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People with type 1 or advanced type 2 diabetes are highly dependent on insulin. However, insulin cannot match
its function to daily varying blood glucose levels, putting people with diabetes at risk of hypoglycemia. Glucose-
responsive insulin is capable of improving blood glucose manipulation and elevating the life quality of people
with diabetes. Therefore, enormous endeavors have been devoted to developing glucose-responsive insulin

formulations, including glucose-responsive insulin delivery systems and glucose-responsive insulin analogs. In
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analogs are also discussed.

this review, we focus on glucose-responsive insulin analogs, especially three representatives, including
phenylboronic acid-mediated, glucose transporter-mediated and lectin-mediated glucose-responsive insulin an-
alogs. Based on the published studies, the opportunities and challenges to engineering glucose-responsive insulin

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).

1. Introduction

Diabetes mellitus, a chronic disease characterized by high blood glu-
cose levels (BGLs) [1], affected about 463 million people worldwide in
2019 [2] and ranked the seventh global cause of death in 2016 [3]. Peo-
ple with type 1 or advanced type 2 diabetes need a lifelong administra-
tion of insulin or insulin analogs, combined with self-monitoring of
BGLs, healthy diets and regular exercise [4]. However, the complications
induced by hyperglycemia and the risk of hypoglycemia are challenging
to get rid of, due to the narrow therapeutic index of insulin and the in-
ability of insulin to respond robustly to daily fluctuating BGLs [5-7].
Therefore, the development of insulin therapy that can mimic the func-
tion of the 3-cell to release insulin in a glucose-dependent manner is ur-
gently demanded to improve the BGLs management outcome.

Up to now, two major strategies, including constructing glucose-
responsive insulin delivery systems and formulating insulin analogs,
have been widely investigated to render insulin glucose responsiveness
[8-11], via employing the three major glucose-responsive elements in-
cluding phenylboronic acid (PBA), glucose-binding protein (such as
concanavalin A) and glucose oxidase [12-25]. These compounds are ef-
fective in constructing glucose-responsive carriers for insulin delivery.
However, issues, considering the metabolism-associated biocompatibil-
ity and toxicity of carrier materials, remain to be solved [26,27]. Glucose-
responsive insulin analog reformulates insulin in the molecular level
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without the aid of a carrier material, therefore offering a relatively
safer and simpler path to achieve glucose responsiveness. Nonetheless,
studies involving glucose-responsive insulin analogs are limited, par-
tially due to various hurdles [9,28-32], such as the susceptible bioactiv-
ity of insulin and non-specific binding of the prepared insulin analogs. In
this review, the latest advances of glucose-responsive insulin analogs,
from labs to industries, have been summarized (Fig. 1). Meanwhile,
the opportunities and challenges in this field are also discussed.

2. Glucose-responsive insulin
2.1. PBA-mediated insulin analog

The molecular weight shows a significant influence on the diffusion
rate and the consequent half-life of a subcutaneously injected protein
drug [33]. For example, hexameric insulin or insulin integrated with a
macromolecular protein has longer retention time than monometric in-
sulin. Inspired by this connection between molecular weight and acting
time of insulin, in 2005, Markussen and coworkers conjugated both PBA
and polyol to a single insulin molecule [33]. In this insulin analog, both
PBA and polyol provided binding sites for each other, therefore forming
self-assembled long-acting insulin assemblies. When a carbohydrate
(like glucose) was added, the insulin assembly was dissembled and re-
leased monomeric insulin for fast acting to reduce BGLs.

Recently, Langer, Anderson and coworkers reported several PBA-
based insulin analogs with glucose-responsive activity [30]. In this
study, four aliphatic chain-containing PBA-modified insulin analogs,
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Fig. 1. Schematic of the representative strategies to formulate glucose-responsive insulin
analog (IA).

including Ins-PBA-A, Ins-PBA-F, Ins-PBA-N, and Ins-PBA-S, have been
prepared (Fig. 2A). The PBA moiety that conjugated to aliphatic domains
in the insulin analog could bind to glucose, making the affinity between
aliphatic domains and albumin or other hydrophobic components in
blood glucose dependent, and consequently endowing the insulin
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analogs with glucose-dependent half-lives during blood circulation
[34,35]. Of note, the incorporated PBA moiety could also bind to diols
in glycosylated proteins, which further contributed to glucose respon-
siveness of the insulin analogs [36]. The glucose-responsive performance
and blood glucose regulation ability of these insulin analogs were evalu-
ated in mice with type 1 diabetes. After the BGLs of diabetic mice treated
with insulin analogs or native insulin were restored to a normal range
(below 200 mg/dL), three intraperitoneal glucose tolerance tests
(IPGTTs) were performed (Fig. 2B). The native insulin failed to restore
BGLs to the normal range at the first IPGTT. However, both Ins-PBA-F
and Ins-PBA-N were able to restore BGLs to the pre-challenge levels
even after three IPGTTs. Particularly, Ins-PBA-F exhibited better perfor-
mance in manipulating blood glucose than Ins-PBA-N, as shown in
Fig. 2B. To further explore the glucose dependent activity of Ins-PBA-F,
dose-escalated IPGTTs of Ins-PBA-F were conducted in both diabetic
and healthy mice, while Ins-LA-C14 (Fig. 2A) and native insulin were
used as controls. Ins-PBA-F showed higher glucose responsiveness
index and less hypoglycemia index than Ins-LA-C14 and native insulin
(Fig. 2C-D). By virtue of the binding of aliphatic domain to the hydropho-
bic domain of serum or other blood component and the reversible glu-
cose binding ability of PBA, prolonged and glucose-dependent glycemic
control of Ins-PBA-F have been achieved in the diabetic mice, providing
us a route for formulating a long-acting glucose-responsive insulin ana-
log. Before its clinical trial, further work on biocompatibility and toxicity
needs to be performed considering the difference across species and the
non-specific binding of PBA to various types of diols.

2.2. Glucose transporter-mediated insulin analog

Recently, Gu and coworkers proposed a strategy to leverage glucose
transporter (Glut) to construct a glucose-responsive insulin delivery
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Fig. 2. PBA-mediated glucose-responsive insulin analogs. (A) The structure schemes of the four types of PBA-modified insulin derivatives and the long-acting insulin Ins-LA-C14, which has
the same structure as commercially used long-acting insulin detemir. (B) The BGLs of diabetic mice after the administration of different insulin derivatives. The diabetic mice were injected
with different insulin derivatives at a dose of 5 IU/kg at 0 h and then three IPGTTs were performed at 4, 7, and 10 h, respectively. (C) The responsiveness of insulin derivatives. The data were
calculated according to the blood glucose curve area between 3 h and 6 h after insulin administration in diabetic mice. (D) The hypoglycemia index of healthy mice after the treatment with
different insulin derivatives at various doses. Here, the hypoglycemia indexes were calculated by the difference between initial and lowest blood glucose values divided by the time over
which the blood glucose drop happened. *P < .05 for Ins-PBA-F compared with both Ins-LA-C14 and native insulin; "P < .05 for Ins-PBA-F compared with native insulin; P < .05 for Ins-LA-

C14. Reprinted with permission [30]. Copyright 2015, National Academy of Sciences.
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system [37]. Glucosamine conjugated insulin (Glc-Insulin) was pre-
pared with the ability to bind to the Glut on the membrane of red
blood cell (RBC). Such binding was reversible that Glc-Insulin could be
released from the RBC membrane upon high BGLs, mediated by the
competitive binding between Glc-Insulin and free glucose in blood to
Glut. Gu and coworkers further exploited the concept of competitive
binding toward Glut to construct a glucose-responsive insulin analog
named i-insulin [31]. i-Insulin was synthesized via conjugating insulin
to a Glut inhibitor (Fig. 3A). The Glut inhibitor moiety in i-insulin
could bind to Glut in a glucose-competitive manner, therefore enabling
i-insulin to dynamically and reversibly bind to Glut in response to BGLs.
Meanwhile, i-insulin retained the ability to trigger the clearance of glu-
cose. In vitro, i-insulin could reversibly bind to erythrocyte ghost, a gen-
erally used Glut carrier, and the binding ability was modulated by
changing glucose concentration. In type 1 diabetic mice, with one injec-
tion, i-insulin-treated mice had a prolonged normoglycemia (>10 h)
and negligible hypoglycemia as compared to native insulin-treated
mice (normoglycemia lasted for <4 h) (Fig. 3B). Importantly, a second
i-insulin injection further prolonged the normoglycemia time while

negligible hypoglycemia was observed (Fig. 3C). This hypoglycemia-
mitigating effect was evaluated in healthy mice. Only negligible hypo-
glycemia was observed in i-insulin-treated mice while native insulin
injected group showed apparent hypoglycemia (Fig. 3D). Therefore, i-
insulin has achieved both blood glucose regulation and hypoglycemia
mitigation in type 1 diabetic mouse model. Furthermore, another Glut in-
hibitor, forskolin, was conjugated to native insulin and a new glucose-
responsive insulin analog (insulin-F) was formed [38]. Here, the concept
of competitive binding between insulin analog and glucose toward Glut
was applied to construct glucose-responsive insulin for manipulating gly-
cemia. This strategy offers a new methodology in formulating glucose-
responsive insulin associated with both insulin receptor and glucose
transporter.

2.3. Lectin-mediated insulin analog
In 2010, Merck & Co., Inc. acquired a startup SmartCells who devel-

oped a smart insulin later called MK-2640. MK-2640 is an insulin analog
(Fig. 4), in which the insulin is modified with carbohydrate groups to
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Fig. 3. Glut-mediated glucose-responsive insulin analog. (A) Schematic of insulin analog (i-insulin) reducing hyperglycemia and mitigating hypoglycemia. Under normoglycemia, i-insulin
binds to Glut or insulin receptor, achieving a regular glucose clearance rate. Upon high glucose level, the increased glucose triggers the release of i-insulin from insulin analog-Glut complex,
leading to elevated i-insulin binding to insulin receptors and increased amount of free Glut to transport glucose. As a result, blood glucose clearance is significantly enhanced. Upon over-
dose of i-insulin, more insulin analog-Glut complex is formed, leading to attenuated glucose transport activity of Glut. As a result, the hypoglycemia is mitigated. (B-D) The in vivo study of
i-insulin. (B) the BGLs of type 1 diabetic mice after receiving the treatment of i-insulin (6 mg/kg), native insulin (1.5 mg/kg) and PBS respectively. (C) The BGLs of type 1 diabetic mice
receiving two consecutive injections. The second injection was performed 3 h after the first injection. The injection dose was 6 mg/kg for i-insulin or 1.5 mg/kg for native insulin.
(D) The BGLs of healthy mice after injected with i-insulin (3 mg/kg) or native insulin (0.75 mg/kg) to induce hypoglycemia. The black arrows indicate the time points of injection. Data
are presented as mean + SD (n = 5). Reproduced with permission [31]. Copyright 2019, National Academy of Sciences.
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Fig. 4. The schematic of the chemical structure of MK-2640. Here, G, C and K represent Glycine, Cysteine and Lysine respectively.

render insulin with the ability to bind to the lectin receptor mannose re-
ceptor C-type 1 (MRC1). The competitive binding between MK-2640
and glucose to MRC1 was exploited to tune the blood clearance rate of
MK-2640 [39]. The glucose responsiveness of both MK-2640 and re-
combinant human insulin (RHI) were evaluated in nondiabetic (ND)
and type 1 diabetic (D) minipigs, with a-methylmannose (a-MM)
used as a short-term blockade of MK-2640. The addition of a-MM did
not affect the pharmacokinetics (PKs) and pharmacodynamics (PDs)
of RHI; however, transient hypoglycemia was observed in ND minipigs
when MK-2640 was administrated with c-MM, because the clearance
of MK-2640 was protracted by the infused a-MM. In the glucose
clamp studies in healthy dogs, the clearance of MK-2640 was decreased
with stepwise increased glucose concentration, in contrast to that ob-
served in RHI treated group. Although MK-2640 presented effective glu-
cose responsiveness in the minipig and dog studies [32], the results of
human trials were not optimistic [40]. In the phase I clinical trial, 36
healthy adults participated in the rising dose study of MK-2640 admin-
istration, and 16 patients with type 1 diabetes enrolled in a randomized
2-period crossover test to explore the glucose responsiveness of MK-
2640. However, the saturation of MK-2640 clearance through MRC1 re-
ceptor and glucose independence of MK-2640 clearance indicated the
difficulties in clinical translation [40]. Therefore, in 2016, Merck claimed
that the clinical trial failed and ended it. The failure of MK-2640 elabo-
rated the difficulties in clinical translation of new drugs considering
the difference between species although exciting preclinical data were
obtained. In this field, more efforts should be devoted to the investiga-
tion of new designs in clinical trials.

3. Conclusions

The development of glucose-responsive insulin analog, aiming at
improving insulin efficacy and reducing side effects, attempts to en-
hance the health and the quality of life of people with diabetes. To ren-
der insulin analog glucose responsiveness, scientists have proposed
several strategies from perspectives of pharmacy, biochemistry and en-
gineering. With additional functional moieties modified on insulin, the
glucose-dependent binding between functional moieties and corre-
sponding “receptors” associated with proteins and cells improved the
blood glucose regulation ability of insulin. For further translation, the is-
sues considering drug activity, binding specificity, and biosafety of insu-
lin analog must be thoroughly investigated. Moreover, the difference
between human bodies and animal models also sets a barrier to clinical
translation. Nevertheless, previous trials still offer us valuable insights
into designing new insulin analogs. Furthermore, the administration
method is another aspect needed to be considered during medical

treatment. For example, using microneedle patch [41,42], the painless
and minimally invasive transdermal drug delivery method, or oral deliv-
ery pills could help people with diabetes achieve self-administration in a
convenient manner.
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