example from the automotive domain, where analog
pulses are used to encode communication between the micro-
controller and sensors in an airbag system-on-chip. The six
examples depicted in Fig. 1 were synthetically generated—
they all appear to visually have a similar shape. However, we
can observe that the segments in the three top pulses have a
steeper slope than the corresponding ramping segments in the
bottom pulses.

Organization of This Article: In Section II, we discuss the
related work. In Section III, we provide the necessary back-
ground on SEs while in Section IV, we present our novel
approach to infer them from positive examples. Section V
presents the experimental evaluation of the proposed method
on two case studies. We conclude with the results summary
and plans for future work in Section VI.

Fig. 1. Illustrative example—set of pulses.

II. RELATED WORK

In the last decade, specification mining [17]–[35] has
become a very active research field supporting the analysis
and the CPS development. Our approach builds on top of
SEs [11], a recently introduced declarative language for spec-
ifying and monitoring sophisticated temporal patterns from
possibly noisy data. On the contrary, most of the current
works in specification mining for CPS [17], [19]–[26], [28],
[30]–[34], [36], [37] centers the development around signal
temporal logic [38] (STL) (and its extensions), a temporal
logic defined to reason about dense-time mixed-analog signals.

A considerable part of the literature focuses [17], [19]–[24]
on the problem of learning the optimal parameters start-
ing from a specific template formula (for example, invari-
ants [39]–[41]). Learning both the structure of the formula and
its parameters is more challenging and it has been addressed
only recently [21], [25], [26], [28]. The common approach
consists in a two-steps heuristics in which first the structure
of the formula is inferred and then its parameters are opti-
mized. The structure of the formula can be determined, for
example, by using decision trees [26], [42], [43], genetic algo-
rithms [28], [30], [33], [34] or SAT-based algorithms [31].
All the aforementioned methods, with the exception of [33],
require both positive and negative examples in the learning
phase, while our approach is based only on positive examples.

The work in [33] introduces the notion of tightness met-
ric to learn template-driven STL formulas that satisfy as
tight as possible a set of user-provided positive examples.
In the same paper, the authors show how to combine their
approach with a genetic algorithm to infer also the struc-
ture of more arbitrary formulas, similarly to [30]. However,
genetic algorithms, which are metaheuristics, have the ten-
dency to converge toward local optima rather than the global
optimum of the problem. This results in the impossibility to
assess whether the learned formula is really the optimal one.
Our approach differs from the work in [33] in many ways.
First, we consider a different specification language closer to
regular expressions than temporal logic. Second, we choose
the mean-squared error (MSE) as our measure of the tight-
ness of the specification with respect to the observed signal.
This measure is used to guide the optimal split of signals in
basic shapes (in this article, we choose for simplicity lines as

Authorized licensed use limited to: University of Southern California. Downloaded on October 30,2020 at 23:46:52 UTC from IEEE Xplore. Restrictions apply.

BARTOCCI et al.: MINING SEs FROM POSITIVE EXAMPLES 3811

our basic shapes). Using standard clustering algorithms, the
obtained shapes can be grouped according to their parameters.
Each cluster can be expressed as a basic SE with constrained
parameters that would match the same signals matched by the
basic SEs in the cluster without incrementing the MSE. This
allows deriving a finite alphabet of symbols (each representing
a different SE with constrained parameters) and to represent
each signal in the training set as a finite sequence of them.
Finally, in such a setting, we show how to use more reliable
passive automata learning algorithms [44] rather than meta-
heuristics (e.g., genetic algorithms) to infer the structure of
the expression.

Our approach does not require to interact with a reactive
system and it is indeed orthogonal to active automata learn-
ing (AAL) such as L∗ Angluin’s algorithm [45] and its recent
developments [46], [47]. AAL is generally employed to learn
how to interact with the surrounding environments [48], [49]
and it needs to exercise the system in order to infer the rela-
tion between the provided input and the observed output. Our
approach can be instead applied directly, without the necessity
to provide input.

Finally, the problem of piecewise approximation of a signal
has received considerable attention in mathematical litera-
ture [50]–[53]. In particular, Bellman and Roth introduced
in [50] dynamic programming (DP) algorithm to compute the
curve fitting of a set of data by a set of straight lines. The key
idea of their approach is to employ a 2-D grid of N points in
the abscissa and M points in the ordinate and to search the
segmentations of length L, L = 1, 2, . . . ,N − 1, such that for
each L the total error, measured as the sum of the max abso-
lute error of the data with each fitting segment, is minimal
among all possible segmentations of length L. For a sufficient
large M, their approach approximates our piecewise fit that
employs instead regression as the main ingredient. However,
our approach does not require the user to provide an extra
parameter M. Furthermore, M points considered in [50] are
generally chosen, for practical reasons, over the min and the
max values of the signal. This does not necessarily produce
the best possible local fit, because sometimes a linear segment
to fit well the data, needs to start from a value that is bigger
or smaller than the max or the min value of the signal, respec-
tively. Recent works of Ozay [54] and Chou et al. [55] adapted
the DP algorithm in [50] to infer the linear segments through
least-squares error directly over the signal and generalize the
approach to the segmentation of time-varying affine autore-
gressive exogenous (ARX) models. Although our approach
to compute the optimal (with respect to the maximum mean
square error) split in basic shapes of a signal can be consid-
ered as a special case of the aforementioned approaches (see
Section IV), the focus of our article is on mining a specifica-
tion for a set of signals in a formal language and we use the
segmentation as one of the main ingredients.

III. SHAPE EXPRESSIONS AND AUTOMATA

In this section, we define a variant of SEs [11], which
are regular expressions where atomic shapes with unknown
parameters play the role of atomic primitives. These basic
shape primitives are expressions that map parameter and

signal variables to a parameterized family of idealized sig-
nals, such as lines, sinusoids, exponentials, etc. Here, we focus
on the class of linear SE that considers only lines as atomic
shapes. In contrast to SE in [11], we also allow conjunc-
tion of atomic shapes to facilitate the learning of expressions
from multidimensional data and we also lift the restriction of
discrete-time signals. Finally, we choose MSE as our measure
of noise.

Let P = {p1, . . . , pn} be a set of parameters. A parameter
valuation v maps parameters p ∈ P to values v(p) ∈ R ∪ {⊥},
where ⊥ represents the undefined value. We use the shortcut
v(P) to denote {v(p1), . . . , v(pn)}. A constraint γ over P is a
Boolean combination of inequalities over P. We write v |= γ
when the constraint γ is satisfied by the valuation v. Given
p ∈ P and p ◦ k for ◦ ∈ {=,<,≤,>,≥} and some k ∈ R, we
have that v(p) = ⊥ implies that v
|= p◦k. We denote by �(P)
the set of all constraints over P.

Let X be a set of signal variables. A signal w over X is
a sequence w = (t1, v1) · (t2, v2) · · · (tn, vn), where ti ∈ Q≥0
is the timestamp such that for all 1 ≤ i < n, ti < ti+1 and
vi is a valuation in V(X). We denote by |w| = n the size
of w. Given two signals w = (t1, v1) · (t2, v2) · · · (tm, vm) and
w′ = (t′1, v′1) · (t′2, v′2) · · · (t′n, v′n), their concatenation w · w′ is
defined if tm = t′1 and vn = v′1 and corresponds to the sequence
(t1, v1) · · · (tm, vm)·(t′2, v′2) · · · (t′n, v′n). Given a signal w of size
n and i, j ∈ N such that 1 ≤ i ≤ j ≤ n, we denote by w[i:j]
the sequence (ti, vi) · · · (tj, vj). The duration d of a signal is
defined as d = tn − t1. We allow signals of null duration
d = 0, which results in the unique signal with the empty time
domain.1

A. Shape Expressions

We now provide the syntax and semantics of linear SE
defined over the set X of signals and the set P of parameter
variables. The set P contains all the parameters (slope, rela-
tive offset, and duration) of the linear segments defined by the
SE. The atomic shape linx(a, b, l) is the expression that maps
parameter variables {a, b, l} ⊆ P, where a is the slope, b is the
relative offset,2 and l is the duration, and the signal variable
x ∈ X to a parameterized representation of an idealized line
signal, defined as follows:

linx(a, b, l) ≡ {
w[i : j] | ∃v.tj − ti = v(l) ∧ ∀k ∈ [i, j]

w(x, tk) = v(a)tk + (v(b)− v(a)ti)
}
.

Definition 1 (Linear SE Syntax): A linear SE ϕ is given by
the grammar

ψ ::= linx(a, b, l) | ψ1 ∩ ψ2

ϕ ::= ε | ψ | ϕ1 ∪ ϕ2 | ϕ1 · ϕ2 | ϕ∗ | ϕ : γ

where x ∈ X, {a, b, l} ⊆ P, and γ ∈ �(P), where P is the set
of all (slope, relative offset, and duration) parameters of the
atomic line shapes defined in the expression.

The symbol ε denotes the empty word, the operators ∪,
∩, ·, and ∗ denote the classical (extended) regular expression

1The signal with the empty time domain is equivalent to the empty word
in the classical language theory.

2The relative offset of a line segment is the value of the line at the beginning
of the segment.

Authorized licensed use limited to: University of Southern California. Downloaded on October 30,2020 at 23:46:52 UTC from IEEE Xplore. Restrictions apply.

3812 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

union, intersection, concatenation, and Kleene star, respec-
tively, while ϕ : γ says that ϕ is constrained by γ . We write ϕi

as an abbreviation of ϕ · · ·ϕ (i times). We denote by LX(P) the
set of expressions of the form linx(P′) for x ∈ X and P′ ⊆ P.
The set of SEs over P and X is denoted �(P,X).

The semantics of SEs is given as a relation between sig-
nals and parameter valuations, which we call a language.
We associate with every SE a noisy language Lν for some
noise-tolerance threshold ν ≥ 0, capturing the ν-approximate
meaning of the expression. The exact language L capturing
the precise meaning of the expression is obtained by setting ν
to 0. We formally define the noisy language as follows.

Definition 2 (SE Noisy Language): Let ν ∈ R≥0 be a
noise-tolerance threshold. The noisy language Lν of an SE
is defined as follows:

Lν
(
a, b, l

) = {
(w, v)|v(l

) = t|w| − t1
μ(w(x) , linx

(
v(a), v(b), v

(
l
)) ≤ ν}

Lν(ψ1 ∩ ψ2) = Lν(ψ1) ∩ Lν(ψ2)

Lν(ε) = {(w, v)||w| = 0}
Lν(ϕ1 · ϕ2) = {(w1 · w2, v)|(w1, v) ∈ Lν(ϕ1)

and (w2, v) ∈ Lν(ϕ2)}
Lν(ϕ1 ∪ ϕ2) = Lν(ϕ1) ∪ Lν(ϕ2)

Lν
(
ϕ∗

) =
∞⋃

i=0

Lν
(
ϕi)

Lν(ϕ : γ) = {(w, v)|(w, v) ∈ Lν(ϕ) and v |= γ }.
The noisy SE language is defined as the set of all sig-

nal/parameter valuation pairs, such that the distance of the
signal from the ideal shape signal defined by the SE and
instantiated by the parameter valuation is smaller or equal
than the noise threshold, according to some metric μ. In
this article, we use the mean-squared error as our met-
ric. Let w = (t1, v1) · · · (tn, vn) and ŵ = (t1, v̂n) · · · (tn, v̂n)

be two signals over X of size n, where w represents the
observed signal and ŵ represents a prediction model. The MSE
MSE(w, ŵ) of w relative to ŵ is a statistical measure of how
well the predictions of a (regression) model approximates the
observations, and is defined as follows:

MSE
(
w, ŵ

) = 1

n× |X|
∑

x∈X

n∑

i=1

(
vi(x)− v̂i(x)

)2
.

B. Shape Automata

We now define shape automata, which act as recognizers
for SEs. They are akin to finite state automata in which edges
are labeled by SEs with unknown parameters, and parameter
constraints.

Definition 3 (Shape Automata): A shape automaton is a
tuple 〈P,X,Q,	, S,F〉, where: 1) P is the set of parame-
ters; 2) X is the set of real-valued signal variables; 3) Q is
the set of control locations; 4) 	 ⊆ Q×P(
X(P))×�(P)×Q
is the set of edges; 5) S ⊆ Q is the set of starting locations;
and (6) F ⊆ Q is the set of final locations.

SEs and shape automata are equivalent and intertranslatable.
Theorem 1 (SE ⇔ SA [11]): For any SE ϕ, there exists a

shape automaton Aϕ such that Lν(Aϕ) = Lν(ϕ) for all ν ≥ 0.

Fig. 2. Learning SEs from examples—an overview.

For any shape automaton A, there exists an SE ϕA such that
Lν(ϕA) = Lν(A) for all ν ≥ 0.

IV. LEARNING SHAPE EXPRESSIONS FROM EXAMPLES

In this section, we present the procedure for mining SEs
from positive examples. The high-level overview of the
approach is depicted in Fig. 2. The procedure starts by approx-
imating each time series into a sequence of linear segments.
Each individual dimension x in a segment is fully charac-
terized by three parameters: 1) slope ax; 2) (relative) offset
bx; and 3) duration dx. In the next step, the procedure col-
lects all the inferred segments from all examples and clusters
them according to ax, bx, and dx using the k-means cluster-
ing method, where k is dynamically determined. We use the
clustering outcomes to generate a finite alphabet
 of size k,
where each letter in
 corresponds to a specific cluster. In
the next step, we map each line segment approximation to its
associated letter and hence obtain a set of finite traces over that
alphabet. We finally use a passive automata learning algorithm
to learn a DFA from the set of words, which we translate to
an SE. In the remainder of the section, we present in detail
each individual step of the procedure.

A. Approximating Time Series With Sequences of Linear
Segments

Let w = (t1, v1) · · · (tn, vn) be a signal of size n and ε be an
error threshold. In this section, we present a DP-based method
that finds the PWL approximation of w that minimizes its
number of linear segments while ensuring that each segment
is approximated with MSE bounded by ε.

The idea of using DP to compute a PWL approximation of
a signal is not new. Bellman and Roth introduced a DP-based

Authorized licensed use limited to: University of Southern California. Downloaded on October 30,2020 at 23:46:52 UTC from IEEE Xplore. Restrictions apply.

BARTOCCI et al.: MINING SEs FROM POSITIVE EXAMPLES 3813

algorithm decades ago [50]. They showed that DP offers a
simple and direct approach to determine the linear segmen-
tation on a predefined grid which best approximates a given
signal. This idea has been recently: 1) adapted to fit the lin-
ear segments directly on the signal rather than selecting them
from a predefined grid and 2) generalized to the problem of
segmentation of time-varying affine ARX models of the form

yt =
na∑

i=1

ai
tyt−i +

nc∑

i=1

ci
tut−i + kt + ηt (1)

where u, y, and η denote the input, output, and noise,
respectively, and t ∈ [t0,N] with t0 = max(na, nc) [54], [55].

The method we use in this work is a special case of the
approach proposed in [54] and [55] in which we set na = 0,
nc = 1, and ut−1 = t in (1) and select the MSE, i.e., the �2-
norm with square, as fitting error function. Moreover, we take
the maximum among the fitting errors of the single segments,
i.e., the �∞-norm, instead of their sum to define the overall
fitting error of a segmentation. This will slightly change the
recursion equation in the DP setting but the approach remains
basically the same as in [54].

In the following, we sketch an algorithm which effi-
ciently solves the problem of finding the minimum number
of switches with bounded fitting error as introduced in [54]
under the above-mentioned settings.

We first compute the linear regression and its associated
MSE for every segment of w. Let P = {ax, bx | x ∈ X} be the
slope and relative offset parameters for each dimension x ∈ X.
Given a segment u = w[i : j], 1 ≤ i < j ≤ |w|, we denote by
lr(u) the linear regression of u, defined as

lr(u) = argminv∈V(P) MSE(u, ûv)

where ûv is the linear approximation of u with respect to v,
i.e., we have ûv = (ti, v̂i) · · · (tj, v̂j) such that v̂k(x) = v(ax)tk+
(v(bx)− v(ax)tk), for all i ≤ k ≤ j and x ∈ X.

We store the linear regression and its associated MSE for
every segment of w in arrays p and e, respectively. In particular,
we have that p[i][j] = v
 and e[i][j] = MSE(u, ûv
), where
u = w[i : j] and v
 = lr(u). For simplicity, we will denote
by MSElr(u) the MSE of a segment u relative to its optimal
linear approximation ûv
 computed by lr(u), i.e., MSElr(u) =
MSE(u, ûv
).

A split τ of w is a sequence τ = {s1, s2, . . . , sk, sk+1} of
indices such that 1 ≤ k < n, s1 = 1 and sk+1 = n. We denote
by |τ | = k + 1 the size of τ . Note that τ induces over w
exactly k adjacent segments w[si : si+1], i ∈ [1, k]. If k = 1,
τ = {1, n} induces exactly one segment w[1 : n] over w which
is the whole signal w.

We now lift the definitions of linear regression and MSE
to the PWL case, driven by the split τ . We define the τ -
linear regression, denoted by lrτ (w), as the sequence lrτ (w) =
{v
1, . . . , v
k} of parameter valuations, where for all i ∈ [1, k],
v
i = lr(w[si : si+1]). We define the error of the τ -linear
regression, denoted by Ew(τ), as the dominant MSE among
all MSElr(w[si : si+1]), i ∈ [1, k]

Ew(τ) = max
i∈[1,k]

MSElr(w[si : si+1]).

Algorithm 1: split—Optimal Splitting of a Signal
Segment

Input : w - signal of the form (ti, vi) · · · (tj, vj)

Output: τ ∗ - an εmax-optimal split of w
1 Function split(w)
2 if s[i][j]
= {} then
3 τ ∗ ← s[i][j]

4 else
5 if e[i][j] ≤ εmax then
6 τ ∗ ← {i, j}; ε∗ ← e[i][j]

7 else
8 τ ∗ ← {i, i+ 1, . . . , j}; ε∗ ← 0
9 for k ∈ {i+ 1, . . . , j− 1} do

10 (τL, εL)← (split(w[i, k]), e[i][k])
11 (τR, εR)← ({k, j}, e[k][j])
12 τ ← τL ∪ τR; ε ← max(εL, εR)

13 if ε ≤ εmax and (|τ | < |τ ∗| or (|τ | = |τ ∗|
and ε < ε∗)) then

14 τ ∗ ← τ ; ε∗ ← ε

15 s[i][j]← τ ∗; e[i][j]← ε∗

16 return τ ∗

We say that τ ε-approximates w, denoted by τ ∼ε w, if
Ew(τ) ≤ ε.

Given another split τ ′ of w, we say that τ and τ ′ are ε-
equivalent, denoted by τ =ε τ ′ if |τ | = |τ ′| and Ew(τ) =
Ew(τ

′). We say that τ ε-refines τ ′, denoted by τ <ε τ
′ if

τ ∼ε w, τ ′ ∼ε w and either |τ | < |τ ′| (first criteria) or |τ | =
|τ ′| and Ew(τ) < Ew(τ

′) (second criteria). Moreover, we say
that τ is ε-optimal for w if τ ∼ε w and τ ≤ε τ ′ for all τ ′ of
w such that τ ′ ∼ε w.

We are now ready to define our method split, presented in
Algorithm 1, that finds an optimal τ -split of w with respect
to the threshold εmax. The procedure is implemented as a DP
algorithm that recursively finds optimal splits for subsegments
of w. The algorithm maintains the arrays s and e that in each
cell s[i][j] (originally initialized to the empty sequence {})
and e[i][j] (originally initialized to MSElr(w[i : j])) stores the
εmax-optimal split τ ∗ of w[i : j] and Ew(τ

∗), respectively. The
procedure3 is initially invoked with split(w).

The inductive step split(w[i, j]) works as follows. The algo-
rithm first checks whether an optimal split for w[i : j] has
been already computed and stored in s[i][j]. If yes, the avail-
able result is returned (lines 2 and 3). If not, the procedure
needs to compute the optimal split. There are two possibili-
ties. If w[i : j] can be linearly approximated with regression
MSE smaller than or equal to εmax, then no further split is
needed (lines 5–6). Otherwise, w[i : j] must be split in smaller
segments (lines 7–13). We first initialize τ ∗ to the set of all
indices of w[i : j] and ε∗ to the corresponding Ew(τ

∗) which is
0 since all segments induced by this τ ∗ over w[i : j] consist of

3To simplify the presentation, we assume that εmax, p, e, and s are global
variables which are initialized accordingly before split(w) is invoked.

Authorized licensed use limited to: University of Southern California. Downloaded on October 30,2020 at 23:46:52 UTC from IEEE Xplore. Restrictions apply.

3814 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 3. Example—inferring linear segments from pulses.

just two data points (line 8). We then generate all promising
εmax-optimal split candidates of w[i : j] (lines 9–12) and we
update τ ∗ and ε∗ when the current candidate εmax-refines the
current τ ∗ (lines 13 and 14). That is, for all k ∈ [i+1, j−1], the
algorithm recursively applies split(i, k) to compute an optimal
split τL of the prefix segment w[i : k] and loads from e[i][k]
its Ew(τL) into εL. Moreover, the algorithm approximates the
remaining suffix segment w[k : j] with just one line segment
given by the linear regression of w[k : j] and loads in εR its
MSElr available in e[i][k] (line 10). It then builds a new εmax-
optimal split candidate τ by joining τL with τR and computing
its Ew(τ) denoted by ε as the maximum between εL and εR

(line 11). If τ ∼εmax w[i : j], i.e., ε ≤ εmax, and τ <εmax τ
∗ (line

12), then τ ∗ is updated with the new candidate τ (line 13).
After k iterations, τ ∗ and ε∗ contain the first encountered
εmax-optimal split of w[i : j] and its corresponding Ew(τ

∗),
respectively. Finally, τ ∗ and ε∗ are cached to s[i][j] and e[i][j]
(line 14) and the procedure returns τ ∗.

Example 1: Fig. 3 depicts the optimal τ -split of the raw
pulse time series resulting from the application of the split
procedure.

Next, we show that our split procedure computes an εmax-
optimal segmentation of w in time quadratic to the size of the
trace.

Theorem 2: Let w be a signal, εmax be a threshold, and
τ = split(w). We have that τ is an εmax-optimal split of w.

Proof: Assume that split∗ is a procedure that computes
an εmax-optimal split of a signal. Consider an arbitrary
signal w and let w = w1 · w2 · · ·wn be an optimal parti-
tion τ ∗ = split∗(w) of w in n segments with Ew(τ

∗) =
max1≤i≤n MSElr(wi). We prove that τ = split(w) splits w in
exactly n segments with Ew(τ) = Ew(τ

∗). We first prove by
induction on the number of segments in the optimal solution
that for every 1 ≤ i ≤ n, τi = split(w1 · · ·wi) splits w1 · · ·wi

in at most i segments with Ew(τi) ≤ max1≤j≤i MSElr(wj).
Thus, split(w1 · · ·wn) splits w in at most n segments with
Ew(τ) ≤ Ew(τ

∗). By assuming that w = w1 · w2 · · ·wn is
an optimal split, it follows that split(w) splits w in exactly n
segments with Ew(τ) = Ew(τ

∗). Base case i = 1: by assump-
tion, we have that MSElr(w1) ≤ εmax, hence by the definition
of Algorithm 1 τ1 = split(w1) does not further split w1 and
Ew1(τ1) = MSElr(w1). For 1 < i < n, assume by induc-
tive hypothesis that τi = split(w1 · · ·wi) splits the w1 · · ·wi

signal in i segments with Ew1···wi(τi) ≤ max1≤j≤i MSElr(wj).
We now show that τi+1 = split(w1 · · ·wi · wi+1) splits
w1 · · ·wi · wi+1 in i + 1 segments with Ew1···wi+1(τi+1) ≤
max1≤j≤i+1 MSElr(wj). By assumption, MSElr(wi+1) ≤ εmax.
It follows that the partition of split of w1 · · ·wi+1 into split
of w1 · · ·wi and split of wi+1 is a valid candidate, according

to Algorithm 1. By assumption, we have that split splits
w1 · · ·wi into i segments and split splits wi+1 into a sin-
gle segment. In addition, we have that Ew1···wi+1(τi+1) =
max(Ew1···wi(τi),MSElr(wi+1) by definition of split. By
assumption, we have that Ew1···wi(τi) ≤ max1≤j≤i MSElr(wj).
It follows that Ew1···wi(τi+1) ≤ max1≤j≤i+1 MSElr(wj). Since
there may be more optimal split candidates, it follows that
split splits w1 · · ·wi+1 into at most i+ 1 segments with error
bounded by max1≤j≤i+1 MSElr(wj).

The linear segmentation of w of size |w| = n requires com-
puting the linear regressions for all w[i : j], 1 ≤ i < j ≤ n,
which makes ([n2 − n]/2) linear regressions in total. Lemma 1
shows that this can be done in O(n2) time by employing the
incremental linear regression.

Lemma 1: Let w be a signal of size n. Then, the linear
regressions for all w[i : j], 1 ≤ i < j ≤ n, are computed in
O(n2) time.

Proof: The linear regressions for all w[i; j], j ∈ [i + 1, n],
can be obtained as by-products by incrementally computing
the linear regression of w[i : n]. Thus, we only need to incre-
mentally compute the linear regressions for n − 1 segments
comprising n, n − 1, . . . 2 data points, respectively. Since the
incremental simple linear regression of a segment compris-
ing k data points is computed in O(k) time, it follows that
the n − 1 incremental linear regressions are computed in
O(n+ (n− 1)+ · · · + 2) = O(n2) time.

Proposition 1: Let w be a signal of size n and εmax a
threshold. Then, split(w) is computed in O(n2) time.

Proof: By construction, split(w) invokes itself recursively to
first solve the optimization subproblems for the subsegments
of w in the following order: split(w[1 : 2]), split(w[1 : 3]),. . . ,
split(w[1 : n − 1]). That is, for each k, 2 ≤ k ≤ n − 1,
split(w[1 : k]) is invoked exactly n − k times. Thus, we
can optimize the split algorithm by caching the result of
split(w[1 : k]) when it is invoked the first time and retrieving
it from the cache in constant time at all successive invoca-
tions. Computing split(w[1 : k]) when it is invoked the first
time can be done in O(k) time since it requires the access of
k−2 cached results and the computation of a finite number of
other operations which is upper bounded by a constant. The
remaining n − k − 1 invocations of split(w[1 : k]), each one
requiring the access in constant time of the cached result, are
computed in O(n − k) time. It follows that split(w) can be
computed in O(∑n−1

k=2 n) = O(n2) time.
From Lemma 1 and Proposition 1, it follows that given a

signal w of size n and a threshold εmax, an εmax-optimal split of
w is computed in O(n2) time. Indeed, we first need to compute
the linear regressions for all w[i : j], 1 ≤ i < j ≤ n, which is
done in O(n2) time according to Lemma 1, and subsequently
run split(w), which is also executed in O(n2) time according
to Proposition 1. Note that the time complexity O(n2) includes
the worst case scenario which occurs when split(w) performs
the maximum possible number of recursion invocations in
order to compute an εmax-optimal split, i.e., the εmax-optimal
split has n−1 segments. This is a polynomial order lower than
the complexity from [54] and [55] applied to our simple linear
regression setting. This optimization is possible by employing
the incremental linear regression which allows producing the

Authorized licensed use limited to: University of Southern California. Downloaded on October 30,2020 at 23:46:52 UTC from IEEE Xplore. Restrictions apply.

BARTOCCI et al.: MINING SEs FROM POSITIVE EXAMPLES 3815

Fig. 4. Approximating exponential decay with linear segments—robustness to noise in data.

results of ([n2 − n]/2) simple linear regressions by computing
only O(n) simple linear regressions, each one in O(n) time.

Approximating Noisy Nonlinear Data With Sequences of
Linear Segments: The segmentation algorithm presented in this
section is particularly effective in approximating the behavior
of PWL systems. For this class of systems, it is natural to asso-
ciate the MSE resulting from the segmentation algorithm to
the presence of noise in the observed data. The same segmen-
tation procedure can also be used to approximate nonlinear
behaviors. It should be noted that the MSE resulting from the
application of our segmentation method to nonlinear data does
not only come from the noise in data but also from the linear
approximation of nonlinearities. There is a tradeoff between
having an accurate approximation that requires multiple linear
segments and the risk of overfitting the data. In addition, the
nonlinearity approximation error can reduce the robustness of
the segmentation procedure to noise.

We illustrate the challenge of segmenting noisy nonlinear
data with an exponential decay example to which we add nor-
mally distributed noise. Fig. 4 shows the effect of varying the
maximum noise threshold ν and the standard deviation σ of
the normally distributed noise with mean 0 to the outcome of
the segmentation procedure. We can observe that the proce-
dure consistently approximates the signal with two segments
for σ ∈ [0, 0.03] and ν ∈ [0.005, 0.01]. By lowering ν to
0.002, the less noisy signals are still approximated with two
segments. However, the signal with noise that has σ = 0.03
requires a third approximation segment. Similarly, less noisy
signals are approximated with three segments when ν equals
0.001, while the noisiest signal with σ = 0.03 requires a four-
segment approximation. We can see that the level of noise and
nonlinearity in data can affect the outcome of the segmentation
procedure.

B. Abstracting Sequences of Linear Segments to Finite
Traces Over Finite Alphabets

Clustering is an unsupervised learning method for grouping
data points with similar properties. Given a set of data points

U and a finite alphabet
, clustering procedures aim at find-
ing an appropriate labeling function λ : U →
 that maps
data points u ∈ U to letters in
. Clustering algorithms aim
at grouping data points with similar features, while ensuring
highly dissimilar features between different clusters.

Let P = {ax, bx, dx | x ∈ X} be the set of parameters,
where ax is the slope, bx is the relative offset, and dx is the
duration of a segment defined over x ∈ X. A valuation v(P)
assigns real values to these parameters, and V(P) denotes the
set of all valuations over P. We note that valuations in V(P)
provide unique characterizations of linear (multidimensional)
segments. Given a set U ⊆ V(P) of parameter valuations
obtained in Section IV-A, our objective is to group and label
similar segments.

We use the well-known k-means clustering method [56] to
find our labeling function λ. This procedure aims to parti-
tion |U| valuations into k clusters in which each parameter
valuation v ∈ U belongs to the cluster with the nearest mean
(called centroid), serving as a representative of the cluster. The
implicit objective function in k-means measures the within-
cluster sum of squares (WCSS), which is the sum of distances
of data points from their cluster centroids.

First, the procedure initializes k centroids. The common
implementation of this step consists of choosing random val-
ues for centroids. In the second phase, the algorithm repeats
the following actions until it converges: 1) it calculates the
distance between all valuations and centroids, assigning each
valuation to the cluster represented by its closest centroid and
2) it updates centroid positions by finding the average values
of data points that are part of the cluster.

We use the popular elbow method to find the optimal num-
ber k of clusters for U. It is typically used as a visual method,
consisting of plotting the value of the WCSS produced by
different values of k and finding the “elbow” in the plot. We
automate this step by defining a threshold c and stopping when
the difference between WCSS for k and k − 1 clusters falls
below c.

The k-means clustering algorithm maps U into an alphabet

 of size |
| = k. In the next step, we provide a meaning

Authorized licensed use limited to: University of Southern California. Downloaded on October 30,2020 at 23:46:52 UTC from IEEE Xplore. Restrictions apply.

3816 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 5. Example—clustering.

to each letter a ∈
. Intuitively, for each cluster, we define
the tightest box that includes all of its data points (parameter
valuations) and represent it symbolically as a set of constraints.
Let λ−1 :
 → 2U denote the inverse labeling function. For
each A ∈
, we associate a constrained atomic SE ψA =∧

x∈X linx(ax, bx, dx) : ax ∈ [a1
x, a2

x] ∧ bx ∈ [b1
x, b2

x] ∧ dx ∈
[d1

x , d2
x], where for all p ∈ P, p1 = minv∈λ−1(A) v(p) and p2 =

maxv∈λ−1(A) v(p).
Example 2: Fig. 5 (top-left) shows all the pulse linear

segment parameters projected on the slope and duration valua-
tions. Fig. 5 (top-right) depicts the result of applying k-means
clustering to these segments and for different values of k,
while Fig. 5 (bottom-left) shows the parameters grouped into
k = 5 clusters, the optimal number of clusters according to
the automated elbow method. Fig. 5 (bottom-right) illustrates
the bounding box that over-approximates all the data points
in the cluster labeled by A. We associate to the letters of the
inferred alphabet the following symbolic expressions:

A : lin(a1, b1, d1) : a1 ∈ [−0.261,−0.197] ∧
b1 ∈ [9.06, 9.70] ∧ d1 ∈ [18, 24]

B : lin(a2, b2, d2) : a2 ∈ [−0.007, 0.031] ∧
b2 ∈ [9.23, 10.09] ∧ d2 ∈ [26, 44]

C : lin(a3, b3, d3) : a3 ∈ [−0.001, 0.001] ∧
b3 ∈ [4.96, 5.12] ∧ d3 ∈ [69, 74]

D : lin(a4, b4, d4) : a4 ∈ [0.110, 0.116] ∧
b4 ∈ [4.43, 4.60] ∧ d4 ∈ [38, 39]

E : lin(a5, b5, d5) : a5 ∈ [0.199, 0.263] ∧
b5 ∈ [4.35, 4.45] ∧ d5 ∈ [20, 22]. (2)

C. Inferring Expressions From Finite Traces

In the previous section, we showed how we can partition the
set of linear segments to a few equivalence classes through the
discretization of their parameter space. We also showed how
we can associate each equivalence class with a symbol. Let
the set of such symbols be denoted by
. Essentially, through
the methods in the previous sections, we have mapped each
timed trace into a string in

. In this section, we show how
we can learn a DFA that accepts every string corresponding

Fig. 6. Inferred automaton and expression.

to all the positive examples in our dataset. For this purpose,
we use an off-the-shelf DFA learning algorithm called reduced
positive and negative inference (RPNI) [44].

Given a set S of example strings, the first step in RPNI
is to construct the prefix tree acceptor (PTA) from the given
examples. The PTA A is described as a tuple (Q,
, qλ, δ,FA),
where Q is the finite set of states, qλ is the initial state, δ ⊆
Q ×
 → Q is the transition function, and FA is the set of
accepting states. The set Q is essentially the prefix-closure of
S, and for every state qu ∈ Q, and every a ∈
, δ(qu, a) = qua.
Finally, if u ∈ S, qu ∈ FA.

While a PTA constructed using the above rules is a DFA
accepting the given set of examples, it is typically not the
minimally consistent DFA. The algorithm RPNI is a heuristic
to minimize the DFA. A common idea in passive learning of
DFAs from examples is to label the states of the PTA as RED

(which is initially just the initial state corresponding to the
empty string), and BLUE (initially the prefix-closure of the
set S). The RPNI algorithm then repeatedly selects a BLUE

state and seeks to merge it with a RED state, while ensuring
that the merged automaton is compatible with the given set of
examples.

Example 3: We use the RPNI algorithm to learn an automa-
ton from a set of finite traces obtained from abstracting the
segmented pulses and map it to its associated SE. Fig. 6 depicts
the inferred automaton and the SE. We can observe that the
variability in the slope of the before-last segment is translated
into the choice of taking either the transition labeled by D or
E from the state 4, or equivalently into the union operation in
the SE. The procedure is thus effectively able to distinguish
between two different classes of pulses in an unsupervised
fashion.

The combination of the specification structure that uses
regular expressions with parameterized linear segments as
expression atoms facilitates understating and explaining the
mined shape. The explainability of the shape can be further
enhanced by visualizing segments that satisfy the specifica-
tion. Fig. 7 visualizes the pulse specification with a set of
synthetically generated examples that match the shape (blue).
The figure also shows the training examples (light blue) to
illustrate the generalization done by the specification.

We finally also illustrate how our procedure generalizes the
repeated shapes by learning repetitions in the form of a Kleene
start. The result of using both individual pulse shapes of the

Authorized licensed use limited to: University of Southern California. Downloaded on October 30,2020 at 23:46:52 UTC from IEEE Xplore. Restrictions apply.

BARTOCCI et al.: MINING SEs FROM POSITIVE EXAMPLES 3817

Fig. 7. Visualizing the mined specification.

Fig. 8. Train of pulses and its segmentation.

first class, together with a pulse train signal shown in Fig. 8
results in learning the specification (A∗ · B · C · D)+.

D. Discussion

The specification mining procedure, presented in this sec-
tion, adopts several design choices that we motivate but we
also discuss potential alternatives.

1) Linear Segments: The restriction to linear atomic shapes
has a twofold motivation: a) linear approximations are
easy to understand and hence facilitate explainability
of inferred specifications and b) linear approximations
admit efficient regression algorithms. For some applica-
tions, linear segments may not be sufficient to faithfully
capture a shape. In addition, a linear approximation of
nonlinear behaviors may not be sufficiently robust to
noise, as discussed in the last paragraph of Section IV-A.
Our approach can be generalized to richer atomic shapes
at the expense of computational efficiency.

2) Duration as a Parameter: We chose to treat segment
duration as a parameter that we use in the process of
mapping raw data to a finite trace. In practice, two
segments with similar slopes and relative offsets, but dif-
ferent durations my be mapped to two different letters
of the inferred finite alphabet. An alternative approach
would consist in treating the duration as a special param-
eter. We could use the slope and the relative offset to
map sequences of linear segments to finite words, and
then use durations to extend finite words to timed words.
We could use methods such as timed k-trail [57] to learn
a timed automaton from the set of timed traces.

3) Semantics of a Letter in the Alphabet: We map each
letter in the finite alphabet to a box constraint over
parameters that include all segments in the cluster
that characterizes that letter. There are several other

approaches that could be used: a) associating a more
sophisticated over-approximation, such as a zonotope,
of the segments in the cluster or b) defining the cluster
centroid as the representative of the cluster and increase
the noise tolerance based on the properties of the cluster.
To simplify the presentation, we also use the minimal
bounded box that includes all the points in the cluster.
This means that the over-approximation is not robust for
the extreme points in the cluster. This problem can be
addressed by bloating the bounding box by an amount
defined by the user.

4) Clustering and Learning Algorithms: We use k-means
clustering and RPNI as off-the-shelf algorithms to do
clustering and passive learning from positive examples.
These algorithms can be replaced with other procedures
that implement the same function in a different man-
ner. For instance, we can use silhouette clustering [58]
instead of k-means clustering.

V. EXPERIMENTAL EVALUATION

In this section, we analyze both computational and qual-
itative aspects of our specification mining procedure and
demonstrate its usability on two case studies. All the exper-
iments were performed on a Razer computer with the Intel
Core i7 4.1-GHz processor and 16-GB RAM.

A. Experimental Results

We use our illustrative train of pulses to study computational
and qualitative aspects of our specification mining procedure.
We first analyze the scalability of our approach with respect to
both the size and the number of training examples. We sum-
marize the results in Table I, where ts, tc, tl, and ttotal denote
segmentation, clustering, automata learning, and total time. We
can first observe that the experimental results follow the the-
oretical quadratic growth in the size of the signals and linear
growth in the number of signals. We can also see that the
segmentation part dominates the computation. This result is
expected given that the segmentation is used to map a usually
large number of raw data samples into a relatively small num-
ber of segments. The computation time for automata learning
is negligible with respect to other parts of the procedure. This
is mainly due to the fact that there are often equivalent abstract
(finite) traces that are fed to the automata learning algorithm.

Next, we analyze the sensitivity of our approach to the
choice of the maximum error threshold εmax. Table II depicts
SEs inferred from the same set of training examples (see
Fig. 1) under different maximum error thresholds and clus-
tering termination criteria. As expected, the maximum error
threshold can significantly influence the segmentation part of
the algorithm and have an impact on the learned specification.
It is interesting to observe that the size of the threshold does
not monotonically affect the size of the specification.

B. Mining Patterns in ECG Data

In this case study, we consider ECG signals from the
PhysioBank database [59], which contains 549 records from
290 subjects (209 male and 81 female, aged from 17 to 87).

Authorized licensed use limited to: University of Southern California. Downloaded on October 30,2020 at 23:46:52 UTC from IEEE Xplore. Restrictions apply.

3818 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

TABLE I
COMPUTATIONAL COST OF THE SPECIFICATION MINING ALGORITHM

TABLE II
SENSITIVITY OF SPECIFICATION MINING TO THE MAXIMUM

ERROR THRESHOLD

Fig. 9. Example of a heartbeat from two patients. (a) Patient 1. (b) Patient 2.

Each record includes 15 simultaneously measured signals, dig-
itized at 1000 samples per second, with 16-b resolution over a
range of ±16.384 mV. The diagnostic classes for the subjects
participating in the recordings include cardiovascular diseases
such as myocardial infarction, cardiomyopathy, dysrhythmia,
and myocardial hypertrophy.

In this experiment, we considered two sets of examples. The
first set of examples comes from a male 70-year old patient
with myocardial infarction, an anterior acute infarction and an
anteroseptal former infarction. The patient had hyperlipopro-
teinemia as an additional diagnosis, was not a smoker at the
time of the admission and had two coronary vessels involved
in the disease. The second set of examples comes from a male
52-year old patient with myocardial infarction with anterosep-
tal acute infarction and no former infarctions. The patient had
gastritis and rheumatoid arthritis as additional diagnoses was
not a smoker at the time of the admission and had one coronary
vessel involved in the disease. Fig. 9 depicts two heartbeats
from patient 1 and patient 2, respectively.

Fig. 10. Visualization of the ECG specification for patient one.

Each dataset contains 125 heartbeat measurements. We use
both datasets to infer a common four-valued alphabet shown
in (4). The letters A and B represent short and long almost-
constant segments, respectively, while C and D represent short
segments with high negative and positive slopes, respectively

A : lin(a1, b1, d1) : a1 ∈ [−1.1, 1.4] ∧
b1 ∈ [−1.8, 2.4] ∧ d1 ∈ [0.04, 0.29]

B : lin(a2, b2, d2) : a2 ∈ [−0.45, 0.14] ∧
b2 ∈ [−1.9, 0.4] ∧ d2 ∈ [0.32, 0.55]

C : lin(a3, b3, d3) : a3 ∈ [−69,−29] ∧
b3 ∈ [−158,−63] ∧ d3 ∈ [0.015, 0.025]

D : lin(a4, b4, d4) : a4 ∈ [5.3, 44] ∧
b4 ∈ [1.3, 92] ∧ d4 ∈ [0.008, 0.03]. (4)

We now set the maximum error threshold εmax = 0.001 and
learn a separate specification for each patient, as shown in the
following:

ϕ1 = (A∗ · D · C · D · B)
ϕ2 = (A∗ · D · C · A · (A ∪ B)). (5)

The two specifications capture the approximated heart-beat
behavior of the two patients—a relatively constant behavior
(A∗), followed by a peak (D ·C ·D for patient 1 and D · C for
patient two), followed by another relatively constant behav-
ior B for patient 1 and A · (A ∨ B) for patient 2. We can
observe that at this level of abstraction, the two patients share
similar constant prefix, followed by a peak. We note that the
second increase in the slope in the peak of patient two is
small and is not captured with this level of abstraction. We
can observe that our method captures both similarities and
differences between the heartbeats of two patients. The two
inferred specifications can also be explained in terms of the
behaviors that they accept. Fig. 10 shows such a visualization
where the behaviors generated from ϕ2 are shown in blue and
the input data are shown in cyan.

We also measured the robustness of the segmentation pro-
cedure with respect to the noise in the data. We found that
for the maximum threshold error ν of 0.001 used in this case
study, patients 1 and 2 data would tolerate in the worst case an
additional 6e−5 (6% of ν) and 3e−5 (3% of ν) MSE per seg-
ment, respectively, without changing the number of generated
segments.

Authorized licensed use limited to: University of Southern California. Downloaded on October 30,2020 at 23:46:52 UTC from IEEE Xplore. Restrictions apply.

BARTOCCI et al.: MINING SEs FROM POSITIVE EXAMPLES 3819

Fig. 11. Visualization of the robot motion specification.

C. Mining Robot Motion Patterns

Mueen et al. [5] described a time-series dataset obtained
from a SONY AIBO robot—a small dog-shaped robot
mounted with a triaxial accelerometer. In the experimental
setting, the robot walks on two different surfaces: 1) carpet
and 2) cement. Cemented floors being harder than carpet offer
more reactive force to the robot, resulting in clear and sharp
changes in the acceleration of the robot. The time-series data
correspond to the x-axis readings of the robot labeled accord-
ing to the surface on which it walks (i.e., cement or carpet).
Each datum had 70 time steps, and we analyzed a total of six
traces.4

In this case study, we explore the machine interpretability
of SEs. We learn a specification from 30 behaviors of robot
moving on the cement surface. We set the maximum threshold
error ν to 0.5 and we infer the specification over the finite
alphabet shown in the following:

A : lin(a1, b1, d1) : a1 ∈ [−0.78,−0.08] ∧
b1 ∈ [1.9, 22] ∧ d1 ∈ [4, 15]

B : lin(a2, b2, d2) : a2 ∈ [−0.004, 0.08] ∧
b2 ∈ [−2, 0.2] ∧ d2 ∈ [36, 53]

C : lin(a3, b3, d3) : a3 ∈ [0.002, 0.12] ∧
b3 ∈ [−7.1,−0.2] ∧ d3 ∈ [21, 32]

D : lin(a4, b4, d4) : a4 ∈ [−0.2, 0.2] ∧
b4 ∈ [0.3, 2.1] ∧ d4 ∈ [4, 15]

E : lin(a5, b5, d5) : a5 ∈ [0.2, 0.8] ∧
b5 ∈ [−12, 0.24] ∧ d5 ∈ [2, 10]. (6)

We infer the specification ϕ3 = ((A ∪ D ∪ E)∗ · (C · (A ∪
E)∗ ∪ B) · C and we show in Fig. 11 some behaviors allowed
by the specification.

The mined specification can be used to detect whether the
robot is on the cement surface. Such information could be
conceivably used by a supervisory controller for the robot that
may make different control decisions based on the surface on
which the robot walks. Fig. 12 shows that the behavior of the
robot walking on the carpet and on the cement are very sim-
ilar. Specification ϕ3 is not able to discriminate between the
two surfaces due to generalization resulting from our approach
doing passive learning from positive examples only. This type
of problem can be addressed by using active learning and

4The actual data were acquired from the UCR time-series repository [60].

Fig. 12. Robot data—walking on cement (gray) and carpet (red).

introducing negative examples that would help to discriminate
between the two classes of behaviors.

VI. CONCLUSION

We introduced a novel procedure for mining linear SEs
from time series. It combined the segmentation of raw data,
clustering, abstraction, and passive automata learning. We
believe that the presented approach enabled understanding and
explaining data and facilitates discovering interesting patterns
in time series. We implemented the algorithm in a prototype
and applied it to two case studies from medical and robotic
domains.

We planned to explore the applicability of specification min-
ing in the explainability of black-box models, testing, and
anomaly detection. In this article, we restricted ourselves to
linear SEs. We planned to extend our methodology to nonlin-
ear shapes and studied the tradeoff between the computational
cost and the additional explainability of the specification. We
investigated a passive learning approach from positive exam-
ples. We planned to also study the active learning of SEs and
learning from both positive and negative examples. The qual-
ity of the resulting specification depended on the maximum
error threshold and the number of clusters used to abstract
the traces. These two parameters were currently manually set
and required domain knowledge. We will investigate the cri-
teria for automatically choose these parameters. In our article,
we have shown that we can use our approach to partition
similar shapes into different classes, for instance, to separate
normal from anomalous heartbeats. However, our approach
does not guarantee that the intersection between the two mined
specifications is empty. We plan to study refinement-based
techniques to mine specifications that accurately characterize
specific classes of shapes.

REFERENCES

[1] D. Ratasich, F. Khalid, F. Geissler, R. Grosu, M. Shafique, and
E. Bartocci, “A roadmap toward the resilient Internet of Things for
cyber-physical systems,” IEEE Access, vol. 7, pp. 13260–13283, 2019.

[2] E. J. Keogh and M. J. Pazzani, “Scaling up dynamic time warping for
datamining applications,” in Proc. KDD, 2000, pp. 285–289.

[3] E. J. Keogh and M. J. Pazzani, “An enhanced representation of time
series which allows fast and accurate classification, clustering and
relevance feedback,” in Proc. KDD, vol. 98, 1998, pp. 239–243.

[4] L. Ye and E. Keogh, “Time series shapelets: A new primitive for data
mining,” in Proc. KDD, 2009, pp. 947–956.

[5] A. Mueen, E. Keogh, and N. Young, “Logical-shapelets: An expres-
sive primitive for time series classification,” in Proc. KDD, 2011,
pp. 1154–1162.

[6] J. Lines, L. M. Davis, J. Hills, and A. Bagnall, “A shapelet transform
for time series classification,” in Proc. KDD, 2012, pp. 289–297.

[7] M. Garnelo and M. Shanahan, “Reconciling deep learning with sym-
bolic artificial intelligence: representing objects and relations,” Current
Opinion Behav. Sci., vol. 29, pp. 17–23, Oct. 2019.

Authorized licensed use limited to: University of Southern California. Downloaded on October 30,2020 at 23:46:52 UTC from IEEE Xplore. Restrictions apply.

3820 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

[8] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman,
“Building machines that learn and think like people,” Behav. Brain Sci.,
vol. 40, p. e253, Nov. 2017.

[9] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri,
“Programmatically interpretable reinforcement learning,” in Proc. ICML,
vol. 80, 2018, pp. 5052–5061.

[10] A. Santoro, F. Hill, D. G. T. Barrett, A. S. Morcos, and T. P. Lillicrap,
“Measuring abstract reasoning in neural networks,” in Proc. ICML,
vol. 80, 2018, pp. 4477–4486.

[11] D. Nickovic, X. Qin, T. Ferrère, C. Mateis, and J. V. Deshmukh, “Shape
expressions for specifying and extracting signal features,” in Proc. RV,
vol. 11757, 2019, pp. 292–309.

[12] T. Dang and R. Testylier, “Hybridization domain construction using
curvature estimation,” in Proc. HSCC, 2011, pp. 123–132.

[13] T. Dang, O. Maler, and R. Testylier, “Accurate hybridization of nonlinear
systems,” in Proc. HSCC, 2010, pp. 11–20.

[14] E. Asarin, T. Dang, and A. Girard, “Hybridization methods for the analy-
sis of nonlinear systems,” Acta Informatica, vol. 43, no. 7, pp. 451–476,
2007.

[15] R. Grosu, S. Mitra, P. Ye, E. Entcheva, I. V. Ramakrishnan, and
S. A. Smolka, “Learning cycle-linear hybrid automata for excitable
cells,” in Proc. HSCC, vol. 4416, 2007, pp. 245–258.

[16] R. Grosu, G. Batt, F. Fenton, J. Glimm, C. Le Guernic, S. A. Smolka,
and E. Bartocci, “From cardiac cells to genetic regulatory networks,” in
Proc. CAV, vol. 6806, 2011, pp. 396–411.

[17] Z. Xu and A. A. Julius, “Census signal temporal logic inference for
multiagent group behavior analysis,” IEEE Trans. Autom. Sci. Eng.,
vol. 15, no. 1, pp. 264–277, Jan. 2018.

[18] C. Ackermann, R. Cleaveland, S. Huang, A. Ray, C. P. Shelton, and
E. Latronico, “Automatic requirement extraction from test cases,” in
Proc. RV, 2010, pp. 1–15.

[19] E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric identifica-
tion of temporal properties,” in Proc. RV, vol. 7186, 2012, pp. 147–160.

[20] B. Hoxha, A. Dokhanchi, and G. E. Fainekos, “Mining parametric tem-
poral logic properties in model-based design for cyber-physical systems,”
Int. J. Softw. Tools Technol. Transfer, vol. 20, no. 1, pp. 79–93, 2018.

[21] E. Bartocci, L. Bortolussi, and G. Sanguinetti, “Data-driven statisti-
cal learning of temporal logic properties,” in Proc. FORMATS, 2014,
pp. 23–37.

[22] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Mining require-
ments from closed-loop control models,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 34, no. 11, pp. 1704–1717, Nov. 2015.

[23] L. V. Nguyen, J. Kapinski, X. Jin, J. V. Deshmukh, K. Butts, and
T. T. Johnson, “Abnormal data classification using time-frequency
temporal logic,” in Proc. HSCC, 2017, pp. 237–242.

[24] J. Zhou, R. Ramanathan, W.-F. Wong, and P. S. Thiagarajan, “Automated
property synthesis of ODEs based bio-pathways models,” in Proc.
CMSB, 2017, pp. 265–282.

[25] Z. Kong, A. Jones, and C. Belta, “Temporal logics for learning and
detection of anomalous behavior,” IEEE Trans. Autom. Control, vol. 62,
no. 3, pp. 1210–1222, Mar. 2017.

[26] G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A
decision tree approach to data classification using signal temporal logic,”
in Proc. HSCC, 2016, pp. 1–10.

[27] G. Bombara and C. Belta, “Signal clustering using temporal logics,” in
Proc. RV, 2017, pp. 121–137.

[28] S. Bufo, E. Bartocci, G. Sanguinetti, M. Borelli, U. Lucangelo, and
L. Bortolussi, “Temporal logic based monitoring of assisted ventilation
in intensive care patients,” in Proc. ISoLA, 2014, pp. 391–403.

[29] R. Medhat, S. Ramesh, B. Bonakdarpour, and S. Fischmeister, “A frame-
work for mining hybrid automata from input/output traces,” in Proc.
IEEE EMSOFT, 2015, pp. 177–186.

[30] L. Nenzi, S. Silvetti, E. Bartocci, and L. Bortolussi, “A robust genetic
algorithm for learning temporal specifications from data,” in Proc. QEST,
vol. 11024, 2018, pp. 323–338.

[31] D. Neider and I. Gavran, “Learning linear temporal properties,” in Proc.
FMCAD, 2018, pp. 1–10.

[32] P. Kyriakis, J. V. Deshmukh, and P. Bogdan, “Specification mining and
robust design under uncertainty: A stochastic temporal logic approach,”
ACM Trans. Embedded Comput. Syst., vol. 18, no. 5S, pp. 1–21, 2019.

[33] S. Jha, A. Tiwari, S. A. Seshia, T. Sahai, and N. Shankar, “TeLEx:
learning signal temporal logic from positive examples using tightness
metric,” Formal Methods Syst. Design, vol. 54, no. 3, pp. 364–387,
2019.

[34] J. Lamp, S. Silvetti, M. Breton, L. Nenzi, and L. Feng, “A logic-based
learning approach to explore diabetes patient behaviors,” in Proc. CMSB,
vol. 11773, 2019, pp. 188–206.

[35] M. G. Soto, T. A. Henzinger, C. Schilling, and L. Zeleznik,
“Membership-based synthesis of linear hybrid automata,” in Proc. CAV,
vol. 11561, 2019, pp. 297–314.

[36] G. Bombara and C. Belta, “Online learning of temporal logic formulae
for signal classification,” in Proc. ECC, 2018, pp. 2057–2062.

[37] P. Vaidyanathan et al., “Grid-based temporal logic inference,” in Proc.
IEEE CDC, 2017, pp. 5354–5359.

[38] O. Maler and D. Nickovic, “Monitoring properties of analog and mixed-
signal circuits,” Int. J. Softw. Tools Technol. Transfer, vol. 15, no. 3,
pp. 247–268, 2013.

[39] M. D. Ernst et al., “The Daikon system for dynamic detection of likely
invariants,” Sci. Comput. Program., vol. 69, nos. 1–3, pp. 35–45, 2007.

[40] E. Bartocci, N. Manjunath, L. Mariani, C. Mateis, and D. Nickovic,
“Automatic failure explanation in CPS models,” in Proc. SEFM,
vol. 11724, 2019, pp. 69–86.

[41] E. Bartocci, N. Manjunath, L. Mariani, C. Mateis, D. Ničković, and
F. Pastore, “CPSDebug: A tool for explanation of failures in cyber-
physical systems,” in Proc. ISSTA, 2020, pp. 569–572.

[42] E. Bartocci, E. A. Gol, I. Haghighi, and C. Belta, “A formal meth-
ods approach to pattern recognition and synthesis in reaction diffusion
networks,” IEEE Trans. Control. Netw. Syst., vol. 5, no. 1, pp. 308–320,
2018.

[43] R. Grosu, S. A. Smolka, F. Corradini, A. Wasilewska, E. Entcheva, and
E. Bartocci, “Learning and detecting emergent behavior in networks of
cardiac myocytes,” Commun. ACM, vol. 52, no. 3, pp. 97–105, 2009.

[44] C. de la Higuera, Grammatical Inference: Learning Automata and
Grammars. Cambridge, U.K.: Cambridge Univ. Press, 2010.

[45] D. Angluin, “Learning regular sets from queries and counterexamples,”
Inf. Comput., vol. 75, no. 2, pp. 87–106, 1987.

[46] M. Isberner, F. Howar, and B. Steffen, “The TTT algorithm: A
redundancy-free approach to active automata learning,” in Proc. RV,
vol. 8734, 2014, pp. 307–322.

[47] B. Steffen, F. Howar, and M. Isberner, “Active automata learning: From
DFAs to interface programs and beyond,” in Proc. ICGI, vol. 21, 2012,
pp. 195–209.

[48] Y. Chen, J. Tumova, A. Ulusoy, and C. Belta, “Temporal logic robot
control based on automata learning of environmental dynamics,” Int. J.
Robot. Res., vol. 32, no. 5, pp. 547–565, 2013.

[49] J. Fu, H. G. Tanner, J. Heinz, and J. Chandlee, “Adaptive sym-
bolic control for finite-state transition systems with grammatical infer-
ence,” IEEE Trans. Autom. Control, vol. 59, no. 2, pp. 505–511,
Feb. 2014.

[50] R. Bellman and R. Roth, “Curve fitting by segmented straight lines,” J.
Amer. Stat. Assoc., vol. 64, no. 327, pp. 1079–1084, 1969.

[51] T. Pavlidis and S. L. Horowitz, “Segmentation of plane curves,” IEEE
Trans. Comput., vol. C-23, no. 8, pp. 860–870, Aug. 1974.

[52] U. Ramer, “An iterative procedure for the polygonal approximation
of plane curves,” Comput. Graph. Image Process., vol. 1, no. 3,
pp. 244–256, 1972. [Online]. Available: https://www.sciencedirect.com/
science/article/abs/pii/S0146664X72800170?via%3Dihub

[53] U. Ramer, “An iterative procedure for the polygonal approximation
of plane curves,” Comput. Graph. Image Process., vol. 1, no. 3,
pp. 244–256, 1972.

[54] N. Ozay, “An exact and efficient algorithm for segmentation of ARX
models,” in Proc. ACC, 2016, pp. 38–41.

[55] G. Chou, N. Ozay, and D. Berenson, “Incremental segmentation of ARX
models,” IFAC-PapersOnLine, vol. 51, no. 15, pp. 587–592, 2018.

[56] J. MacQueen et al., “Some methods for classification and analysis
of multivariate observations,” in Proc. 5th Berkeley Symp. Math. Stat.
Probab., vol. 1, 1967, pp. 281–297.

[57] F. Pastore, D. Micucci, and L. Mariani, “Timed k-tail: Automatic
inference of timed automata,” in Proc. ICST, 2017, pp. 401–411.

[58] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20,
pp. 53–65, Nov. 1987.

[59] A. E. A. Goldberger, “Physiobank, physiotoolkit, and physionet:
Components of a new research resource for complex physiologic
signals,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000.

[60] H. A. E. A. Dau. (Oct. 2018). The UCR Time Series Classification
Archive. [Online]. Available: https://www.cs.ucr.edu/∼eamonn/time_
series_data_2018/

Authorized licensed use limited to: University of Southern California. Downloaded on October 30,2020 at 23:46:52 UTC from IEEE Xplore. Restrictions apply.

