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Value Locality Based Approximation

With ODIN
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Abstract—Applications suited to approximation often exhibit significant value
locality, both in terms of inputs as well as outcomes. In this early stage
proposal - the ODIN: Outcome Driven Input Navigated approach to value
locality based approximation, we hypothesize that value locality based
optimizations for approximate applications should be driven by outcomesii.e., the
result of the computation, but navigated with the help of inputs. An outcome-driven
approach can enable computation slices, whose outcomes are deemed
(approximately) redundant or derivable, to be entirely eliminated resulting in large
improvements to execution efficiency. While such an approach provides large
potential benefits, we address its design challenges by aiding the outcome-driven
approach with input-navigation - attempting to map the value locality characteristics
within inputs to that of the outcomes. To enable this, we build a novel taxonomy to
categorize value locality and use it to analyze benchmarks from the PERFECT suite.
We show that with oracle prediction and an ideal design, more than 80 percent of
computations can be eliminated at an SNR of 17.8 or a 90 percent accuracy, thus
capable of tremendous performance and energy benefits. Finally, we discuss
directions towards achieving optimal benefits.

Index Terms—Value locality, approximate computing, value prediction
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1 ODIN: INTRODUCTION & MOTIVATION

Approximate Computing. Workloads from several prevalent and
emerging application domains, such as vision, machine learning,
and data analytics, possess the ability to produce outputs of accept-
able quality in the presence of inexactness or approximations [1].
Allowing computation to be approximate can lead to significant
improvements in processor efficiency. In this work, we are particu-
larly interested in the potential for hardware approximation stem-
ming from value locality.

Value Locality. Over past decades, the program attributes of
value locality have been examined and exploited through a variety
of proposals. Fundamentally, value locality describes the likeli-
hood of the influence of previously-seen program values on newly-
occurring ones. In a time of steeply declining benefits from classical
dataflow acceleration, value locality is still of prime importance in
attempting to exceed the classical dataflow limit, which is defined
as the program performance obtained when machine instructions
execute as soon as their operands are available [2]. While character-
istics of value locality are beneficially exploitable in multiple ways,
targeting both precise and approximate computing, in this work
we are focused on the latter. More specifically, we make the case
for approximate computing centered around the outcome-driven
exploitation of value locality instead of the conventional input-
driven approach. We describe these forms of exploitation next.

Input-Driven Approximation. The conventional Von Neumann wis-
dom in general purpose processing is that a processor must fetch and
wait for all input data elements on which it needs to compute. In
most designs, these data values are brought from the main memory
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into the local cache (on a “cache miss”), and then read and computed
upon by the core. Further, a cache is agnostic to the values of these
elements before reading them from memory. Prior work from San
Miguel et al. [3] recognized that not all “new” data values are
required to be read from the memory (i.e., into the cache and then for
compute). Instead values of input data can often be approximately esti-
mated from a) the values of previously seen data elements and/or b)
the values of adjacent data elements in memory. The effectiveness of
such schemes is a function of program characteristics, domain error
tolerance, redundancy in input data, as well as the hardware design
(e.g., cache sizes, policies). To exploit this possibility, the authors pro-
pose methods to approximately infer these “new” data values from
existing “old” values in the cache, thus alleviating the high latency
and energy overheads of retrieving data from memory.

Outcome-Driven Approach. Over multiple contributions targeting
precise computing, Lepak and Lipasti [2] hypothesized that value
locality should be focused on outcomes. They suggested that while
value locality based optimizations have generally focused on effi-
cient and rapid processing of instructions, which is the means of
modern computing, they should instead be driven by the result of
the computation, which is the end goal of computing. Specifically,
Lepak and Lipasti [2] focused on reducing the redundant memory
traffic generated by silent stores, i.e., stores that write unchanged val-
ues to memory (and thus create no change to system state).

Comparison. Below we summarize the benefits and challenges of
outcome-driven value locality compared to an input-driven approach,
in the context of approximate compute.

Merits. @ An outcome driven approach has potential for higher
savings by eliminating entire computation slices (i.e., sequences of
operations that potentially consist of multiple inputs/loads and
compute operations, but ending in a single outcome/store). If exe-
cuted, these slices would end up producing only redundant or
approximately redundant outcomes. @ An outcome driven approach
is optimum for approximate computing since controlling the effi-
ciency-error trade-off should ideally be driven by the results of com-
putations (and not inputs to computations). ® As shown later on,
slices of computation often have a large number of inputs leading to
a single outcome. Moreover, many inputs often do not directly
impact the outcomes. Convolutions are classical examples wherein
multiplication of two matrices (weights / activations) produces a
single output. Further, the changing activations (or weights) would
not impact outcomes if, say in sparse scenarios, the corresponding
weights (or activations) are negligible/zero. Thus, for better control
of efficiency and error, assimilating the value locality of multiple
and/or non-impacting inputs is less favorable (and more challeng-
ing) compared to that of a single outcome.

Challenges. At the time of dynamic execution in hardware, deci-
sions regarding the (locality of an) outcome of a computation slice
might be made too late to provide considerable benefit. This is
especially true in high ILP processors in which outcomes of proxi-
mate older computations might only become available on cycles
very close to the computation of interest - thus making any out-
come based decisions impractical or less beneficial.

Our Proposal: ODIN. The discussion above highlights the merits
and challenges of an output-driven approach to value locality based
approximation. In this work, we pursue an outcome-driven + input-
navigated philosophy to value locality based approximation, so as to
benefit from the merits of being outcome driven, while overcoming
the challenges it imposes. In ODIN, computation slices” outcomes
are early-identified to be redundant or locally derivable, approximately
or otherwise. This is possible thorough input-navigation - the idea of
learning some form of mapping between the value locality charac-
teristics within inputs and that of the slice’s outcome. If an outcome
is deemed to be redundant or derivable, the corresponding
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Fig. 1. Left to Right: (a) Two computation slices fully executed, (b) Input-driven approximation eliminates 2 out of 3 loads in 2nd slice, (c) Optimal outcome-driven approxi-
mation eliminates the 2nd slice entirely and derives its store from the first slice, (d) Sub-optimal outcome-driven approximation is unable to eliminate much of the 2nd slice
due to late information flow from the 1st slice, (e) Optimal outcome-driven approach via intelligent learning of Load-Store value locality mappings.

computation slice can be eliminated and eliminating slices of opera-
tions (loads, compute and stores) results in significant improve-
ments to execution efficiency, in terms of both energy reduction and
performance speedup. The outcomes of these slices can instead be
derived nominally (for example, in memory) with minimal over-
head. Further, the locality of these outcomes and thus, the ability to
eliminate slices of computation, is dependent on application charac-
teristics and the prescribed error tolerance. The different scenarios
discussed here i.e., outcome and input based approximation, as
well as the ODIN approach, are illustrated in Fig. 1.
Contributions:

@®  We introduce a novel taxonomy for fundamentally catego-
rizing different types of value locality, applicable to both
input values and output values (Section 2).

® We characterize the value locality of two approximate
applications: dwt53 and 2dconvolution based on our tax-
onomy, highlighting the potential for the ODIN approach
(Section 3).

®  Assuming an ideal design, we present initial observations
on the benefits of value locality based approximation with
ODIN, for the aforementioned applications (Section 4).

®  We briefly discuss future directions to build an optimum
design to achieve the goals of ODIN. (Section 5).

Fig. 2 clearly highlights the potential benefits of our pro-
posal, at an outcome-driven approximation of 10 percent. Here,
more than 80 percent of the total program operations are elimi-
nated, resulting in proportional performance and energy effi-
ciency gains.

2 CHARACTERIZING VALUE LOCALITY

Without context, the meaning and benefit of value locality is often
lost. In this section, we put forth four properties that classify value
locality, which have wide spread potential benefits. These proper-
ties are further illustrated via Fig. 3.

A. Dimension. Along what locality dimension are the values correlated?

®©  Spatial: Meaningful correlation across (potentially sparse) data
elements in memory. Examples include multi-dimensional
patterns in data, specifically for image and video processing.

(a) Original Output

(b) Output with 10%
approximation (SNR = 17.89)

Fig. 2. DWT53: Precise versus Approximation w/ ODIN.

®  Temporal: Meaningful correlation between values loaded or
stored over time by the same instruction. For example, itera-
tive applications such as kmeans perform repeated nearly-
redundant computations once optimal solutions are reached.

B. Distribution. Over what granularity or periodicity over space/time
does the correlation exist/repeat?

The granularity can be adjacent values, alternate values or any
period N. For example, prior work [4] discussed that applications
like 2dconvolution show two periodic patterns, one with granu-
larity of '1” and the other with granularity of the row-size of the
processed image, when the image is stored in row-major order
(i.e., x-dimension is contiguous while y-dimension is spread
across rows).

C. Derivability. In what functional form are data elements correlated
or how can a specific element be derived from others?

©  Zero-order (same): The trivial scenario of the values being

constant - for example, always zero or one.
®  First order (Value is correlated): The values are correlated by
a simple function which makes next values predictable.
Examples are values repeating at certain stride.

®  Second order (Change is correlated): The values themselves
are not correlated but the rate of change is correlated
through simple functions (like constant slope).

D. Degree. At what amount/degree of approximation do the particular
value locality characteristics exist?

For instance, adjacent pixels in an image might exhibit spatial
value locality only under some approximation. Consider that these
pixels are close color shades of blue (sky). The value locality might
not exist at full accuracy since the pixels may not have the exact
same RGB value, but might exist under some approximation. In
our work we define approximation via bit quantization, i.e., drop-
ping lower significant bits.

3 ANALYZING APPLICATION VALUE LOCALITY

We analyze 2 approximate benchmarks from the PERFECT
suite [5], DWT53 and 2d-convolution, to demonstrate locality charac-
terization as well as benefits from ODIN.

Precise values  pqree: Values at 2-bit quantization

Values

Derivability: Fine second-order
correlation (i.e. constant slope)

N ~ Distri

ibution: Coarse periodicity of ‘N’

Memory Locations

Fig. 3. lllustrating the classes of value locality.
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Fig. 4. Load-Store Correlation of dwt53 at 1 percent approximation.

3.1 DWT53

DWT or Discreet Wavelet Transform computes a combination of
1-D transforms on image pixels, first on rows and then on columns.
The transform is a linear combination of neighboring pixels. Each
pixel is loaded along with its two neighbors, the transform is per-
formed and stored to memory. Hence, for each pixel three loads
are required.

We plot all three Loads and Stores for each pixel of the dwt53
computation slice against the address of each pixel (1080x1920) of the
image. We show a zoom into a particular range of addresses in Fig. 4.
These values are obtained with 1 bit quantization (discussed in Sec-
tion 2). We analyze the characteristics of the computation slice of
interest in terms of the value locality parameters defined previously:

O Dimension. We observe strong spatial locality as both loads and
stores show correlation across data elements in memory - periodic
repetitions of values at coarse granularity and constant (equalling
zero) values at fine granularities (for the store). Notice that there is
far less ‘noise” in the store locality, a common characteristic of many
approximate applications wherein a lot incoming signal noise is fil-
tered out. Thus the locality of outcomes i.e., stores is far more pro-
nounced than that of loads i.e., inputs. The input noise as well as the
sheer number of inputs are tougher to manage in terms of locality as
these computation slices become complex with more inputs.

®@ Distribution. We notice that the coarse grained repetitive
aspect of spatial locality is periodic in nature and in this particular
case the period is the row size of image, i.e., the similar values
repeat themselves in each row. Note that the periodicity of locality
can be different for different inputs for more complex applications
(as we will see with 2D-Convolution), and tracking or learning the
potentially different periodicity of multiple inputs is more chal-
lenging compared to that of a single output.

® Derivability.Within the shown address range, we observe the
coarse grained spatial locality to be of the first order i.e., the same
memory values repeat at the periodicity rate. The fine-grained spa-
tial locality over some regular portions of the address range are of
the zeroth order (constant, equalling zero). These are artifacts of
repeating pixel values across rows and columns over a significant
region of a image which become a constant single value under
some level of quantization (1 percent shown here).

Takeaways.First, while locality exists across both inputs and out-
comes, the locality is more pronounced in the outcomes, as irregu-
larities in inputs often get filtered out. Second, streams with
different locality characteristics are often intermingled with each
other and should be tracked/learned independently. Third, local-
ity can become more prominent under higher degrees of approxi-
mation by smoothing out system noise.

3.2 2d-Convolution

Next, we look at 2d-convolution which involves a convolution of
two matrices. In our case it is the input image with a 9x9 Gaussian
filter. It requires to load both filter values as well the input image

load value:1
load value:2
store value

Binned Values over time

14300 14400 14600 14800 15600 15200 15400 15600 15800

Time

Fig. 5. Load-Store Correlation of 2d-conv at 1 percent approximation. Dotted circle
highlights the closer correlation of store to 2nd load.

pixels, so as to perform the convolutional computation slice. The
benchmark uses 9x9 filter matrix, resulting in a total of 81*2=162
loads (both filter and pixels), per computation slice, and of course
only one outcome (i.e., store). Note that the characteristics of these
loads can be very different - while the filter is fixed throughout, the
image pixels can change from one frame to the next - presenting
more challenging input locality.

In Fig. 5, we show two loads and the store from the slice and
plot over time. Their characteristics are discussed below:

@ Dimension. There is a strong temporal locality across both the
loads and the store (i.e., values are repeated over time) but note
that store (i.e., outcome) locality is more significantly correlated to
the 2nd load than to the 1st load (dotted circle in Fig. 5). Moreover,
as mentioned earlier there are many filter-value loads which can be
of constant value, and hence do not exhibit similar locality charac-
teristics as the outcomes of the computation. This is in contrast to
DWT53 where all loads had a strong correlation with stores.

® Distribution. We again notice a coarse-grained periodicity
with a period equivalent to the size of rows.

® Derivability. Above, we noticed a coarse grained periodicity
(at the granularity of row size). In order to predict values at sub-
row granularity, we look to Fig. 6 which depicts the second order
of value locality i.e., slope (Rate of change) of loads and stores wrt
time. It is clear that slopes are constant over much of the fine
grained periods (i.e., at sub-row granularity), and these values can
be predicted based on their fixed rate of change.

Takeaways. First, in the presence of many inputs to a slice, it is
likely that some inputs are highly correlated to outcomes, while
some are not. This can also be dependent on the input values. Sec-
ond, in applications with simple computations such as accumula-
tion, it is possible to identify higher degrees of derivability in the
value locality such as constant rate of change.

4 ODIN: INITIAL OBSERVATIONS

Based on the above characterization of outcome value locality, we
can potentially derive the outcome of the slices without actually
executing the slice, thus gaining in terms of both performance and
execution efficiency. In this initial evaluation, we analyze the upper
bound of the fraction of computation slices that can be saved|eliminated
assuming a maximally ideal design. The ideal design is assumed to
be capable of a) identifying the derivability or redundancy of the
outcome of the slice prior to any operation within the slice (i.e.,
prior to the earliest load in the slice) and b) updating the outcome
of the slice to the appropriate value with no computational effort.
We study two scenarios. The first scenario assumes an infinitely
deep history i.e., any slice outcome can be derived from any prior
instance of the same outcome (if it exists), through an unlimited
history buffer. The second assumes a 4-deep history i.e., only the
most recent unique 4 outcomes are held in a 4 entry buffer. Thus, if
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Fig. 6. Rate of change of Loads/Store of 2d-conv at 1 percent approx.

any new slice’s outcome is expected to (approximately) match any
entry in the history buffer, that computation slice is eliminated.
Further, we sweep the degree of approximation, achieved via bit
quantization here, from 0 bit (precise) to 8 bits (complete approxi-
mation). The number of possible outcomes is influenced by the
degree of approximation - thus higher the degree, the greater is the
overall application error, but higher is the number of computa-
tional slices that can be ideally eliminated.

The analysis is presented in Fig. 7 which shows the computation
slices that can be eliminated /saved versus the accuracy of the appli-
cation shown in SNR. We show results DWT53 and 2d-convolution.
It is evident that roughly more than 50 percent of the application slices
can be eliminated, even for a limited buffer size, at reasonable accuracy
(e.g., at SNR = 30). At lower accuracy requirements, these numbers
grow higher. As noted at the start of this section these results are still
optimistic, but the opportunity for outcome-based approximation
is clearly evident.

5 DiscussioN AND FUTURE WORK

Target Applications and Domains. While we have performed a deep-
dive into two specific approximate applications, we observe the
applicability of ODIN to a variety of applications and domains. In
terms of the dimension characteristic, generally all error-tolerant
applications processing images have abundant spatial locality while
video processing applications show both spatial and temporal local-
ity. Coming to the distribution characteristic, at the minimum, these
applications have finely periodic distributions of locality i.e., similar
adjacent pixels of images and correlated adjacent pixels/frames of
videos. The derivability is usually very application specific - ML
applications which cause input features to vanish or saturate might
show zero-order derivability, streaming applications performing
independent operations over inputs might show first-order correla-
tion, while applications with accumulation operations might show
second-order derivability. Finally, the degree is dependent on the
requirements of the domain, the characteristics of the inputs and the
program structure of the applications as well. Outside of image/
video processing, we also observe potential in domains such as
graph processing, IOT, robotics and so on.

Challenges and Opportunity. We briefly outline challenges and
potential to build novel mechanisms to achieve our goals:

Output Locality Prediction. The main challenge is that we wish to
predict the locality of the outcomes of computation slices. For maxi-
mum benefit, this prediction should be performed early enough so
that the largest possible fraction of the computation slice can be elimi-
nated. There is potential to estimate the outcome locality based on
locality in slice input(s), with prediction / ML-based mechanisms.

Slice Elimination. Earlier the identification and removal of the
redundant slice, higher the possible benefits, but early action
requires a low overhead, fast reacting mechanism. Moreover, the
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Fig. 7. Computational slices eliminated versus application error. Red line corre-
sponds to the SNR shown in Fig. 2b.

mechanism should be overlaid on existing execution schemes with
minimal non-invasive instrumentation. There is potential to
explore instruction-removal mechanisms akin to prior work on
slipstream processors [6].

Output Derivation. Elimination of slices means that in scenarios
when outcomes are non-redundant but derivable from value local-
ity, some from of computation is required, potentially at some level
in the memory hierarchy. Ideas from in-cache compute, memoiza-
tion etc. are applicable.

6 CONCLUSION

In this paper, we propose an outcome driven approach to value
locality based approximation, which can provide tremendous ben-
efits to execution efficiency by eliminating entire slices of computa-
tions. At the same time there are challenges to such an approach
and we propose navigation/assistance from inputs to achieve an
optimal outcome-driven mechanism. We define a novel taxonomy
to classify value locality and analyze two approximate applications
based on this taxonomy. This taxonomy enables us to demonstrate
that the locality in outcomes i.e., stores, is more pronounced and
potentially easier to track in comparison to the inputs/loads. More-
over, it shows that correlation between specific inputs and out-
comes of the analyzed computations slices - which supports the
premise of input navigation. For our chosen applications, we quan-
tify the benefits of our proposal using an ideal mechanism with
oracle prediction. Finally, we discuss a preliminary design and
future directions to realistically implement this proposal.
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