EL SEVIER

Contents lists available at ScienceDirect

Medicine in Drug Discovery

journal homepage: https://www.journals.elsevier.com/medicine-in-drug-discovery

Engineering glucose-responsive insulin

Yi Zeng ^{a,b,c}, Jinqiang Wang ^{a,b,*}, Zhongze Gu ^c, Zhen Gu ^{a,b,d,e,*}

- ^a Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- ^b California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- ^c State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- d Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- ^e Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA

ARTICLE INFO

Article history: Received 23 September 2019 Received in revised form 19 November 2019 Accepted 20 November 2019 Available online 26 November 2019

Keywords:
Diabetes
Insulin
Glucose-responsive
Drug delivery
Drug discovery

ABSTRACT

People with type 1 or advanced type 2 diabetes are highly dependent on insulin. However, insulin cannot match its function to daily varying blood glucose levels, putting people with diabetes at risk of hypoglycemia. Glucose-responsive insulin is capable of improving blood glucose manipulation and elevating the life quality of people with diabetes. Therefore, enormous endeavors have been devoted to developing glucose-responsive insulin formulations, including glucose-responsive insulin delivery systems and glucose-responsive insulin analogs. In this review, we focus on glucose-responsive insulin analogs, especially three representatives, including phenylboronic acid-mediated, glucose transporter-mediated and lectin-mediated glucose-responsive insulin analogs. Based on the published studies, the opportunities and challenges to engineering glucose-responsive insulin analogs are also discussed.

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

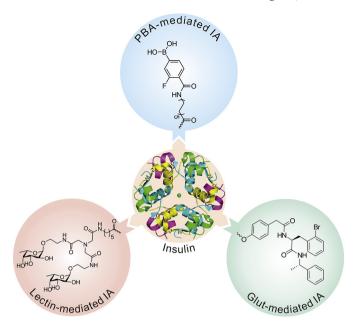
1. Introduction

Diabetes mellitus, a chronic disease characterized by high blood glucose levels (BGLs) [1], affected about 463 million people worldwide in 2019 [2] and ranked the seventh global cause of death in 2016 [3]. People with type 1 or advanced type 2 diabetes need a lifelong administration of insulin or insulin analogs, combined with self-monitoring of BGLs, healthy diets and regular exercise [4]. However, the complications induced by hyperglycemia and the risk of hypoglycemia are challenging to get rid of, due to the narrow therapeutic index of insulin and the inability of insulin to respond robustly to daily fluctuating BGLs [5–7]. Therefore, the development of insulin therapy that can mimic the function of the β -cell to release insulin in a glucose-dependent manner is urgently demanded to improve the BGLs management outcome.

Up to now, two major strategies, including constructing glucose-responsive insulin delivery systems and formulating insulin analogs, have been widely investigated to render insulin glucose responsiveness [8–11], via employing the three major glucose-responsive elements including phenylboronic acid (PBA), glucose-binding protein (such as concanavalin A) and glucose oxidase [12–25]. These compounds are effective in constructing glucose-responsive carriers for insulin delivery. However, issues, considering the metabolism-associated biocompatibility and toxicity of carrier materials, remain to be solved [26,27]. Glucose-responsive insulin analog reformulates insulin in the molecular level

E-mail addresses: jinqiang@ucla.edu (J. Wang), guzhen@ucla.edu (Z. Gu).

without the aid of a carrier material, therefore offering a relatively safer and simpler path to achieve glucose responsiveness. Nonetheless, studies involving glucose-responsive insulin analogs are limited, partially due to various hurdles [9,28–32], such as the susceptible bioactivity of insulin and non-specific binding of the prepared insulin analogs. In this review, the latest advances of glucose-responsive insulin analogs, from labs to industries, have been summarized (Fig. 1). Meanwhile, the opportunities and challenges in this field are also discussed.


2. Glucose-responsive insulin

2.1. PBA-mediated insulin analog

The molecular weight shows a significant influence on the diffusion rate and the consequent half-life of a subcutaneously injected protein drug [33]. For example, hexameric insulin or insulin integrated with a macromolecular protein has longer retention time than monometric insulin. Inspired by this connection between molecular weight and acting time of insulin, in 2005, Markussen and coworkers conjugated both PBA and polyol to a single insulin molecule [33]. In this insulin analog, both PBA and polyol provided binding sites for each other, therefore forming self-assembled long-acting insulin assemblies. When a carbohydrate (like glucose) was added, the insulin assembly was dissembled and released monomeric insulin for fast acting to reduce BGLs.

Recently, Langer, Anderson and coworkers reported several PBA-based insulin analogs with glucose-responsive activity [30]. In this study, four aliphatic chain-containing PBA-modified insulin analogs,

^{*} Corresponding authors.

Fig. 1. Schematic of the representative strategies to formulate glucose-responsive insulin analog (IA).

including Ins-PBA-A, Ins-PBA-F, Ins-PBA-N, and Ins-PBA-S, have been prepared (Fig. 2A). The PBA moiety that conjugated to aliphatic domains in the insulin analog could bind to glucose, making the affinity between aliphatic domains and albumin or other hydrophobic components in blood glucose dependent, and consequently endowing the insulin

analogs with glucose-dependent half-lives during blood circulation [34,35]. Of note, the incorporated PBA moiety could also bind to diols in glycosylated proteins, which further contributed to glucose responsiveness of the insulin analogs [36]. The glucose-responsive performance and blood glucose regulation ability of these insulin analogs were evaluated in mice with type 1 diabetes. After the BGLs of diabetic mice treated with insulin analogs or native insulin were restored to a normal range (below 200 mg/dL), three intraperitoneal glucose tolerance tests (IPGTTs) were performed (Fig. 2B). The native insulin failed to restore BGLs to the normal range at the first IPGTT. However, both Ins-PBA-F and Ins-PBA-N were able to restore BGLs to the pre-challenge levels even after three IPGTTs. Particularly, Ins-PBA-F exhibited better performance in manipulating blood glucose than Ins-PBA-N, as shown in Fig. 2B. To further explore the glucose dependent activity of Ins-PBA-F, dose-escalated IPGTTs of Ins-PBA-F were conducted in both diabetic and healthy mice, while Ins-LA-C14 (Fig. 2A) and native insulin were used as controls. Ins-PBA-F showed higher glucose responsiveness index and less hypoglycemia index than Ins-LA-C14 and native insulin (Fig. 2C-D). By virtue of the binding of aliphatic domain to the hydrophobic domain of serum or other blood component and the reversible glucose binding ability of PBA, prolonged and glucose-dependent glycemic control of Ins-PBA-F have been achieved in the diabetic mice, providing us a route for formulating a long-acting glucose-responsive insulin analog. Before its clinical trial, further work on biocompatibility and toxicity needs to be performed considering the difference across species and the non-specific binding of PBA to various types of diols.

2.2. Glucose transporter-mediated insulin analog

Recently, Gu and coworkers proposed a strategy to leverage glucose transporter (Glut) to construct a glucose-responsive insulin delivery

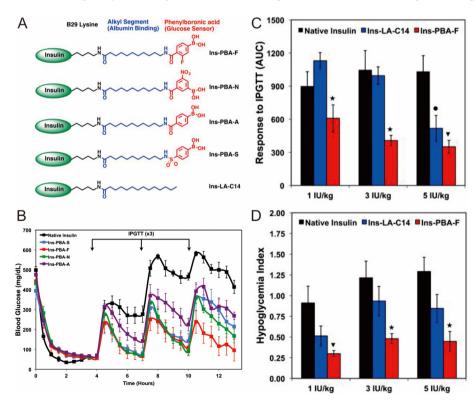


Fig. 2. PBA-mediated glucose-responsive insulin analogs. (A) The structure schemes of the four types of PBA-modified insulin derivatives and the long-acting insulin Ins-LA-C14, which has the same structure as commercially used long-acting insulin detemir. (B) The BGLs of diabetic mice after the administration of different insulin derivatives. The diabetic mice were injected with different insulin derivatives at a dose of 5 IU/kg at 0 h and then three IPGTTs were performed at 4, 7, and 10 h, respectively. (C) The responsiveness of insulin derivatives. The data were calculated according to the blood glucose curve area between 3 h and 6 h after insulin administration in diabetic mice. (D) The hypoglycemia index of healthy mice after the treatment with different insulin derivatives at various doses. Here, the hypoglycemia indexes were calculated by the difference between initial and lowest blood glucose values divided by the time over which the blood glucose drop happened. *P < .05 for Ins-PBA-F compared with both Ins-LA-C14 and native insulin; *P < .05 for Ins-PBA-F compared with native insulin; *P < .05 for Ins-PBA-F. Compared with native insulin; *P < .05 for Ins-PBA-F. Compared with native insulin; *P < .05 for Ins-PBA-F. Compared with native insulin; *P < .05 for Ins-PBA-F. Compared with native insulin; *P < .05 for Ins-PBA-F. Compared with native insulin; *P < .05 for Ins-PBA-F. Compared with native insulin; *P < .05 for Ins-PBA-F. Compared with native insulin; *P < .05 for Ins-PBA-F. Compared with native insulin; *P < .05 for Ins-PBA-F. Compared with native insulin; *P < .05 for Ins-PBA-F. Compared with native insulin; *P < .05 for Ins-PBA-F. Compared with native insulin; *P < .05 for Ins-PBA-F. Compared with native insulin; *P < .05 for Ins-PBA-F. Compared with native insulin; *P < .05 for Ins-PBA-F. Compared with native insulin; *P < .05 for Ins-PBA-F. Compared with native insulin; *P < .05 for Ins-PBA-F. Compared with native insulin; *P < .05 for Ins-PBA-F. Compared with native insulin; *P < .05 for Ins-P

system [37]. Glucosamine conjugated insulin (Glc-Insulin) was prepared with the ability to bind to the Glut on the membrane of red blood cell (RBC). Such binding was reversible that Glc-Insulin could be released from the RBC membrane upon high BGLs, mediated by the competitive binding between Glc-Insulin and free glucose in blood to Glut. Gu and coworkers further exploited the concept of competitive binding toward Glut to construct a glucose-responsive insulin analog named *i*-insulin [31]. *i*-Insulin was synthesized *via* conjugating insulin to a Glut inhibitor (Fig. 3A). The Glut inhibitor moiety in i-insulin could bind to Glut in a glucose-competitive manner, therefore enabling i-insulin to dynamically and reversibly bind to Glut in response to BGLs. Meanwhile, i-insulin retained the ability to trigger the clearance of glucose. In vitro, i-insulin could reversibly bind to erythrocyte ghost, a generally used Glut carrier, and the binding ability was modulated by changing glucose concentration. In type 1 diabetic mice, with one injection, i-insulin-treated mice had a prolonged normoglycemia (>10 h) and negligible hypoglycemia as compared to native insulin-treated mice (normoglycemia lasted for <4 h) (Fig. 3B). Importantly, a second *i*-insulin injection further prolonged the normoglycemia time while negligible hypoglycemia was observed (Fig. 3C). This hypoglycemia-mitigating effect was evaluated in healthy mice. Only negligible hypoglycemia was observed in *i*-insulin-treated mice while native insulin injected group showed apparent hypoglycemia (Fig. 3D). Therefore, *i*-insulin has achieved both blood glucose regulation and hypoglycemia mitigation in type 1 diabetic mouse model. Furthermore, another Glut inhibitor, forskolin, was conjugated to native insulin and a new glucose-responsive insulin analog (insulin-F) was formed [38]. Here, the concept of competitive binding between insulin analog and glucose toward Glut was applied to construct glucose-responsive insulin for manipulating glycemia. This strategy offers a new methodology in formulating glucose-responsive insulin associated with both insulin receptor and glucose transporter.

2.3. Lectin-mediated insulin analog

In 2010, Merck & Co., Inc. acquired a startup SmartCells who developed a smart insulin later called MK-2640. MK-2640 is an insulin analog (Fig. 4), in which the insulin is modified with carbohydrate groups to

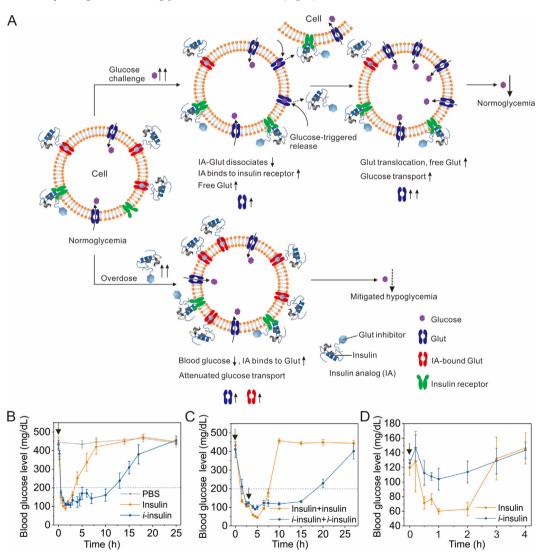


Fig. 3. Glut-mediated glucose-responsive insulin analog. (A) Schematic of insulin analog (*i*-insulin) reducing hyperglycemia and mitigating hypoglycemia. Under normoglycemia, *i*-insulin binds to Glut or insulin receptor, achieving a regular glucose clearance rate. Upon high glucose level, the increased glucose triggers the release of *i*-insulin from insulin analog-Glut complex, leading to elevated *i*-insulin binding to insulin receptors and increased amount of free Glut to transport glucose. As a result, blood glucose clearance is significantly enhanced. Upon overdose of *i*-insulin, more insulin analog-Glut complex is formed, leading to attenuated glucose transport activity of Glut. As a result, the hypoglycemia is mitigated. (B–D) The *in vivo* study of *i*-insulin. (B) the BGLs of type 1 diabetic mice after receiving the treatment of *i*-insulin (6 mg/kg), native insulin (1.5 mg/kg) and PBS respectively. (C) The BGLs of type 1 diabetic mice receiving two consecutive injections. The second injection was performed 3 h after the first injection. The injection dose was 6 mg/kg for *i*-insulin or 1.5 mg/kg for native insulin. (D) The BGLs of healthy mice after injected with *i*-insulin (3 mg/kg) or native insulin (0.75 mg/kg) to induce hypoglycemia. The black arrows indicate the time points of injection. Data are presented as mean ± SD (*n* = 5). Reproduced with permission [31]. Copyright 2019, National Academy of Sciences.

Fig. 4. The schematic of the chemical structure of MK-2640. Here, G, C and K represent Glycine, Cysteine and Lysine respectively.

render insulin with the ability to bind to the lectin receptor mannose receptor C-type 1 (MRC1). The competitive binding between MK-2640 and glucose to MRC1 was exploited to tune the blood clearance rate of MK-2640 [39]. The glucose responsiveness of both MK-2640 and recombinant human insulin (RHI) were evaluated in nondiabetic (ND) and type 1 diabetic (D) minipigs, with α -methylmannose (α -MM) used as a short-term blockade of MK-2640. The addition of α -MM did not affect the pharmacokinetics (PKs) and pharmacodynamics (PDs) of RHI; however, transient hypoglycemia was observed in ND minipigs when MK-2640 was administrated with α -MM, because the clearance of MK-2640 was protracted by the infused α -MM. In the glucose clamp studies in healthy dogs, the clearance of MK-2640 was decreased with stepwise increased glucose concentration, in contrast to that observed in RHI treated group. Although MK-2640 presented effective glucose responsiveness in the minipig and dog studies [32], the results of human trials were not optimistic [40]. In the phase I clinical trial, 36 healthy adults participated in the rising dose study of MK-2640 administration, and 16 patients with type 1 diabetes enrolled in a randomized 2-period crossover test to explore the glucose responsiveness of MK-2640. However, the saturation of MK-2640 clearance through MRC1 receptor and glucose independence of MK-2640 clearance indicated the difficulties in clinical translation [40]. Therefore, in 2016, Merck claimed that the clinical trial failed and ended it. The failure of MK-2640 elaborated the difficulties in clinical translation of new drugs considering the difference between species although exciting preclinical data were obtained. In this field, more efforts should be devoted to the investigation of new designs in clinical trials.

3. Conclusions

The development of glucose-responsive insulin analog, aiming at improving insulin efficacy and reducing side effects, attempts to enhance the health and the quality of life of people with diabetes. To render insulin analog glucose responsiveness, scientists have proposed several strategies from perspectives of pharmacy, biochemistry and engineering. With additional functional moieties modified on insulin, the glucose-dependent binding between functional moieties and corresponding "receptors" associated with proteins and cells improved the blood glucose regulation ability of insulin. For further translation, the issues considering drug activity, binding specificity, and biosafety of insulin analog must be thoroughly investigated. Moreover, the difference between human bodies and animal models also sets a barrier to clinical translation. Nevertheless, previous trials still offer us valuable insights into designing new insulin analogs. Furthermore, the administration method is another aspect needed to be considered during medical

treatment. For example, using microneedle patch [41,42], the painless and minimally invasive transdermal drug delivery method, or oral delivery pills could help people with diabetes achieve self-administration in a convenient manner.

Ethical approval and informed consent

Follow the international law for scientific paper writing.

Funding source

This work was supported by the grants from NIH [grant no. R01 DK112939 01A1]; JDRF [3-SRA-2015-117-Q-R, 1-PNF-2019-674-S-B]; National Science Foundation [grant no. 1708620]; American Diabetes Association [grant no. 1-15-ACE-21].

Author contributions

Yi Zeng, Jinqiang Wang and Zhen Gu conceived and designed the manuscript. Yi Zeng wrote the initial manuscript. All authors revised and edited the paper together.

Declaration of competing interest

Prof. Zhen Gu is the co-founder of Zenomics Inc.

References

- [1] Introduction: standards of medical care in diabetes—2019. Diabetes Care 2019;42: S1–2. https://doi.org/10.2337/dc19-sint01.
- [2] International Diabetes Federation. Diabetes facts & figures. https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html [accessed November 18, 2019].
- [3] World Health Organization. The top 10 causes of death 2018. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death [accessed September 1, 2019].
- [4] Gregg EW, Sattar N, Ali MK. The changing face of diabetes complications. Lancet Diabetes Endocrinol 2016;4:537–47. https://doi.org/10.1016/S2213-8587(16)30010-0
- [5] Berghe G. Van den, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensivierte insulin therapy in critically ill patients. N Engl J Med 2001;345: 1359–67. https://doi.org/10.1055/s-2006-955035.
- [6] Sarwar N, Gao P, Kondapally Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010;375: 2215–22. https://doi.org/10.1016/S0140-6736(10)60484-9.
- [7] Schulman RC, Moshier EL, Rho L, Casey MF, Godbold JH, Mechanick JI. Association of glycemic control parameters with clinical outcomes in chronic critical illness. Endocr Pract 2014;20:884–93. https://doi.org/10.4158/ep13324.or.

- [8] Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov 2015;14:45–57. https://doi.org/10.1038/nrd4477.
- [9] Bakh NA, Cortinas AB, Weiss MA, Langer RS, Anderson DG, Gu Z, et al. Glucoseresponsive insulin by molecular and physical design. Nat Chem 2017;9:937–43. https://doi.org/10.1038/NCHEM.2857.
- [10] Tauschmann M, Hovorka R. Technology in the management of type 1 diabetes mellitus-current status and future prospects. Nat Rev Endocrinol 2018;14:464–75. https://doi.org/10.1038/s41574-018-0044-y.
- [11] Zaykov AN, Mayer JP, Dimarchi RD. Pursuit of a perfect insulin. Nat Rev Drug Discov 2016;15:425–39. https://doi.org/10.1038/nrd.2015.36.
- [12] Wang J, Wang Z, Yu J, Kahkoska AR, Buse JB, Gu Z. Glucose-responsive insulin and delivery systems:innovation and translation. Adv Mater 2019;1902004:1–19. https://doi.org/10.1002/adma.201902004.
- [13] Farmer Jr TG, Edgar TF, Peppas NA. The future of open- and closed-loop insulin delivery systems. J Pharm Pharmacol 2008;60:1–13. https://doi.org/10.1211/jpp.60.1. 0001
- [14] Matsumoto A, Ishii T, Nishida J, Matsumoto H, Kataoka K, Miyahara Y. A synthetic approach toward a self-regulated insulin delivery system. Angew Chemie Int Ed 2012;51:2124–8. https://doi.org/10.1002/anie.201106252.
- [15] Zhang C, Losego MD, Braun PV. Hydrogel-based glucose sensors: effects of phenylboronic acid chemical structure on response. Chem Mater 2013;25:3239–50. https://doi.org/10.1021/cm401738p.
- [16] Wu W, Zhou S. Responsive materials for self-regulated insulin delivery. Macromol Biosci 2013;13:1464–77. https://doi.org/10.1002/mabi.201300120.
- [17] Yu J, Qian C, Zhang Y, Cui Z, Zhu Y, Shen Q, et al. Hypoxia and H₂O₂ dual-sensitive vesicles for enhanced glucose-responsive insulin delivery. Nano Lett 2017;17: 733–9. https://doi.org/10.1021/acs.nanolett.6b03848.
- [18] Podual K, Doyle FJ, Peppas NA. Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol) grafts. J Control Release 2000;67:9–17. https://doi.org/10.1016/S0168-3659(00)00195-4.
- [19] Parker RS, Doyle III FJ, Peppas NA. A model-based algorithm for blood glucose control in type I diabetic patients. IEEE Trans Biomed Eng 1999;46:148–57. https://doi.org/10.1109/10.740877.
- [20] Hassan CM, Doyle III FJ, Peppas NA. Dynamic behavior of glucose-responsive poly (methacrylic acid-g-ethylene glycol) hydrogels. Macromolecules 1997;30:6166–73. https://doi.org/10.1021/ma970117g.
- [21] Gu Z, Aimetti AA, Wang Q, Dang TT, Veiseh YZ, Cheng H, et al. Injectable nanonetwork for glucose-mediated insulin delivery. ACS Nano 2013;7:4194–201. https://doi.org/10.1038/jid.2014.371.
- [22] Kost J, Langer R. Responsive polymeric delivery systems. Adv Drug Deliv Rev 2012; 64:327–41. https://doi.org/10.1016/j.addr.2012.09.014.
- [23] Fischel-Ghodsian F, Brown L, Mathiowitz E, Brandenburg D, Langer R. Enzymatically controlled drug delivery. Proc Natl Acad Sci U S A 1988;85:2403–6. https://doi.org/ 10.1073/pnas.85.7.2403.
- [24] Gu Z, Dang TT, Ma M, Tang BC, Cheng H, Jiang S, et al. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano 2013;7:6758–66. https://doi.org/10.1021/nn401617u.
- [25] Hu X, Yu J, Qian C, Lu Y, Kahkoska AR, Xie Z, et al. H₂O₂-responsive vesicles integrated with transcutaneous patches for glucose-mediated insulin delivery. ACS Nano 2017;11:613–20. https://doi.org/10.1021/acsnano.6b06892.
- [26] Powell AE, Leon MA. Reversible interaction of human lymphocytes with the mitogen concanavalin A. Exp Cell Res 1970;62:315–25. https://doi.org/10.1016/0014-4827 (70)90560-4.

- [27] Broom WA, Coulthard CE, Gurd MR, Sharpe ME. Some pharmacological and chemotherapeutic properties of notatin. Br J Pharmacol Chemother 1946;1:225–33. https://doi.org/10.1111/j.1476-5381.1946.tb00041.x.
- [28] Moore MC, Kelley DE, Camacho RC, Zafian P, Ye T, Lin S, et al. Superior glycemic control with a glucose-responsive insulin analog: hepatic and nonhepatic impacts. Diabetes 2018;67:1173–81. https://doi.org/10.2337/db18-0099.
- [29] Lin S, Yan L, Kekec A, Zhu Y, Hunter DN, Huo P, et al. Glucose-responsive insulin conjugates. US Patent WO 2015;2015(/051050):A2.
- [30] Chou DH-C, Webber MJ, Tang BC, Lin AB, Thapa LS, Deng D, et al. Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc Natl Acad Sci U S A 2015;112:2401–6. https://doi.org/10.1073/pnas. 1474684112
- [31] Wang J, Yu J, Zhang Y, Kahkoska AR, Wang Z, Fang J, et al. Glucose transporter inhibitor-conjugated insulin mitigates hypoglycemia. Proc Natl Acad Sci U S A 2019;116:10744–8. https://doi.org/10.1073/pnas.1901967116.
- [32] Kaarsholm NC, Lin S, Yan L, Kelly T, Van Heek M, Mu J, et al. Engineering glucose responsiveness into insulin. Diabetes 2018;67:299–308. https://doi.org/10.2337/db17-0577
- [33] Hoeg-Jensen T, Havelund S, Nielsen PK, Markussen J. Reversible insulin selfassembly under carbohydrate control. J Am Chem Soc 2005;127:6158–9. https:// doi.org/10.1021/ja051038k.
- [34] Kurtzhals P, Havelund S, Jonassen I, Kiehr B, Larsen UD, Ribel U, et al. Albumin binding of insulins acylated with fatty acids: characterization of the ligand-protein interaction and correlation between binding affinity and timing of the insulin effect in vivo. Biochem J 1995;312:725–31. https://doi.org/10.1042/bj3120725.
- [35] Kurtzhals P, Havelund S, Jonassen I, Kiehr B, Ribel U, Markussen J. Albumin binding and time action of acylated insulins in various species. J Pharm Sci 1996;85:304–8. https://doi.org/10.1021/is950412i.
- [36] Brooks WLA, Sumerlin BS. Synthesis and applications of boronic acid-containing polymers: from materials to medicine. Chem Rev 2016;116:1375–97. https://doi. org/10.1021/acs.chemrev.5b00300.
- [37] Wang C, Ye Y, Sun W, Yu J, Wang J, Lawrence DS, et al. Red blood cells for glucoseresponsive insulin delivery. Adv Mater 2017;29. https://doi.org/10.1002/adma. 201606617.
- [38] Wang J, Wang Z, Yu J, Zhang Y, Zeng Y, Gu Z. A forskolin-conjugated insulin analog targeting endogenous glucose-transporter for glucose-responsive insulin delivery. Biomater Sci 2019;7:4508–13. https://doi.org/10.1039/c9bm01283d.
- [39] Yang R, Wu M, Lin S, Nargund RP, Li X, Kelly T, et al. A glucose-responsive insulin therapy protects animals against hypoglycemia. JCI Insight 2018;3:e97476. https:// doi.org/10.1172/jci.insight.97476.
- [40] Krug AW, Visser SAG, Tsai K, Kandala B, Fancourt C, Thornton B, et al. Clinical evaluation of MK-2640: an insulin analog with glucose-responsive properties. Clin Pharmacol Ther 2019;105:417–25. https://doi.org/10.1002/cpt.1215.
- [41] Yu J, Zhang Y, Ye Y, Disanto R, Sun W, Ranson D, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci U S A 2015;112:8260–5. https://doi.org/10.1177/ 0004563215605691.
- [42] Wang J, Ye Y, Yu J, Kahkoska AR, Zhang X, Wang C, et al. Core-shell microneedle gel for self-regulated insulin delivery. ACS Nano 2018;12:2466–73. https://doi.org/10. 1021/acsnano.7b08152.