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A key requirement for efficient general purpose approximate computing is an amalgamation of flexible hard-
ware design and intelligent application tuning, which together can leverage the appropriate amount of ap-
proximation that the applications engender and reap the best efficiency gains from them. To achieve this,
we have identified three important features to build better general-purpose cross-layer approximation sys-
tems: D individual per-operation (“spatio-temporally fine-grained”) approximation, (2) hardware-cognizant
application tuning for approximation, 3 systemwide approximation-synergy.

We build an efficient general purpose approximation system called SHASTA: Synergic HW-SW Architec-
ture for Spatio-Temporal Approximation, to achieve these goals.! First, in terms of hardware, SHASTA ap-
proximates both compute and memory—SHASTA proposes (a) a form of timing approximation called Slack-
control Approximation, which controls the computation timing of each approximation operation and (b) a
Dynamic Pre-L1 Load Approximation mechanism to approximate loads prior to cache access. These hardware
mechanisms are designed to achieve fine-grained spatio-temporally diverse approximation. Next, SHASTA
proposes a Hardware-cognizant Approximation Tuning mechanism to tune an application’s approximation
to achieve the optimum execution efficiency under the prescribed error tolerance. The tuning mechanism
is implemented atop a gradient descent algorithm and, thus, the application’s approximation is tuned along
the steepest error vs. execution efficiency gradient. Finally, SHASTA is designed with a full-system perspec-
tive, which achieves Synergic benefits across its optimizations, building a closer-to-ideal general purpose
approximation system.

SHASTA is implemented on top of an OOO core and achieves mean speedups/energy savings of 20%-40%
over a non-approximate baseline for greater than 90% accuracy—these benefits are substantial for applications
executing on a traditional general purpose processing system. SHASTA can be tuned to specific accuracy
constraints and execution metrics and is quantitatively shown to achieve 2—-15% higher benefits, in terms of
performance and energy, compared to prior work.
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1 INTRODUCTION

Workloads from several prevalent and emerging application domains, such as vision, machine
learning, and data analytics, possess the ability to produce outputs of acceptable quality in the pres-
ence of inexactness or approximations in a large fraction of their underlying computations [40].
Allowing computations to be approximate can lead to significant improvements in processor effi-
ciency, because it alleviates the “correctness tax” [10] imposed by always accurate systems. This
“correctness tax” can take multiple forms. In software, this could refer to overzealous functional
accuracy or excessive loop iterations whose execution has low impact on the application’s accu-
racy [35]. In hardware, it could refer to the higher power/latency of accurate compute operations
or the effectively lower throughput stemming from full bit-width memory operations.

The mainstream adoption of approximate computing and its use in a broader range of applica-
tions is predicated upon the creation of programmable platforms for approximate computing [40].
The key requirement for efficient general purpose approximate computing is an amalgamation
of (i) general purpose hardware designs flexible enough to leverage any amount/type of approx-
imation that an application engenders and (ii) tuning mechanisms intelligent enough to reap the
optimum efficiency gains (in terms of performance and energy) given a hardware design, an ap-
plication, and a resiliency specification. In this regard there are many existing limitations and
opportunities in prior proposals, both in terms of general purpose hardware designs as well as in
terms of approximation tuning mechanisms (which are discussed in Section 2 and Section 8). In this
article, we propose SHASTA, a cross-layer solution for building optimal General Purpose Approx-
imation Systems (GPAS), i.e., approximation systems suited to a wide range of general purpose
error-tolerant applications, each with unique and potentially fine-grained approximation char-
acteristics. SHASTA tackles the opportunities discussed above to achieve significant benefits in
execution efficiency. We classify the goals for building optimal GPAS and how SHASTA addresses
them into three broad categories below.

1.1 Hardware Enabling Spatio-temporal Diversity at Fine Granularity

Challenge: An ideal GPAS should provide the flexibility to control each executing operation
uniquely, as accurate or approximate. Moreover, each approximate computation should be ideally
allowed to have its own individual/unique amount of approximation. This approximation diversity
can be thought of as two components—spatial and temporal. Spatial diversity in approximation
implies that each static approximate operation (i.e., every approximate variable in an approxi-
mate application’s code) should be allowed unique approximation control. Temporal diversity in
approximation implies every dynamic instance of static approximation operations (for example,
every iteration of an approximate variable) should be allowed different approximations, i.e., the
approximation applied to the static operation should be allowed to evolve over time (say, across
the loop iterations). Further, the system should be able to dynamically reconfigure these approx-
imation settings with low overhead. While such flexibility is easier to explore in software, fine
granularities and spatio-temporal diversity of approximation is more challenging in hardware.
SHASTA’s hardware approximation: For compute approximation, SHASTA proposes a new
variant of Timing approximation called Slack-control Approximation. Slack-control Approxima-
tion is inspired by REDSOC [32], a previously proposed clock-cycle slack recycling that targets
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Fig. 1. Hardware approximation.

accurate computing wherein the computation timing of operations is controlled at sub-clock-cycle
granularities and integral clock cycles worth of latency are saved when sufficient slack accumu-
lates over sequences of operations. SHASTA extends REDSOC ideas to approximate computing,
performing more aggressive slack recycling and achieving a flexible approximation scheme that
can be controlled on a per-clock-cycle and per-computation-unit basis, thus allowing fine gran-
ularity and spatio-temporal diversity. While mechanism specifics are detailed in Section 4.1, an
overview of SHASTA’s compute approximation is shown in Figure 1(a). The following points can
be noted: First, approximation is achieved by reducing computation time, allowing a sequence of
operations to be completed faster than the accurate baseline, resulting in speedup. Second, not all
computations in the sequence have to be approximate. Third, different approximate computations
are allowed varying degrees of approximation (hence, varying amounts of slack).

For memory approximation, SHASTA implements Dynamic Pre-L1 Load Approximation. Inspired
by LVA [19] but going beyond, this technique approximates loads prior to L1 cache access by read-
ing values out of a small approximator that is integrated close to the datapath. This results in la-
tency and energy savings, an approximate value is used instead of having to read the data from the
L1 cache, or worse from lower-level caches or memory. An overview is shown in Figure 1(b). The
key advancement to prior work is the ability to perform fine-grained spatio-temporally diverse ap-
proximation. Our implementation enables the control of each unique load’s approximation degree
(how often the data in the approximator are refilled) and approximation confidence (how often
the data are approximated, i.e., looked up in the approximator) independent of other loads. This
allows more efficient use of load approximation—creating better fine-grained trade-offs between
error and efficiency.

As highlighted above, both of these techniques enable fine-grained spatio-temporally diverse
approximation suited to general purpose computing systems, which is largely unachievable in
prior work. Compute and memory approximation are discussed in Section 4.

1.2 Automated Hardware-cognizant Approximation Tuning

Challenge: We call amount of approximation assigned to each approximation operation as the ap-
proximation configuration of the application. An ideal GPAS requires an intelligent tuning mech-
anism to identify any given application’s optimum approximation configuration. This is espe-
cially important in systems allowing fine granularities of spatio-temporal approximation diversity
wherein there is potentially considerable efficiency difference between optimal and sub-optimal
configurations.
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Fig. 2. Hardware-cognizant approximation tuning.

Figure 2 shows an example micro-application with two approximate elements. The data points
on the scatter plot show various approximation configurations. The points falling on the red line
are those configurations satisfying the application’s specified error tolerance (for example, 90% ac-
curacy). Among these, the blue dot (HW-A) is the configuration selected by a hardware-agnostic
mechanism (akin to References [16, 20, 22, 40]), which optimizes towards application’s error tol-
erance in a pre-specified order: in this example, first on element A and then on element B. This
configuration can be sub-optimal, because the tuning mechanism is not taking into account the
impact of this configuration on the hardware’s execution efficiency.

SHASTA’s approximation tuning: To our knowledge, in the GPAS domain, especially tar-
geting fine-grained and diverse approximation, SHASTA is the first proposal to actively consider
hardware-cognizance in approximation-tuning. Tuning is performed by dynamically evaluating
approximation’s actual effect on the hardware. The tuning mechanism, implemented over a gradi-
ent descent algorithm, iterates through a sequence of approximation configurations and evaluates
the application error and hardware execution metric (e.g., performance/energy) for those configu-
rations. Gradually it moves the approximation configuration of the application in the direction of
the steepest efficiency-error gradient, i.e., one that achieves the best efficiency metric improvement
for the lowest change in error, until the optimum configuration is reached. Figure 2 shows the ap-
proximation configurations chosen by the hardware-cognizant mechanism (HW-C) for different
metrics: performance, energy, and energy-delay. Not only are the chosen configurations unique
for each metric (and optimum for that metric), they are also different from the one chosen by the
hardware-agnostic one. The tuning mechanism is discussed in detail in Section 3.

1.3 Synergic Optimization of Varied forms of Approximation

Challenge: An ideal GPAS should be able to employ multiple approximation techniques in con-
junction. This is especially important in general purpose systems wherein the benefits obtained
from any one form of approximation might be minimal for some applications. The multiple tech-
niques might comprise, for instance, approximation in software, hardware compute, and hardware
memory. For optimum approximation to be achieved, the hardware-cognizant tuning mechanism
described earlier should be able to manage every fine-grained and diverse approximate computa-
tion of all the enabled approximation techniques, and the prescribed approximation configuration
should be cognizant of the interactions between these various approximation techniques. While
prior works have proposed systems supporting multiple forms of approximation [12, 14, 15, 28-30,
37, 40], these proposals, to the best of our knowledge, have mostly targeted application-specific
systems or have insufficiently explored the intelligent management of approximate interactions,
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which are very diverse and occur at very fine granularities. We discuss these works further in
Section 2 and Section 8.

SHASTA’s system support and synergic benefits: In SHASTA, the hardware and software
proposals are built into a robust GPAS, aided by (a) an ISA with approximation extensions, (b) a
compiler that takes approximation annotated applications to generate an executable utilizing
these ISA extensions, and (c) a runtime that is run periodically over the lifetime of an application,
which leverages the tuning mechanism to tune the application’s approximation configuration
in accordance with the application’s execution characteristics. We show that this cross-layer
approximation system is able to achieve better error-tolerant execution efficiency in comparison
to prior work and moreover it is able to achieve synergy among the multiple approximation
techniques. System details and synergic effects are discussed in Section 5.

1.4 Summary of SHASTA’s Contributions

We summarize key takeaways from SHASTA’s novel contributions towards General Purpose Ap-
proximation Systems (GPAS) below:

(1) Proposes a flexible and dynamic framework for fine granularity approximation on GPAS.

(2) Allows each candidate variable (across the program) to be approximated differently.

(3) Allows each dynamic instance of a candidate variable to be approximated differently at
different loop iterations.

(4) Allows both compute approximation and memory approximation (and can support addi-
tional forms as well).

(5) Automates application tuning for approximation based on given error tolerance target.

(6) Application tuning takes hardware execution benefits into consideration.

(7) Tuning also looks at combined benefits of all forms of approximation on accuracy and cost
savings.

(8) Tuning is efficiently implemented atop a gradient descent algorithm.

2 BACKGROUND AND MOTIVATION
2.1 Hardware Approximation with Spatio-temporal Diversity at Fine Granularities

Prior advancements at the application, compiler, and ISA levels [6, 7, 21, 25, 36, 40] have enabled
fine granularities and diverse approximation at the software level—these works are discussed in
more detail in Section 8. Unfortunately, reaping the benefits of software-enabled fine granularity
and spatio-temporally diverse approximation in hardware is complicated, especially when target-
ing GPAS.

Consider the code snippet in Listing 1 that performs K-Means clustering under some specified
error tolerance. The snippet shows one portion of the application that involves calculation of
Euclidean distance. It involves three specific computations marked as approximate: subtraction,
multiplication, and addition. All other operations are accurate—for instance, the for-loop induction
variable i is not approximated to avoid compromising control flow. It is evident that approximate
applications like Listing 1 tend to contain a fine-grained mixture of accurate and approximate op-
erations. Further, in Listing 1 the spatial and temporal diversity in approximation is evident. Spatial
diversity is enabled by a unique k; for each approximate operation, which denotes the “level”
of approximation for op;. Temporal diversity is indicated by the k[it], i.e., a static approximate
operation can have different approximation “levels” over different iterations of the while-loop. In
terms of diversity, while recent efforts have explored either one form, mostly in software [6, 21,
25] but some in hardware [40], no prior work has tackled an optimal amalgamation of both.

Spatio-temporal diversity is further illustrated in Figure 3(a) for a toy approximate application
(figure details described in caption). The different radial values across the circumferential variables
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Fig. 3. The approximation configuration for a toy application with 20 approximate elements, each with 7
different approximation levels. The circumferential axis denotes the variables, while the radial axis denotes
the approximation level for that variable. The lower the radial value, the greater the approximation. Also, the
first 10 approximate elements are compute operations while the last 10 are load operations.

@Ax(0.9) float kmeans (dataSet, k) { 1
while (it < MAX || condition) {

;

#Euclidean distance

for (int 1 = 0; i < vl.length; ++i) {
float d = @Ax(v1[i] - v2[i], kilit]);
sum = @Ax (sum + QAx(dxd, kalit]), kslit]);

}

return centroids;

Listing 1. Approximation-enabled programs.

indicate spatial diversity. Further, the changing configuration over iterations of the application
(moving from green to blue to red) indicates temporal diversity. The approximation across the
variables increases from iteration 1 to iteration N/2, typical of clustering-style applications (e.g.,
K-Means) that settle close to appropriate clusters in early iterations. Moreover, the load operations
become even more approximate from iteration N/2 to iteration N, indicative of saturating of stored
memory values over time (thus allowing more approximation).

In light of applications with fine-grained intermingling of approximate and accurate operations
such as the code in Listing 1, most prior approximate compute hardware for general-purpose ap-
plications employ dedicated functional units for performing both accurate and approximate op-
erations concurrently. Resulting hardware challenges include resource duplication (a side effect
being resource under-utilization), operation scheduling complications, design complexities [8, 9],
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circuit overheads [9], and thus might offer control only at coarse granularities such as vector op-
erations [40] or code blocks. Note that this still does not support diversity—to support diverse
approximation in conjunction, these proposals would require even more duplicate resources (one
for each approximate level), severely exacerbating hardware and management complexities. More
details on prior proposals can be found in Section 8. Note: In this work, in the context of temporal
diversity, we specifically tackle iterative applications, i.e., we allow a static operation’s approxi-
mation to evolve from one iteration to the next.

Takeaway 1: Existing hardware approximation solutions are less capable of exploiting the fine
granularities and spatial or temporal approximation diversity that software can enable.

2.2 HW-cognizant Approximation Tuning

An ideal approximation tuning mechanism needs to be able to perform the following:

@ Identify the tolerable approximation for an application (in the Listing 1 Code snippet, this
is 10%). @ Identify application elements, i.e., variables/computations that can be approximated
(Code snippet: three compute operations and related loads). 3 Identify potential approximation
configurations such that their assignments to application elements meet the application’s error tol-
erance requirements. @ Choose the right approximation configuration to maximize any specified
execution metrics such as performance, energy efficiency, or power.

Solutions targeting the first three challenges are briefly discussed in Section 8. From a hardware-
software co-design perspective, the fourth challenge is most significant. Most of the prior proposals
that target general purpose computing perform tuning that is relatively “hardware-agnostic.” This
means that even though the overall goal of the approximation is to improve execution efficiency,
the approximation tuning mechanism is mostly oblivious to the quantitative effects of the chosen
approximation configuration on hardware execution (e.g., IPC/Energy). They ignore target hard-
ware characteristics and only algorithmically maximize the element-wise approximation until the
application is closest to its overall error tolerance [16, 22] or use only minimal statically obtained
hardware metrics [20, 40]. More details about these proposals in Section 8.

While some solutions that perform system-cognizant approximation tuning have been proposed
(with varying knowlege of the system-level effects of their particular approximations) [12, 14, 15,
28-30, 37], these solutions are mostly not designed for general purpose systems and further, are
less suited to fine granularities of diverse approximation. More details on these solutions are dis-
cussed in Section 8. However, SHASTA targets GPAS and specifically focuses on fine-grained and
diverse approximation, with potentially hundreds of approximate elements, which significantly
complicates the implementation of hardware cognizance.

Figure 3(b) different approximation configurations chosen by tuning mechanisms. All the con-
figurations are for an error tolerance of 10%. The figure shows an approximation configuration
chosen by a hardware-agnostic) tuning mechanism in blue. It also shows the configurations se-
lected by SHASTA in green and red. While the red configuration uses highest performance as the
optimization metric, the green uses lowest energy.

The hardware-agnostic configuration is the result of a greedy optimization algorithm over the
variables (as used in prior work)—it approximates variables 1-5 aggressively (which it tunes first),
almost maxing out on the error tolerance, and thus is forced to be very conservative on later
variables 5-20. Note that the above tuning is being performed simply one variable after the other,
until the error tolerance is reached, irrespective of the execution efficiency impact. SHASTA’s con-
figurations, however, are achieved by hardware-execution-cognizant tuning over each variable—
more aggressive approximations for variables that provide better improvements to execution ef-
ficiency. Note that the configurations generated by SHASTA are different when the execution
metric changes. The energy-optimum scenario (green) tunes the memory variables (10-20) more
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aggressively, because memory approximations not only reduce latency (for better performance)
but also reduce memory access, which directly impacts energy.

Takeaway 2: HW-agnostic tuning mechanisms return sub-optimal approximation configurations,
because they are not tuned cognizant to hardware’s execution metric or its characteristics.

2.3 Synergic Approximation System

Finally, we stress the need for synergic capabilities of the approximation HW-SW framework. In
Listing 1 and Figure 3, two forms of approximation are being employed: compute approximation
and memory/load approximation. In an ideal approximate platform: (D the different approximation
techniques in the hardware stack should coexist independent of each other, (2) the hardware-
software interface should abstract away the particular technique of approximation used, and 3) the
software stack should be able to tune all forms of approximation in synergy.

For example, while compute and load approximation techniques are independent, the tuning
mechanism should be cognizant of their intersecting dataflow, i.e., the approximate loads might
be consumed by the approximate compute, thus, the errors from each of those operations can
constructively or destructively intersect with each other. In this example, we refer to construc-
tive intersection as (a portion of) the error in the load operations being masked away by the
approximation in the compute operation. Conversely, destructive interference would amplify the
individual errors.

Takeaway 3: In a system with multiple approximation techniques, the entire HW-SW stack should
be designed to maximize system synergy.

3 APPROXIMATION TUNING MECHANISM

The highlighting characteristic of SHASTA’s approximation tuning mechanism is that it is a com-
bination of (i) being suited to general purpose approximation, (ii) supporting fine granularities and
diverse approximation, and (iii) most importantly, enabling HW-cognizant optimization (it obtains
actual execution measurements from hardware, such as IPC or energy, by running the application
with the input sample) when tuning the approximation configuration.

Note that the tuning mechanism is capable of providing unique approximation values for every
dynamic instance of every approximate operation in the application. For example, if N static pro-
gram operations are marked as approximate and these are iterated over M times, there are N*M
dynamic operations for which potentially unique approximate values can be assigned by the tun-
ing mechanism. This achieves the goal for fine-grained spatio-temporal approximation diversity.
Remember that the forms of approximation might be different for different approximation opera-
tions: for example, in our use case the compute approximation focuses on clock-cycle slack while
the memory approximation focuses on approximation loads. All types of approximation can be
supported the tuning mechanism as long as each type clearly identifies how the approximation
mechanism varies for each “level” of approximation. Pseudocode for the tuning mechanism atop
an application is shown in Listing 2 and features of the mechanism are discussed below.

(@ Each tuning epoch involves tuning the application’s approximation configuration with some
characteristic sample input.

(@ The tuning epoch starts with capturing the golden accurate application output, i.e., with no
approximation, and its corresponding golden hardware execution metric (e.g., IPC/energy, using
hardware/software counters).

(® The tuning mechanism will then run multiple “outer-loop” iterations of the application, each
performing a set of “inner-loop” iterations.

(@ Every “outer-loop” iteration of the tuning mechanism starts with a current approximation
configuration. The goal at the end of the iteration is to find the new approximation configuration
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def eval_epoch (f, sample,AC,tol)

mwn 2
f() is a function for approximation 3
sample is the input sample for tuning 4
AC is previous epoch's approximation config 5
tol is the error tolerance 6
mn 7
# Calculate golden output, h/w efficiency metric 8
Out_gold = f (sample,0) 9
Eff_gold = HW(f (sample,0)) 10
11

# Outer-Loop: until convergence/tolerance 12
while True: 13
AC_prev = AC; 14
AC = eval_AC(f, sample, AC_prev, Out_gold, Eff_gold) 15
AAC = AC-AC_prev 16
if AAC < € || f(sample,AC) > tol: 17
break 18
return AC 19
20

def eval_AC(f, sample, A, Out_gold, Eff_gold): 21
e 22
Calculate grad to create new approx configuration 23
e 24
# Application error at current approximation 25
Out = f(sample,B) 26
Aerror = Out - Out_gold 27
# Approx. Application's execution benefit 28
Eff = HW(f (sample,A)) 29
Aexe = Eff - Eff_gold 30
# Loss dependent on error and efficiency 31
Loss = L (Aexe,Aerror) 32
33

# Inner-Loop: Iterate over all approx. ops 34
while not A.finished: 35
# Perturb approximation of ith op in A (ai) 36

A_i = modify(a, ai, §) 37

# Calculate application error at A_i 38
Out_mod = f (sample,A_1i) 39
Aerror_mod = Out_mod - Out_gold 40

# Calculate h/w metric at A_i 41
Eff_mod = HW(f (sample,A_1i)) 42
Aexe_mod = Eff_mod - Eff_gold 43

# Loss at A_i 44
Loss_mod = L (Aexe_mod, Aerror_mod) 45

# Compute the partial derivative 46
grad[ai] = (Loss_mod - Loss) / & 47

# Step to next approximation and reset current 48
A.iternext () 49

50

# Calculate the new approximation configuration 51
A = A - step_sizexgrad 52
return A 53

Listing 2. Gradient descent approximation tuning.
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that is the steepest move (in terms of the efficiency vs. error gradient) from the current
configuration.

(® To achieve this, the current approximation configuration is independently perturbed by
d in each dimension (i.e., each variable). Each resulting configuration is a “test” approximation
configuration.

(® The application is run with each such “test” configuration over the course of tuning
mechanism’s “inner-loop.” For each of these “inner-loop” iterations, the application output and its
hardware efficiency metric are obtained and compared with the golden values to obtain a “Loss”
value. The loss is directly proportional to the application error and inversely to the efficiency
improvement.

@ The gradient of the Loss function along each approximation dimension is calculated by eval-
uating how much the loss function changed along each dimension’s § perturbation. This informa-
tion is used to obtain the new approximation configuration (at the start of the next iteration) and
this ends the current “outer-loop” iteration.

In the next “outer-loop” iteration, the approximations with the steepest gradients from prior
move by “one” approximation level, while the other approximations proportionally move by frac-
tional approximation levels. Fractional approximation levels are interpreted by the hardware as a
dynamic percentage.

(© Tuning continues until convergence, i.e., when there is marginal change to the loss func-
tion/gradient on consecutive iterations of the “outer-loop.” This ends the tuning epoch and the
application will run with the final approximation configuration until the next tuning epoch.

Overhead Evaluation: Table 1 (discussed in detail in Section 6) shows that the number of
global iterations the gradient descent mechanism takes to convergence is low for our approximate
applications. Moreover, these statistics are from cold starts wherein the mechanism is not in a
tuned state prior to the training. In most scenarios, there is low change input characteristics from
one epoch to the next, meaning tuning reaches optimum state for a new epoch in just 1 or 2
iterations. Thus, average-case tuning overheads are only 1-2 iterations of tuning per epoch and this
greatly reduces the overhead of dynamically running the tuner. While cold start tuning overheads
range from 1-30 ms, depending on the number of approximate variables, time to converge, training
sample size, and so on, average case overheads are less than a ms. The table shows average case
overheads with worst-case cold start overheads in parentheses.

4 DESIGN OF APPROXIMATION HARDWARE
4.1 Compute Timing Approximation

Section 2 discussed the benefits and challenges of achieving fine-grained spatio-temporally diverse
approximation. To achieve these goals SHASTA introduces a new form of Timing approximation
called Slack-Control Approximation (SCA). SCA is inspired by REDSOC [32], a prior proposal from
accurate computing, which identifies the unused portion of the clock cycle in ALU computations
based on opcode and data-type and eliminates it by starting future computations early.

SCA extends this idea further by reducing an operation’s compute time while risking higher
computation error, but in a controlled manner. Other forms of timing approximation are discussed
in Section 8. SCA is enabled by interpreting a computation’s tolerable approximation as a clock cy-
cle slack component: what we call approximation slack. Once approximation slack is identified, it is
cut out (or “recycled”) by the idea of per-operation slack recycling. Slack recycling is performed by
enabling transparent bypass paths in a traditional synchronous execution pipeline. Slack recycling
recycles the approximation slack in a “producer” operation by starting the execution of depen-
dent “consumer” operations at the instant of completion of the producer operation, undeterred by
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Fig. 4. Design for Slack-Control Approximation.

clock boundaries. Recycling approximation slack in this manner over multiple operations, execut-
ing on traditional functional units, allows acceleration of these compute sequences. This results in
application speedup when such sequences lie on the critical path of execution.

In SHASTA, SCA is capable of fine-grained spatio-temporally diverse approximation by allow-
ing the following: (O It can uniquely control each dynamic approximation execution’s computation
time individually, 2) It allows same compute units to be used for both accurate and entire range of
(timing) approximate compute, thus allowing fine-grained per-operation control without signifi-
cant overheads, and 3 The computation time can be chosen from multiple discrete levels, every
clock cycle, for every operation, depending on the amount of approximation the operation can
endure.

4.1.1 Viewing Approximation as Cycle Slack. Consider the addition operation on a standard
adder design (e.g., 16-bit Kogge Stone) as shown in Figure 4(a). We define the computation time of
any pair of operands on this adder as the time required for all 16 bits of the output to settle at the
correct values. This is dependent on (a) the two operands (i.e., the critical path that they trigger)
and (b) the previous state of the output bits. For a given fixed state of operands, previous output,
and operation voltage, it is intuitive that as the allowed computation time for this adder decreases,
the potential for some of the output bits to be in an incorrect state increases. In other words, as
the “approximation slack” increases, the approximation-error of the adder increases.

Prior work on circuit-level error analysis (B-HivE [38]) has shown that timing error as a func-
tion of voltage (for a set frequency) can be effectively modeled for different computations (e.g.,
add/multiply). We intuitively extend this to model computation approximation as a function of
approximation slack. In actual chips, we expect this modeling to be performed statically at chip
design time. Figure 4(b) shows the distribution of error magnitudes experienced by 1M random
add computations for different approximation slack fractions. For addition operations, there are
almost no error magnitudes greater than 1% across all random operations for 25% approximation
slack. For 33% slack, more than 90% of operations have less than 5% error magnitude. This suggests
(and is supported by results) that not only are average error rates low at reasonable approximation
slack, but a majority of operations follow the same trends—meaning that tuning with reasonably
characteristic sample inputs and running with inputs in the wild tend to show similar error-rates
(even though we do not design to provide guarantees). Once the slack corresponding to different
operations are estimated at design time, these values are stored in a slack look-up table (LUT).

Every approximation level corresponds to a different slack value. At the decode stage the instruc-
tions indicate the amount of approximation on their execution (set by the tuning mechanism). This
number is used to look up the amount of approximate slack applicable for this computation, for
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the particular level of approximation. In this work, we only approximate multiply, add and sub-
tract operations. Details on approximation translation from software to hardware are discussed in
Section 5.

4.1.2  Recycling Slack across Operations. Clock cycle slack in a producer operation is recycled
by executing consumer operations immediately after the producer completes (i.e., and not on later
cycles). This is achieved by enabling transparent dataflow among the compute units, achieved via
intelligent flip-flop control between the execution units as is also pursued in prior work targeting
accurate computing [32]. A transparent mode FF design is a simple implementation consisting
of a standard FF but with a bypass path [13]. A mux at the end of the two paths can select the
“opaque” stored FF value or the bypassed “transparent” value, based on an enable input. Note that
this transparent datatflow is implemented only within data bypass network between execution
units. Transparent mode is enabled in the bypass path between execution units whenever data are
expected to flow through at non-clock boundaries (due to clock cycle slack).

A datagraph to illustrate the high-level impact of transparent dataflow for slack recycling is
shown in Figure 5. The graph shows a sequence of dependent operations: 1 load, followed by 3
compute operations followed by a store. This illustration assumes all operations to be single-cycle
operations. In a baseline synchronous design, the load finishes in cycle 1, the compute operations
complete in cycles 2, 3, and 4, and the store occurs in cycle 5—thus, the entire dataflow graph
would take 5 cycles to execute. The impact of transparent dataflow is as follows: operations that
fall within the transparence boundary—that is, the compute operations—can flow transparently
from one to the next without being limited by clock cycle boundaries. This enables approximate
slack recycling. To showcase this, assume each of the 3 compute operations have some approxi-
mation slack—the computations only need 60% to 70% of the clock cycle. The load still completes
in cycle 1 as before. The compute sequence of 3 operations E1-E2-E3 can execute transparently
within the transparence boundary and complete in just 2 cycles—E1 executes from 1.0-1.7, E2
from 1.7-2.3, and E3 from 2.3-2.9. This allows the first dependent operation outside the transpar-
ent boundary—the synchronous store operation—to occur on cycle 4, rather than on cycle 5 in
the baseline. Transparent dataflow can be achieved with just a pair of functional units that have
bypass paths between them in at least one direction; for example, functional units FL and FR in
Figure 5.
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4.1.3  Support for OOO Core. Our target substrate for Slack-control Approximation is tradi-
tional out-of-order cores, thus, we adopt prior work [32] that proposed an OOO core design to
recycle slack targeting accurate computing. In OOO cores, slack recycling requires modifications
to the OOO scheduler, which are summarized below:

(O Eager Grandparent Wakeup: Given a “grandparent-parent-child,” and so on, sequence of
dependent instructions, this mechanism allows speculative wakeup of a child instruction (from its
reservation slot) based on its grandparent’s tags. This allows the child instruction to be issued in
parallel with its parent, thus enabling the parent computation’s slack to be recycled.

@ Slack Tracking: The cumulative slack over a sequence of operations is tracked—estimated
based on the computation time of each operation. Tracking the cumulative slack is important
because, when the total slack crosses integral clock cycles, synchronous operations (such as stores)
can be performed on early clock cycles, resulting in speedup.

(® Skewed Selection: The OOO core’s select logic is optimized to prioritize non-speculative
operations over speculative (grandparent-awoken) operations, and this almost completely elimi-
nates the erroneous expenditure of cycles and power under mispeculation.

Further details on the above components can be found in the original work [32].

4.2 Memory Load Approximation

Prior proposals for memory approximation already offer a suitable template for fine-grained
spatio-temporally diverse approximation [16, 19]. But without a dynamic control mechanism to
identify optimal approximation quantities throughout the application, these proposals perform
poor exploration of fine granularities and diversity. SHASTA proposes a modified form of Load
Value Approximation (LVA) [19], which enables more aggressive and dynamic use of the previ-
ously static approximation technique, enabling fine-grained spatio-temporal diversity and further
improving its benefits in other ways.

4.2.1 LVA: Benefits and Limitations. LVA is motivated by the idea that applications suited to
approximation often exhibit localized value similarity; they tend to reuse similar values. LVA pro-
poses that for applications that can tolerate inexactness, the values associated with cache misses
can be approximated. By approximating the load value on a cache miss, the processor can imme-
diately proceed without waiting for the cache response.

Deployment of LVA is essentially controlled by two LVA-Control knobs—approximation con-
fidence and approximation degree. Note: These knobs are as used in the original work and are
paraphrased and explained below. Approximation confidence decides how often the data are ap-
proximated (based on past comparisons to some fixed error threshold), i.e., how often a value is
returned from the approximator instead of a longer latency wait for the accurate value on a cache
miss. This enables a trade-off between accuracy and latency of access. Approximation degree de-
cides how often the data in the approximator is refilled with values from actual cache access (and
thus retrained/refreshed). This effectively trades off accuracy for better energy efficiency in the
memory hierarchy.

While latency and energy reduction is significant, there are limitations from LVA that our pro-
posal exploits:

( First (and of most significance to SHASTA’s fine granularity + diversity motivation), in LVA
the approximation confidence’s threshold value and approximation degree are static design time
constants and uniform over all approximate loads—but this is not optimal. Among all loads that
can be approximate, some approximate loads are less influential than others. While the errors from
loads might sometimes be large, their effect on the application might be minimal (e.g., noise in
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vision applications). Thus, deciding to approximate based on a particular load’s error compared to
a static threshold can have a detrimental impact to overall benefits. Also, it is a common charac-
teristic among inputs that some approximate loads are more stable than others. Consider financial
applications—it is often the case that some inputs are redundant or change very rarely. For exam-
ple, in Blackscholes, a subset of the inputs takes on only four possible values, two of which occur
over 98% of the time. Other inputs may change more frequently. Setting approximation degree
to be constant results in higher error under aggressive settings and low benefit in conservative
settings.

(@Second, LVA invocations are rather infrequent, because LVA is only invoked on L1 cache
misses and these misses are often low in many applications.

(® Third, in LVA every approximate load still performs all the minimum “tasks” that a traditional
load performs—accessing the load-store queue, accessing the TLB for address translation, address
generation computation, and accessing the L1 data cache.

4.2.2 Dynamic Pre-L1 Approximation. Our contribution to memory approximation is two-fold.
First, we modify LVA to be dynamic—enabling it to tackle fine granularities and spatio-temporal
diversity. This is achieved as follows: Each approximate load instruction is allowed a unique ap-
proximation confidence and a unique approximation degree, an optimum amount as determined
by the tuning mechanism. These values are estimated based on application effects and not based
on static error thresholds, and so on. The assigned values are unique per static approximate load
as well as based on its iteration instance (if it belongs to a loop, thus exploiting temporal diversity).
Therefore, the percentage of time that a static load instruction of some Nth iteration looks up its ap-
proximate value in the approximator is tuned uniquely to each such load. Similarly, the percentage
of time that the approximator is refilled with an accurate value from the cache is tuned uniquely
to each approximate load. Thus “error vs. latency” and “error vs. energy” trade-offs are controlled
in a disciplined manner, unique to each approximate load. The approximation information flow
from the tuned application to the hardware is similar to the case of compute approximation and
is detailed in Section 5.

Second, our memory approximation implements pre-L1 Approximation, which brings the ap-
proximator prior to the L1 cache. This allows the capability for invoking approximation on all loads
and not just on L1 caches misses. Our design approximates loads early in the execution pipeline.
Loads that are marked as approximate and that end up being approximated (based on approxima-
tion confidence) perform a Pre-L1 LVA lookup, as described earlier in Figure 1(b), and thus benefit
from (a) lower latency than L1 access and (b) lower energy than traditional loads by skipping ad-
dress generation, translation, dependence checks, and cache access. Implementing LVA prior to L1
cache access is key to some of the synergic gains in SHASTA—this is discussed in Section 5.

Figure 6 shows the general structure of our Pre-L1 LVA approximator table. The approximator
consists of a simple instruction address—based hash that performs a lookup into a direct mapped
approximator table. Each entry in the table only consists of a tag and a data block. The data block is
essentially an approximate local history buffer (LHB)—storing some representation of the accurate
reads (from cache) of the most recent approximate load values that match this entry’s tag. In the
figure, the LHB values (4.1, 3.9, and 4.0) are the accurate values of the three previous loads that
matched this tag entry. An approximate value is then generated by employing some computation
function f (we use average) on the values in the LHB.

4.3 Overhead Evaluation

Compute Approximation: The slack recycling implementation in an OOO core suffers reason-
able overheads—an area overhead of 0.3% and an energy overhead of 0.8%. The approximation
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slack LUT has area overhead of 0.52% and negligible access energy. All slack-related access and
control occur in parallel with the core decode and scheduling logic—there is no increase in critical
path latency.

Memory Approximation: Design space exploration results in the choice of 64 entries in the
approximator—this results in an overhead of roughly 1KB of storage. Due to the small size of the
approximator, access time is very low, pushing the loaded operand off the critical execution path.

5 SHASTA: SYSTEM AND SYNERGY

System Overview: Figure 7 illustrates the high-level overview of SHASTA showing the entire
system flow from @ Static: Approximation specifications within the program and compiling to an
approximation-enabled ISA, ® Dynamic Tuning: A tuning mechanism that iterates the application
through multiple approximation configurations (along optimum gradient) on the target hardware,
and © Dynamic Running: program execution with tuned approximations on hardware.
PL/Compiler/Runtime Support: Programs are annotated as shown in Listing 1. The program-
mer annotates variables and computations that are amenable to approximation and specifies the
target approximation for the application, as is done in prior work [7, 9, 36]. Among computations,
this work currently only targets add, sub, mult operations for integer and floating point. Approx-
imate load operations are inferred based on annotated variables (e.g., v1, v2, d, total in Listing 1).
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Note that the tuning mechanism is agnostic to the fact there are multiple types of approximation
(e.g., memory vs. compute). As long as the levels of approximation for each approximation-type
are well defined, this tuning mechanism is suited to any form of approximation.

SHASTA’s compiler takes the annotated application and generates an application executable
that uses approximate instruction extensions to the ISA (we target ARM, but expect compati-
bility with other ISAs) for approximation. These instructions are {V}ADD.a, {V}SUB.a, {V}MUL.a,
and {V}LDR.a and resemble traditional instructions apart from the approximation fields described
below. It is important to note that the programmer does not have to specify the amount of approxi-
mation for each approximate operation—she only has to specify the approximation requirement at
an application/function level and also specify the variables that can be approximated. The values
themselves are automatically inferred by the tuning mechanism.

The approximate compute operations use a 3-bit value to indicate the amount of approximation
slack that this operation should recycle. A value of 2 (on scale of 0 to 7) means the approximation
slack is roughly 20% of the clock cycle (or computation time is 80% of the clock cycle). Approximate
load instructions use two fields—the level of approximate degree (3-bit) and the level of approx-
imate confidence (3-bit). The values of the degree/confidence are indicative of the percentage of
time the load approximation-related action is performed. For example, an approximation confi-
dence value of 5 (on the scale of 0 to 7) means that the load is looked up in the Pre-L1 LVA roughly
70% (i.e., 5/7) of the time. Note that the compiler does not generate any approximation amounts
for the approximate instructions; that is done only by the tuning mechanism by running on the
target hardware.

Finally, we enable the interaction between the application and the tuning mechanism via prag-
mas, as pursued in prior work [31, 39]. In the application, the programmer is expected to add
pragmas prior to an approximable function’s declaration (such as the K-Means function in List-
ing 1), providing its error tolerance, error metric, hardware efficiency metric, tuning granularity,
and a pointer to some training input sample. This passes information to the runtime, which invokes
the tuning mechanism (details in Section 3) at the appropriate tuning granularity (possibly every
second, for < 0.1% overheads). The runtime also captures hardware measurements and provides
information to the tuning mechanism.

Overall, the programmer burden only involves annotating approximating variables/
computations and specifying approximate function pragmas. In our experience with our
chosen approximate applications, this one-time overhead is very reasonable.

Synergy across HW approximation techniques: As discussed in previous sections, SHASTA
performs approximations across both compute and memory. With SHASTA’s intelligent tuning
mechanism, the benefits from the synergy between compute and memory approximation is greater
than combining individual benefits from memory-only/compute-only approximation (under same
total error tolerance). This is because of the following:

(© Tuning across memory+compute provides a larger tuning space (i.e., more approximate op-
erations), increasing potential for better efficiency-error sweet-spots.

(@ When an approximate compute operation performs compute on already approximate mem-
ory operation (“an intersecting memory-compute approximation”), the resulting error is often less
than effects of errors from “non-intersecting” memory and compute approximations. A portion of
the error in the load operations is masked away by the approximation in the compute operation.
Since approximation tuning involves actual running of the application on hardware, such effects
are respected by the tuning control.

® Slack-Control Approximation produces performance benefits by slack recycling over trans-
parent chains of operations. Figure 4 showed that slack recycling only happens within a trans-
parence boundary—one that is established by opaque memory operations. Approximating loads
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Table 1. Approximate Applications

Dyn. SHASTA | Greedy | Err Ovhd
Application | Domain | Annotate | Itns | Approx % TI TI 10% (ms)
Blackscholes | Finance 111 1 30.63% 9 71 9% 2.7 (24)
Mat Mul ML 6 1 17.91% 7 30 45% | 0.15(1)
Inversek2j Robotics 60 1 14.25% 10 101 11% 1.5 (15)
K-means Mining 39 32 34.1% 22 130 9% 0.95 (21)
FFT Sig Proc 60 1 11.25% 5 20 12.1% | 1.4 (7)
Canneal CAD 75 32 7.2% 14 120 8.5% | 0.22 (26)
PageRank Graph 25 32 30% 20 110 8.3% 1(20)
MLP ML 30 20 27% 18 80 5% 1.05 (19)

by skipping cache access removes this transparence boundary, which breaks chains—meaning that
slack recycling can occur over longer chains.

While the importance of synergy has been discussed in prior work targeting application-specific
systems (see Section 8), SHASTA enables synergy among multiple forms of approximation, suitable
to GPAS. Further, SHASTA creates a platform to achieve synergy across diverse fine granularities
of approximations across multiple approximation domains that, to our knowledge, is insufficiently
explored in prior work.

In this work, SHASTA employs forms of approximation that requires the hardware to be capable
of (a) slack recycling, i.e., have transparent paths in the data path, optimizations at scheduler and
decode and (b) load value prediction/approximation tables, and so on. While these mechanisms
allow SHASTA to be fine grained and diverse in its approximation, the SHASTA system of general
purpose approximation could be employed to support other forms of approximation as well.

6 METHODOLOGY

Applications: We evaluate SHASTA across eight applications suitable to approximation from
different domains—highlighting that SHASTA is a general purpose solution to approximation. The
applications include those from the AxBench [41], Polybench, and Parsec [4] benchmark suites
and others. Operations to approximate are identified by hand, based on guidelines established
in prior work [19]. Applications are tuned to target three different accuracy levels of 99%, 95%,
and 90%, as is common requirement for these applications. Note that they can be tuned for other
accuracy levels as well. Accuracy measurement metrics for the AxBench applications are as defined
in the benchmark suite [41]. Accuracy measurement of other applications are as performed in prior
work [16, 19]. Applications are compiled for the ARM ISA to run on the Gem5 [5] architecture
simulator.

Table 1 shows the different applications along with the number of approximate operations
identified in the program code, the iterations of the application, as well as the resulting percentage
of dynamic instructions that are approximate (Dynamic Approximation %). The table also shows
the actual error estimated at test time (i.e., on the test inputs) when tuning for a 10% tolerance
target on the training inputs of the applications. The tuning overheads in terms of tuning itera-
tions (TI) are shown for the greedy algorithm and SHASTA’s gradient descent algorithm—these
are discussed in more detail later. The tuning overheads in time (ms) are shown in the last column
(average/worst-case) and were discussed earlier—invoking the tuning mechanism once every
second results in overheads of less than 0.1%.

Slack modeling: Slack is modeled via RTL design in Verilog and synthesis using the Synopsys
Design compiler. We synthesize the execution pipeline stage with a 0.5 ns cycle time (i.e., 2 GHz)
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Table 2. Processor Configuration

G. S. Ravi et al.

Parameter Values
Frequency 2 GHZ

Front-end width 4

ROB/LSQ/RSE 80/32/64

ALU/SIMD/FP 4/2/2

L1/L2 Cache 64 kB/2 MB w/ prefetch
Approximator / LHB 64 / 4 entries

constraint. Our timing analysis agrees with estimations from prior work [38] as well as character-
ization via gate-level C-models. Considering the low effort, we expect state-of-the-art CAD tools
to be capable of (or extendable to) such analysis. During processor execution, appropriate slack
bucket is selected simply based on opcodes and operands: no dynamic timing analysis is involved.

Error modeling: Compute operations identified to be suitable for approximation are approx-
imated via our approximation model build on top of the Softlnj error injection framework [38].
Memory operations suited to approximation are approximated by implementing the approximator
described in Section 4.2 in software. Overall application error for a given approximation configura-
tion is evaluated by natively running the application to completion and comparing with a known
precise output.

Simulation: Application IPC for given approximation configuration is obtained via Gem5 [5]
architectural simulation. We implement load approximation and slack recycling for out of order
cores in Gem5. Power numbers are estimated in accordance to McPAT [17]. The processor config-
uration is described in Table 2.

Tuning: Application tuning is performed via wrapper functions written in C that run a numer-
ical gradient descent tuning mechanism. The algorithm iterates until convergence. We also imple-
ment a hardware-agnostic greedy algorithm (for comparison) as described in multiple prior works
such as Reference [16]. The algorithm finds a suitable approximation for the first variable while
keeping others exact, then it fixes the approximation of first variable and moves on to the second
variable while keeping the others exact, and so on—independent of hardware efficiency. The TI in
Table 1 show the number of iterations before the tuning mechanism completes or converges for
our proposed tuning mechanism via gradient descent and for a greedy mechanism (Greedy).

7 EVALUATION
7.1 Performance Speedup

Figure 8 shows the speedup obtained by SHASTA in comparison to (a) a traditional baseline with-
out any approximation features, and prior proposals; (b) REDSOC [32], which performs slack re-
cycling but only targeting accurate compute; and (c) LVA [19], which load approximates only on
L1-misses and further, an optimization of prior work: (d) LVA-L1, which load approximates on L1-
hits as well. We include LVA-L1 because, with our chosen processor configuration (L1 cache size,
etc.), the applications we run see low miss rate and render traditional LVA ineffective. LVA mecha-
nisms and SHASTA results are shown for a 10% error tolerance. Further, SHASTA is set to tune for
the performance (IPC) metric. Speedup is a function of the fraction of dynamic approximations,
influence of non-approximate instructions (e.g., their latencies), and application dataflow.
SHASTA clearly outperforms the competing mechanisms, achieving a mean speedup of 25%
across the applications with a maximum speedup of 47% with K-Means, in comparison to the
traditional baseline. Highest speedups are seen for K-Means, which has high error tolerance—this
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Fig. 9. Energy savings.

follows observations from prior work that discusses that very few bits of precision are required for
reasonable accuracy in K-Means [16]. In comparison, REDSOC, LVA, LVA-L1, achieve speedups of
10%/2%/9%, respectively—clearly showing that achieving the design goals introduced earlier has a
significant benefit to approximation systems.

7.2 Reduction in Energy Consumption

Figure 9 shows energy savings from SHASTA in comparison to the baseline, REDSOC, LVA, and
LVA-L1, again for a error tolerance of 10%. Here, SHASTA is tuned for the energy metric. Trends
from energy savings are similar to those observed in performance speedup. An interesting ob-
servation in tuned configurations is that tuning for energy reduction resulted in more aggressive
memory approximation in comparison to tuning for performance. This intuitively makes sense,
because while compute approximation directly benefits only performance, memory approximation
benefits both performance (by latency reduction) and energy (by cache/memory access reduction).

We find memory approximation to be less beneficial in applications like Blackscholes (matching
earlier observations [19]). LVA-L1 is of high benefit in a simple matrix multiply kernel (due to
redundant as well as similar values) while traditional LVA is less useful, because the cache miss rate
is negligible. SHASTA sees significant benefits across these kernels—in Blackscholes it is able to
get significant benefits from compute approximation while it is able to leverage benefits from both
pre-L1 LVA and compute approximation in matrix multiply, Mean energy savings for SHASTA are
33% with maximum reduction of 46% in K-Means. In comparison, other techniques see energy
reduction in the range of 1% to 12%, clearly highlighting SHASTA’s benefits.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 25. Publication date: September 2020.



25:20 G. S. Ravi et al.

#Pp-99 ®EP-95 =P-90 “E-99 WE-95 =E-90

Speedup / Eng Saving (%)

BlkSchls MatMul Inverse Kmeans FFT Canneal PgRank MLP  Geo-Mean

Fig. 10. Efficiency improvements at varying application accuracy.

7 Resource Flexibility # Resource Tunability

= HW-Cognizant Approx. Control = System Synergy
100%

80%

60%

40%

Perf. breakdown

20%

0%

BlkSchls MatMul Inverse Kmeans FFT Canneal PgRank MLP  Geo-Mean

Fig. 11. Performance benefit breakdown.

7.3 Approximation Sweep

Figure 10 shows benefits from SHASTA (independent results for both speedup and energy reduc-
tion metrics) at different error tolerance levels. We sweep over accuracy requirements of 99%, 95%,
and 90%. In the figure, “P” bars show performance speedup and “E” bars show energy savings. In
almost all the applications, there is a clear monotonous relation between tolerated error and ben-
efits from approximation—there is at least a gain of 10% in speedup/energy reduction when going
from 99% accuracy to 90% accuracy.

K-Means sees a 5x difference in benefit between highest accuracy and lowest accuracy. This is
because, in K-Means, 95% accuracy can be achieved with very low precision in computation but
there is a significant increase in computation precision/correctness required for 99% accuracy.

Even at 99% accuracy, energy savings of 14% and speedup of 12% reflect the importance of
approximate systems and their impact even under stringent accuracy requirements.

7.4 Breakdown of Benefits

Next, we breakdown the benefits of SHASTA in terms of the design goals. The analysis is shown
in Figure 11, wherein we compare SHASTA to a baseline system without SHASTA’s highlighting
characteristics: (a) Spatio-temporal Diversity at Fine Granularity, (b) HW-cognizant Approxima-
tion Tuning and (c) Synergic benefits across approximation techniques. To measure the impact
of each characteristic, we incrementally add each characteristic to the baseline system—to finally
achieve SHASTA.
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7.4.1  Spatio-temporal Diversity at Fine Granularity. We break this SHASTA benefit into two
parts: (a) resource flexibility, i.e., every resource node in SHASTA can handle both accurate and
approximate computations, and (b) resource tunability, i.e., the amount of approximation to be
applied by each resource node can be uniquely controlled.

The benefit from resource flexibility is quantitatively observed by comparing SHASTA against
the baseline, which provisions exactly one compute node for approximate-only compute. Thus,
not more than 1 approximate compute operation can be processed in parallel. Figure 11 shows that
SHASTA'’s resource flexibility contributed to 16% of its total benefits, with higher contributions in
applications with more approximate ILP.

Next, Figure 11 shows that resource tunability contributes to 30% of SHASTA’s overall benefits,
obtained by comparing SHASTA against the baseline, which allows only fixed/static approxima-
tion. The approximation of the resource is tuned in accordance to the spatio-temporal approxima-
tion diversity in the application. Temporal diversity is especially important in iterative applications
(K-Means, Canneal, Page Rank, and MLP) because the accuracy requirements vary across these it-
erations and need not be conservatively set by the worse-case. In the absence of spatial diversity,
all static approximate operations will be tuned to the same approximation—we see this to be es-
pecially detrimental for simple applications such as matrix multiply, which have only a few static
approximations but which can significantly influence the energy/performance of execution. Thus,
spatial diversity contributes to almost 70% of its benefits from SHASTA.

7.4.2  HW-cognizant Approximation Tuning. To illustrate the benefits of hardware-cognizant
tuning, we compare SHASTA’s tuning mechanism against the baseline’s greedy hardware-agnostic
tuning. Benefits from intelligent tuning contribute to nearly 40% of SHASTA’s benefits, as seen in
Figure 11.

In applications such as K-Means, HW-agnostic tuning approximates compute variables further
than ideal, thereby unable to sufficiently approximate memory variables that could provide signif-
icant energy savings. Somewhat similar are Blackscholes and Inversek?2j. With a large number of
approximate variables, the optimal compute approximations that produce best gradients for ap-
proximation (i.e., higher execution benefits but lower error) are deep into the program. A naive
tuning mechanism hits the error-tolerance rate just within the first few approximate variables,
never reaching the best-gradient variables. Iterative applications such as Canneal benefit greatly
from the tuning mechanism, because specific iterations of the application (middle/late) provide
best energy vs. error gradients and are found by the tuning mechanism.

7.4.3  Synergic Benefits. Finally, we quantify SHASTA’s synergic benefits across the two ap-
proximation techniques used. We compare SHASTA against the baseline, in which compute ap-
proximation and memory approximation are tuned separately unbeknownst to each other. For this
experimental baseline, we tune each of compute and memory for half of the total approximation
(i.e., 5% error each), while SHASTA is tuned as a whole. The synergic benefits SHASTA obtains are
reflected in Figure 11 and contribute to nearly 15% of the total benefits. Synergic benefits are par-
ticularly high in applications with higher error tolerance but more approximate variables such as
Blackscholes and Inversek2j, wherein it is especially important to consider the relations between
approximate memory operations being used by approximate compute operations.

In summary, it is evident that SHASTA’s benefits are obtained from a combination of fine-
grained spatio-temporal approximation capability, hardware-cognizant approximation tuning, as
well as whole system synergy.

7.5 Discussion: More Comparisons

We make comparisons with some other prior works.
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7.5.1 General Purpose Timing Approximation. We identify Truffle [9] to be the closest related
prior work to SHASTA in terms of compute approximation—it focuses on GPAS and performs volt-
age scaling-based timing approximation. It also allows timing violations in the SRAM (as a form
of memory approximation). We compare it with SHASTA in terms of SHASTA’s characteristic
features. Truffle is unable to achieve fine-grained latency reduction nor is it able to alternatively
use the same resources for both approximate and accurate execution. Further, it does not support
multiple levels of approximation and does not attempt to intelligently balance or tune different
forms of approximation. Thus, it is unable to achieve fine-granularity spatio-temporally diverse
approximation. Quantitatively, Truffle provides energy reduction of 2%-10% at non-definite appli-
cation error. In comparison, SHASTA provides around 30+% energy reduction at well-defined 90%
application accuracy.

7.5.2  Application-specific Approximation Systems. Prior works have proposed building approx-
imation systems from the ground up that target a single application or domain. These systems often
achieve synergy in approximation as well as perform system-aware approximation tuning. For ex-
ample, Hashemi et al. [12] target biometric security systems, building an end-to-end flow from an
input camera to the final iris encoding with intermediate approximate computational steps. Ap-
proximations at various stages are chosen based on their effects on the system, with the help of
an RNN. While suitable to application-specific systems, they do not discuss extensions to general
purpose approximation. Further, the approximation methods do not target fine granularities like
in SHASTA. The use of an RNN at such fine granularities can cause explosive overheads.

Similarly, prior works from Raha et al. 28, 30] have also targeted Smart Camera Systems [28, 29]
and Reduce-and-Rank kernels [30], again achieving synergy among different forms of approxima-
tion while focused on an application-specific subsystem. While also using a gradient-descent-style
tuning mechanism (like SHASTA), these proposals again do not target general purpose approxi-
mation with fine granularities or spatio-temporal diversity.

7.5.3  Approximation at the Application Level. Approximation proposals from Hoffmann
et al. [14, 15] have also analyzed trade-offs between accuracy and system energy, but at the ap-
plication level. While suitable to many applications, these approximations and knobs are hand
chosen from one application to the next [15] so are not easily malleable towards diverse general-
purpose workloads. Apart from focusing on software-level solutions, these proposals do not target
fine granularities or spatio-temporal diversity in their approximation methods. Moreover, in Ref-
erence [15], the approximation tuning searches through the entire configuration space, making it
less suitable for a vast tuning space that is imposed by finer granularities and diversity of approx-
imation. Further, the reinforcement learning approach proposed by Reference [14] is again less
suited to the finer granularities, which is SHASTA’s focus.

Similarly, Panyala et al. [25] perform application-specific approximation at the software level,
targeting graph algorithms—they use techniques such as loop perforation, incomplete graph col-
oring, and synchronization. While loop perforation and synchronization are suited to general pur-
pose iterative applications, in this work they are tuned specifically to PageRank and Community
Detection. These methods are orthogonal to the approximation techniques in SHASTA and can
be used in conjunction. Loop perforation is closest to the temporal diversity targeted by SHASTA.
In their work, the benefits obtained by loop perforation alone for Community Detection are very
limited—this is because of (a) the absence of spatial diversity, i.e., loop perforation eliminates en-
tire iterations, and (b) absence of an intelligent tuning mechanism to select the right iterations for
perforation/approximation. However, SHASTA shows that performing diverse fine-grained ap-
proximation with intelligent tuning has substantial efficiency benefits.
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8 RELATED WORK

Hardware Approximation: Dedicated approximate units can run at low voltage [9], can be
of specific low precision [8], or can perform temporally coarse-grained precision scaling via
power/clock gating [40]. These solutions can incur significant design overheads, i.e., more
functional units, dual (accurate/approximate) voltage rails, and scheduling logic overheads. Such
proposals do not support multiple approximation levels concurrently, as this might require
dedicated voltage rails (voltage scaling) or uniquely partially power-gated data paths (precision
scaling) for each level of approximation supported. Thus, the employed approximation in
hardware has to be kept conservative or runs the risk of hitting intolerable operation/application
error. Timing approximation is a form of approximation that controls the computation tim-
ing [33]—specifically, it reduces computation timing, sacrificing accuracy for gains in execution
efficiency. Timing approximation is usually achieved by under-volting [9] and is constrained
in terms of its flexibility and ability to be reconfigured at fine granularities. Other forms of
hardware-level approximation include, but are not restricted to, synthesis techniques [18, 24],
self-healing designs [11], libraries for approximate-circuits—based design space exploration [23],
and design methodologies for approximate CGRAs [2].

Software Approximation: Prior work such as Ener] [36] enables programmers to annotate
programs specifying operations or variables to be accurate or approximate via extensions to the
programming language, compiler, and ISA. Recent advancements at application [6, 7] and ISA [40]
levels have furthered software approximation capability beyond only a binary distinction between
accurate and approximate regions [36] to allow for spatially diverse approximation control. Soft-
ware approximation solutions have studied temporal approximation in the context of loop perfo-
ration, which skips a specific iteration subset of an iterative application [21, 25]. They have shown
that iterative clustering algorithms like K-Means stabilize their solutions in an early fraction of
the iterations (less than 1% change beyond 20% of the iterations).

Tuning for Approximation: It is generally assumed that the tolerable amount of approxima-
tion for an application is known as part of the application’s or domain’s specification. Moreover, it
is usually assumed that the programmer can annotate the application to identify which elements
can be approximate. Some software proposals have optimized this by requiring the programmers
to only specify that a program can be approximate and automatically infer the operations and
data that can be safely approximated [26, 34]. After elements for approximation and application
error tolerance are identified by programmer/domain specification, prior software proposals have
analyzed program-flow and input datasets to identify how much approximation each of the ap-
proximate elements can tolerate while maintaining the overall application error tolerance [6, 16,
20, 22, 26]. These satisfy the first three challenges identified in Section 2.2. Some approximation
tuning proposals use greedy algorithms in random order over the approximate elements, maximiz-
ing approximation on one element before moving to the next [16, 22]. Alternative proposals order
the approximate elements by energy per operation [20, 40] and then perform greedy tuning. While
this is a reasonable heuristic for optimizing for power savings, it is not very useful for performance
or energy consumption, since application performance is too dependent on dynamic application
dataflow characteristics to be interpreted as a static per-operation metric. Finally, previous work
has utilized gradient descent for application-specific approximation, to combine approximation of
memory and compute, targeting Reduce and Rank applications [27]. Our work, however, utilizes
gradient-descent-based tuning towards fine-grained approximation for GPAS.

System-level Approximation: The importance of maximizing the execution metric of inter-
est while managing application error has also been stressed in prior work [37], though their fo-
cus is on applications whose error and hardware execution metrics can be completely modeled
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mathematically, which can be challenging for complex applications with increasing approximate
variables, especially when executing on diverse hardware platforms. Similarly, the need for hard-
ware cognizance in approximation has been discussed in some system-level proposals [14, 15], but
these works are not tuning approximation at an operation-level granularity, nor are they lever-
aging spatio-temporally diverse hardware approximation solutions. Further, application-specific
approximation systems proposals [12, 28, 30] have build systems wherein each application-specific
subsystem’s approximation is managed intelligently, depending on the effects of the application on
that subsystem. In most scenarios, these approximations are coarse-grained, implementing a very
limited number of approximation knobs (often just one) per sub-system. Given an application’s
overall error tolerance, prior works targeting general purpose approximation [6, 16, 20, 22, 26] have
proposed software-centric solutions (analyzing program-flow and input datasets) to obtain some
feasible approximation configuration. These proposals perform tuning that is “hardware-agnostic”
i.e., the tuning mechanism is oblivious to the effect of the chosen approximation configuration on
hardware execution. Such solutions are sub-optimal, since they do not target a specific execution
metric (e.g., performance or energy) and ignore features of the execution hardware. While some
application-centric systems have analyzed the system as a whole to perform approximation tun-
ing [1, 3, 12, 28, 30], these proposals are either not designed with a general purpose system in mind
or they are unsuited to fine granularity and spatio-temporal diversity in approximation.

9 CONCLUSION

SHASTA proposes a novel hardware-software approach to designing efficient General Purpose
Approximation Systems. It is able to improve hardware approximation capability achieving fine-
grained spatio-temporally diverse approximation. At the same time, it adds hardware cognizance
to approximation tuning to achieve the optimum execution efficiency under the prescribed er-
ror tolerance. Further, it achieves synergic benefits across optimizations, building a closer-to-ideal
general purpose approximation system. Via qualitative and quantitative comparisons, we show
that SHASTA is able to achieve considerably better benefits compared to prior work (2—-15X) and
can provide performance speedups or energy savings in the range of 20% to 40%, depending on
the goals of the design, a rather significant improvement on top of traditional general purpose
processor architectures.
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