2020 IEEE International Conference on Cluster Computing (CLUSTER)

HCL: Distributing Parallel Data Structures in
Extreme Scales

Hariharan Devarajan, Anthony Kougkas, Keith Bateman, Xian-He Sun
Hllinois Institute of Technology, Department of Computer Science
hdevarajan @ hawk.iit.edu, akougkas@iit.edu, kbateman@ hawk.iit.edu, sun@iit.edu

Abstract—Most parallel programs use irregular control
flow and data structures, which are perfect for one-sided
communication paradigms such as MPI or PGAS programming
languages. However, these environments lack the presence of
efficient function-based application libraries that can utilize
popular communication fabrics such as TCP, Infinity Band (IB),
and RDMA over Converged Ethernet (RoCE). Additionally,
there is a lack of high-performance data structure interfaces. We
present Hermes Container Library (HCL), a high-performance
distributed data structures library that offers high-level
abstractions including hash-maps, sets, and queues. HCL uses a
RPC over RDMA technology that implements a novel procedural
programming paradigm. In this paper, we argue a RPC over
RDMA technology can serve as a high-performance, flexible,
and co-ordination free backend for implementing complex data
structures. Evaluation results from testing real workloads shows
that HCL programs are 2x to 12x faster compared to BCL, a
state-of-the-art distributed data structure library.

Index Terms—Distributed Data Structure, RPC over RDMA,
Hybrid Data Access Model, HPC Data Containers

[. INTRODUCTION

Applications that include complex data distribution and
irregular control flows are extremely complex to write [1], [2].
To build parallel programs, scientists employ various parallel
programming models such as Partitioned Global Address
Space (PGAS) [3], Message Passing Interface (MPI) [4], or
task-based paradigms [5], [6]. However, all of these provide
application developers with primitive constructs on top of
the hardware that are quite complex to program with and
highly error-prone. Many parallel languages [7], [8], [6] and
libraries [9], [10], [11], [12], [13] have been introduced to ease
this complexity. These parallel languages provide abstractions
with low-level control flows such as parallel access, task
creation, messaging layers, etc. However, to fully leverage the
power of such parallel languages, developers need to write
the entire program natively in one such language. Thus, legacy
code and software stacks need to be rewritten in order to utilize
parallel languages. In contrast, parallel programming libraries
extend current serial compilers with parallel programming
abstracts. This leads to a less intrusive approach where appli-
cation developers can still write programs in serial languages
which are extended with additional functionality. Scientific
productivity can be increased by parallel programs that utilize
high-level clean abstractions provided by these libraries.

One such parallel programming library, the Berkeley Con-
tainer Library (BCL) [11], that was recently introduced, is in-

978-1-7281-6677-3/20/$31.00 ©2020 IEEE
DOI 10.1109/CLUSTER49012.2020.00035

248

tended to support applications with irregular computation and
communication patterns. Specifically, BCL provides high-level
portable data structures, such as hashmaps and queues, with
asynchronous access to structures distributed across multiple
processes. BCL aims to steer away from a bulk-synchronous
programming (BSP) model [14] by providing a complemen-
tary set of C++ STL-like abstractions. It uses one-sided
communication primitives that can be executed by RDMA-
capable hardware [15], and, thus, eliminates the requirement of
remote CPU coordination. Consequently, instead of a low-level
remote read and write operation consistent with the PGAS
model, BCL offers higher level primitives such as insert and
find (in a hashtable). To achieve this, BCL employs three core
architectural principles: a) use of client-side memory manage-
ment and Compare-And-Swap (CAS) operations [16] to ensure
consistency, b) all data structures are partitioned to ensure
good locality, and c) the underlying communication layer
should be abstracted, as long as it supports one-sided Remote
Memory Access (RMA) [17]. BCL demonstrates how high-
performance implementations of these data structures make
the development of parallel applications straightforward while
matching the performance of specialized parallel languages.
Distributing data structures involves partitioning a data con-
tainer and placing it on a collection of servers. To ensure data
consistency, synchronization is needed. In an effort to reduce
the need for synchronizations between the caller and target
processes, BCL implements such a data distribution by lever-
aging one-sided RMA operations. Hence, BCL uses a client-
side programming model where all data interactions on the
remote data container are solely instructed by the clients. How-
ever, this architectural choice implies several performance and
programmability limitations as follows: a) increased network
congestion caused by multiple remote calls made by clients
per operation. For example, for each insert () operation,
the client needs to perform two remote CAS operations before
it can insert the data. b) Low write asynchronicity caused by
the necessity of performing a flush operation, which forces the
callers to serialize updates. ¢) Limited operation concurrency
caused by memory region locking by the CAS instructions. d)
Increased operation latency caused by multiple remote calls
which a client makes in order to locate the next available
slot in the data container. For example, for all hash-based
structures, bucket collision is resolved by the client retrying
until it finds the next available bucket. e) Increased cost of
re-balancing a data structure, which is caused by a static pre-

allocated partitioning that the clients must agree upon. This

causes either increased client all-to-all synchronizations or

an over-provisioning of the available resources to minimize
frequent re-hashing. f) Under-utilization of system resources,
which is caused by imposing a static predefined data entry size.

In this paper, we argue that a combination of a Remote

Procedure Call (RPC) protocol and Remote Direct Memory

Access model (e.g., RDMA or RoCE) can alleviate the

above challenges and offer an infrastructure to design high-

performance, scalable, and highly concurrent distributed data
structures (DDS). The RPC protocol implies a level of location
transparency (i.e., remote functions appear as local) enabling
network programming that follows a request—response model.

In other words, the RPC protocol is a form of inter-process

communication (IPC) and can support server-side callback

functions. However, RPC protocols demand the participation
of the remote CPU (i.e., interrupting the destination
core) resulting in a slower throughput. The key insight
this paper offers is that RDMA technology can alleviate
this issue by offloading the RPC instructions to the NIC,
conserving valuable CPU resources. Note that the computation
capabilities of modern NICs (e.g., Mellanox™ BlueField2)
are significantly improved due to multi-core designs.

In this work, we present Hermes Container Library (HCL):

a new, high-performance, and scalable distributed data

structure library that uses an RPC-over-RDMA approach as

its functional communication fabric. HCL aims to provide
high-level data structures in the form of STL containers,
such as ordered/unordered maps and sets, as well as priority
and FIFO queues, while abstracting the low-level details
of distribution, communication, and data access semantics
and providing coordination-free data access by offloading
the instruction execution to the RDMA hardware using
the RPC-over-RDMA approach. HCL can support highly
parallel workloads with irregular patterns, indexing services,
scheduling, data sharing, and process-to-process lock-free
synchronizations. Consistent with any PGAS implementation,

HCL data structures reside in a global address space where

multiple processes can access data concurrently. HCL uses an

abstract serialization template, called DataBox, that defines a

standard methodology to transparently serialize complex data-

types. HCL uses the Open Fabric Interface (OFI) to build a

portable cross-platform communication fabric able to interface

with any underlying network protocols (e.g., IB, TCP, CC,
etc.). Additionally, HCL distinguishes between node-local and
inter-node client accesses, resulting in a hybrid access model,
in order to further optimize the overall throughput of its

DDSs. Lastly, acknowledging the need to persist ever-growing

critical data, HCL DDSs can reside in storage-class memory

technologies via the use of a memory-mapped backing file.

The contributions of this work are:

1) Design and implementation of RPC-over-RDMA protocol,
that enables high performance and co-ordination free com-
munication fabric for procedural programming paradigm.

2) A distributed data structure library built for high
performance using RPC-over-RDMA protocol.

249

3) A hybrid data access model, efficiently and simply making
decisions about whether or not to perform RPC calls
based on data locality.

II. BACKGROUND AND MOTIVATION
A. Distributing a Data Structure

Many approaches have been proposed to distribute prim-
itive data structures. PGAS languages such as Chapel [7],
Fortress [18], X10, Titanium [8], HPF [19], and ZPL [20] offer
distributed memory data structures such as multidimensional,
dense or sparse arrays. However, rich data structures, which
are present in sequential environments, are not supported due
to a more complex concurrent access model that partitioned
arrays simply cannot express. Tiling is a popular technique
to provide concurrency control, where a group of processes
operate on a tile, but lose the ability to enforce data locality
optimizations that most irregular applications would need to
run faster. The lack of support for data structures at a higher
level of abstraction (e.g., hash-tables or queues) hurts the
programmability and the performance. Developers are forced
either to work with low-level control structures or to imple-
ment a custom solution using basic network primitives such
as MPI send-receive or even one-sided RMA. This process is
complex, error-prone, non-portable, and not scalable.

B. Client-side Programming

One proposed solution to provide high-level, high-
performance, and robust data structures to parallel programs
is the BCL [11] cross-platform distributed data structures
library. In BCL, the clients expose a memory segment
into the global shared memory window and agree on its
management via global pointers. Remote reads and writes
are then executed, in a coordination-free way, by using the
RDMA hardware instead of the destination CPUs. At its
core, BCL requires the support of remote memory operations
and atomics (compare-and-swap (CAS)) from the network
hardware and software stack. Without CAS support, BCL
structures cannot be implemented. This is because BCL
follows a client-side programming paradigm where the client
needs to execute all necessary instructions to interact with a
remote data structure. For example, take a client that wants to
insert an element to a BCL hashmap. First, the client needs to
check the bucket state and reserve it via a CAS operation. If
this reservation fails, the client will retry on the next bucket in
sequence. Once the reservation succeeds, the client will write
the data in the bucket and set the state of the bucket to “ready”
for future accesses via a CAS operation. This whole process
can be very quick but it can also be very inefficient under
high-concurrency scenarios where multiple clients are trying
to push data to the hashmap, and, thus, CAS operations have
to be serialized behind a lock of the same memory region.

C. A Motivating Example

The client-side programming approach of DDS manipula-
tion, as proposed in BCL, can be limiting in performance in
parallel and highly-concurrent environments due to multiple
remote CAS operations [21]. We argue that BCL can be

| Reserve bucket (remote)

u Insert data (remote)

m Set bucket state (remote)
RPC call

3, H Reserve bucket (local)
=07
3 Insert data (local)
2 0.6 Set bucket state (local)
® 05 0.047
Lo4 0.133
= 0.132
Fo03 1 0.046

02 0.301 0.299

0.1 - -

0
BCL RPC with CAS RPC with lock-free

APPROACHES

Fig. 1. Motivating test case. . . A
enhanced and extended with additiona functionality if we

move to a procedural programming paradigm where all neces-
sary instructions (and data) to manipulate the remote memory
region can be bundled inside an RPC call and executed on the
destination node. By doing so, we can reduce the number of
network calls (i.e., multiple client-to-server roundtrips) and
eliminate any locking imposed by remote CAS operations,
and, thus, a performance gain will be observed. To test our
hypothesis and quantify the cost of BCL’s client-side manage-
ment of remote memory regions, which uses multiple remote
CAS operations to modify the data structure, we conduct the
following test. We use 40 clients on one node to issue 8192
insert() calls of 4KB each. The target hashmap partition resides
in a different node requiring remote network calls. For BCL
the following three operations for each client are needed to
complete an insert: a) CAS to reserve the hashmap bucket, b)
RDMA write to put the data in the bucket, and c) CAS to set
the new bucket state to ready. For the procedural programming
approach, we bundle all three operations to an RPC call and
invoke the execution on the remote RDMA NIC. As an extra
optimization, we implemented a lock-free implementation of
hashmap that eliminates the need of CAS operations. This
can only be done under the procedural programming approach
since it requires a dynamic allocation and destruction of
remote address space [22]. We measure the average time in
seconds that each client process needs to complete all 8K
inserts. Figure 1 shows the results of this test. As can be
seen, the total average cost for BCL’s client-side approach
is 1.062 seconds. If broken down to the three operations,
we see that the remote CAS operations impose a significant
burden to the client consuming about 2/3 of the overall time.
In contrast, the procedural programming approach is 2x faster
since, once the RPC call has been invoked, all CAS operations
are executed locally (i.e., local memory performance). The
cost of the remote RPC call is about 0.30 seconds and is
consistent with the network performance between the two test
nodes. Lastly, the lock-free implementation removes the need
for CAS operations, and, thus, is faster than BCL by 2.5x.
This simple hypothesis motivates us to propose a change in
paradigm from client-side imperative to procedural program-
ming with RDMA in order to further optimize distributed data
structure access, concurrency control, and locality.
III. HERMES CONTAINER LIBRARY

The Hermes Container Library (HCL) is a cross-platform
data structure library (https://bitbucket.org/scs-io/hcl/) that
implements high-level distributed data structures. It follows

250

the PGAS memory model but is based on procedural
programming, which uses remote function invocation to
manipulate remote memory. During initialization, one or
more processes in the node can create a shared memory
segment that other processes (both local and remote) can read
and write to by invoking functions. Each function contains
a caller identifier (i.e., where the function is invoked) and an
operation to execute at the target memory segment. Together,
these two values can uniquely identify operations that can
be performed on the global address space. Each function can
manipulate the remote memory address based on the operation
it performs. These functions can be invoked synchronously,
asynchronously, or through callbacks on other functions. This
enables a rich set of functionality support required by any
data structure. The users can include the HCL library header
and utilize the data structures by calling the constructor.

A. HCL Design Challenges

1) How can remote function invocation be supported:
HCL handles all remote memory region accesses (and
mutations) through invocation as a core principle of data
manipulation. Each invocation includes two identifiers: a) the
target process (i.e., destination) and b) the operation to be
executed. Invocations are implemented by an RPC call which
bundles the instructions (and data if needed) and ships them
to the target process for execution. Upon completion of the
invocation, the target process returns the response.

2) How can atomic operations on DDS be supported:
HCL inherently offers atomic operations [23] by supporting
remote function invocation mechanisms and compare-and-
swap operations. HCL depends on the OS kernel to provide
high-quality interfaces to atomic operations as implemented
in the hardware. When such hardware support is not present,
HCL also supports atomics via mutexes.

3) How can data consistency be supported: Where re-
quired/instructed, HCL can provide data consistency between
concurrent access to the share memory region regardless of its
origin (i.e., CPU or NIC core). It achieves this by utilizing a
lock-free and consistent local data structures, much like [24],
which are the building block of DDSs within HCL.

4) How can data durability for DDS be supported: All
HCL data structures can be protected against faults by either
backing them up to a durable medium such as an NVMe
drive or by replication. HCL can map the memory segments
to a memory mapped file and let the kernel synchronize
(i.e., flush) the contents of the mapped memory region to
the file. Additionally, HCL can enable replication on its data
structures. Each operation is hashed to a server where the
invocation is executed. Replication occurs asynchronously at
the server side, where the target process will further hash an
operation to more servers.

B. RPC over RDMA

HCL uses a new communication framework that implements
the traditional RPC protocol over an RDMA-enable network.
This framework avoids the pitfalls of a traditional CPU-based
RPC protocol [25] by using the RDMA infrastructure to

(RPC Client Yoo RPC Server)
0 e 2. RDMA Send Request Buffer
L : | NIC Core
:L,'_‘ ! Work
Send Recv 3. Work RECVQueue
Queue Queue |
|;..6. Notify send ___ RDMAJ4,
T completion : Recv
7. ROMA READ LT R esonseBuffer 5. Write
\ (client pull) Ui P responsg

Fig. 2. RPC over RDMA design.

limit interruptions and other overheads, and thus, offer a
high performance communication layer for data structure
access. HCL’s RPC-over-RDMA (RoR) framework (shown in
Figure 2) modifies the client and server stubs to enable the
RDMA functionality. Initially, users submit their functions
by calling the bind () method that maps them to an RPC
invocation registry. When clients call invoke (), the client
stub inserts the request to a request buffer (residing at
the server’s main memory) using an RDMA_SEND. Once
the request arrives in the request buffer, the RPC server,
which is running on the NIC core, pulls the request using
IBV_WC_RECYV available by the RDMA work-queue [26]
mechanism. The request is then processed using the server
stub that de-marshals it and executes the invoked function. The
response is placed in a response buffer. Finally, the client stub
using the ibv_get_cq_event gets notified about completion of
send and it pulls the results using IBV_WR_RDMA_READ
from the response buffers. HCL’s RoR framework enables two
key innovations: request aggregations and a client-pulling re-
sponse paradigm. First, to minimize remote calls and network
traffic, the RoR framework processes incoming requests on
the server’s NIC which exposes the opportunity to aggregate
multiple instructions before execution. Second, the framework
employs a data pull model where results are remotely fetched
by the clients through an RDMA read operation instead of
being sent by the server as described above. HCL’s RoR
framework enables fast execution of RPC calls using the NIC
core (i.e, without the involvement of target CPUs).

C. The HCL DataBox Abstraction

To transparently manipulate a DDS in the global address
space, HCL introduces the DataBox abstraction. A DataBox is
a template that provides mechanisms for defining, serializing,
transmitting, and storing complex data structures. A DataBox
offers a higher-level encapsulation of complex data types (e.g.,
class or struct), which are not byte-copyable. For instance, a
C++ standard class might include pointers to external objects
that do not carry a meaningful interpretation outside the
scope of the source process (i.e., source memory becomes
inaccessible). This is also true for supporting newer byte-
addressable mediums such as NVRAM or PCM. DataBoxes
do not use serialization for simple byte-copyable data types.

1) DataBox Transmission (RPC over RDMA): DataBoxes
contain a transmission mechanism defined by an RPC over
RDMA protocol. In this case, the server process runs on one
of the RDMA NIC’s cores and the transfer of arguments
happens using a one-sided access [27]. The benefit of this

251

design is that the CPU core is no longer participating in the
function execution. However, due to the limited computational
capability of the NIC’s cores, the invoked functions have to be
lightweight. This fits perfectly with the case of a data structure
library where most operations are not computationally
intensive (i.e, the structure can be manipulated with a small
number of instructions). HCL implements this by spawning
the server-stub on the RDMA-NIC through an asynchronous
work-queue mechanism. The serialized DataBox is submitted,
using the OFI’s ibverbs, to the target work-queue where a
NIC core will process it. HCL utilizes the RDMA work-queue
technology to provide a multi-threaded asynchronous listening
and handling of all transmitted DataBoxes. Additionally, the
RPC protocol inherently allows HCL to support callback
functions. Hence, HCL’s DataBoxes combine the benefits of
both UPC++, which uses high-level procedural programming,
and BCL, which uses one-sided communications.

2) DataBox Serialization: The DataBox abstraction are
implemented using a C++ generic system. A DataBox is a
class template that provides a specification for implementing
complex data types. To transmit or store its data, a DataBox
provides a standard serialize/deserialize method which
can use different serialization libraries in the backend, since
different serialization libraries excel in different environments.
For instance, most supercomputers might provide popular
serialization as a module. HCL -currently supports three
high-performance libraries [28] as a backend: MSGPACK,
Cereal, and FlatBuffers. DataBoxes can serialize a fixed or
variable length object. This distinction is handled during the
compile-time of the application. Also, for their own data
types, users can define their own custom serialization function
which is resolved dynamically during runtime. Lastly, HCL
provides native support for standard STL containers.

3) DataBox Event Handling via Callbacks: Callback
methods can be implemented by the procedural programming
paradigm HCL employs. This can be achieved using a identi-
fier to a remote function which is executed after the main data
structure operations. These are extremely powerful in cases
where we want to aggregate multiple data-local operations
together. This is enabled by mapping several spatially located
updates to be performed with one call by chaining multiple
callbacks on a single function invocation. HCL callbacks can
be a powerful and expressive tool, and are readily available
to developers. Using callbacks can enable a conditional
execution of multiple operations in one call which minimizes
the network congestion, and, thus, optimizes performance.

4) DataBox Asynchronous RPC: All HCL data structures
support asynchronous operations by default. Each function
invocation creates a future object (much like C++ future and
wait operations), which gets the response after the call is
executed. Thus, providing synchronous and asynchronous
models is a matter of timing when the caller waits for the
future object. In synchronous execution, the caller blocks
waiting for the response immediately after making the
invocation call, whereas, in asynchronous execution, the
caller can come back at a later point and check the future

object’s status for the response. Asynchronicity increases
overlaps with other computations and the use of concurrent
communication lanes within the hardware, thereby enabling
efficient collectives (e.g., broadcast, all gather/scatter).

5) DataBox Hybrid Data Access Model: Since all DDSs are
partitioned across several nodes, DataBox’s data access model
distinguishes between intra-node and inter-node accesses
(i.e., local or remote). Modern CPU core count has grown
significantly where each node runs hundreds of processes.
HCL optimizes intra-node accesses by directly exposing data
from the local partition without the need of an RPC call.
Invoking RPC calls for local partitions incurs unnecessary
costs including the processing of the RPC call and the network
congestion on the local NIC. By avoiding this cost, HCL
can significantly boost performance and system utilization
across all operations. However, remote partitions are normally
exposed through the DataBox transmission mechanism. Thus,
HCL’s DataBoxes enable a hybrid data access model that is
achieved by setting a locality flag during initialization. In other
words, if the target process has the same nodelD as the caller-
process, then a Direct Memory Access (DMA) call is made.

6) DataBox Persistency: HCL can extend the PGAS model
to include persistent devices (e.g., NVRAM, NVMe-SSD,
HDD), and thus, offer a unified memory and storage address
space. To achieve this, DataBoxes implement a shared
memory model [29] on top of these devices, where regions of
these devices are memory-mapped. These memory-mapped
regions are synchronized with the underlying device on a per-
operation basis, which ensures all data is always present in the
device. However, this synchronization can be configured to be
relaxed, which would mean performing these synchronizations
in the background. This tunes the performance of the DDS
based on the application’s requirements. Therefore, DataBoxes
can offer persistence for all DDSs by mapping a data structure
partition to both a node and a medium. This is an essential
feature as non-volatile memory technologies keep growing;
it is imperative to extend the data structure library to utilize
these new mediums in order to achieve DDS durability.

D. HCL Data Structures

HCL offers a plethora of C++ STL-like distributed data
containers grouped into three major categories: maps, sets, and
queues. For maps and sets, HCL offers both unordered (e.g.,
dictionary in Python or hashmap in Java) and ordered versions.
For queues, HCL offers both standard FIFO and priority
versions. HCL's compatibility to the Standard C++ library
boosts productivity since developers are already familiar with
the standard containers. HCL takes these abstractions and
distributes them across a collection of nodes in a cluster. All
distributed data structures (DDS) in HCL are globally visible
(i.e., public) since they reside in globally addressable memory
shared across all participating nodes. HCL’s data distribution
model is based upon a partitioning technique where a data
structure can be hosted by one or more memory regions (which
are still globally visible) based on its ordering properties.
For instance, an unordered_map can be placed on all nodes

252

Fig. 3. Example of Sorting using BCL and HCL.

since elements are not bound together in any particular order.
In contrast, a distributed queue cannot be split into multiple
partitions since it will violate the ordering property between
its elements. In summary, HCL categorizes its containers into
single- and multi-partitioned data structures. As a special case,
ordered structures are built using multiple single-partitioned
structures that are abstracted behind a global interface.

Since all data structures implement HCL’s DataBox
abstraction, they have several commonalities. First, all DDSs
support complex data types and their entries can be of variable-
length. For user-defined types DataBox provides template
definitions for custom data serializations. Most common types,
however, are handled automatically without any intervention
by the user. Second, all DDS operations are lock-free and do
not require any global synchronization, even in the case of
collective operations such as initializing or resizing a DDS,
which reduces the associated costs. This approach allows
HCL to support a Multiple-Writer-Multiple-Reader (MWMR)
access model which increases performance via concurrency.
This allows HCL to have heterogeneous partitions within
PGAS, and to enable dynamic addition/removal of partitions.
Third, all HCL DDSs support user-defined comparators and
operators (using std::hash and std::less) for defining custom
data distributions and/or ordering. Lastly, all DDS operations
are inherently atomic due to the HCL’s functional paradigm.
Further, HCL allows its users to tune the level of atomicity
by setting the appropriate concurrency control parameter.
Table I provides an overview of all HCL’s data structures,
their operations, and their complexity. As demonstrated by
the table, each high-level data structure operation is compiled
down to only one remote invocation and a few local operations.

1) Hash Map and Hash Set: All hash data structures (i.e.,
both maps and sets) are implemented as a single logically
contiguous array of buckets distributed block-wise among
multiple partitions in the global address space. Each bucket
is a struct consisting of a key and a value for maps and a
key for sets. HCL hash structures use two levels of hashing:
one for choosing the block of the global partition, and one
to locate a bucket within the specified partition. By default,
HCL uses the C++ std::hash<K> template struct in the
standard namespace. Users can override this template in case
they require a different distribution of keys. We employ a
lock-free Cuckoo Hash algorithm [30], which allows multiple
insertions on the same key to be always consistent, resolves
cache collisions using a secondary array of buckets, and
utilizes concurrency to increase write performance.

Data Structure Operations Description Cost (Time Complexity)
bool insert(const K &key, const V &val) Insert item into hash table F+L+W
HCL::unordered_map | bool find(const K &key, V &val) Find item in table, return val. F+L+R
bool resize(const int partition_id, const int new size) | Resize the hash table at the partition | F+N(R+W)
bool insert(const K &key, const V &val) Insert item into ordered map F+L(log(N)) +W
HCL::map bool find(const K &key, V &val) Find item in map, return val. F+L(log(N)) +R
bool resize(const int partition_id, const int new size) | Resize the map at the partition F+Nlog(N)(R+W)
bool insert(const K &key) Insert item into hash set F+L+W
HCL::unordered_set bool find(const K &key) Find item in set, return if exists. F+L+R
bool resize(const int partition_id, const int new size) | Resize the hash set at the partition F+N(R+W)
bool insert(const K &key) Insert item into ordered set F+L(log(N)) +W
HCL::set bool find(const K &key) Find item in set, return if exists. F+L(log(N)) +R
bool resize(const int partition_id, const int new size) | Resize the set at the partition F+Nlog(N)(R+W)
bool push(const T &val) Push element into queue F+L+W
HCL::queue bool pop(const T &val) Pop element from queue F+L+R
- bool push(const std::vector<T>&vals) Push multiple elements into queue F+L+E*W
bool pop(const std::vector &vals, const size_t &E) Pop multiple elements from queue F+L+E*R
bool push(const T &val) Push element into queue F+Llog(N)+W
HCL::priority_queue bool pop(const T &val) Pop element from queue F+L+R
" - bool push(const std::vector &vals) Push multiple elements into queue F+LIog(N)+E*W
bool pop(const std::vector &vals, const size_t &E) Pop multiple elements from queue F+L+E*R

TABLE T
A SELECTION OF METHODS FROM HCL DATA STRUCTURES. COSTS ARE WORST CASE, USING IMPLEMENTATION CHOSEN WITH CONCURRENT
ACCESSES. R IS THE COST OF A LOCAL READ, W THE COST OF A LOCAL WRITE, L THE COST OF A LOCAL MEMORY OPERATION, N NUMBER OF ENTRIES,
F IS THE COST OF INVOKING A FUNCTION ON REMOTE MEMORY, AND E THE NUMBER OF ELEMENTS INVOLVED.

HCL’s HCL::unordered_map and HCL::unordered_set
are distributed data structures. Clients can create instances
of unordered maps and sets (by calling the constructor
Figure 3), and use them as if they were local STL containers.
Both structures start with a default size of 128 buckets and
can resize themselves if needed. We use a load factor of
0.75 at which the structure doubles its number of buckets. A
realloc call is made in case the partition needs to be resized.
In the case where this resizing fails, the partition is rehashed
with a new memory allocation. This operation is localized to
the involved partition and can be either triggered by the user
explicitly or automatically when the load factor is reached.
HCL’s unordered maps and sets execute insertions and lookups
as follows: First, the inserting (finding) process computes
the appropriate partition by performing a hash operation
on the key. If a node-local partition is chosen, the RPC
infrastructure is bypassed and insertion (find) is performed
on the shared memory (i.e., without involving the NIC). For
a remote partition, an insert (find) function is invoked on a
target process by an RPC call. In case of inserts, the target
process locates an appropriate bucket on its local partition and
writes the data. Collisions are resolved asynchronously by the
secondary bucket mechanism that the Cuckoo algorithm uses.
In case of finds, the target process locates the key locally,
from either the primary or secondary, and reads the data.

2) Ordered Map and Set: HCL’s ordered data structures,
both maps and sets, are each implemented as an ordered
partition, containing the key space, which is distributed across
multiple partitions in the global address space. The key-space
length on each partition is configurable via tuning the locality
of the keys. To maintain order within each partition, a lock-
free red-black tree [31] algorithm is used due to its ability to
support high concurrency and asynchronous conflict resolution
(via its Node Lock Protocol (NLP) framework). Each node of
the tree represents a key-value pair for maps and a key for
sets. Since the red-black tree size increases along with the

253

number of nodes it will eventually fill the entire partition. In
this case, HCL triggers a realloc to resize the partition and
accommodate the new nodes of the tree. If resizing fails, all
nodes from the old partition are re-inserted into a new memory
allocation which only reflects the memory segment that ran out
of space. This whole process can either be triggered by the
user explicitly or automatically when a threshold is reached.

HCL’'s HCL::map and HCL::set are ordered
distributed data structures. Clients can create an instance
of HCL::map/HCL::set, by calling the appropriate
constructor, without any need for coordination. By default,
HCL uses the C++ comparator function std::less<K>
template struct in the standard namespace. As before, users
can override the template to achieve a different ordering of
elements in their data structures. HCL’s ordered maps and
sets execute insertions and lookups in a similar way as the
unordered versions. The main difference is the way these
ordered structures handle key conflicts. Ordered maps and sets
handle collisions by using a linked list that, in the worst case,
performs O(m + logn) per lookup (where n is the number
of nodes and m is the length of the linked-list). The length
of list is kept constant by using a background relocation
technique [31]. Also, instead of random key distribution, the
ordered versions of maps and sets distribute the key-space in
a round-robin fashion based on the key length.

3) Queues: All HCL queues support the MWMR access
model for concurrent push and pop operations. HCL queues
are implemented as a single-partitioned structure, but are glob-
ally visible. The queues are identified by the process ID that
hosts the partition. Queue elements can be of variable length.
The queue size can dynamically grow by a resizing of the
partition allocation, which involves only the process that hosts
the queue. Upon resizing, copy and delete semantics are used
to migrate existing data from the previous memory location to
the new one, and new incoming push operations are stalled.
However, pop operations can still be served during migrations.

Both types of queues share the same invocation methodology,
but differ as to how they handle the operations on the target
process. HCL offers two types of lock-free queues:

(A) FIFO queues (i.e., HCL: : queue) use a state-of-the-art
algorithm that maintains a list of pointers to allow concurrent
lock-free operations [32]. During a push() operation, a new
node is added to the list at the current tail by a CAS increment
on the tail list position. To optimize acquisitions of the front
of the queue, HCL uses a background asynchronous fix-list
operation to consolidate all the elements based on arrival
time, and, thus, maintain consistency of the tail. During a
pop() operation, the target process grabs the head of the
queue and returns to the client.

(B) Priority queues (i.e., HCL: :priority_queue) use a
lock-free implementation based on a multi-dimensional linked
list [33]. It uses the CAS over the multi-dimensional linked list
to support concurrent push and pop operations. It uses a back-
ground purge methodology to clean up logically invalidated
nodes in the linked-list. During a push(), a new node is created
and placed in the next node list. To optimize concurrency,
HCL uses a background predicate lookup methodology that
resolves conflicts based on arrival time and priority. During a
pop() operation, the minimum node is located from the top of
the multi-dimensional linked list and is marked for deletion.
A background process is used to delete all the marked nodes
and compact the multi-dimensional linked list.

IV. EVALUATION
A. Methodology and Experimental Setup

All experiments were conducted on the Ares supercomputer
at the Illinois Institute of Technology. Each compute node
has a dual Intel(R) Xeon Scalable Silver 4114 @ 2.20GHz
(i.e., 40 cores per node), 96 GB RAM, a ConnectX-4 Lx
1x40GbE QSFP+ Ethernet Adapter with RoCE, and a local
512GB NVMe SSD. The total experimental cluster consists
of 2560 client MPI ranks (i.e., 64 nodes). We use CentOS 7.1
as the operating system, and the MPI version is Mpich 3.3.2.
To evaluate HCL, we first use a set of synthetic benchmarks
to measure the performance of its internal components.
The synthetic benchmark is a multi-process program which
stresses the components by performing reads and writes to
remote/local partitions. We also use a set of micro-benchmarks
to evaluate the throughput of HCL DDSs. Finally, we use a
set of real-world applications: ISx benchmark [34], an integer
sorting mini-application, and Meraculous [35], a large-scale
genome assembly application kernel. We compare HCL with
BCL configured with GASNet-EX as its communication layer,
which was shown [11] to be the fastest communication fabric
in these tests. We measure the end-to-end execution time.
Also, we measure throughput as the number of operations
that can be supported per second. For our tests, we executed
each test ten times, and we report the average.

B. HCL Architectural Evaluation

1) RPC-over-RDMA Overhead Analysis: RPC is a very
flexible protocol that can provide high-level operations as

254

functional programs. However, traditional RPC incurs over-
heads [25] on CPU, memory, and network on the node where
it runs. An RPC-over-RDMA can theoretically eliminate this
overhead by utilizing the RDMA core for its processing. To
measure the impact of HCL's RPC-over-RDMA procedural
programming approach on the application, we conduct an
extensive profiling on system resources (i.e., RDMA NIC
core, RAM, and network) using Intel’s Performance Analysis
Toolkit (PAT) [36]. In this test, we compare HCL’s RPC-
over-RDMA with BCL’s client-side pure RDMA approach by
setting up two nodes, one node with 40 client processes and the
other with one target partition (i.e., memory segment) exposed.
Each client process issues 8192 operations that write 4KB of
data to the remote target partition. The results of the test are
shown in Figure 4. The x-axis shows the time elapsed in sec-
onds whereas the y-axis shows the CPU utilization, memory
utilization, and network performance in each subfigure respec-
tively. BCL completed the test in 28 seconds, and, hence, it
has more data points whereas HCL finished in 10.5 seconds.
RDMA NIC core utilization: figure 4(a) shows the RDMA
NIC core utilization. For HCL is 33% where as for BCL
is around 60% (sometimes spiked at 90%). This is caused
by the necessary CAS operations performed by the clients
concurrently on the target partition. These CAS operations
are served by the RDMA work-queue and are performed
atomically. In contrast, the HCL functional approach performs
one RPC call on the target partition and all CAS operations are
performed locally. This leads to much faster CAS execution
resulting in lower RDMA NIC core utilization.
Memory utilization: figure 4(b) shows the memory
utilization. For BCL, the memory utilization increases at
a constant rate for the first couple of seconds since BCL
allocates the memory target partition during the application’s
initialization. In contrast, HCL manages memory dynamically
and initializes the target partition with a smaller size. It
expands its size as operations are executed, eventually reaching
the same overall memory utilization. This dynamic memory
allocation design allows a more efficient memory management
and it can boost performance for more concurrent workloads.
Network utilization: figure 4(c) shows the network
performance measured by packets sent/received per second.
We observe that for the same number of packets, BCL achieves
4x less packet rate (computed using the average packet rate
of BCL over HCL) when compared to HCL. This is mostly
caused by the client-side CAS operations that are executed
remotely compared to HCL that performs these operations on
the target partition locally, and, thus, has a better and more
stable network performance. As can be seen, BCL is also
slower to saturate the network since it spends significant time
initializing the remote memory segment (i.e. first 6 seconds).
2) Hybrid Data Access Model: In the PGAS model, each
node holds a partition of the global memory address space. As
multiple processes are co-located on one node (a rising trend
as modern CPUs become denser), accessing the co-located
partitions should be optimized. Additionally, inter-node access
also has to be optimized to saturate the network capabilities. To

—bcl —hel —nbcl

~——hecl

300K

—bel — —hel

~
=]

UTILIZATION (%)
UTILIZATION (%)

3 65 7

1234567 8910111213141516171819202122232425262728 1

(a) CPU Utilization

9 11 13 15 17 19 21 23 25 27 13 5 7
TIME ->

(b) Memory Utilization

250K

PACKETS PER SECOND
o o o S
S =5 S S
= = = =

o
=

9 11 13 15 17 19 21 23 25 27
TIME ->

(c) Network Performance

Fig. 4. Profiling of HCL and BCL

70000
minsert M find
60000
@ 50000
-}
£
< 40000
£

(=}
£ 30000

BAND

20000
10000

O.I.dﬂ“l‘l‘l J J“J‘ l ‘ I

bel hel bel hel bel hel bel hel bel hel bel hel bel hel bel hel bel hel bel hel bel hel bel hel

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB = 2MB 4MB 8MB
OPERATION SIZE

(a) Intra-node access performance of BCL and HCL

ot [

bel hel bel hel bel hel bel hel bel hel bel hel bel hel bel hel bel hel bel hel bel hel bel hel

4KB ~ 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB = 2MB 4MB 8MB
OPERATION SIZE

(b) Inter-node access performance of BCL and HCL

6000 5 .
Winsert ®find

5000

4000

BANDWIDTH (MB/S)

= N W
o o o
S S S
S S o

Fig. 5. Hybrid Access Model Performance

quantify the performance gains from HCL’s hybrid data access
model, we run the following synthetic workload and we mea-
sure the performance in MBs per second. Each client process
issues 8192 write operations on the target partition. We scale
the operation size from 4KB to 8MB and measure the achieved
bandwidth. For intra-node access, the target partition resides
on the same node as the client processes, whereas, for inter-
node, the target partition resides on the server node remotely.

Intra-Node access: The results of the test are shown in
Figure 5(a). The memory performance of an Ares node using
Stream benchmark using 40 threads is roughly 65 GB/sec.
We observe in the figure, the bandwidth achieved by HCL
is significantly higher than BCL. Specifically, HCL is 2x
to 20x (from 512 KB and 64 KB respectively) faster on
inserts and 1.5x to 7.2x faster on finds. This performance
improvement stems from HCL’s hybrid data access model
where all operations targeting a co-located partition bypass
the RPC-over-RDMA infrastructure and use direct shared
memory accesses to serve the requests. The average bandwidth
BCL achieves is 4GB/s and 12GB/s for inserts and finds

255

respectively. The performance improvement for finds is lower
than it is for inserts since BCL finds perform fewer CAS
operations than inserts, and, hence, are less expensive. On
the other hand, HCL achieves approximately 45GB/s and
55GB/s for inserts and finds respectively at 32KB event size
and maintains it thereafter.

Inter-Node access: The results of the test are shown in
Figure 5(b). The average network performance between two
nodes in Ares cluster is approximately 4.5 GB/s as measured
by the OSU network benchmark [37]. The inter-node
performance of HCL, when compared to BCL, is 3.1x to
12x faster for inserts and 1.1x to 9x faster for finds. This
is due to the differences between imperative and procedural
programming that BCL and HCL adopt respectively. As stated
earlier, for each operation, BCL needs to perform multiple
remote CAS operations whereas HCL bundles them all in
one remote call. As a result, BCL reaches a bandwidth of
1.3GB/s for inserts and 4GB/s for finds at IMB event size. In
contrast, HCL reaches similar bandwidth of 4GB/s to 4.2GB/s
for both inserts and finds since both operations involve the
same amount of work in data transfer. In BCL, the number
of CAS operations necessary for finds is smaller compared
to inserts, which explains the performance difference.

In both of the above cases, BCL runs out of memory
for cases above 1MB, even though there was more than
enough memory on the node for the test. This is because
client-side operations require exclusive RDMA buffers to
avoid corruption. This increases the overall requirement of
memory for BCL. Throughout this test, we observe that the
overall capacity allocated to BCL should not exceed 60% of
the total node memory to ensure successful completion.

C. Distributed Data Structure Scaling Results

To quantify the effectiveness of distributing HCL data
structures, we run a synthetic workload that scales both
multi-partition DDSs (i.e., maps and sets) and single-partition
DDSs (i.e., queues). For maps and sets, 64 client-nodes (i.e.,
2560 processes) issue 8192 operations of 64KB size while we
scale the number of partitions from 8 to 64 nodes. For queues,
we host the queue on one partition and scale the number of
clients issuing requests from 320 to 2560 processes. This test
measures the throughput in operations per second. We compare
HCL’s performance with BCL, but only for data structures
that are available in both libraries such as unordered_map
and circular queue (i.e., sets and ordered data structures are

650K
600K
550K

& 500K
& 450K
:4DUK
5 350K
Z 300K
3 250K
£ 200K
E 150K
100K
50K

0K

——HCL::unordered_map
~—HCL::map
=—BCL::unordered_map

32

INSERT INSERT

#NODES
(a) Maps

#NODES
(b) Sets

140K «=—HCL::FIFO_queue

~—HCL::priority_queue

—BCL::‘:"CUIEI?.

/

320

——HCL::unordered_set

——HCL::set 120K
100K
80K

60K

i

THROUGHPUT (OP/S)

40K

y

320

20K

640 1280 2560
PUSH

640 1280 2560

POP
CLIENTS

(c) Queues

Fig. 6. Scaling HCL Data Structures.

not implemented within BCL). Results are shown in Figure 6
where the X-axis plots the scale of the test and the Y-axis
the throughput achieved in operations per second.

Maps: Figure 6(a) shows the results of the tests performed
with maps. The HCL: :unordered_map and HCL: :map
scale linearly as we increase the number of partitions. We
observe that as the number of partitions increases, operations
become more parallel and a higher network saturation is
achieved. The HCL: :map (i.e., ordered map version) is 54%
slower than HCL: :unordered_map due to the difference
in operation complexity. Specifically, the cost of insertion
and find operations for the HCL::map is O(log(n)) as
opposed to O(1) for the HCL: :unordered_map. Inserts
for BCL: :unordered_map are approximately 9.1x slower
than HCL’s whereas finds are roughly 4.5x slower on average.
This performance improvement stems from HCL’s hybrid data
access model that optimizes co-located operations using shared
memory. Further, the HCL: :map outperforms BCL by 5.5x
for inserts and 3.1x for finds on average. Note that BCL scales
finds better than inserts due to an inherent smaller number
of client-side locking of CAS operations. HCL scales both
inserts and finds similarly as it uses lock-free data structures.
Sets: Figure 6(b) shows the results of the tests performed
with sets. The HCL::unordered_set shows close
to linear scaling, as the number of partitions increases,
and, achieves a throughput of 620K operations/sec for
the 64 partition test case. These results are similar to the
HCL: :unordered_map as internally they use the same
lock-free hash data structure. However, sets only contain a
single key per element, which reduces the serialization cost.
Hence, they are 7% to 14% faster than the map counterparts.
Similar to the maps, the ordered version of the set (i.e.,
HCL: :set) also scales linearly, but performs worse than
the unordered version due to the increased complexity of
insertions and finds.

Queues: Figure 6(c) shows the performance results of both
FIFO and priority queue. The throughput initially improves as
the number of clients increases, but eventually reaches a peak
at around 1280 clients (i.e., network is fully saturated). After
that, the throughput plateaus since the network experiences
congestion and operations are serialized. Additionally,
the HCL::priority_queue is 30% slower than the
HCL: :FIFO_qgueue on average because of its logarithmic
operation complexity (i.e., O(log(n))). BCL achieved a 35K

256

push and 43K pop maximum throughput, significantly lower
than HCL. This drop in throughput is caused by BCL’s
multiple client-side CAS operations on the remote memory
(per each push and pop), which incurs additional network
cost, and, thus, lowers the throughput. This phenomenon gets
exaggerated in the largest scale (i.e., 2560 clients) where the
client-side synchronization hurts the overall BCL performance.
D. Real Workloads

To evaluate how HCL handles real-world representative
workloads, we run ISx benchmark and Meraculous. We
calculate the overall time taken to finish the test and compare
the results against BCL. Additionally, we scale the test from
8 nodes to 64 nodes to test the scalability of our solution.
Results are shown in Figure 7 where the X-axis shows the
number of nodes and Y-axis depicts the time elapsed in
seconds. All tests showcase results by weak-scaling (i.e., data
increases as the number of nodes increase). Results shown
are an average of 5 executions.

1) ISx Benchmark: The ISx is a bucket sort benchmark
that sorts uniformly distributed data. It consists of two phases:
a data distribution phase and a local sorting phase. In the
data distribution phase, processes use pre-existing knowledge
about the distribution of the randomly generated data to
assign each key to a bucket. By default, there is one bucket
on each node. After this stage, each process performs a local
sort on its received data and then the processes exchange
buckets to get the final sorted list. Figure 7(a) shows the result
of running ISx benchmark using HCL and BCL. As can be
seen, BCL takes 686 seconds for the biggest scale and scales
linearly. In contrast, HCL takes 57 seconds in the largest
scale and scales sub-linearly (i.e., around 1.4x as we increase
the number of nodes). This performance gain using HCL
stems from utilizing a priority queue which sorts the data as it
arrives. Hence, each process does not need to perform a push
and then a sort separately. This optimization is possible due to
the support of a priority queue data structure. Such a priority
queue can keep the data sorted in O(log(n)) and the cost of
sorting gets hidden behind the data movement via the network.

2) Meraculous Genome Assembly: The Meraculous
application kernel is a collection of two benchmarks taken
from a large-scale scientific application: contig generation
and k-mer counting. The contig generation is a de novo
genome assembly pipeline that uses an unordered map
to traverse a de Bruijn graph of overlapping symbols.

800

mBCL mHCL mBCL

462.78

TIME (SECONDDS)
I
8

| 9.31
| 6.14
| 28.87
fl 43.07
| AL
| 9.44

|5.11

o Gs6.54

~
oo

_. I 27097

o

3
NODES

(a) ISx Benchmark

)

. I 25135

mHCL

] 22.23

(b) Genome Contig Generation Performance

6
NODES

1400
1200

689.03

mBCL mHCL

)

=]
8
S

4443
o o
o
o o

TIME (SEC
RN
S oS
ISIR=)

] 27.28
I 46
| 217

@ I 19
Boiss

- I 278.9

= 18501

_. I 403.25

= P 542
o

o

< P 7518

3

N

6
NODES

(¢) Genome k-mer counting Performance

Fig. 7. Performance evaluation with real workloads.

Similarly, k-mer counting uses an unordered map to compute
a histogram describing the number of occurrences of each k-
mer across reads of a DNA sequence. The performance of the
unordered map is critically crucial to the overall performance
of this application. More details on how this application uses
hashmaps can be found in Brock et al. [11]. In this test, we
evaluate HCL for both these cases and compare it with BCL’s
performance. The results are shown in Figures 7(b) and 7(c).
We observe that BCL finishes the contig generation kernel in
9 seconds in the smallest case to 689 seconds in the largest
case. On the other hand, HCL finishes the test 1.8x faster in
smallest case to 12x in largest case. A similar result is seen
in k-mer counting kernel where HCL is 2.17x to 8x faster
than BCL. This is due to the fact that HCL’s distributed
hashmap, as shown before, achieved a better throughput than
BCL in all cases. In summary, HCL’s implementations of
distributed maps have been shown to outperform BCL, mostly
due to a paradigm shift from an imperative to a procedural
programming one. HCL enhances BCL and significantly
boosts performance for parallel applications.

V. RELATED WORK

UPC++ [9], [10] is a C++ library and superset language
which is based on the PGAS distributed programming model.
UPC++ is in between being a unique programming language
and a simple library; it requires a unique compiler, but it
is possible to compile it to a legacy C++ code. It focuses
on an asynchronous model, much like HCL. Underneath the
programming model, everything is expressed as a specialized
RPC call (active messages), which are executed atomically.
However, this protocol doesn’t utilize RDMA but instead
uses the CPU core, which decreases its throughput. In
HCL, we propose to use an RDMA-based RPC protocol,
which can utilize the RDMA infrastructure to provide fast,
procedural programming. The current version of UPC++ also
lacks properly-implemented high-level abstractions of data
structures, which makes it hard to port from the standard
library. Finally, UPC++ is tied to the GASNet communication
library instead of providing support for multiple backends.

DASH [12] is a C++ library that offers a PGAS
programming paradigm. It largely focuses on the structural
computational grid with highly efficient support for distributed
arrays and matrices. While data structures supported by DASH
are generic, they do not support the storing of complex data-
types. SHAD [38] is another C++ library which enables

257

complex data structures such as Map, Vector, Sets, and
Arrays. However, the support for ordered data structures such
as Queues, Priority Queues, Ordered Sets and Ordered Map
is unsupported. These data structures enabled distributed
transactions, leader election algorithms, and P2P data sharing.
STAPL [39] is an STL-like library of parallel algorithms and
data structures in C++. STAPL is written at a higher level of
abstraction than HCL for special higher-order functions such
as a map, reduce and for-each. Finally, Co-array Fortran [40],
Hierarchically Tiled Arrays [41], HPX [42], GAM Nets [43],
Global Arrays [44], and Multipol [45] are other popular
parallel programming libraries which expose concurrent data
structures on top of low-level libraries such as MPI. These
libraries are highly limited in ds support and do not include
complex high-level ds such as hash maps and queues. They
mainly focus on simple data structures such as arrays, which
can be written or read by multiple processes. By contrast,
HCL takes a comprehensive view on exposing data structures
in the global address space using RPC over RDMA protocol.
VI. CONCLUSIONS

To build parallel programs, scientific applications require
high-level abstractions such as distributed maps, sets, and
queues. In this paper, we present the Hermes Container Library
(HCL) that can boost scientific productivity by providing a
high-level and flexible interface. HCL offers high-performance
C++ STL-like data containers that can be automatically dis-
tributed on many nodes in a cluster. HCL introduces a novel
procedural programming approach, via an enhanced RPC-
over-RDMA protocol, to perform operations on remote mem-
ory segments. This approach is shown to be effective and flex-
ible for asynchronous communication patterns. We introduce
HCL’s DataBox abstraction that offers several features includ-
ing persistence, complex data types, hybrid access model, etc.
In this work, we build upon BCL, a cross-platform distributed
data structures library, while extending both performance and
functionality. Evaluation results show a 2x to 12x boost in
performance over BCL for a collection of different workloads.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant no. OCI-1835764 and CSR-
1814872.

[1]

2

[4]

[51

[6]

[7]

[8

REFERENCES

A. Y. Lokhov, M. Mézard, H. Ohta, and L. Zdeborova, “Inferring the
origin of an epidemic with a dynamic message-passing algorithm,”
Physical Review E, vol. 90, no. 1, p. 012801, 2014.

A. Bhatelé, E. Bohm, and L. V. Kalé, “Optimizing communication for
charm++ applications by reducing network contention,” Concurrency
and Computation: Practice and Experience, vol. 23, no. 2, 2011.

B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and
L. Smith, “Introducing openshmem: Shmem for the pgas community,”
in Proceedings of the Fourth Conference on Partitioned Global Address
Space Programming Model. ACM, 2010, p. 2.

M. Snir, W. Gropp, S. Otto, S. Huss-Lederman, J. Dongarra, and
D. Walker, MPI-the Complete Reference: the MPI core. MIT press,
1998, vol. 1.

P. Thoman, K. Dichev, T. Heller, R. Takymchuk, X. Aguilar, K. Hasanov,
P. Gschwandtner, P. Lemarinier, S. Markidis, H. Jordan et al., “A
taxonomy of task-based parallel programming technologies for high-
performance computing,” The Journal of Supercomputing, vol. 74, no. 4,
pp. 1422-1434, 2018.

M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in SC’12: Proceedings
of the International Conference on High Performance Computing, Net-
working, Storage and Analysis. 1EEE, 2012, pp. 1-11.

M. Weiland, “Chapel, fortress and x10: novel languages for hpc,”
EPCC, The University of Edinburgh, Tech. Rep. HPCxTR0706, vol. 1,
Oct 2007. [Online]. Available: https://tinyurl.com/rxyr3sx

K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishna-
murthy, P. Hilfinger, S. Graham, D. Gay, P. Colella et al., “Titanium: a
high-performance java dialect,” Concurrency and Computation: Practice
and Experience, vol. 10, no. 11-13, pp. 825-836, 1998.

J. Bachan, D. Bonachea, P. H. Hargrove, S. Hofmeyr, M. Jacquelin,
A. Kamil, B. van Straalen, and S. B. Baden, “The upc++ pgas library
for exascale computing,” in Proceedings of the Second Annual PGAS
Applications Workshop. ACM, 2017, p. 7.

Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick, “Upc++: a
pgas extension for c++,” in 2014 IEEE 28th International Parallel and
Distributed Processing Symposium. 1EEE, 2014, pp. 1105-1114.

B. Brock, A. Bulu, and K. Yelick, “Bcl: A cross-platform distributed
data structures library,” in Proceedings of the 48th International
Conference on Parallel Processing, ser. ICPP 2019. New York,
NY, USA: ACM, 2019, pp. 102:1-102:10. [Online]. Available:
http://doi.acm.org/10.1145/3337821.3337912

K. Fiirlinger, T. Fuchs, and R. Kowalewski, “Dash: A c++ pgas library
for distributed data structures and parallel algorithms,” in 20/6 IEEE
18th International Conference on High Performance Computing and
Communications; IEEE 14th International Conference on Smart City;
IEEE 2nd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). leee, 2016, pp. 983-990.

M. P. I. Forum, MPI: a message passing interface standard: version
2.1; Message Passing Interface Forum, June 23, 2008. University of
Tennessee, 2008.

H.-S. Kim, 1. El Hajj, J. Stratton, S. Lumetta, and W.-M. Hwu, “Locality-
centric thread scheduling for bulk-synchronous programming models
on cpu architectures,” in 2015 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). 1EEE, 2015, pp. 257-268.
P. W. Frey and G. Alonso, “Minimizing the hidden cost of rdma,” in
2009 29th IEEE International Conference on Distributed Computing
Systems. 1EEE, 2009, pp. 553-560.

D. Y. Yoon, M. Chowdhury, and B. Mozafari, “Distributed lock manage-
ment with rdma: decentralization without starvation,” in Proceedings of
the 2018 International Conference on Management of Data, 2018, pp.
1571-1586.

W. D. Gropp and R. Thakur, “Revealing the performance of mpi
rma implementations,” in European Parallel Virtual Machine/Message
Passing Interface Users’ Group Meeting. Springer, 2007, pp. 272-280.
“fortress-spec.pdf,” http://www.ccs.neu.edu/home/samth/fortress-spec.
pdf, accessed: 2020-03-21.

“Internet parallel computing archive : Standards :
org/parallel/standards/hpf/, accessed: 2020-03-21.
B. L. Chamberlain, S.-E. Choi, C. Lewis, C. Lin, L. Snyder, and
W. D. Weathersby, “Zpl: A machine independent programming language
for parallel computers,” IEEE Transactions on Software Engineering,
vol. 26, no. 3, pp. 197-211, 2000.

Hpf,” http://wotug.

258

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]
(30]

(31

—

[32]

[33]

[34]

[35]

[36]

(37
[38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen, “Fast in-memory
transaction processing using rdma and htm,” in Proceedings of the 25th
Symposium on Operating Systems Principles, 2015, pp. 87-104.

P. Stuedi, B. Metzler, and A. Trivedi, “jverbs: Rdma support for java®,”
IBM Research Library, p. 11, 2016.

M. Herlihy, “Wait-free synchronization,” ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 13, no. 1, pp. 124—
149, 1991.

A. Dragojevi¢, D. Narayanan, M. Castro, and O. Hodson, “Farm: Fast
remote memory,” in /1th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 14), 2014, pp. 401-414.

G. Bosilca, G. Fedak, O. Richard, and F. Cappello, “High performance
computing with rpc programming style,” in Proceedings of the First
Myrinet User Group Conference MUG, 2000.

Mellanox, “Rdma aware programming user manual,” 5 2015. [Online].
Available: https://tinyurl.com/ycpaydw3

J. Soumagne, D. Kimpe, J. Zounmevo, M. Chaarawi, Q. Koziol, A. Af-
sahi, and R. Ross, “Mercury: Enabling remote procedure call for high-
performance computing,” in 2013 IEEE International Conference on
Cluster Computing (CLUSTER). 1EEE, 2013, pp. 1-8.

K. Maeda, “Comparative survey of object serialization techniques and
the programming supports,” International Journal of Computer, Electri-
cal, Automation, Control and Information Engineering, vol. 5, no. 12,
pp. 1488-1493, 2011.

B. Schiling, The boost C++ libraries. Boris Schiling, 2011.

N. Nguyen and P. Tsigas, “Lock-free cuckoo hashing,” in 2014 IEEE
34th international conference on distributed computing systems. 1EEE,
2014, pp. 627-636.

A. Natarajan, L. H. Savoie, and N. Mittal, “Concurrent wait-free red
black trees,” in Symposium on Self-Stabilizing Systems. Springer, 2013,
pp. 45-60.

E. Ladan-Mozes and N. Shavit, “An optimistic approach to lock-free
fifo queues,” in International Symposium on Distributed Computing.
Springer, 2004, pp. 117-131.

D. Zhang and D. Dechev, “A lock-free priority queue design based
on multi-dimensional linked lists,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 3, pp. 613-626, 2015.

U. Hanebutte and J. Hemstad, “Isx: a scalable integer sort for co-design
in the exascale era,” in 2015 9th International Conference on Partitioned
Global Address Space Programming Models. 1EEE, 2015, pp. 102-104.
J. A. Chapman, I. Ho, S. Sunkara, S. Luo, G. P. Schroth, and D. S.
Rokhsar, “Meraculous: de novo genome assembly with short paired-end
reads,” PloS one, vol. 6, no. 8, 2011.

D. Olasoji, L. Yingqi, K. Eric, and G. Agata, “Performance analysis
tool,” 6 2015. [Online]. Available: https://github.com/intel-hadoop/PAT
V. Plugaru, “Ul hpc mpi tutorial,” 8 2017.

V. G. Castellana and M. Minutoli, “Shad: The scalable high-performance
algorithms and data-structures library,” in 2018 18th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGRID).
1EEE, 2018, pp. 442-451.

G. Tanase, A. Buss, A. Fidel, I. Papadopoulos, O. Pearce, T. Smith,
N. Thomas, X. Xu, N. Mourad, J. Vu et al., The STAPL parallel
container framework. ACM, 2011, vol. 46, no. 8.

R. W. Numrich and J. Reid, “Co-array fortran for parallel programming,”
in ACM Sigplan Fortran Forum, vol. 17, no. 2. ACM, 1998, pp. 1-31.
G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B. B. Fraguela, M. J.
Garzardn, D. Padua, and C. Von Praun, “Programming for parallelism
and locality with hierarchically tiled arrays,” in Proceedings of the
eleventh ACM SIGPLAN symposium on Principles and practice of
parallel programming. ACM, 2006, pp. 48-57.

H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey,
“Hpx: A task based programming model in a global address space,” in
Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models. ACM, 2014, p. 6.

M. Drocco, “Parallel programming with global asynchronous memory:
Models, c++ apis and implementations,” 2017.

J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global arrays: A
nonuniform memory access programming model for high-performance
computers,” The Journal of Supercomputing, vol. 10, no. 2, pp. 169-189,
1996.

S. Chakrabarti, E. Deprit, E.-J. Im, J. Jones, A. Krishnamurthy, C.-P.
Wen, and K. Yelick, “Multipol: A distributed data structure library,” in
Fifth ACM SIGPLAN Symposium on Principles and Practices of Parallel
Programming, 1995.

