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1 INTRODUCTION

Currently, computer vision (CV) and machine learning (ML) are greatly expanding the efficacy of
automated systems and robots. At the same time, fabrication and manufacturing advancements are
enabling pico-aerial vehicles (PAVs) [8, 10]: flying robots that are smaller than a human fingernail.
Unfortunately, due to strict power and resource budgets, microcontrollers are not a viable platform,
and current ASICs are only able to perform the necessary functions to keep the PAV in static, stable
flight [26]. Enabling advanced CV/ML algorithms on these robots will require a fundamentally
different computing paradigm.

Bitstream computing is a low resource, efficient information processing framework. While em-
bedded systems that require high-performance signal processing and control have historically re-
lied on fixed point algorithms, the sensing and actuation interfaces in such systems increasingly
rely on bitstreams—oversampled, single-bit, sigma-delta-modulated (SDM) representations of data
inputs and control outputs. Typical computing substrates require power-hungry data converters
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Fig. 1. This figure shows how data are represented and computations are performed using stochastic com-
puting. (a) The probability of the occurrence of a high bit at a particular time tick is directly proportional to
the real number’s value. To represent the value 0.4 over 20 time ticks, there should be eight random occur-
rences of a high bit. (b) Given two independent bitstreams, multiplication can be performed using just an
AND gate. Because the value is represented over a window of time ticks, the longer the time window, the
more accurate results would be. (c) An example of scaled addition using an OR gate. Notice that the output
bitstream does not exactly match the expected value. This occurs due to the randomness of each bit. To
produce accurate results, inputs should be highly uncorrelated, and the total runtime should be sufficiently
large. We address the runtime issue in various ways in Sections 3.1, 3.2, and 6.
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to translate between these bitstreams and the fixed point compute format. Instead, bitstream com-
puting directly processes the output from the sensors. To compute on bitstreams, we can apply
standard techniques from stochastic computing [11, 12], or we can use fixed point arithmetic but
leverage the oversampled data format to create binary friendly constants [15]. We divide these two
regimes into stochastic bitstream and deterministic bitstream computing.

In this article, we extend BITSAD, a domain specific language (DSL) for bitstream computing,
by highlighting the interesting design challenges associated with bitstream computing that moti-
vate compiler extensions. First, we introduce bit-level, cycle-accurate software emulation of
bitstream hardware into BITSAD programs. In particular, we discuss the challenges associated
with determining the minimum latency of BC designs to show why bit-level emulation is impor-
tant. We also add automatic synthesizable hardware generation of BITSAD code. Additionally,
we highlight code optimizations that make sense for BC that are uncommon for traditional
computing, and we include a phase in the compiler that makes area-aware optimizations.
Finally, we introduce population coding—a new mechanism for producing accurate sto-
chastic computing results while decreasing latency.

2 BACKGROUND

To discuss the importance of the optimizations and analysis that BiTSAD provides, we will pro-
vide some background on stochastic computing and pulse density modulation. Each topic applies
to stochastic and deterministic bitstreams, which will be defined in this section. While we briefly
introduce some applications to give context for each type of bitstream, we will not delve into the
application details yet. Instead, those details will be discussed in conjunction with the compiler
and optimization improvements in later sections.

2.1 Stochastic Bitstreams

Stochastic computing is a paradigm for processing information as streams of random bits [11,
12]. At each time step, a given floating point number, p, is represented as a sample, X;, from a
Bernoulli distribution as shown in Equation (1). We will refer to bitstreams defined by Equation (1)
as stochastic bitstreams. Figure 1(a) illustrates an example of such a bitstream,

PX;=1)=p P(X;=0)=1-p. (1)
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Fig. 2. A block diagram of a state-variable filter (SVF). f and q are fixed point constants, and x and y are
deterministic bitstreams. X indicates a sigma-delta modulator.

To obtain a floating point estimate of a stochastic bitstream, we can simply average the bits over
a window of time, T:

T
p=El]~F=1 ) X 2)
t=1

By operating on stochastic bitstreams, we can perform complex operations such as multiplication
using simple logic gates (as shown in Figure 1(b) and (c)). Moreover, References [2, 12, 20] have
implemented even more complex operations such as vector norms, matrix-matrix multiply, and
the Moore-Penrose pseudoinverse on stochastic bitstreams.

The challenge, then, is to effectively integrate the work done on individual stochastic bitstream
operators into end-to-end applications. For example, computer vision algorithms rely on matrix-
matrix products and pseudoinverses, so synthesizing a CV algorithm into a complete stochastic
computing design is possible; however, it is not attractive to most engineers, since mapping an
algorithm to simulation code and then to hardware and, finally, testing the system and iterating
the design is error-prone and labor-intensive. To alleviate this, BITSAD provides the SBitstream
data type and a complete set of matrix operations to work with stochastic bitstreams.

2.2 Deterministic Bitstreams

Deterministic bitstreams are similar to stochastic bitstreams, except each bit, X;, is deterministically
generated instead of drawn from a probability distribution. Pulse density modulation (PDM), a
common audio encoding, is a deterministic bitstream [15]. In this format, a higher density of “1”s in
the bitstream indicates a larger amplitude. Normal digital audio data uses pulse coded modulation
(PCM) at a sample rate of 44.1 kHz, while PDM data is oversampled at 3 MHz. We can leverage
this disparity to create small, efficient audio signal processing pipelines.

Consider the state-variable filter (SVF) shown in Figure 2. Equation (3) defines the coefficients
used by the filter,

f=231n(ﬂFI:C) qzé. (3)

The center frequency, F,, is specified by the application and cannot be changed. But the sample
frequency, Fs, can be controlled in a PDM system (fixed at 44.1 kHz in PCM), since 3 MHz is a much
higher sample rate than the application requires. By controlling Fy, PDM systems can choose low-
precision coefficients that are powers of 2, leading to smaller and more efficient filters [7].

To enable building deterministic bitstream systems, BITSAD provides the DBitstream data type
and a set of operations on it.

2.3 BitSAD vi

B1TSAD v1 is a domain-specific language for bitstream computing developed by Daruwalla et al.
during the first Workshop on Unary Computing (WUC’19) at ISCA [6]. Built using Scala, it enables
Matlab/Python-like syntax to describe bitstream computing algorithms. Furthermore, it leverages
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Scala’s compiler plugin support to automatically generate hardware from user code. Listing 1 is a
sample BITSAD program from the original paper. It implements a stochastic bitstream algorithm
to compute the singular-value decomposition of a matrix. We will not go into the details of the
algorithm in this section. Instead, we are presenting a sample program for comparison with a
BITSAD v2 program in Section 4.

1trait Parameters {

2 val m: Int

3 wval n: Int

4}

5

6object DefaultParams extends Parameters {
7 val m = 2

8 wval n =2

9}

10

11case class Module (params: Parameters) {
12 // Define outputs

13 val outputlList = List(("v", params.n, 1),

14 "u", params.m, 1),

15 ("sigma”, 1, 1))

16

17 def loop(A: Matrix[SBitstream], v: Matrix[SBitstream]):
18 (Matrix[SBitstream], Matrix[SBitstream], SBitstream)
19 = {

20 // Update right singular vector

21 var w = A 4 Vv

22 // :/ is fixed—gain division

23 // functionally the same as division

24 // more efficient implementation for dividing by a constant
25 // refer to BitSAD v1 paper for more details

26 var wScaled = w :/ math.sqrt(params.m)

27 var u = wScaled / Matrix.norm(wScaled)

28

29 // Update left singular vector

30 var z = A.T 4 u

31 var zScaled = z :/ math.sqrt(params.n)

32 var sigma = Matrix.norm(zScaled)

33 var _v = zScaled / sigma

34

35 (u, _v, sigma)

36 3}

37}

Listing 1. BITSAD v1 program for iterative Singular Value Decomposition (SVD).

B1TSAD algorithms are defined by a loop() function that is a programmatic description of the
dataflow graph of an algorithm. Since Scala is a programming language built on top of Java, devel-
opers can write code that uses Java-like syntax and features (i.e., Scala supports notions of classes,
objects, and abstract classes called traits). At the same time, Scala is functional, so it has convenient
frameworks like map-reduce, anonymous functions, and currying. The purpose of this work is not
to discuss the features of Scala; instead, we suggest that users familiar with Java and/or Python
will find themselves capable of writing Scala and, subsequently, BITSAD code easily. Within the
body of the loop() function, users may want to express complex algorithms with matrix opera-
tors. Though this is not available in Scala, BITSAD v1 includes a Matrix class to make operating
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with matrices as simple as writing Matlab code (which is a matrix-first language). We refer readers
to Reference [6], the original paper, for more details on basic syntax. Understanding the full list of
available syntax will not be required for this article.

We will also save more details about the structure of the program for Section 4 and instead point
out some key improvements presented by BITSAD v2:

(1) Bit-level software emulation: Consider Lines 21 and 30 in the code above. Each line is
a separate invocation of the * operator that maps to two distinct multipliers in hardware.
Different hardware multipliers produce outputs dependent on the specific inputs passed to
them. Currently, BITSAD v1 does not capture this distinction, and so it is unable to provide
accurate simulations of potential errors in a program. We discuss the possible errors and
how we address them with bit-level, cycle-accurate emulation in Section 3.

(2) Functional composition: Currently, a designer must specify their entire algorithm in
a single loop() function body. It is not possible to break a system into sub-systems that
are each designed and tested in separate Scala files and then integrate all the sub-systems
together in a hierarchical fashion. BITSAD v2 improves upon this by allowing functional
composition as described in Section 4.4.

(3) Code optimizations: BITSAD v1 generates hardware for a user’s program exactly as
specified. Often, the most natural way to express an algorithm is not the most efficient in
terms of hardware implementation. To address this, we discuss some code optimizations
on deterministic bitstreams in Section 5.

(4) Stochastic computing latency: The original work did not address the high latency
associated with stochastic bitstream designs. We introduce a new encoding scheme
called population coding in Section 6, and we provide language-level support for it in
BITSAD v2.

B1TSAD v1 presents a major step forward in enabling designers unfamiliar with bitstream com-
puting to leverage its resource efficient paradigms. BITSAD v2 improves on this work by introduc-
ing frameworks critical to design complex bitstream computing systems. For the rest of this article,
B1TSAD v2 will be referred to as just BiTSAD, while we will still explicitly mention BITSAD v1
when referenced.

3 SOFTWARE EMULATION

By default in BrTSAD v1, all SBitstream data types are simulated using floating point numbers. In
other words, SBitstream operates only as a wrapper around the underlying floating point value
that the bitstream represents. Under this framework, it is possible to detect simple behavior, such
as saturation, that occurs when operating with bitstreams, but bit-level, cycle-accurate simulation
is not possible. Thus, BITSAD v1 is useful for verifying the correctness of algorithms at a high level,
but it fails to inform the user of issues that may arise at the hardware level. For example, if two
bitstreams are correlated, then most stochastic circuits will not produce the correct output. Yet, if
we only represent the bitstreams by their floating-point equivalents and not the individual bits at
each time step, then we will not realize that they are correlated. This will only become apparent
when the designer runs the physical hardware, which operates on physical bitstreams, and the
output is incorrect. Tracking down the source of this error will require dataflow changes at the
program-level, but debugging this mistake using a Verilog simulator is painful and inefficient. In
this section, we provide further motivation for bit-level emulation, and we introduce a mechanism
into BITSAD to support such behavior.
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3.1 The Latency Issue

A common critique of stochastic computing is that getting an accurate result requires many cycles
of operation. This is intuitive from Equation (2). By the law of large numbers, we expect that the
empirical average approximates the mean well as T — oo, but as we show in Section 3.1.1, it is
not easy nor reasonable to analytically determine how large T should be for complex designs.
Yet, to estimate T in software, the language must support bit-level, cycle-accurate simulations.
Without bit-level simulation, the estimate of T does not capture any of the dynamic stochastic
behavior of bitstreams (e.g., random fluctuations [12]). Using current design tools, a developer
needs to manually write code to emulate the bit-level behavior of their design, or they must create
hardware and simulate it. Needing to wait until hardware testing to determine whether a design
will meet a real-time deadline is impractical, and it makes bitstream computing unattractive to
system designers.

3.1.1  Effects of Numerical Scale on Convergence. The issue of determining the overall latency
of a stochastic computing design is input dependent. A simple analysis shows that the number
of samples, T, required for a stochastic bitstream to converge to its floating point value within
a relative tolerance is dependent on the magnitude of the number being represented. To see this
effect, we will define the error of a stochastic bitstream as

1 Z
p(f3 2% -
=1
for some € > 0. Here, € represents the absolute error between our empirical estimate and the true
floating point value, p, that the bitstream should represent. Since X; is a random variable, we can

never be sure that the error is always less than €, but we can bound the probability that an error
occurs using Hoeffding’s inequality [13]:

1
P ( T th —-p
=1
We will assume for now that T = 100 is fixed.

Now, suppose p ~ 1. If we want a relative error of 10% in our final result, then this implies that
€ = 0.1. So, we see that
T
1
P (

szt -p

t=1

> e) (4)

> e) < 2¢72T¢ (5)

> e) < 2¢720000-1% 4 9(0.1353).
However, if p ~ 0.01, then a relative error of 10% implies that € = 0.001. Our bound changes to
1 n
P ( ; Z X — P
=1

Note that Hoeffding’s inequality provides a two-sided tail bound (due to the absolute value in

Equation (5)), so we use the notation 2(0.1353) to reference the probability of error on each tail. In
other words, P (% I Xi—-p> e) < 0.1353 and the P (% I X -p< —e) < 0.1353. But the
probability of either event happening is the sum of the two cases (i.e., 2(0.1353)).

So, for the same relative error requirement, depending on the value being represented, € changes,
and, consequently, the probability of error changes. We can see how the bound changes for varying
p € [0.01,1] in Figure 3(a) below. Even at around p = 0.6, there is already a 50% chance that our

bitstream is wrong. Thus, for 10% relative error, any estimate for p < 0.6 is likely to be wrong.

> e) < 2 2(1000(0.:00)° & 5(0.9998).
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Fig.3. (a) Error Bound for varying p € [0.01, 1] and (b) varying T as well. As seen in the plots, smaller numbers
result in a higher probability of error. This can be controlled by increasing the number of samples, T, acquired.

An obvious solution to this issue is to increase T, but as seen in Figure 3(b), we need T > 100000
before most of the values of p are estimated with a low probability of error. If the correct choice
of T can vary between 1,000 and 100,000 depending on the floating point value being encoded,
then it is difficult for a designer to correctly reason about the number of samples required for their
algorithm.

3.2 Simulatable Code

To address the issue of estimating T, we have added bit-level emulation to BiTSAD. First, for every
operator, +, -, *, /, and so on, we have developed classes that emulate the bit-level behavior of the
hardware unit for the respective operator. It is important to perform emulation at the hardware
module level, because the chosen implementation of an operator can effect how long the module
takes to converge (e.g., Reference [25] implements a faster division and square root circuit than in
References [11, 12]).!

Yet, we do not want users to have to instantiate objects to express functional semantics. Instead,
programmers should expect to write code the same as before in Listing 1. By default, this code
is processed using float point numbers; however, the definition of an operator, such as * in the
example, receives more arguments than just the two operands. These additional arguments are in
the form of a SimulationId, which allows us to uniquely identify each invocation of an operator
on a specific pair of inputs. For example, the function definition of * actually looks like Listing 2.

1// Scala allows multiple parameter lists to support currying
2def 4(that: SBitstream)(implicit id: SimulationId): SBitstream =
3 (id.lhs, id.rhs) match {

4 // default case where bit—level simulation is not required

5 case ("", "") => SBitstream.times(this, that)

6 case (thisName, thatName) => {

7 // create result SBitstream using floating—-point times() function
8 var z = SBitstream.times(this, that)

9 // select the correct instance of the hardware module emulator
10 var op = SBitstream.findOperator (thisName, thatName, "times")
11 // evaluate the bit-level result and push it onto the result
12 z.push(op.evaluate(List(x.pop, y.pop)))

13 return z

14 }

153}

Listing 2. Simulatable implementation of *.

ISee Section 7 about support for different implementations.
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Thus, * is just a wrapper that exercises the correct hardware emulator instance for that specific
pair of operands. The key to making this transparent to users is the implicit keyword available
in Scala. Implicit parameters are specified in their own parameter list to support currying. Cur-
rying is a functional programming semantic that allows a programmer to leave off parameters.
For example, x.*(y) is a function that takes one parameter, namely the SimulationId parameter
that we did not specify. So, to actually evaluate the result of *, we would have to specify this final
parameter as shown in Listing 3. Of course, this is inconvenient for users. To alleviate this burden,
we use the implicit keyword. If a parameter list is declared as implicit, then the Scala compiler
will attempt to infer what value to insert for the missing parameter. In the class definition of
SBitstream, we specify that this implicit value should default to SimulationId(””, *”). Thus, by
default, with no changes to a program written in BITSAD v1, we support the same floating-point
based simulation as before.

1// explicitly stating the second parameter list
2var b = (A x x)(SimulationId("A", "x"))
3var ¢ = (A x c)(SimulationId("A", "c"))

Listing 3. Bit-level execution.

To support bit-level simulation with minimal user overhead, we introduce a Scala macro,
simulatable, to transform an expression or block of expressions into bit-level code. Scala macros
allow language designers to manipulate the syntax tree before it is parsed by the compiler. Thus,
we can transform code that looks like Listing 4 to Listing 3 with a simple macro call as highlighted
below:.

1simulatable({ // code in simulatable() auto—inserts the SimulationIds
2 var b = A 4 x
3 var ¢ = A 4 b

41)

Listing 4. Bit-level execution with simulatable macro.

So, while it is not always possible to analytically determine the number of cycles until conver-
gence of a bitstream, using BiTSAD with bit-level simulation, a designer can empirically determine
the value of T. Moreover, since BITSAD supports control flow logic for test code, one could easily
write a loop that exits when some user-defined error is below a threshold, then print the number
of iterations executed. Thus, the designer can determine experimentally the number of cycles for
sufficient application tolerance. For example, in Listing 5, we instantiate a module for computing
the SVD, which is a complex algorithm. Analytically evaluating T would be infeasible, but we can
write some test code to experimentally determine T (e.g., Lines 28—42 in Listing 5). Specifically,
note Line 41 highlighted in red. Here, we are running the algorithm for as many cycles as required
to reach the specified application tolerance. At the end of the program, we print T to see how many
cycles it took to reach the required application tolerance.

Furthermore, note that there are no restrictions to what can be written outside of the Module
definition. So, our test code can be as general and flexible as Scala allows, and since Scala is a
general-purpose functional programming language, the degree of flexibility is extremely high. For
instance, we could wrap all the code in Listing 5 in a loop and test our module over many trials of
randomly generated inputs and then print out the average cycle count over all trials. Thus, with
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minimal effort, BITSAD enables designers to get accurate estimates of the latency of their bitstream
designs.

1package IterativeSVD

2// ... skipping lines that define imports/module params

3// they are the same as Lst. 1

4case class Module (params: Parameters) { /4 define module, see Lst. 1 4/}
50bject IterativeSVD {

6 final val epsilon = 0.1

7 def main(args: Array[Stringl) {

8 // ———— TEST SETUP CODE ———— //

9 val m = 2

10 val n = 2

11 // Generate inputs

12 var ADouble = 2 4 Matrix.rand[Doublel(m, n) — 1

13 var vDouble = Matrix.rand[Double](n, 1)

14 vDouble = vDouble / Matrix.norm(vDouble)

15 // Calculate scaling

16 val alpha = 2 4 max(Matrix.norm(ADouble, "inf"), Matrix.norm(ADouble, "L1"))

17 ADouble = ADouble / alpha

18 // Convert to bitstream

19 var A = ADouble.toSBitstream

20 var v = vDouble.toSBitstream

21

22 var err = 1.0

23 var sigma = SBitstream(1.0)

24 var u = Matrix[SBitstreamI(m, 1)

25 // instantiate module

26 var dut = Module(DefaultParams)

27 // ———— TEST SETUP CODE ———— //

28 // ———— EXPERIMENT RUN CODE ———— //

29 var T = 0

30 do {

31 dut.loop(A, v) match {

32 case (uNew, vNew, sigmaNew) => {

33 u = uNew;

34 v = vNew;

35 sigma = sigmaNew;

36 3}

37 3}

38 // Update error

39 err = Matrix.norm(alpha x (A.toDouble 4 v.toDouble — u.toDouble x sigma.
value x math.sqrt(n)))

40 T += 1

41 } while(err > epsilon) // running until we reach app tolerance

42 // ———— EXPERIMENT RUN CODE ——— //

43 println(f"__err:_$err%.4f")

44 println(f"__T:.__$T%d")

45 3}

46}

Listing 5. Example test harness in BITSAD.

4 HARDWARE GENERATION

The most powerful feature in BITSAD is the ability to translate a program to hardware without user
intervention. To illustrate this, we will briefly introduce an algorithm, the power iteration method
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for computing the singular value decomposition (SVD) of a matrix, and then we will describe the
algorithm in BITSAD and translate the program to hardware.

4.1 lterative SVD

Singular value decomposition is a critical component of computer vision applications such as ho-
mography estimation and decomposition. These algorithms are used to extract motion information
for robots from two views of the same object at different locations. As a result, being able to com-
pute the SVD is essential to vision-based path planning and navigation. Algorithm 1 provides an
overview of the power-iteration method for computing an SVD.

ALGORITHM 1: Iterative SVD

Ran

Require: Input matrix A € and initial guess vy € R"
1: for k =1,2,... (until convergence) do
20w = Avg_y
3 ap = wlwg
4 up = wi /oy
50z =ATug
6 O = Z;Crzk
7 vk =2k /o)
8: end for
9: return First left/right singular vectors, uy & v, and first singular value, o

4.2 lterative SVD as a BITSAD Module

As shown below, Listing 6 is a BITSAD program that implements Algorithm 1. Lines 1-9 define
the parameters of the hardware. This is not mandatory, but it is recommended, since it allows the
user to define a module that encapsulates a single algorithm. The module definition is given on
lines 11-39. To define a module in BITSAD, the user must specify a loop() function, and a list of
the output signal names, outputList.

We call the reader’s attention to lines 17-30, which implement the iterative SVD algorithm.
Compare these lines to the mathematical definition in Algorithm 1. The code essentially mimics
the math—this is a good example of the intuitive, one-to-one mapping algorithm designers can
expect when writing BITSAD code.

4.3 Generating Hardware

B1TSAD ships with a Scala compiler plugin that parses a program like Listing 6. The Module class is
parsed for a loop function. We extract the dataflow graph of the program as in Figure 4(a). Then,
for each node in the graph, we generate the corresponding Verilog to implement synthesizable
hardware for that operation. Figure 4(b) shows the top-level schematic for the hardware that im-
plements the graph in Figure 4(a). Since stochastic bitstreams represent positive numbers between
zero and one, a single block, like matrix-matrix multiply, is implemented by several hardware units
to keep track of signed computation. The intent of Figure 4 is to illustrate how complex a hard-
ware implementation of Algorithm 1 can be and how BITSAD abstracts this detail away from the
designer.

Figure 5 provides a detailed view of the flow of the BITSAD compiler, and it explains our addi-
tions to the compiler.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 43. Publication date: November 2019.



BiTSAD v2 43:11

1trait Parameters {

2 val m: Int

3 wval n: Int

4}

50bject DefaultParams extends Parameters {
6 val m = 2

7 wval n =2

8%

9case class Module (params: Parameters) {
10 // Define outputs

11  val outputList = List(("v", params.n, 1),

12 "u", params.m, 1),

13 ("sigma”", 1, 1))

14 def loop(A: Matrix[SBitstream], v: Matrix[SBitstream]):
15 (Matrix[SBitstream], Matrix[SBitstream], SBitstream)
16 = simulatable ({

17 // Update right singular vector

18 var w = A 4 Vv

19 // :/ is fixed—gain division

20 // functionally the same as division

21 // more efficient implementation for dividing by a constant
22 // refer to BitSAD v1 paper for more details

23 var wScaled = w :/ math.sqrt(params.m)

24 var u = wScaled / Matrix.norm(wScaled)

25

26 // Update left singular vector

27 var z = A.T % u

28 var zScaled = z :/ math.sqrt(params.n)

29 var sigma = Matrix.norm(zScaled)

30 var _v = zScaled / sigma

31

32 (u, _v, sigma)

33 1

34}

Listing 6. BITSAD program for iterative SVD.

4.4 Functional Composition and Modules

As mentioned in Section 4.2, BITSAD is designed to express algorithms as modules. This is anal-
ogous to traditional hardware design, where the full system is broken into a hierarchy of smaller
sub-systems, and each sub-system is individually implemented. There can be several layers of
sub-systems in the hierarchy. For example, consider a designer building a deterministic bitstream
system to implement a hearing aid [7] that is composed of several filters. In Listing 7, a separate
B1TSAD program already implements a bi-quad filter in PDMBandpassFilterBQ.scala. Line 2,
highlighted in red, imports this module into the hearing aid program. Then, Lines 19-22, also
highlighted in red, instantiate four instances of the bi-quad filter module. Now, in our loop()
function, we can call each instance’s loop() function to evaluate that instance. Thus, BITSAD v2
extends hardware generation to support functional composition, which allows designers to create
several layers of hierarchy. This is a major improvement to the language, as it enables design-
ers to logically break down complex systems. Under this framework, users gain the flexibility
to test sub-systems individually, allowing them to quickly find the source of errors. Furthermore,
we can estimate the latency for each sub-system separately to determine if a specific module is a
bottleneck in a design.
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Fig. 4. (a) A DFG of the example code. (b) Top-level RTL schematic generated by BITSAD compiler. Blue
blocks in RTL diagram are high-level blocks (e.g., matrix multiply of positive matrices).
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4.5 Hardware Results

To illustrate the benefits of bitstream computing, we use BITSAD to generate Verilog for several
kernels from the BitBench suite [7]. Floating point (FP) and fixed point (FXP) baselines are created
using Vivado High-Level Synthesis (HLS). All Verilog designs are synthesized using Xilinx Vivado
2018.2, and we map the resulting designs to Lattice FPGAs. Bitstream computing is beneficial in
applications where few resources are available and the power budget is strict. This setting makes
ultra-low power FPGAs, such as Lattice FPGAs, a fitting choice for these applications. Many of the
floating point and fixed point designs consume too many resources to fit on a Lattice FPGA, but
we give the baselines the benefit of the doubt and artificially partition the designs across multiple
FPGAs. The iterative SVD and linear solver designs are implemented with stochastic bitstreams
and run for 200,000 clock cycles. The final application error is 1%, which is the same tolerance
required by the FP and FXP designs. Stochastic bitstreams are generated using an LFSR, but we
do not include these in the hardware costs. As mentioned in the benchmark [7], these kernels are
meant to be end-to-end stochastic circuits, so the LESRs would not exist in real systems, and they
are only a side-effect of our testing environment. The SVF, BQ, and MA filters are deterministic
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limport bitstream.types._, bitstream.simulator.units._
2import PDMBandpassFilterBQ.{Module => filter_bq_top, Parameters => BQParameters}
3trait Parameters { /4 skipped for brevity 4/ }
40bject DefaultParams extends Parameters {
5 val f1Params = new BQParameters {
val bo = 0.5

7 val b1 = 0

8 val b2 = -0.5

9 val al = 0.000000000000000122515
10 val a2 = 0.0625

11 val delay = 1563

12 3}

13 val f2Params = new BQParameters { /4 similar to fl1Params, skipped ./ }
14 val f3Params = new BQParameters { /4 similar to fl1Params, skipped 4/ }
15 val f4Params = new BQParameters { /4, similar to fl1Params, skipped 4/ }
16 }

17case class Module (params: Parameters) {

18 // internal units

19 var filterl1 = filter_bg_top(params.f1Params)

20 var filter2 = filter_bqg_top(params.f2Params)

21 var filter3 = filter_bqg_top(params.f3Params)

22 var filter4 = filter_bq_top(params.f4Params)

23 var sdm = SDM()

24 // Define outputs

25 val outputList = List(("y", 1, 1))

26 def loop(x: Bit): Int = {

27 // we can call each submodule's loop() function to evaluate it
28 var y_f1 = filter1.loop(x)

29 var y_f2 = filter2.loop(x)

30 var y_f3 = filter3.loop(x)

31 var y_f4 = filter4.loop(x)

32 // Accumulate all filters

33 var y = sdm.evaluate(y_f1 + y_f2 + 2 4 y_f3 + 2 4 y_f4)

34 y

3533

Listing 7. BITSAD program for hearing aid.

bitstream designs, and they are evaluated on one second of audio data [15]. Deterministic bit-
streams are generated by sampling the original audio at 3 MHz.

Figure 6(a), (b), and (c) show the area, power, and energy results, respectively. As expected, the
bitstream computing designs consume fewer resources and, as a result, consume less power as
well. Yet, due to the latency issue, the stochastic computing designs consume more energy. This
can be addressed using various techniques, such as our population coding in Section 6 or using
operators that leverage correlation [25]. This issue is still an active topic of research, and we hope
our results and BITSAD will push researchers to examine it more closely.

5 CODE OPTIMIZATION

Creating a language whose syntax is functional, like software, but with the end-goal of generating
hardware, presents a unique set of potential optimizations. In particular, since BITSAD encourages
users to write their code exactly like the mathematical definition, the written programs can con-
tain several unnecessary operations that could be algebraically reduced. Typical compilers perform
algebraic-like optimizations, such as constant propagation, constant folding, and strength reduc-
tion, but not very aggressively. There are many reasons for this, the foremost being numerical
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Fig. 6. (a) Normalized area consumption relative to floating point implementation. Area is computed as #
of LUTs + # of FFs. ((b) and (c)) Power and energy consumption for different implementations of the iter-
ative SVD, linear solver, and filters on FPGAs. FP is floating-point, FXP is fixed-point, and BC is bitstream
computing.
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stability. When an expression can contain varied types, algebraically manipulating the syntax tree
can result in different type conversions from the original expression, while reordering operations
can affect cumulative precision, leading to numerical instability. Moreover, the benefits provided
by such optimization are may not be significant for typical programs, and for high-performance
code, it is almost always better to leave such optimizations to the user.

Yet, BITSAD code is different. First, the cost of extra operations is much higher—additional hard-
ware units, meaning more area and power. Furthermore, as we will show, depending on the type
of the inputs to an operation, the corresponding hardware module can have widely different costs.
Last, since we have detailed information about the hardware executing the algorithm, we can make
safe transformations that do not compromise stability. It is worth noting that the optimizations in
this section apply to deterministic bitstreams. Optimizations might be possible for stochastic bit-
streams as well, but we leave that discussion to Section 7.

5.1 Optimization Example — State Variable Filter

Consider the state variable filter, first shown in Figure 2 in Section 2.2. A BITSAD program imple-
menting the dataflow graph exactly as given is shown in Listing 8 (important lines highlighted in
red). DFGs like the one in Figure 2 are common among signal processing engineers for illustrating
a given digital filter design.

Unfortunately, the most natural way for a designer to express their filter is not the most efficient
implementation computationally. First, notice the multiplication by f on line 7, which is over
an additive expression. On a bitstream substrate, distributing the multiplication might be more
efficient. Indeed, the expression x - d2 - g * d1_old is a fixed point number, so f * (x -
d2 - q * d1_old) is a fixed point multiplication. In contrast, if we distribute the multiplication,
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1val d1_old = delayl.pop; val d2_old = delay2.pop // Get delay buffer values
2// Update SDM outputs

3val d2 = sdm2.evaluate(f * di_old + d2_old)

4val d1 = sdml.evaluate(f * (x - d2 - g * di_old) + d1_old)

5delayl.push(d1); delay2.push(d2) // Push new values into delay buffers

Listing 8. Example code for SVF.

f * x - f % d2 - (f *x g) * dl_old, we gain more multiplies, but each multiply is
between a fixed point constant and a bitstream. Since a deterministic bitstream is just +1 at a
give time step, each multiply now amounts to a mux that chooses to the flip the sign of the fixed
point constant or not. The resulting hardware consumes significantly lower area. This kind of
optimization, where expressions are manipulated to use cheaper operators, is commonly referred
to as strength reduction in classical compiler literature. We adopt the same nomenclature for this
bitstream computing variant. Listing 9 provides an optimized version of the original example (we
skip the extraneous lines for brevity).

lval d2 = sdm2.evaluate(f x dl_old + d2_old)
2val d1 = sdml.evaluate(f x x — f x d2 — (f x q) % dl_old + di_old)

Listing 9. Example code for SVF with strength reduction.

Still, this code can be further optimized. In particular, the sub-expression -(f * q) * d1_old
+ d1_old represents the addition of same variable multiplied by constants (—(f * g) and 1). Since
constants are known at compile time (and more importantly, static in the generated hardware),
we can “combine like terms” to reduce the number of operations performed on d1_old. Listing 10
shows the final version of the original example using this new optimization we refer to as algebraic
simplification.

lval d2 = sdm2.evaluate(f x dl_old + d2_old)
2val d1 = sdml.evaluate(f x x — f x d2 + (1 = f x q) % dl_old)

Listing 10. Example code for SVF with strength reduction and algebraic simplification.

Furthermore, it is worth noting that the specific application of algebraic simplification in
Listing 10 would not be possible with the previous strength reduction optimization. In a tra-
ditional compiler setting, the distribution of f over the additive expression would have been
avoided to eliminate concerns about numerical stability. In our setting, this transformation is safe,
because the resulting multipliers are muxes to flip the sign bit that are numerically accurate for
all values of f. But more importantly, a single multiply is always cheaper than several multiplies
in a traditional setting. Simply put, the difference in cost of operators depending on input type is
not present in normal code, but it is abundant in bitstream computing.

5.2 Optimization Example—Moving Average Filter

While the optimizations just introduced present clear value in the case of the SVF, there are situa-
tions where such optimizations may hurt the results. Consider a moving average (MA) filter that
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Fig. 7. Normalized area (# LUTs + # FFs) with and without optimizations. In some cases, optimization helps
(SVF Filter), but in some cases, it hurts (MA Filter 4). BITSAD uses standard cell library area metrics to
estimate the area of the optimized and non-optimized designs, then it only applies the optimization when it
is useful.

is simply described by Equation (6),
k—(n-1)
X (6)

S|

Yk =
i=k

Listing 11 is a program the implements Equation (6) for n = 4. In this example, all terms in the
additive expression are bitstreams. This is different from the SVF example where each term is a
fixed point number (e.g., f * x is FXP since f is FXP). Since each term is a bitstream, with the
exception of the initial addition, we are adding a bitstream and FXP at each node in the expression.
While the addition is still FXP addition, the bitstream is mapped to the fixed point representation
(either +1 or —1) using a mux. As a result, most of the bits in the bitstream operand are hard-wired
at the time of hardware synthesis. In contrast, when we distribute (1 / n) over the additive tree,

each term becomes a fixed point number, and every bit is considered a variable.

1// Get delay buffer values

2val di1_old = delayl.pop

3val d2_old = delay2.pop

4val d3_old = delay3.pop

5

6// Update SDM outputs

7val y = sdml.evaluate((1l / n) % (x + di_old + d2_old + d3_old))
8

9// Push new values into delay buffers
10delay1.push(x)

11delay2.push(di_old)
12delay3.push(d2_old)

Listing 11. Example code for MA filter of length 4.

This presents a problem, because when the bits are hard-wired, the synthesis tool is able to
perform LUT reduction to reduce the area consumption (the details of the Xilinx synthesis tool
are not openly available, but we can observe this behavior based on the output reports). In con-
trast, for the SVF example, the addition expression operated on variable fixed point numbers (no
bits hard-wired), so our optimization did not prevent the synthesis tool from a potential resource
reduction. Figure 7 illustrates this difference. Thus, it is important to consider the hardware area
costs associated when deciding when to apply strength reduction.
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5.3 Optimization Implementation

To perform these optimizations, we introduce a new phase into the Scala compiler that runs imme-
diately after the syntax tree is generated. This phase manipulates the tree as described in Section 5.1
and passes it on to the remaining phases of the compiler. To effectively reason about when strength
reduction and algebraic simplification are possible, we synthesize all the operators using a TSMC
45-nm standard cell library. We then provide the resulting area costs to the compiler phase in a
CSV file. Even though BITSAD typically targets FPGAs, we use a standard cell library, because this
gives us an accurate relative area estimate between operators. In contrast, FPGA synthesis tools
can have widely different implementations of small designs such as individual operators. For this
reason, we consider area estimates of individual operators from FPGA synthesis tools as inaccu-
rate. Using the standard cell metrics, the optimizer performs a first-order estimate of the area with
and without an optimization, and it only executes the optimization when the area is lowered.

6 POPULATION CODING

As mentioned in Section 3.1, stochastic computing designs suffer from higher latency than float-
ing point and fixed point designs. To alleviate this, we introduce a parallelization approach that
takes inspiration from biology—population coding. Neurons typically perform approximate com-
putation, so the brain uses multiple sets of similarly connected neurons to perform the inaccurate
computation many times in parallel. The aggregate result across all populations is considered more
accurate.

This behavior can easily be mapped to stochastic bitstreams by recalling the definition in Equa-
tion (1) in Section 2.1. The floating point number being represented, p, is not encoded in time but
in the mean of a probability distribution. If we can generate extra samples of this distribution every
time step, then we can approximate this mean more quickly. To do this, population coding arranges
samples of this distribution in both time and space:

T

o1 ¥ Y
p= — > Xi: where T,op = T/N. (7)

Instead of instantiating a single instance of an SC compute block, we can instantiate N popula-
tions. The input to each population is an independent sample of the original input created using
decorrelators [1]. Decorrelators are units that accept an input stochastic bitstream and produce an
output bitstream with the same mean that is statistically independent of the input bitstream. In
other words, decorrelators are a mechanism to generate independent and identically distributed
(i.i.d.) samples of our input bitstreams.

Finally, to evaluate the resulting output, we can average the output across all N populations
and then average that result over time (shown in Equation (7)). This process is illustrated in Fig-
ure 8(a). In Equation (2), the output was the average of T samples. To obtain the same accuracy
in the population coded version (i.e., take the average over the same number of samples), we
need T,opN = T. For example, if T = 200000 clock cycles is too long in terms of latency, then
we can instantiate 10 populations of the compute block. Now, the entire system is run for only
Tpop = 200,000/10 = 20,000 clock cycles, but the output accuracy is equivalent to the single popu-
lation implementation.

We provide experimental verification of population coding Section 6.2. The differences between
our approach to parallelization and prior work is discussed in Section 6.1, and Section 6.3 discusses
how our approach can reduce the hardware cost of parallelization. Finally, Section 6.4 provides
theoretical guarantees about population coding.
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Fig. 8. (a) A block diagram of population coding applied to a generic stochastic computing (SC) block naively.
Each population works in parallel, and the results are average across all populations after the algorithm ter-
minates. This is a streaming version of prior work discussed in Section 6.1. (b) A block diagram of population
coding applied to a generic SC computing block. The L units indicate decorrelators and the /N indicates
an averaging unit. By averaging stochastically, we automatically decorrelate the output from the input, and
we do not need decorrelators on the feedback path (highlighted in blue). Discussed in Sections 6.3 and 6.4.
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6.1 Differences between Population Coding and Parallel Encoding

The generation of new samples (via decorrelators) differentiates our approach to parallelizing sto-
chastic circuits with respect to Miao and Chakrabarti’s work [18]. Parallel encoding of stochastic
circuits organizes T samples into N subsets of size T/N. There are N stochastic circuits, and each
stochastic circuit processes one subset. Since each subset is of length T /N, parallel encoding of sto-
chastic circuits reduces the latency linearly, much like population coding. But this is only reasonable
when the inputs and outputs of a system are binary. The prior work assumes that conversion be-
tween binary and stochastic bitstreams happens at the input and output of any stochastic system.
This makes parallel encoding feasible, because all the samples are known a priori and rearrange-
ment is possible. Yet, as References [5, 10] argue, there exist ultra-low power applications where
the sensory data is already a bitstream. Under these constraints, using binary data is an unnec-
essary and costly bottleneck, but without the ability to generate all T samples prior to compute,
the parallel encoding scheme would not be possible. In other words, we cannot arrange T samples
into N subsets as parallel encoding requires, because in end-to-end streaming applications, only
a single sample (as opposed to T samples) is available to the system at each time step. Population
coding avoids this by using decorrelators to generate new i.i.d. samples.

We note that there are existing parallel encoding schemes for deterministic computing [9, 19,
24], which are discussed in more detail in Section 8.

6.2 Experimental Results of Population Coding

Population coding is verified by our experimental results shown in Figure 9(a). We apply popu-
lation coding to the singular value decomposition block generated by Listing 6. As the number
of populations increases, the time to convergence decreases linearly. Eventually, increasing the
number of populations will not help convergence as shown by the 50 population and 100 popu-
lation curves in Figure 9(a). This is because there is a minimum iteration count required for each
sub-block to converge.

Figure 10(a) shows the area results for the stochastic computing designs from Figure 6(a) with
population coding applied, and Figure 10(b) shows the power results. As expected, increasing the
number of populations consumes more area and power, but the results are still an order of mag-
nitude lower than the FP/FXP designs.
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Fig. 9. (a) Average loss for iterative SVD for varying populations. As the number of populations increases by
n, the time to convergence decreases by n. (b) Iterative SVD loss over 100,000 iterations with no decorrelators
on feedback paths. The implementation in Figure 8(a) diverges (blue curve), but Figure 8(b) converges (green
curve).

1,95 Area Breakdown Power Breakdown

1.00
= I P — I
2 [_1rxp 23 1 rxp
§075 [sc 1 T sc 1
5 [ BC 2 g [ BC 2
k=3 [_JsCc s <, [_Jsc s
8 050 I 5C 10 k| I 5C 10
< )
H A
8 w
oz o
s k{

000 = svD 1K) OF) om ’ VD 1K) OF) on

\terative %__\ oar Sc\Ve{_\(nea( solver, t\near solver ( \terative sunea\' Sg\uer&mea( Solver kL P ) o soiver (

(a) (b)

Fig. 10. (a) Area consumption of stochastic bitstream designs with population coding applied (N = 10). (b)
Power consumption of stochastic bitstream designs with population coding applied. FP is floating-point, FXP
is fixed-point, and BC is bitstream computing.

Last, recall in Section 3.1.1 that the magnitude of the floating point numbers being estimated
can increase the required number of samples to produce an accurate result. This is especially chal-
lenging when the inputs are scaled to prevent saturation. In these cases, population coding is a
practical way to process more samples without increasing latency.

6.3 Removing Decorrelators on Feedback Paths

Figure 8(a) illustrates a naive implementation of population coding. As mentioned in the prior
section, decorrelators are used to ensure each population sees an independent sample of the in-
put bitstream distributions. However, instead of averaging across populations at the end of the
computation, we can average stochastically every time step as shown in Figure 8(b) (using a sto-
chastic averaging unit [1]). When the average across populations is computed using a stochastic
averaging unit, the output of the unit is decorrelated from the inputs to each SC block. As a result,
there is no need for decorrelators on the feedback paths. This results in significant area and power
savings, since each decorrelator consists of an linear feedback shift register (LFSR) that consumes
many flip-flops. When the output is a vector or matrix, a decorrelator is required for every element,
so the power consumption associated with the LFSRs is a significant contribution to the overall
dynamic power. Figure 9(b) shows experimentally that naively removing the decorrelators on the
feedback paths causes the loss to diverge for the implementation in Figure 8(a) but converges with
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Fig. 11. (a) Area and (b) power with the smart vs. naive implementations of population coding. The smart
implementation allows us to remove decorrelators on the feedback paths, which decreases the area cost.

Fig. 12. An “unrolled” population coded stochastic circuit with averaging.

the implementation in Figure 8(b). Figure 11 shows the area and power reduction for the iterative
SVD design by removing decorrelators.

6.4 Mathematical Analysis of Population Coding with Stochastic Averaging

In the previous section, we demonstrated empirically that stochastic averaging provides a decorre-
lating effect that leads to proper convergence. Here, we provide a mathematical foundation for that
observation. Consider the “unrolled” population coded stochastic circuit in Figure 12. The output
of the circuit, Y, is usually fed back into each population; by removing this feedback path, we are
unrolling the recurrent behavior of the circuit and only examining the feedfoward behavior. All
labeled nodes in the circuit are Bernoulli random variables. gsc is a function that implements any

stochastic circuit. Our goal is to show that Y is sufficiently decorrelated from X as the number of
populations increases.

THEOREM 6.1. Given a stochastic circuit implemented by function gsc and input random variable,
X ~ Ber(p), let fx be the probability mass function (PMF) of X, and let X1, ..., XN i fx be N
decorrelated copies of X. Define Z; = gsc(X;) as the output of the i-th population, and define Y ~

% SN Z; as the stochastic average over all N populations. Let Cov(X, Y) be the covariance between
the input and output distributions. Then,

(1) if gsc(x) = 0 or gsc(x) = 1 (constant circuit), Cov(X,Y) = 0 (independent of N)
(2) if gsc(x) = x (identity circuit), Cov(X,Y) = p(1 — p) (independent of N)
(3) if gsc(x) = —x (inversion circuit), Cov(X,Y) = —p(1 — p) (independent of N)
(4) for conditional identity/inversion circuits (e.g., gsc(x) is identity if x = 0 but is an arbitrary
function forx = 1) as N — oo,
(a) when gsc(x) =0 ifx =0 orgsc(x) =1 ifx = 1 (but arbitrary in the other case),
0 < Cov(X,Y) <p(1-p)
(b) when gsc(x) =1 ifx =0 or gsc(x) = 0 if x = 1 (but arbitrary in the other case),
—p(1-p) < Cov(X,Y) <0
(5) else, Cov(X,Y) > 0as N — oo,
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In other words, for all stochastic circuits but the trivial cases, population coding with stochastic
averaging reduces the correlation of the input and output, which means we can safely feed the
output back into each population without the need for decorrelators. Specifically, the input and
output are asymptotically independent of each other.

Proor. (This is a sketch. The full proof can be found in supplemental material.) Start by noting
that each output, Z;, is a Bernoulli random variable drawn according to a distribution induced by
the function gsc. More specifically, there exists two conditional distribution, fz|x(z | X = 0) and
fz1x(z | X = 1) that describe the probability that Z; = z given that X = 0 or X = 1, respectively.
These conditional distributions are sufficient to capture any function gsc. Furthermore, these dis-
tributions must be Bernoulli, since Z; is a Bernoulli random variable; so we can characterize the
function, gsc, by two parameters, p,, and p,,, such that

fzix(z | X = 0) ~ Ber(p,) fzix(z | X = 1) ~ Ber(p,)-

With these parameters, we begin by using the definition of covariance and conditional proba-
bility to derive an expression for the input-output covariance:

N
Cov(X,Y) = [p*(1 = p)(pz, = p=y) + p(1 = p)pzy | D5 (1= pe)V K = pk (1 = po )N F
k=0

N
—p(i=p) >, ph(=pa)N = pk (- p )V (8)
k=[N/2]
Note that p,,,p;, € [0,1]. Thus, we are concerned with how the covariance behaves over this
square domain. We show results (1), (2), and (3) of the theorem by directly substituting (p,,, pz,) =
(0,0), (0,1),(1,0), (1,1), which are the corners of the square, into Equation (8). Then, by restricting
Dzo> Pz € (0,1) (the interior of the square), we can rewrite the summation in Equation (8) as

N N P k N p k
Zp’io(l—sz)N"‘—pii(l—pzl)N‘k=(1—sz)NZ( > ) —(l—pzl)NZ(i)

k=0 per R per R 2
As N — oo, the expression is easily identified as the product of a convergent sequence, limy_, (1 —
k
P2,)Y =0, and convergent geometric series, Yo (%) . Applying the same technique to the
= -

other summation in Equation (8), we get the following limit when p,,p,, € (0,1):
Allim Cov(X,Y) = 0.

This proves result (5) of the theorem. Similar techniques can be applied to the borders of the
square—fixing one variable and substituting it into Equation (8), simplifying, and then taking the
limit. Thus, we can bound the covariance in the border cases to prove result (4) of the theorem. O

Though the techniques used to prove Theorem 6.1 are not enlightening, the process produces
Equation (8), which can be qualitatively analyzed to understand how the covariance behaves for
different choices of stochastic circuits. As shown in Figure 13, for 20 or more populations, the
covariance is essentially zero for the vast majority of stochastic circuits. In other words, we do not
require N to be extremely large to confidently feed the output back into the circuit.

6.5 Adding Population Coding Support to BiTSAD

The syntax for population coding support in BrTSAD is similar to the simulatable macro. The
populations macro takes two arguments—the number of populations and an expression or block
of expressions to which population should be applied. The macro then replicates each expression
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Input- Output Covariance (N =5, p = 0.5) Input- Output Covariance (N = 10, p = 0.5) Input- Output Covariance (N = 20, p = 0.5)

(b)

Fig. 13. Input-output covariance for (a) 5 populations, (b) 10 populations, and (c) 20 populations. In (c), the
majority of the surface is a plane at zero. So, for most stochastic circuits, 20 populations may be sufficient
to guarantee decorrelation. Changing the input probability, p, varies the height of the peak at the extrema,
so we only show p = 0.5, which is the maximum height.

as many times as required, and it gives unique names to all the inputs and outputs. It also adds
a call to a stochastic averaging unit to aggregate the outputs. Listing 12 details the populations
syntax (highlighted in red).

One of the benefits of BITSAD is that designers do not need to explicitly decorrelate their vari-
ables. The compiler automatically inserts decorrelators as needed. But our experiments in Sec-
tion 6.3 show that certain operators, such as a stochastic averaging unit, make decorrelators re-
dundant. The hardware generation mechanism in our compiler plugin uses dataflow analysis to
track which edges in a DFG are correlated and apply decorrelators as necessary. This is done by
assigning an index set to each input. The index set of the output edge from a node is the union of
the index sets of the incoming edges. Units like a decorrelator or stochastic averaging unit “clear”
the index set by assign the output edge to a set with new unused index. After assigning index
sets to every edge, we can detect missing decorrelators by finding nodes where intersection of the
index sets of the incoming edges is non-null. See Figure 14 for a graphical representation of this
process.

1def loop(A: Matrix[SBitstream], v: Matrix[SBitstream]):

2 (Matrix[SBitstream], Matrix[SBitstream], SBitstream)
3 = simulatable (populations(2, {

4 // normal loop code, skipped for brevity

531))

Listing 12. Population coding syntax in BITSAD.

6.6 Optimal Granularity of Population Coding

While population coding allows a designer to reduce the latency of their design without sacrificing
accuracy, for large designs, the cost of replicating the entire system can be significant. It also is
not clear that replicating the entire system is required. We study this behavior by considering the
DFG in Figure 15, which is a subset of the full iterative SVD algorithm.

Our goal is to evaluate the following:
Av w

= —_— u= . 9
Vm llwllz ©)

We start by creating eight populations of Figure 15, and we measure the time until

w

[l tbitstream — uﬂoating-point”Z < 0.01.
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Inputs — Outputs

Fig. 14. Dataflow analysis to identify correlation of edges in a DFG. An outgoing edge’s index set is the union
of the incoming edges’ index sets. Certain units clear index sets to indicate decorrelation (e.g., a decorrelator
assigns a brand new index set regardless of input).

A
OOt
v
NG

Fig. 15. An example DFG to understand population coding granularity. This is a subset of the iterative SVD
algorithm in Figure 4(a).

Table 1. A Comparison of Designs with Population Coding at Different Granularities

Variant Average Cycles till Convergence Area (# LUTs + # FFs)
Eight Populations (Full Design) 19,781 6,807
Eight Populations (Multiplier Only) 13,613 4,484

But not all the nodes in Figure 15 take a long time to converge. In this case, the matrix multiply
is a more complex block than the other nodes, and it is the bottleneck for convergence. To test
this hypothesis, we instantiate eight populations of the matrix multiply, average across the popu-
lations, then feed the averaged result to the remaining DFG. Table 1 compares these designs. Even
though the latter design only applies population coding to the multipliers, it is able to achieve the
lower latency across 10 trials of random inputs, and it consumes approximately 2/3 the area. So,
when applying population coding to a design, it is important to identify the true bottlenecks to
convergence and only apply population coding to those blocks as opposed to the whole design.
Using BITSAD, we can efficiently determine which blocks to add population coding to.

7 FUTURE WORK

Our work only begins to touch the potential intricacies of bitstream computing. There is still work
to be done to understand potential extensions of the optimizations we proposed, as well as new
optimizations that we have not discovered. The varied types and operators in a single bitstream
computing program have widely different costs, and so there are many opportunities for automated
code improvement. Here, we focus on one such opportunity: automated selective population cod-
ing. In future work, we would like to automate the process of finding the optimal granularity for
population coding as discussed in Section 6.6.

Suppose that we have the latency for each node in a DFG. This can be obtained by running
a user-provided benchmark of inputs for the node. For the example discussed in the article, we
would start by considering population coding applied to the full design. Then, we would greedily
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reduce the populations for the node consuming the most area, while making sure the maximum
latency across all nodes remains below a user specified real-time deadline. If a node cannot be
reduced by population any further, then we move onto the node with the next-largest area. We
keep applying this process until all nodes have been passed over.

We also explore the problem of optimal decorrelator placement. As mentioned in Section 6.3,
certain units will automatically decorrelate their inputs. Given a DFG with no decorrelators and all
the index sets assigned, we would like to determine the optimal position to insert a decorrelator
to maximize the number of edges that become decorrelated. This could be framed as a min-cut
problem, and the compiler could heuristically solve the min-cut problem to determine the decor-
relator placement. Reference [23] addresses a similar problem where they decorrelate bitstreams
with delay blocks and propose an algorithm to find an optimal placement of delay blocks. Since
the approach to decorrelation is different between Reference [23] and our proposal, we believe
that our approach might still prove to be useful.

Last, we intend to refactor the source code for our compiler plugin to improve modularity, so
that it will be easier for researchers to contribute their own operators and corresponding hardware
modules to BITSAD.

8 RELATED WORK ON DETERMINISTIC BITSTREAMS

Other works [9, 14, 19, 24] have proposed “deterministic bitstreams” (similar to the deterministic
bitstreams in this article but not PDM format) to reduce latency. Unfortunately, this work only
describes how to implement single or a handful of arithmetic operations and does not discuss how
to extend the work to cascaded, generic, dependent, and/or recurrent operations, such as those
required for the algorithms explored in this article. To the best of our understanding, this would
require buffering between each operation to regenerate the deterministic encoding. For this reason,
we feel this scheme is less flexible than population coding, which seamlessly enables streaming
computation in both feedforward and feedback configurations. While deterministic bitstreams are
useful (see Section 2.2), we do not believe they are useful for reducing latency of general designs.
Instead, like described by prior work, we see their value for highly specialized designs that con-
sume extremely low resources. Bridging the gap between these designs and the flexible, large-scale
designs of this article through language development (like BITSAD) is an interesting and promising
endeavor for future work.

9 CONCLUSION

This work proposes several extensions to BITSAD, a DSL for bitstream computing. We add bit-level
software simulation, automatic hierarchical hardware generation, and several code optimizations
to the compiler. Furthermore, we introduce population coding to alleviate the latency problems
associated with stochastic computing, and we add language-level support for population coding.
In our future work, we discuss several possibilities for further interesting compiler automation
of decisions for the user. We hope our work illustrates the new challenges available to compiler
designers when working with bitstream computing DSLs, and it motivates the need to further
study this domain to make bitstream computing viable and practical.
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