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Abstract

Estimating the effective population size and effective number of breeders per year (V,) can facilitate early
detection of population declines. We used computer simulations to quantify bias and precision of the one-
sample LDNE estimator of NV, in age-structured populations using a range of published species life history
types, sample sizes, and DNA markers. N, estimates were biased by ~5—10% when using SNPs or
microsatellites in species ranging from fishes to mosquitoes, frogs, and seaweed. The bias (high or low) was
similar for different life history types within a species suggesting that life history variation in populations will
not influence N, estimation. Precision was higher for 100 SNPs (H~0.30) than for 15 microsatellites (H=0.70).
Confidence intervals (CI’s) were occasionally too narrow, and biased high when N, was small (V,<50);
however, the magnitude of bias would unlikely influence management decisions. The CI's (from LDNE) were
sufficiently narrow to achieve high statistical power (=0.80) to reject the null hypothesis that N,=50 when the
true Ny,=30 and when sampling 50 individuals and 200 SNPs. Similarly, CI’s were sufficiently narrow to reject
Ny=500 when the true Ny=400 and when sampling 200 individuals and 5,000 loci. Finally, we present a linear
regression method that provides high power to detect a decline in N, when sampling at least five consecutive
cohorts. This study provides guidelines and tools to simulate and estimate &V, for age structured populations
(https://github.com/popgengui/agestrucnb/), which should help biologists develop sensitive monitoring

programs for early detection of changes in N, and population declines.

Keywords: effective population size, conservation genetics, population decline, genetic monitoring, population

fragmentation, connectivity, viability, computer simulations, power analysis

Introduction

The effective population size (V,) is among the most important parameters in conservation and evolutionary
biology because N, influences the efficiency of natural selection and gene flow, as well the rate of inbreeding
and loss of genetic variation (Frankham 2005; Charlesworth 2009; Jamison and Allendorf 2012).
Unfortunately, N, is notoriously difficult to estimate, especially for species with age structure. In age-
structured populations, we are often interested in both the effective size per generation (N,) and the effective
number of breeders per year or reproductive cycle (V,). N, is a crucial metric in conservation because, for

example, if NV, is less than ~50, inbreeding often leads to substantial inbreeding depression (Jamison and
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Allendorf 2012). While much of population genetic theory uses N, per generation, N, can be a more relevant
parameter than N, in age-structured species. For example, N, is important when studying seasonal or annual

processes, reproduction events, or sexual selection in age-structured species.

The effective number of breeders (V) per reproductive cycle or cohort is advantageous to monitor because it
allows early detection of a population decline. If N, sharply declines for multiple reproductive cycles, then N,
and N, (population census size) will also likely decline (but see Whiteley et al. 2015). An &V, decline might be
detectable by monitoring N, for as few as 4 or 5 consecutive reproductive cycles in a species with a long
generation interval of >10-20 years (Leberg 2005; Wang 2005; Antao et al. 2010). Early detection of a decline
in NV, can help prevent loss of genetic diversity, population extirpation, and subsequent loss of ecosystem
services (Schwartz et al. 2007; Luck et al. 2003; Schindler et al. 2010). N, monitoring also allows early
detection of population growth or expansion following species restoration, recovery, or spread of an invasive

species (Kamas et al. 2016; Tallmon et al. 2012).

N, estimation per breeding cycle, using a single-sample estimator, provides advantages over the estimation of
effective population size per generation (N,). First, estimating N, may require waiting several years between
sampling events, for example, when using the temporal method (Waples and Yokota 2007). However,
estimating N, allows frequent (annual) monitoring of population status, which is helpful for early detection of
population trends in species with long generation intervals (Waples et al. 2013). For example, samples from
newborns allow estimation of N, a few weeks or months after the birthing season, which facilitates the
assessment of population threats such as reproductive failure or cryptic population bottlenecks (Luikart et al.
1998). Sampling newborns can facilitate the sampling of single cohorts because in many species only
newborns (or yearlings) can be aged. In some taxa, such as fishes, plants, and amphibians, we can sample

several age classes during a single collection event, which allows testing for trends in N, (Tallmon et al. 2012).

It recently has become feasible to estimate N, in age-structured populations, using the single sample (one time
point) genetic estimator LDNE (Waples and Do 2010). Waples et al. (2014) quantified the bias of the LDNE
estimator of N, related to age structure, using 100 microsatellite loci across a range of species and relatively
large N, estimates (N, = 200-5000)(see also Robinson and Moyer 2013). However, the precision of this N,
estimator has not been extensively quantified for age-structured populations (but see Robinson and Moyer
2013), and the bias and the precision of the estimator are poorly understood when considering populations with
different or variable life histories. For example, it is not known how changes in age-specific survival,

fecundity, or longevity will bias or change V, estimates, even if the true (deterministic) N, remains constant;
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this is important because these age-specific vital rates influence the N,/N, ratio which can influence or bias N,

estimates obtained from the LDNE method (Waples et al. 2014).

Finally, we know little about bias and precision at small &, (V, < 200) in age-structured populations, or when
using SNP loci. Here, we focus mainly on small N,’s, because effective size estimators perform best for small
population sizes and because small populations have the greatest need for monitoring to prevent extirpation
(Luikart et al. 1998; Leberg 2006). We also conduct simulations with a larger »,, ranging from 300 to 2,000 to
help quantitfy the power to identify populations with an N, around 500. An N, or N, of 500 is important in
conservation because the “50/500” rule states that N, must be larger than ~500 to maintain evolutionary
potential (Jamieson and Allendorf 2012). Frankham et al. (2014) recommend changing the 50/500 rule to

100/1000 justifying use of larger N, for some simulations here.

When using hundreds of loci, confidence intervals (CIs) can be excessively narrow because not all the pairwise
comparisons between loci are independent (Waples and Do 2008). Thus, a new CI estimation method was

recently produced to provide wider and more reliable CI’s (Jones et al. 2016). Finally, little is known about the
effects of pooling cohorts on the magnitude of bias when using SNPs and small »,, so we quantified the effects

of pooling 2 or 3 cohorts.

Many species, including threatened trout, have substantial life history variation within and among populations
(Shepard et al. 1984; Fraley and Shepard 1989; Northcote 1997; Al-Chokhachy and Budy 2008). It is
important to quantify the effects of life history variation on the bias of N, estimators because if the magnitude
of the bias changes, the N, estimates could change even when true N, remains constant. For example, trout
populations can have substantially different fecundities and age-specific survival rates if mortality increases in
older fish (e.g., migratory individuals), due to predation or fishing mortality. Similarly, a population’s average
fecundity can also change rapidly if migratory fish are constrained due to a new barrier, fragmentation,
overharvest of the large migratory females, or increased predation (e.g., by introduced species) along their
migration pathway to spawning or feeding areas (Al-Chokhachy and Budy 2008). Migratory fish are often far

larger than non-migratory fish and thus produce far more eggs.

Our overarching goal is to improve our ability to estimate and monitor N, in natural populations by evaluating
the performance of the LDNE estimator using many simulated populations with known N, and age-structured
populations. This is novel and important because most population genetics theory assumes discrete
generations, but the vast majority of species have overlapping generations and age structured populations. Our

five objectives are to: (1) quantify effects of life history variation (vital rate differences) on the bias and
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precision of N, estimates; (2) quantify bias and precision for a range of microsatellite and SNP loci (15-5,000)
and heterozygosities (H = 0.25 to 0.7); (3) assess the effects of pooling cohorts on N, estimator bias; (4)
quantify our ability to compute precise and reliable confidence intervals when N, is near 50 or 500, and (5)
quantify the power of a novel linear regression approach to detect a declining N, when sampling 5 to 10

consecutive cohorts.

We conduct most simulations using 100-400 SNPs because this number is commonly used and easily feasible
in many species thanks to recent SNP chip and genotyping-by-sequencing technologies such as GTseq and
Rapture (Ruegg et al. 2014; Kraus et al. 2015; Narum et al. 2015; Ali et al. 2016). For simulations with larger
Ny, we used 800 - 5,000 independent SNPs to achieve reasonable precision. Finally, we provide guidelines and
a computer simulation program to compute, interpret, and simulate V, estimates and confidence intervals over a
broad range of taxa (https://github.com/popgengui/agestrucnb/). This study and simulation program will help
researchers and managers develop and improve genetic monitoring programs for natural and managed

populations (Schwartz et al. 2007; England et al. 2010).
Methods
Simulations and life tables

We simulated age-structured populations using the forward-time, individual-based simulator simuPOP (Peng
and Kimmel 2005, Peng and Amos 2008). Each simulation tracked demographic and genetic processes in an
age-structured population up to 1000 reproductive cycles (years). Demographics were governed by vital rates
(age-specific survival and fecundity) and longevity provided in life tables. The life table data from mosquito,
wood frog, and seaweed were reported in Waples et al. (2013). We used vital rate information published for
life stages of the westslope cutthroat trout (Shepard et al. 1984; Fraley and Shepard 1989) and bull trout (Al-
Chokhachy and Budy 2008) and converted them into age class data to construct life tables for simulating
populations (see Table S1 and Appendix 1).

For cutthroat trout, one life table was constructed using data from Shepard et al. (1984), and a second life table
(with the fecundity increasing with age) using data from Fraley and Shepard (1989) (Appendix 1). For bull
trout, we constructed three different life tables that we termed “standard”, “predation”, and “long-lived” to span
a realistic range of life histories and vital rates. The standard table was derived from migratory bull trout that
exhibit an adfluvial life history (with rearing and foraging in lacustrine habitat) in the Flathead River system

(Fraley and Shepard 1989) and elsewhere throughout their current range (Downs et al. 2006; Weaver 2006;
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Johnston and Post 2009). For the bull trout “predation” life table, we modified vital rates from the standard
vital rates to simulate the effects of high predation on those age classes (ages 4 and 5) that migrate from their
natal spawning streams to lakes (e.g., Flathead Lake, Montana). In many lakes, mortality caused by predation
and competition is elevated by the introduced lake trout in the lake (Martinez et al. 2009; Ellis et al. 2011). For
the “long-lived” life table, we used bull trout information from large lakes where individuals live longer than

bull trout in the Flathead drainage (Johnston and Post. 2009).

For each life table, and for a given V,, we computed demographic N, by using the program AGENE, which is a
deterministic discrete-time model (Waples et al. 2011). We used AGENE to determine the stable age
distribution, total population size (Ny), and adult population size (N), given the life table vital rates and the
number of offspring produced per year that survived to age 1 (IV;), as in Waples et al. (2014). The values of Ny,
N, N,, and N, all scale linearly with N,;, so when a different N, is used, the ratios of these variables do not
change. To initialize year 0 and to generate Ny individuals, the age of each individual was drawn randomly
from the stable age distribution and the sex was randomly assigned (male or female) with equal probability.
The total population size, and the number of individuals in each age class (by sex), varied randomly around the
mean values expected in a stable population. The adult sex ratio varied randomly around 0.5 and could differ

substantially from 0.5 due to sex-specific survival rates and ages at maturity.

To produce each newborn individual, one male and one female parent were drawn randomly from the pool of
potential parents (those with ages for which b, > 0). All potential parents of the same sex and age had an equal
opportunity to be the parent of each newborn, but that was not necessarily true for individuals of different ages
or sex. That is, the probability that an individual of age x was chosen to be the parent of a newborn was
proportional to b, for that sex. We used the N, /N, ratio to assess the expected direction of bias and the

approximate magnitude of bias in N, estimates (as in Waples et al. 2014).
Loci

To compare microsatellites to SNPs, we simulated a set of 100 microsatellites (H ~0.7), although most of our
analyses use only 15 microsatellites as is typically used in many studies, including nearly all genetic studies of
bull trout (Ardren et al. 2011; DeHaan et a. 2011). We simulate 100, 200, and 400 SNPs, which are the
approximate numbers of loci often in studies using SNP chip and amplicon sequencing approaches (Hemmer-
Hansen et al. 2011; Amish et al. 2012; Narum et al. 2010; Seeb et al. 2007; Seeb et al. 2012; Ali et al. 2016).
To test for effects of heterozygosity on bias and precision, we simulated sets of SNPs with a range of mean

heterozygosity (H ~0.25. 0.30, 0.35, 0.40, and 0.45).
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Allele frequencies for each locus in each replicate were separately initialized using a Dirichlet distribution,
which is widely used in population genetics and has little influence on allele frequency distributions after a
simulation burn-in of many generations (below). Multilocus genotypes in offspring were generated randomly

assuming simple Mendelian inheritance from the two randomly chosen parents.
Data analysis and Ny, estimation

After a simulation burn-in period of 50 years (which achieved an approximate demographic and genetic
equilibrium; see Waples et al. 2014), we waited for the mean SNP heterozygosity to drop to 0.40 to achieve
allele frequencies realistic for natural population and then tracked demographic and genetic parameters for
another 50 years before starting a replicate. To quantify the effect of mean SNP heterozygosity as specified
above, we also tracked results with other heterozygosity values (H = 0.45 - 0.25) for a subset of scenarios (e.g.,
Ny, =50 or 100, and samples of 50 individuals and 100 SNPs). For each simulation scenario, we generated a
total of 1,000 replicate samples. There was little/no difference between the low versus highest heterozygosity
simulations so we present results from only one mean heterozygosity typical of many SNP studies (H = 0.30).

For microsatellites, we waited until mean heterozygosity was near 0.75 (with ~8 alleles per locus).

We used four different sampling strategies useful in natural populations: (a) only newborns (that is, a single
cohort), (b) two consecutive cohorts (50% newborns, 50% age 1 fish), (c) three consecutive cohorts (33%
newborns, 33% age 1, and 33% age 2), and (d) all individuals in the population. In each case, individuals were
sampled randomly without replacement from these targeted groups. For each strategy, we took samples of 15,
25, 50 and 100 individuals and evaluated them for 15 microsatellites and 100, 200, and 400 SNP loci. For
model validation, we also conducted longer runs to track the loss of heterozygosity over time and compared
(validated) the loss rate to that expected (from theoretical equations) and the rate estimated from values from

AGENE.

In each simulation sample, we estimated effective size using the program LDNE (Waples and Do 2008).
Because we were initially interested in assessing bias, we used P...;; = 0.05. P, is the lowest allele frequency
allowed in the analysis. Waples and Do (2010) found that this P,,;, value minimized bias with small sample
sizes. Negative and infinite values of V, estimates were converted to 10° as in previous related studies (Waples
et al. 2014); negative N, estimates can result when the LD signal (i.e., gametic disequilibrium signal) from
sampling error noise is larger than the LD signal from the small number of parents and drift. For results
reported below, unless otherwise stated (e.g., Fig. 1 left side panels), the estimates from LDNE were adjusted to

reduce bias by applying the N,/N. bias adjustment from Waples et al. (2014).
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The realized N, from each replicate simulation was calculated using a standard formula for the inbreeding N,
(equation 2 in Waples et al. 2014). The realized N, varies stochastically among simulation replicates with
variance ~ N/2; therefore, the coefficient of variation in realized N, increases as the population size decreases
(Waples and Faulkner 2009). Because this simulation-induced stochasticity in N, among simulation replicates
is relatively large for small N, and does not occur in natural populations (each of which has a single true
trajectory of N, over time) (Waples and Faulkner 2009), we constrained the realized N, to vary only by < 1%
above or below the expected (deterministic value), e.g. N, = 50, or 100. Thus, all simulations of N, = 50

included simulation replicates with a realized N, of 49.5 <N, <50.5.
Violin and box plots

For easy comparison among simulated scenarios (life histories, numbers of loci and individuals sampled) we
produced violin plots (Fig. 1) and box plots visualizing the distribution of N, point estimates (e.g., Figs. 2 and
3), as well as the distribution of the upper and lower confidence interval limits (Figs. 4 and 5). Each box plot
shows the median, box edge percentiles (201 and 80™ percentiles), and 5™ and 95™ percentiles of the point

estimate from each of 1,000 simulation replicates for each simulation scenario.
Linear f method

To quantify our ability to detect a declining &V, by sampling multiple consecutive cohorts, we simulated 1000
independent declines of 5%, 7%, 10% and 15% per year (or cohort) and using a 0% decline as a control. This
was an exponential decline because, for a 10% decline, each year N, lost 10% of what was left: N, =100, 90,
81, 73, 66, 59, 53, 48, 43, 39, and 35. This type of decline is close to linear for 5-10 years, linear in log space,
and never reaches 0 but gets arbitrarily close. We then conducted linear regressions through 5, 7 or 10
consecutive cohort N, point estimates (from LDNE) and tested whether the slope of the line was negative as
expected for a declining N,. Statistical tests for a significant negative slope (and thus a population decline)
were computed using least-squares linear regression (Neter 1985). The test statistic (t*) for the slope of a linear
regression can be calculated using the equation below for a normally distributed regression with a null
hypothesis that b, is equal to zero, where b, is the slope of the regression and s(b,) is an estimate of the

variance of the slope (Neter 1985).

b
="y
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Using t* and the degrees of freedom of the regression (n - 2 where # is the number of points used in the linear
regression) we calculated the p-value for that line using a Cumulative Density Function (CDF) on the T

distribution (Neter 1985).
Results

We first computed N, and N, for each life table using the deterministic model in the program AGENE, as in
Waples et al. (2014). For example, the N,/N, ratio was 0.79 for the standard bull trout life table. This ratio
dropped to 0.66 for the “predation” bull trout life table, which had higher mortality rates for the 4 and 5-year-
old age classes. The Ny/N, ratio for bull trout with a longer life span (BT-Long) was 0.78. The N,/N, ratio for
a mosquito, wood frog, and seaweed, were 0.27, 0.60, and 1.26, respectively (Waples et al. 2013).

Our stochastic simulations with random demographic variability (using simuPOP) yielded populations with the
same N,/N, ratios as the deterministic model AGENE and agreed closely with theoretical expectations of the rate
of loss of heterozygosity given the N, from AGENE. Thus, we next looked for potential bias in the genetically
based LDNE N, estimates for each sample of individual genotypes simulated with simuPOP by comparing

these W, estimates with the AGENE true N, values.
Bias, cohort pooling

Our bias in LDNE estimates of N, due to age structure was similar in magnitude (3% to 15%) to previous
evaluations that considered relatively large Ny’s (¥, > 200) and microsatellite loci (Waples et al 2014). The
direction of the bias was generally upward for the species with N, < N, (bull trout, cutthroat trout, mosquito,
and wood frog), as expected (Waples et al. 2014). The direction of bias was downward for the species with N,
> N, (seaweed), also as expected (Fig. 1). The results reported below include the bias correction using the
Ny/N; ratio adjustment (as in Waples et al. 2014), which generally reduced the magnitude of bias by a few
percent, as in previous studies (Waples et al. 2014). Many of the results below are also reported for only one
life history (BT-Stnd, i.e., standard bull trout), unless otherwise stated, because the magnitude of bias and the

precision were similar for the range of life histories considered here (Fig. S1 in supplementary materials).

The bias was generally similar for microsatellites and SNPs (Fig. 2). The bias was highest (~15%) in some
scenarios when using only 15 microsatellite loci (Fig. 2, N, = 100). The magnitude of bias was similar across

the range of the number of loci used (up to 400) and of individuals (25-100) considered here.
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Heterozygosity of markers had little effect on bias. For example, as the mean heterozygosity decreases from
0.40 to near 0.25 for 100 SNPs, the distribution of M, point estimates (from 1000 simulations) shifted only
slightly (data not shown).

Pooling samples from two or three cohorts increased the magnitude of upward bias to ~30-40% higher than the
deterministic (true) Ny, (AGENE). Combining cohorts increases the upward bias when the true N, is larger than
Ny, as here (Waples et al. 2014). For example, pooling two consecutive cohorts gave a median estimate of N, =
65 from 1000 simulations when the actual deterministic NV, was only 50. Pooling three cohorts further
increased the magnitude of bias, such that the mean A, increased to ~70 when the deterministic V, per cohort
was only 50 (Fig. 3). This bias high agrees with the upward bias reported by Waples et al. 2014 when pooling
of cohorts from populations with N/, ratios less than 1.0. Pooling can be more appropriate when estimating
N, not N, because the estimates obtained from LDNE for pooled cohorts often approach N, (see figure 4a in
Waples et al. 2014).

Precision, confidence intervals, and power

Precision was higher for 100 bi-allelic SNPs than for the 15 microsatellites having ~8 alleles per locus. For
example, the range of the N, point estimates was 90-165 for microsatellites versus 95-130 for 100 SNPs, when
the deterministic (true) N, (from AGENE) was 100 (Fig. 2). These N, estimates included the N,/N, bias
adjustment from Waples et al. (2014), which used an assumed true (deterministic) N,/N, computed in program
AGENE using life history parameters. When the N, (from AGENE) was only 50, the range of point estimates
was ~45 to 75 for 15 microsatellites versus only ~46 to 65 for 100 SNPs, when sampling a single cohort and 50
individuals. Precision increased substantially such that the distribution of point estimates narrowed when using
200 SNPs compared to 100 SNPs, in all the species evaluated (trout, wood frog, seaweed, mosquito); however,

precision only slightly improved for 400 SNPs compared to 200 SNPs (Fig. 2).

Confidence interval estimates (95% Cls, from LDNE jackknife method) performed well when using 100 SNP
loci and 50 individuals as they contained the deterministic N, for 94% of simulation replicates for the bull trout
(BT-Stnd) (Table 1; Fig. 4). When N, =50, only 90% of independent CI’s contained the deterministic (true) M,
when sampling 100 SNPs and 50 individuals. For example, bull trout had only 90% of independent CI’s that

contained the deterministic N, when simulating an &, = 100 and when sampling 50 individuals and 100 SNPs
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(Table 1). CI’s tended to be biased high, which contributed to only 90% of CI’s containing the true

deterministic N,

Confidence intervals for a true N, = 30 were below N, = 50 in 80% of simulations when 200 loci and 50
individuals were genotyped; thus the power was ~0.80 to detect that N, was below 50. The CI distributions
and power were similar (~0.80 to 0.90) for other species including mosquitos, westslope cutthroat trout, and
wood frog (Fig. S1). Similarly, confidence intervals for a true N,=400 were below N, =500 in approximately
80% of simulations (power ~ 0.80) when 400 loci and 100 individuals were genotyped (Fig. 5); the power
increased to >0.95 when genotyping 800 loci and 500 individuals (Fig. 5). Finally, when the true N,=2,000,
~80% of simulated CI’s allowed rejection of the null hypothesis that N, = 2,300 when sampling at least 500
individuals and 5,000 loci (Fig. S2 in supplementary materials). Importantly, for the larger N, values of 500 or
2,000, the size of CI's was reduced more by doubling the number of individuals than by doubling the number
of loci sampled (Fig. S2).

Power to detect a declining Ny, via linear regression

The linear regression method for detecting a declining o, is visualized in Fig. 6. The benefit of doubling the
number of cohorts from 5 to 10 increased power from 0.55 to 1.0 (Fig. 6, 7) when sampling 100 individuals
and 100 SNP loci during a 10% annual decline in N,. In another example, power to detect a 15% decline per
year in NV, was only ~0.53 (53%) when sampling 50 individuals and 100 SNP loci from each of five
consecutive cohorts and testing for a negative slope (Fig. 7). Power increased to ~0.73 and ~0.80 when
doubling the number of loci and individuals, respectively. Power increased to near 100% when doubling the

number of consecutive cohorts that were sampled from 5 to 10 cohorts (Fig. 7, dashed arrow).

We conducted an extensive power analysis for detecting different rates of N, decline (5%, 7%, 10%, and 15%)
when using different sample sizes of individuals, SNPs, and number of cohorts. This analysis showed that
doubling the number of cohorts from 5 to 10 increased power far more than doubling the number of loci or
individuals (Fig. 7). Sampling more than 5 cohorts was often required to achieve power >0.80 to detect V,
declines, given the range of N, values and sample sizes considered here. Finally, a power analysis in wood
frogs revealed very similar power for detecting N, declines as in bull trout (see Fig. 7 versus Fig. S3 in

supplementary materials).

Discussion
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We evaluated the effects of life history variation and sampling strategy on estimates of N, to help biologists
plan genetic monitoring programs and obtain more reliable estimates of M, in natural and managed populations.
We found that life history variation, such as changes in survival or fecundity within a species did not cause
substantial variation of N, estimates, for the scenarios studied here. This observation is important for
researchers interested in monitoring N, in species with variable vital rates because it demonstrates that changes
in NV, estimates do not likely reflect changes in vital rates. We also report that the bias in V, estimates is
generally small (<5-10%) for relatively small population sizes and SNP marker sets. These scenarios (e.g., NV,
< 200; SNPs), along with sampling of pooled cohorts have not been thoroughly investigated. Our simulations
and discussions below regarding the behavior of confidence interval estimates and power for detecting NV,
differences and population declines will help researchers understand how to monitor &, in age-structured

populations.
Bias

The bias correction, based on a species’ Ny/N, ratio (Waples et al. 2014) reduced the magnitude of bias slightly
for all five species, which had a wide range of Ny/N, ratios. This result is similar to that reported for larger
populations and microsatellite loci (Waples et al. 2014). The results here are useful because they consider
relatively small &, (25 to 200) typical of threatened species, and they consider different marker types (15-100
microsatellites and 100-400 SNPs). The greatest proportional bias occurred at small V. For example, when
true NV, = 25, point estimates after applying the N/N, correction were still approximately 10-12% biased-low
(N = 22.2) for mosquitos, and 10% biased-high (V, = 28.0) for bull trout. This downward bias occurs for
mosquitos because their N, is greater than ., unlike the trout that have an N, less than N, (Waples et al. 2014).
This magnitude of bias is only ~5% when N, becomes large (V, > 200), which is consistent with the findings of
Waples et al. (2014). The bias is generally small and unlikely to cause biologists to make erroneous
management conclusions. For example, the V, estimate of 28 (instead of 25) for the bull trout likely would not

prompt a different management decision.

The cause of bias in a single-cohort sample has been discussed by Waples et al. (2013) and Waples et al.
(2014). Briefly, there are two main sources of the LD influencing the estimate of N,: the N, per year that
reflects new LD produced by the effective number of breeders (V,), and the N, per generation that reflects
residual LD that has not yet broken down. The sampling process also generates LD. The LDNE estimator, in
effect, assumes N, equals V.. However, if V, is larger than N, there is less residual LD signal from A, than is
assumed by the estimator, and the N, estimate is biased high, as we observed in trout (e.g., Fig. 1). Conversely,

if N, is smaller than M, there is more LD signal from N, than assumed by the estimator and the N, estimate is
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biased low (Fig. 1; and see Fig. 2 in Waples et al. 2014). Importantly, estimating the expected bias in
magnitude and direction, which is predictable from the N, /N, ratio, can help researchers interpret N, estimates

and avoid potentially erroneous inferences.

With microsatellite loci, the bias was occasionally slightly higher than with SNPs, likely because of the larger
proportion of low-frequency alleles for microsatellites compared to SNPs (Waples and Do 2010), and perhaps
because the initial bias corrections for LDNE were derived from simulations of two-allele loci (Waples 2006).
SNPs are becoming more widely used than microsatellites for most conservation applications and taxa. A set of
15 microsatellites have been widely used to assess population genetic structure and diversity in bull trout
populations (Ardren et al. 2010; DeHaan et al. 2011). However, sets of >100 SNPs are increasingly used
because this number of SNPs can be genotyped for less cost than 10 microsatellites (Amish et al. 2010;

Campbell et al. 2015; Ali et al. 2016).

An advantage of SNPs is that thousands can be screened to find hundreds with relatively high heterozygosity
(e.g., H>0.2) for use in SNP chip or other genotyping technologies, which improves accuracy and power for
N, estimation. Another advantage of SNP chips, GTseq, or Rapture is they can include marker loci from all

chromosomes, sex identification loci, mitochondrial loci, and species-diagnostic loci for detection of hybrids

(Amish et al. in press).

Importantly, changing the mean heterozygosity of SNPs ranging from 0.25 to 0.40 had little effect on bias.
However, if many loci have very low heterozygosity (H < 0.1) and thus have low-frequency alleles, the N,

point estimates could become less precise and more biased (Waples and Do 2010).
Sampling multiple cohorts

Occasionally it is not feasible to sample enough individuals (n > 20-30) from a single cohort, and thus cohorts
must be pooled to achieve sufficient sample sizes. Pooling samples from two or three cohorts increased the
magnitude of bias to near a 20% and 30% overestimation of M, respectively (Fig. 3). This bias from pooling
cohorts is expected only when the N,/N, ratio is not near 1.0 (Waples et al. 2014). This high-bias could result
from less LD signal in a sample of multiple cohorts due to more individual parents contributing offspring to the
sample. The bias from pooling could result from the pooling leading toward estimating the total N, per
generation, which is larger than N, in these trout (for which N,/N.= 0.78); Recall that the algorithm for
estimation assumes N,/N.~ 1.0 (Do et al. 2014). The direction of the bias (high versus low) depends on
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whether the Ny/N, ratio is low versus high, respectively; a bias-low occurs for an Ny/N, ratio > 1.0 (Waples et

al. 2014).

Because we now know the magnitude of bias from pooling, our results and those from Waples et al. (2014)
suggest we could correct for the bias when interpreting or estimating N, (and N.) from pooled cohorts. For
example, for bull trout, the bias for two pooled cohorts is approximately 20% high, and thus we can subtract
approximately 20% from any A, point estimate calculated from samples of pooled cohorts for bull trout. Bias
correction for any given species will depend on the Ny/N, ratio and the effects of cohort pooling, which can be

quantified as we did here using simulations in the program AgeStrucNe.

Previous work showed that pooled cohort samples can yield LDNE estimates that reflect the generational N,
more accurately than the cohort &, (Robinson and Moyer 2013, Waples et al. 2014). Our results for bull trout
simulations, which yielded cohort-pooled estimates of ~65 and 70 from two and three cohorts, respectively,
indicate a relatively accurate estimation of the generational N, with pooled cohorts (true generational N, ~ 64
based on N, = 50 and N/N, = 0.78). Thus, these results suggest that biologists can use the LDNE output to
obtain approximate estimates of N, from pooled cohorts. N, can also be inferred from an N, estimate of a single
cohort if you know the Ny/N., ratio (e.g. N,/ N. = 0.78); For example, an N,/ N, ratio of 0.78 would correspond
to an N, that was 28% higher than an estimated N, value (1/0.78 = 1.282); Thus, if N, = 100, N, = 128.

Precision and Confidence Intervals

Poor precision is usually the main limitation for the application of N, estimators to natural populations (Leberg
2005; Wang 2006; Luikart et al. 2010). The precision and the width of confidence intervals for the LDNE
method improves rapidly (geometrically) with the number of loci (L) because the degrees of freedom is based
on a multiple of L as follows: n = [(K-1)"2]*L(L-1)/2, where K is the number of alleles per locus and K-1 is
the number of independent alleles. There are L(L.-1)/2 pairs of loci. For each pair of loci, there is the
equivalent of (K-1)"2 independent comparisons of alleles (Waples and Do 2010). Ironically, in this genomics
age, high precision (narrow confidence limits) can be problematic because when thousands of loci are used,

CI’s can become excessively narrow.

Two major factors determine the performance of confidence intervals: a) whether the point estimate is
unbiased, and b) whether the correct degrees of freedom are used to generate the width of the CI’s. If the point
estimate is strongly biased, even CI’s with the proper width will perform poorly, and if the degrees of freedom

are too large the CI’s will be too narrow and will include the true value less than the expected fraction of the
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time, even if the point estimate is unbiased. For the LD method, the number of pairwise comparisons increases
with the square of the number of loci. If all of these pairwise comparisons provided independent information,
precision would be very high with 1000s of SNP loci, and resulting CI’s would be very tight. In reality,
however, physical linkage and overlapping pairs of loci in the comparisons mean that the effective (true)
degrees of freedom is considerably less than the number of pairwise comparisons (e.g., see Figure 7 in Waples

etal. 2016).

This reduction in effective degrees of freedom is less of an issue in most of our evaluations, which use no more
than 100-800 loci. Furthermore, we used the Jones et al. (2016) improved jackknife method (which is
implemented in NeEstimator V2.1) to generate realistic confidence intervals that reflect the true effective
degrees of freedom for each dataset (Do et al. 2014). Therefore, any deviations in the performance of the CI’s
can be attributed to bias in the estimates of N,. Ironically, if enough data are used, even a small bias can
translate into poor CI performance in terms of covering the true N,, because off-centered CI’s will become

narrower as precision increases and less likely to contain the true parameter value.

Our observation of lower precision for 15 microsatellites compared to 100 SNPs was expected from the lower
degrees of freedom (fewer pairwise locus comparisons) for the microsatellites. For 100 SNPs, approximately
96% of CI’s contained the deterministic », (known from AGENE) when the N, was 200 and when sampling 50
individuals. This 96% containment is close to the 95% coverage expected when computing 95% CI’s for
standard statistical tests. CI’s were extremely wide when N, =200 with samples of only 25 individuals (and
100 SNPs), likely because of the low signal to sampling-noise ratio (Waples et al. 2010). When N, =200 and
sampling 25 individuals, the upper CI limit was usually greater than 600 and often was infinity when
genotyping 100 loci. Thus, a larger sample size (>75-100) or more loci (> 200-400) will be needed to achieve

reasonable precision when &, is 200 or larger.

Confidence intervals contained the true N, less often than expected when N, was relatively small. For example,
when N, = 50 and when using 100 SNPs, approximately only 90% of CI’s contained the deterministic NV,
(known from AGENE), when sampling 50 individuals (Table 1). Thus, in this scenario, CI’s contained the
deterministic N, 5% less often than the expected 95% of CI’s. There are two main causes for this. First, the NV,
estimator is slightly biased high (even after using the N/, bias correction from Waples et al. 2014), thus CI’s
tend to be shifted high and therefore contain the deterministic &V, less often than expected. Second, CI’s become
relatively narrow as the number of loci increases to >100-200, even after using the recent correction to widen

CI’s (Jones et al. 2016).
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Power to Determine When N, is Small

It is crucial for population assessment and monitoring programs to have high power to identify populations
with a small N,. For example, according to the “50/500 rule” if N, is smaller than 50, inbreeding can occur at a
high rate and cause reduced fitness, i.e., inbreeding depression (Jamieson and Allendorf 2012). Similarly, an
excessive loss of evolutionary potential can occur if N.< 500 (Jamieson and Allendorf 2012). Therefore, we
simulated N, values that were 20%-30% below 50 (and also below 500) to determine how many loci and
individuals are required to identify populations with N, less than 50, or 500. Recall that N, might nearly equal
N, for some taxa like bison, red deer, mole crabs, fruit flies, sagebrush lizards, dolphins, Atlantic cod,
razorback suckers (see supplementary materials in Waples et al. 2013). However, the N,/N, results for these
analyses assumed that males had random reproductive success within each age class. If this is not true, N, will

be affected more than N., and thus N, might not equal N..

Confidence intervals were narrow enough to identify a population with N, approximately 20-30% less than 50.
For example, when the true N, equaled 30, we could reject the hypothesis that N, = 50 in approximately 80% of
simulations when sampling 50 individuals and 200 loci (Fig. 4, middle panel); thus the power was ~0.80. The
power was higher (~0.95) to reject N, = 50, when the true N, = 30 and when sampling 100 individuals and 200
loci (Fig. 4, middle-right panel).

Similarly, confidence intervals were narrow enough to identify a population with N, ~20% lower than 500.
That is, when the true N, = 400, ~80% of CI’s were less than N, = 500 if 5,000 loci and 200 individuals are
sampled (Fig. 5). These examples and results in figures 4 and 5 will help biologists develop genetic monitoring

programs to precisely estimate N, and detect when N, < 50 or N, < 500 (see also Fig. S1).
Power to detect a declining N, using linear regression

Genetic monitoring programs need high power to detect a population decline. Many biologists would like to
detect a decline in N, of 10% per year (or reproductive cycle). Power was too low to detect a 10% decline
when using the linear regression test for a negative slope when regressing a line through estimates of N, for
each of five consecutive cohorts and using 50-100 individuals with 100-200 SNPs (Fig. 6, 7). Power to detect
a 10% decline increased to >0.80 when sampling 400 SNPs, 100 individuals, and only 5 consecutive cohorts
(Fig. 7, red diamond). Statisticians generally recommend a power of > 0.80 to make a study worth conducting
or a monitoring program worth implementing. In another example, the power to detect a 15% decline (starting

at N, = 50) was 0.80 when sampling 100 SNPs and 100 individuals from each of 5 consecutive cohorts (Fig. 7).
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Power to detect a 15% decline was >0.80 when 7 cohorts, 25 individuals and 200 SNPs were sampled to test
for a linear decline in N, across cohorts. Power to detect a 15% decline was similar for bull trout and wood

frog as is shown by comparing Fig. 7 versus Fig. S3 (see dash line ovals).

For a comparison with microsatellite loci, we quantified the power to detect a 15% decline in N, using 30
microsatellites. We discovered that 50 individuals from each of 5 consecutive cohorts provide power of 0.59
when using 30 loci (Figure S3). Power increased to 1.00 when 10 cohorts were sampled. These microsatellite
power results are similar to power from 100 SNPs for the same 15% decline when also sampling 100
individuals for 5 and then 10 consecutive cohorts (Fig. 7). Researchers can quantify power to develop sensitive
monitoring programs using the simulation program AgeStrucNe that is freely available at

https://github.com/popgengui/agestrucnb/

Our power analysis provides guidelines for the number of cohorts, loci, and individuals needed to achieve high
power to detect a linear or exponential N, decline of 5% to 15% per reproductive cycle (Fig. 7). The results
suggest that we must generally sample >5 consecutive cohorts to achieve power > 0.80 unless >100 individuals
are sampled per cohort. It can be difficult in threatened species or small populations to sample >25 individuals,
which will make it difficult to achieve power > 0.80, even with 400 SNPs and samples from 10 consecutive
cohorts. Future research is needed to test if a thousand SNPs might increase power above 0.80 to detect a 5%
decline when sampling small numbers of individuals. Biologists can address this and other questions using the

AgeStrucNe simulation package.
Limitations and future research

Future research is needed using simulations and empirical datasets with larger V, and thousands of loci to
understand the limitations of &V, estimation using genomic approaches. Marandel et al. (2018) simulated
populations with N, of 1,000 to 1,000,000 and ~200 loci and concluded that large samples of individuals
(thousands to millions) must be sampled to obtain useful LDNE estimates of N.. Using many thousands of loci
can improve precision. However, loci often are not independent when many pairs of loci are from the same
chromosomes (Larson et al. 2014). Use of loci from different chromosomes is facilitated by using program
NeEstimator and inputting the chromosomal map position of loci. Restricting comparisons to loci residing on
different chromosomes will eliminate linkage bias but does not make all the pairwise comparisons of loci

independent (Waples et al. 2016).
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We also need future research to advance the use of linked sets of loci with known recombination rates because
the use of recombination information can increase power to detect and date historical bottlenecks (e.g., Hill
2001; Tenesa et al. 2007; Lehnert et al. 2019). The use of runs of homozygosity (RoH) to estimate N, is
becoming feasible for non-model species (Browning and Browning 2015; Grossen et al. 2018). However, this
will remain difficult for many species because it requires the mapping of tens of thousands of loci and

genotyping the loci in many individuals.

Future research should go beyond simply detecting an N, decline to also determine the cause of a decline. For
example, if the slope of an N, decline can be inferred from the linear regression method, this slope could be
tested for correlations with environmental variables that might be driving declines (or increases).
Environmental variables such as temperature, habitat availability, invasive species, diseases or predators, are
increasingly available from public databases from NASA and other sources (e.g., Table II in Grummer et al.
2019). Interestingly, Whiteley et al. (2015) suggested that inter-annual variation in streamflow could be

driving inter-annual variation in N, in native trout populations.

Importantly, biologists must know the N,/N, ratio before estimating N, (or N,) in species with age structured
populations because the interpretation of N, estimates (from LDNE) requires knowledge of this ratio. This is
because N, estimates are biased if N, # N.. Fortunately, estimation of the N/N, ratio is easily feasible using the

program AgeNe or AgeStrucNe (Waples 2011; and see https://github.com/popgengui/agestrucnby/).

Finally, we need future research to understand the temporal stability of the N,/N, ratio in natural populations. If
the ratio remains stable over many generations, the population census size (N.) could be inferred from N, which

would facilitate monitoring of population abundance from A, (Pierson et al. 2018).
Conclusions

We show how N, point estimates and confidence intervals from the one-sample LDNE method can be reliably
computed and used to estimate and monitor N, in age-structured populations. The bias adjustment method,
based on the N,/N, ratio (Waples et al. 2014), produced N, estimates biased by 5-10%. This magnitude of bias
is relatively small and unlikely to influence conservation or management decisions. Life history and vital rate
variation within species had little effect on the magnitude of bias of V, estimates, suggesting managers can
monitor N, with little concern that a change in vital rates (survival or fecundity) would strongly shift the
estimates of N, when the true N, has not changed. Our results showed that confidence intervals (Cls) for N,

estimates are generally reliable. However, the CI’s were occasionally narrow and biased-high when N, was
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small (<30) and hundreds of loci were used. LDNE CI’s were sufficiently narrow to reject the hypothesis that
N, = 50 when the true N, was only 40 and when sampling >100 individuals and 400 SNPs. Similarly, CI’s
were sufficiently low to reject the hypothesis that NV, = 500 when the true N, was only 400 and when sampling
>300 individuals and ~5,000 independent SNPs. Power to detect a declining N, was high (>0.80) when using
the linear regression test across > 7 consecutive cohorts (breeding cycles) and when sampling at least 50
individuals and 100 loci. The guidelines and simulation approach presented here, along with the software
AgeStrucNb, will help biologists develop sensitive genetic monitoring programs to detect changes in N, and

thereby help to conserve populations and prevent extinctions.
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Table 1. Median of N, point estimates from 1000 simulated populations with true N, values of 25, 50,

100, and 200. The “% of CI’s low” is the percentage of populations with the upper CI below the true

(simulated) Ny. The “% of CI’s high” is the percentage of populations with the loci CI above the true N,

Simulations were conducted using 100 SNPs and samples of 25, 50 and 100 individuals for BT-Stnd life

history. Note that CI’s are often biased high, especially when the true N, is small with larger samples of

individuals (see bold numbers).

Median of Number of

1000 N, point  individuals

True N, estimates sampled

25 26.6 25

25 27.8 50

25 NA **100
50 52.0 25

50 54.8 50

50 53.6 100
100 101.0 25
100 109.9 50
100 105.0 100
200 166.6 25
200 226.0 50
200 211.8 100

% of
Cl's low*
1%
1%
NA
1%
1%
1%
1%
1%
1%
1%
1%
1%

% of
Cl's high
6%
15%
NA
4%
9%
13%
2%
3%
5%
2%
3%
3%

* most percentages in this column were between 0.5 to 1.04 and were rounded to 1%

** NA = not enough individuals (100) existed to be sampled for simulations at small population

size (Np)
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