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Abstract 

Estimation of the effective number of breeders per reproductive event (Nb) using single sample DNAmarker-based 

methods has rapidly grown in recent years. However, estimating Nb is difficult in agestructured populations 

because the performance of estimators is influenced by the Nb / Ne ratio, which varies among species with different 

life histories. We provide a computer program, AgeStrucNb, to simulate age-structured populations (including life 

history) and also estimate Nb. The AgeStrucNb program is composed of 4 major components to simulate, 

subsample, estimate, and then visualize Nb time series data. AgeStrucNb allows users to also quantify the precision 

and accuracy of any set of loci or sample size to estimate Nb for many species and populations. AgeStrucNb allows 

users to conduct power analysis to evaluate sensitivity to detect changes in Nb or the power to detect a correlation 

between trends in Nb and environmental variables (e.g., temperature, habitat quality, predator or pathogen 

abundance) that could be driving changes in Nb. The software provides Nb estimates for empirical data sets using 

the LDNe (linkage disequilibrium) method, includes publication-quality output graphs, and outputs genotype files 

in Genepop format for use in other programs. AgeStrucNb will help advance the application of genetic markers for 

monitoring Nb, which will help biologists to detect population declines and growth, which is crucial for research 

and conservation of natural and managed populations. 

Subject area: conservation genomics and biodiversity 
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When assessing and monitoring population viability, it is crucial to 

consider evolutionary metrics such as the effective population size (Ne). 

Ne is important because it influences the rate of loss of genetic variation, 

inbreeding, and the efficiency of natural selection (e.g., to maintain 

adaptive variation). Thus, precise and accurate estimates of Ne are crucial 

in evolutionary, conservation, and ecological genetics and have long been 
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used in conservation decision making and population genetics (Crow and 

Kimura 1970; Charlesworth 2009; Luikart et al. 2010; Allendorf et al. 

2013; Waples et al. 2014). An alternative approach to Ne is to estimate the 

effective number of breeders in one reproductive cycle (Nb). Estimating 

Nb in natural populations is important because it can be used to estimate 

Ne in cases where the relationship between Ne and Nb is understood 

(Waples et al. 2013; Waples and Antao 2014). In addition, Nb is 

measurable annually (whereas Ne estimation often requires multiple years 

or generations between sampling events), making Nb more informative in 

monitoring long-lived species with annual breeding cycles (Waples and 

Yokota 2007; Waples et al. 2013). The potential of Nb estimation in 

abundance monitoring is especially promising because it generally 

reflects the number of successful breeding adults in a population at the 

time of reproduction and also provides information about reproductive 

behavior and breeding systems (Whiteley et al. 2015; Ruzzante et al. 

2016). 

Estimating Nb and its variation (among breeding cycles) is useful for 

predicting genetic changes and viability of populations of conservation 

concern. Often Nb and Nc (population census size) are not of similar 

magnitude or correlated among years, meaning that population census 

studies are not necessarily informative in determining Nb, rates of loss of 

variation, or inbreeding (Duong et al. 2013; Dowling et al. 2014; Pierson 

et al. 2018). However, Nb is not a direct replacement for Ne and inference 

of Ne from Nb often requires understanding the relationship between Nb 

and Ne as determined by a species’ life-history traits (Waples and Antao 

2014). A lack of correlation between Nb and Nc may be explained by 

environmental variables that constrain Nb, but only a handful of recent 

studies have investigated the relationship between environmental 

variables and Nb (Wood et al. 2014; Whiteley et al. 2015). These previous 

studies found that factors such as streamflow (Whiteley et al. 2015) and 

other environmental variables can influence Nb and the Nb /Nc ratio (Wood 

et al. 2014). Therefore, understanding the relationships between 

environmental variables and Nb will be a critical step in conducting risk 

assessments in species susceptible to environmental variation. 

Here we introduce the AgeStrucNb software package that is based on 

a thoroughly tested population genetic simulation model that allows for 

estimation of Nb for age-structured populations (Waples et al. 2014; 

Waples and Antao 2014). AgeStrucNb allows for controlled simulation of 

changes in Nb over time through both one time and multi-breeding cycle 

events to simulate changes (including nonlinear) in Nb over time. 

AgeStrucNb takes advantage of other recent advancements, including the 

ability to simulate and account for linkage disequilibrium (LD) in 

estimates of Nb (Waples et al. 2016). AgeStrucNb also includes several 

time-saving and userfriendly features, including a powerful graphical user 

interface, a powerful graphing tools that allow for quick visualization of 

results, options for parallel processing for simulating populations and Nb 

estimation, routines for subsampling loci and individuals, and finally, the 

program utilizes Genepop (v4.6) format conventions (http:// 

genepop.curtin.edu.au/help_input.html) allowing for quick and easy 

formatting of empirical input data to parameterize simulation with real 

data (e.g., known allele frequencies). 

An important feature in the AgeStrucNb package includes the ability 

to simulate a near-constant true Nb (e.g., Nb = 50, or Nb = 500, etc.) for 

each of many independent simulation replicates. This allows researchers 

to address questions such as: What is the power of a certain number of 

loci and individuals to reliably estimate Nb (when Nb is a certain size; 

Waples and Faulkner 2009)?. Here, we consider the true Nb as the value 

determined using the Parentage analysis without Parents (PwoP) method 

found in Waples and Waples (2011).  

No other software program has the ability to simulate a stable or changing 

Nb in age-structured populations (for any given life table or vital rates) and 

to conduct a power analysis of the number of loci, individuals, and cohort 

needed to detect a decline (or increase) in Nb. We demonstrate the 

usefulness of the AgeStrucNb software tool through 2 example uses 

highlighting the program’s flexibility in handling empirical and simulated 

genetic data and for multiple purposes. In the first example, we use 

empirical SNP data from a population of known pedigree (and hence 

known Nb) to illustrate the effect of subsampling loci and individuals on 

the bias and precision of Nb estimates (using the LDNe estimator). In the 

second example, we demonstrate the use of AgeStrucNb as a tool to 

quantify the power to detect population declines in Nb over time, which 

will help biologists establish genetic monitoring programs. Additionally, 

we explore the correlation between estimated Nb (using LDNe—Waples 

and Do 2008) and true (deterministic) Nb (Waples et al. 2011) to 

understand the amount of sampling needed to accurately and precisely 

track true changes in Nb which is needed when correlating Nb with 

environmental variables that are potentially driving Nb. 

Methods 

Program Overview and Implementation 

The AgeStrucNb program is composed of 4 major components to simulate, 

subsample, estimate, and then visualize either Nb time series data for a 

single population data, or single time point estimates of Nb for multiple 

populations (Figure 1). Simulations require a species’ lifetables as part of 

the input configuration file. The program includes configuration files, 

including lifetables, for over 30 commonly studied species as simulated 

in Waples et al. (2014) and Waples and Antao (2014). For Nb estimation, 

AgeStrucNb takes as input Genepop formatted files allowing for simulated 

or empirical data. Much of the base code has had extensive debugging and 

validation and was utilized in previous studies (Waples et al. 2014; 

Waples and Antao 2014). Notable program features and additions include 

1) greater flexibility in the user control of the change in true Nb through 

time and to hold true Nb constant, 2) linear regression model testing of 

statistical power (e.g., useful for when designing monitoring programs 

aimed at detecting population declines or increases in population size), 

and 3) an extensive subsampling routine that can be used to subsample on 

the number of single nucleotide polymorphisms (SNPs), individuals, 

specific cohorts. 

AgeStrucNb has built-in visualization tools for creating boxplot 

figures on-the-fly for exploring subsampling of Nb and confidence interval 

(CI) related data (Figure 1). The user also has the option to create linear 

regression plots to explore time series data (e.g., to detect slopes 

significantly different from 0) and a summary statistics package to 

determine the number of slopes significantly different from zero. Plots are 

created using the Matplotlib python package, which can be used to 

produce publication-quality figures in a .png and .pdf file format (Hunter 

2007). 

AgeStrucNb is a python program (created and tested using python 3.5 

and 3.6, and with limited testing on 3.7), available through both a popular 

python package distribution database (pypi.python.org/pypi) and a github 

repository (github.com/ popgengui/AgeStrucNb). The manual, 

installation details, and a set of simulation configuration files for multiple 

species can be found at github.com/popgengui/AgeStrucNb/tree/data. For 

efficiency and speed, the program utilizes multi-core processing to allow 

users to start multiple simulations, estimation or visualization sessions at 

once, as well as perform parallelized per-replicate simulations  
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in other programs. 

and per-population Nb estimations. The program has been tested 

thoroughly on Linux (Ubuntu 16.04), 64-bit Windows 8.1 and 10 and had 

limited testing on OS X version 10.11. For a complimentary program to 

AgeStrucNb also see NeOGen: a tool for Ne simulation, estimation, and 

study design for species with overlapping generations (Blower et al. 2019). 

Genetic Simulation With SimuPOP 

AgeStrucNb uses a forward-time, individual-based population genetics 

simulation environment called simuPOP (Peng and Kimmel 2005; Peng 

and Amos 2008) to simulate age-structured genetic data for the desired 

study species. Demographic inputs for the simulation model include 

information about age and sex-specific survival rates and relative 

fecundity, mating system (monogamy/polygamy), the probability of male 

birth, and optional information about litter size. Other Nb-specific options 

include the ability to set a tolerance on the true Nb, the ratio of Nb/Nc, and 

the ability to prescribe changes in the true Nb over time either as 1-time 

events, a continuous decline or as multiple and varied fluctuations through 

time. To ensure that realized Nb is within a given threshold (e.g., within 

1% of the true Nb) the program uses a trial-and-error fitting algorithm to 

repeatedly generate the next simulation generation and test the realized Nb 

(calculated using the PwoP method) is within the threshold specified by 

the user. The user can also enter their desired Nb from which the number 

of newborns (N0) and population census size (Nc) are calculated based on 

the input Nb/Nc ratio. 

Simulations can be set to track large numbers of SNPs (tested up to 

5000 in worked example 2) or microsatellite markers and including 

specifying the starting number of alleles. This allows for further 

connection and application of the program to past studies using 

microsatellite markers. Genetic and demographic processes are simulated 

and tracked based on the base unit of reproductive cycles. 

At time 0, the age of each individual not in the N0 age class is drawn 

randomly from the stable age distribution. Because survival and 

reproduction are random and independent, total population size, and the 

number of each sex in each age class, can vary randomly around the mean 

values expected in a stable population. Furthermore, although primary sex 

ratio at age N0 varies randomly around 0.5, adult sex ratio can differ from 

this due to sex-specific survival rates and ages at maturity. For each 

newborn individual, 2 parents are selected by drawing 1 male and 1 female 

randomly from the pool of potential parents, with the probability of 

choosing a parent of age × proportional to bx for that sex. In other words, 

all potential parents of the same sex and age have an equal opportunity to 

be the parent of each newborn (i.e., Φ = 1, where Φ is the ratio of the 

variance to the mean reproductive success in individuals in the same age 

and sex class), but that is not necessarily true for individuals of different 

ages or sex. The value of Φ is hard to estimate empirically, but it is likely 

that Φ ≠ 1 in all cases (e.g., see Waples et al. 2018). As an optional setting, 

users can enforce strict adherence to sex and age class proportions using 

a lottery-based method that bins individuals based on age class and gender. 

Next, the number of individuals to be culled per age class and gender is 

determined by strictly maintaining age class and gender proportions 

relative to age and gender-specific survival rate. Individuals are then 

drawn randomly from each age class and gender and culled until the 

desired proportion is reached. Enforcing a strict age class structure allows 

for sustainable populations with low Nb, and thus, removing the chance 

for extreme events (e.g., the lost an entire gender or age class) that might 

not be biologically relevant (Waples and Faulkner 2009). 

Simulations are optimized for speed, flexibility, and space saving. For 

example, users can set a simulation target for mean heterozygosity (HE) 

for SNPs or microsats where the program will record genetic information 

for a desired number of cycles after reaching the target HE within a certain 

threshold. In addition, population allele frequencies can be initialized 

based on a desired starting HE. This greatly aids in speeding up simulation 

runs when Nb is large (e.g., Supplementary Figure S1 highlights the decay 

in HE over time with respect to starting Nb). 

The base python code for AgeStrucNb and the simulation modeling 

has been thoroughly tested and used extensively in multiple studies 

(Waples et al. 2014; Waples and Antao 2014; Luikart et al. in press). For 

model validation, we also conducted longer runs to track the loss of HE 

over time and compared (validated) the loss rate to that expected (from 

theoretical equations) and the rate estimated from values from 

AgeStrucNb (Supplementary Figure S1). 

Estimating Nb From Empirical and Simulated  

Datasets 

LDNe v2 estimates Nb from genetic markers (e.g., SNPs or microsatellites) 

by quantifying the amount of nonrandom association (linkage 

disequilibrium) of alleles at independent locations on chromosomes 

(Waples and Do 2008). LDNe is one of the most extensively tested single 

 

Figure 1. Workflow diagram of the AgeStrucNb program highlighting the main operation components (SimuPOP, subsampling, Nb estimation, and visualization). Some of the parameters 

for each component is show in their respective box. Input data can be either simulated (by SimuPOP) or empirical data in Genepop formatted files. The program also will output Genepop 

files containing either the entire population or a subsample of loci and individuals (and cohorts) for use  
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sample Ne estimator currently available (Wang 2016). Computer 

simulations have shown that LDNe is effective in predicting Nb in 

populations with Nb = 200 using only 200 SNPs and a sample of 50 

individuals, and also populations with Nb = 500 using 400–5000 SNPs 

and >100 individuals, making it useful for estimating Nb in a range of 

populations (Luikart et al. in press). Other recent improvements in LDNe 

include increased power by lessening estimate biases in the LD method 

(Waples 2006) and improved jackknifed CIs (Jones et al. 2016). 

AgeStrucNb also includes further bias corrections as suggested by Eqn. 8 

in Waples and Antao (2014) in cases where the ratio of estimated Nb and 

true Nb is not equal to 1. The most recent version of LDNe (as 

implemented in V2.1 of NeEstimator, released December 2017) can also 

utilize chromosomal information to not use pairs of loci on the same 

chromosome when calculating pairwise LD (to avoid the use of 

nonindependent loci). Therefore, AgeStrucNb users can use chromosomal 

map information for empirical and simulated datasets to remove any 

pairwise LD calculations for markers that reside on the same chromosome. 

This is an important consideration in genomic data sets where thousands 

of loci are used (Waples et al. 2016). 

Statistical Output and Slope Significance Testing 

AgeStrucNb features a stats and linear regression module that performs 

significance testing for a decline (or increase) in Nb point estimates from 

multiple time points (e.g., consecutive cohorts). Using simulated data, the 

program can be used to conduct power analysis to quantify the probability 

of detecting a negative or positive slope of a line through Nb point 

estimates compared to a zero slope. A range of scenarios can be simulated, 

including different rates of decline, and sampling of loci, individuals, and 

time points (cohorts). Additionally, the stats module can also be used with 

a single empirical data set with multiple time point estimates to test for a 

slope significantly different from zero. 

Two parameters are estimated in the linear regression module of 

AgeStrucNb, the slope coefficient (b1) and the intercept (b0). This reduces 

the number of degrees of freedom to n−2 where n was the number of 

points (i.e., the number of cycles tested) used to calculate the regression 

and necessarily imposes a minimum limit on the number of sampling 

events of 3 breeding cycles (Neter et al. 1985). The test statistic (t*) for 

the slope of a linear regression is calculated for a normally distributed 

regression with a null hypothesis equal to zero, where s(b1) is an estimate 

of the variance of the slope (Equation 1; Neter et al. 1985). 

  t∗ s(b1) (1) 

In most regression models b1 is assumed to be distributed normally. This 

assumes the data being regressed over is roughly linear, distributed 

approximately normal, contains no major outliers, and independent 

variables. To calculate s(b1) requires calculating the mean squared error 

(MSE) of the line (Equations 2 and 3). Using t* and the degrees of freedom 

of the regression we can then calculate the P-value for that line using a 

Cumulative Density Function (CDF) on the T distribution (Neter et al. 

1985). 

MSE 

  s  (2) 

  MSE yi )2 (3) 

An advantage of using a CDF function is it maintains sidedness, and thus, 

allowing differentiation between significant positive and negative values. 

A P-value is then used to determine cases where the slope is significantly 

different from zero. 

Empirical Examples 

Example 1: Subsampling of Empirical Data 

A major feature of AgeStrucNb is to streamline the process of subsampling 

data when input is either empirical or simulated datasets. AgeStrucNb will 

accept as an input a Genepop formatted file that can include any number 

of populations which can be treated as a timeseries for a single population 

or as a number of independent populations (e.g., when using empirical 

data for multiple locations). The Nb estimation module includes multiple 

optional methods of subsampling by the number of individuals (e.g., by a 

series of percentage values or remove-N individuals) and by the number 

of loci (by percentage or total number). Users can also choose to 

subsample individuals based on age or cohort number when calculating 

Nb. 

We demonstrated the subsampling routine using an empirical dataset 

for steelhead trout (Oncorhynchus mykiss) from the Pahsimeroi hatchery 

in the Snake River Basin (Ackerman et al. 2017). Complete hatchery 

pedigree (parentage) information exists for the Pahsimeroi hatchery, 

including the genetic information for all breeding parents and their 

returning offspring. True Nb was calculated using the PwoP method. 

Multiple estimates of Nb were then calculated in AgeStrucNb using a panel 

95 SNPs and repeated random subsets (i.e., 10%, 20%…90%) of the 

number of returning individuals (N = 1481). LDNe estimates were run 

using 100 replicates (random subsamples of individuals) per each 

sampling subset or 900 sampling replicates in total (Figure 2). 

Ackerman et al. (2017) conducted a similar analysis on steelhead 

hatchery population; however, their analysis used sibship analysis in the 

program COLONY v2.0.5.6 to estimate Nb (Jones and Wang 2010). 

Ackerman et al. (2017) concluded that relatively large sample sizes (e.g., 

similar to the true value of Nb) were required to accurately estimate Nb 

using parentage analysis. There was also a downward bias in the estimates 

of Nb using COLONY, especially with small sample sizes. We found less 

obvious bias when using LDNe; however, there was a slightly increased 

amount of variation among Nb estimates for each subsampling. This 

increased variation could partly be attributed to the small SNP panel used 

for estimating Nb in LDNe. The major advantage of LDNe, in this case, 

was the greatly reduced computational time required to recreate the 

(subsampling used in Ackerman et al. 2017). Ackerman et al. (2017) used 

90 replicate runs of the COLONY program that took a total amount of 

computer time ~400 h versus ~1 h needed to run 900 subsampling 

replicates in AgeStrucNb. 
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Example 2: Establishing Monitoring Programs and Sampling 

Design Needs 

We demonstrate the use of AgeStrucNb as a tool for genomic monitoring 

sampling design by conducting power analysis to quantify the probability 

of detection in a population where Nb declines by 10% per year. For our 

study species, we choose the short-lived wood frog (Rana sylvatica) that 

has 4 age classes and the long-lived lake trout (Salvelinus namaycush) that 

has 63 age classes. The linear regression and slope significance (described 

above) test was used to test for the probability of a correct detection 

(statistically significant negative slope) using 100 replicate simulations. 

Slope significance tests were calculated using 3–10 breeding cycles (and 

thus 3–10 Nb estimates; Figure 3) with an alpha of 0.1, which is equivalent 

to a false positive detection rate of ~10%. We deemed this higher false-

positive rate a reasonable test based on the assumption that increased 

sensitivity (lower false negatives) may be desirable, even with a slightly 

increased rate of false-positive detections of declines. However, users can 

also adjust the rate of their alpha based on their risk tolerance needs. We 

used Nb starting values of 200 and 500 and examined the change in 

probability of detection over a combination of individual sample sizes (50, 

100, and 200) and the number of SNP markers (100, 500, 1000, and 5000). 

We assumed a probability of detection ≥80% to be acceptable or desired 

for most monitoring programs to detect a decline. Finally, we also 

calculated the correlation between replicate sets (i.e., including all point 

estimates of a single replicate over 10 cycles) of estimated Nb correlated 

with the single set of true (deterministic) Nb (Table 1). 

Overall, the number of cohorts sampled had a strong effect on 

increasing power until at least 7 cohorts were sampled. No scenarios with 

less than 5 cohorts samples achieved high power (>.80). For fixed 

numbers of individuals and loci, Larger values of Nb required an increased 

number of breeding cycles sampled to approach the desired 80% threshold 

of power. In the case of Nb = 200, 5 breeding cycles were required to reach 

the 80% threshold, and a minimum of 6 breeding cycles sampled was 

necessary for Nb = 500 to reach the same threshold. In terms of Nb, this 

equates to Nb = 131 for a starting Nb = 200, and Nb = 328 for a starting Nb 

= 500. 

The number of individuals and SNPs sampled also greatly impacted 

the probability of detection (Figure 3). There appeared to be distinct 

thresholds over which the increase in the number of individuals sampled 

or the number of SNPs sampled did not greatly increase rates of detection. 

General patterns in the probability of detection were similar between 

species. 

For this example, we also investigated the correlation between 

estimated and true Nb to determine how many SNPs and individuals need 

be sampled to produce tightly correlated values. This is important as a first 

step in determining under what conditions annual Nb might be correlated 

with an underlying environmental factor. If noise is too great, it could be 

impossible to detect an underlying correlative relationship. Using the 

datasets above, we correlated sets of estimated Nb over 10 breeding cycles 

(with a 10% decline) to the true Nb (Table 1). The range in correlation 

values between estimated and true Nb appeared most sensitive to the 

number of SNPs and individuals sampled, less dependent on the starting 

Nb. Values of 100–200 individuals and 1000–5000 SNPs sampled 

appeared to provide high accuracy (mean correlation ≥ 0.89), and 

moderate precision (range of correlation = 0.61–1). With ample sampling 

of individuals (>200) and using >500 SNPs, the precision was increased 

(range of correlation = 0.81–1). This simple example appears to offer hope 

that with adequate sampling, correlations between Nb and environmental 

variables will be detectable, but we leave further exploration for future use 

of the AgeStrucNb tool. 

Such simulation and empirical-based tools for assessing power, 

precision, and accuracy will become increasingly important as managers 

need tools for establishing genomic monitoring programs. AgeStrucNb 

will allow managers to balance the power to detect a population decline 

with the cost and time associated with sampling. In general, 5–6 years of 

sampling time with the appropriate number of individuals (~100–200 for 

Nb >200) and SNPs (≥500) sampled can provide enough power to have a 

high probability (≥80%) to detect population declines. 

 

Figure 2. Output from the AgeStrucNb program using the visualization interface and the box-plotting option. Box-plots are for hatchery steelhead (Pahsimeroi). The total steelhead 

population consisted of 1,481 individual offspring with a true (pedigree-based) Nb = 353 (Ackerman et al. 2017). Subsampling across a randomly chosen set of individuals shows the 

variation in the LDNe estimation of Nb using 95 markers and across 10%, 20%…100% of individuals sampled. Note that even when sampling all individuals (1481) there is still error 

associated with the choice of sampled loci which is not depicted here. 
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that were then correlated to the set of true Nb values. 

No. of indivs.  

sampled 

No. of SNPs 

sampled 

Lake trout  Nb 

= 200 

Lake trout  Nb 

= 500 

Wood frog  Nb 

= 200 

Wood frog  Nb 

= 500 

Range of corr.  

(Min–Max) 

Mean corr.  

value 

Range of corr.  

(Min–Max) 

Mean corr.  

value 

Range of corr.  

(Min–Max) 

Mean corr.  

value 

Range of corr.  

(Min–Max) 

Mean  

corr. value 

50 100 −0.15–0.94 0.58 −0.61–0.75 0.14 0.19–0.92 0.63 −0.77–0.85 0.21 

 500 0.49–0.98 0.81 −0.03–0.97 0.63 0.61–0.98 0.84 0.08–0.91 0.69 

 1000 0.6–0.97 0.83 0.09–0.95 0.67 0.65–1 0.87 0.23–0.94 0.72 

 5000 0.61–0.97 0.84 0.07–0.98 0.7 0.68–0.99 0.88 0.34–0.96 0.76 

100 100 0.24–0.97 0.81 −0.09–0.93 0.56 0.61–0.98 0.84 −0.58–0.94 0.6 

 500 0.76–0.99 0.92 0.53–0.97 0.85 0.83–1 0.95 0.61–0.98 0.88 

 100 0.81–0.99 0.93 0.61–0.98 0.89 0.88–0.99 0.96 0.64–0.99 0.9 

 5000 0.79–0.99 0.94 0.57–0.97 0.89 0.88–0.99 0.96 0.63–0.99 0.91 

200 100 0.73–0.99 0.91 0.35–0.96 0.78 0.83–0.99 0.94 0.53–0.97 0.82 

 500 0.9–0.99 0.96 0.81–0.99 0.94 0.93–1 0.98 0.86–0.99 0.96 

 1000 0.9–1 0.97 0.85–1 0.95 0.93–1 0.98 0.86–1 0.96 

 5000 0.92–1 0.97 0.89–0.99 0.95 0.94–1 0.98 0.86–0.99 0.97 

Figure 3. The probability of detecting a decline in population Nb for wood frog and lake trout when initial Nb = 200 and Nb = 500 by the number of breeding cycles, individuals and number 

of loci sampled. Each combination of the number of SNPs (loci) sampled (squares = 100 SNPs, circles = 500 SNPs, triangles = 1000 SNPs, diamonds = 5000 SNPs) and individuals sampled 

(50, 100, 200) used 100 replicate simulations and a 10% decline/cycle over 10 cycles. Alpha was set to 0.1 for the P-value tests, representing a ~10% false positive rate. For each line type 

× shape combination, the difference in probability of detection plotted by each of the 3 associated lines is the relative change when using more individuals and keeping the number of 

SNPs the same. As an example, the solid lines with diamonds all use 5000 SNPs, but the uppermost left line with diamonds used 200 individuals, the middle line with diamonds used 100 

individuals, and the furthest right line with diamonds used 50 individuals. This pattern is similar for each line type × shape combination. See online version for full color. 

Table 1. The range in correlation values and the mean of the correlation values between AgeStrucNb (LDNe) Nb point estimates and true Nb values (derived using 

PwoP) for 10 breeding cycles with a 10% annual decline in Nb 

Each combination of the number of individuals and SNPs sampled had 100 replicate simulation runs with 10 breeding cycles of estimated annual Nb per run  
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Conclusion 

The increasing availability of genetic markers and lowering costs for 

genotyping will improve and increase future genomic monitoring 

programs. AgeStrucNb is a multi-faceted package allowing researchers 

and population managers to conduct simulations and power analysis to 

develop sensitive genetic monitoring programs for early detection of 

population declines (or growth). AgeStrucNb provides many helpful 

features to simulate, subsample, estimate, and visualize Nb for empirical 

or simulated data sets. For example, it can be used to simulate, estimate, 

and then conduct statistical analysis to quantify the ability to detect 

changes in Nb given a wide range of sampling parameters. It can also be 

used to subsample empirical data to then conduct power and sensitivity 

analysis on the number of loci and individuals sampled, and to create bar-

plots series to visualize confidence intervals on (and precision of) Nb 

estimates using different subsets of individuals and loci. AgeStrucNb 

allows biologists to quickly and effectively plan the number of cohorts, 

loci, and individuals to sample to estimate and detect a declining Nb in 

agestructured species. 
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Supplementary material is available at Journal of Heredity online. 
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