
Modeling Architectural Support for Tightly-Coupled
Accelerators

David J. Schlais, Heng Zhuo, Mikko H. Lipasti
University of Wisconsin-Madison

schlais2@wisc.edu, hzhuo2@wisc.edu, mikko@engr.wisc.edu

Abstract—As proposed accelerators target finer-grained
chunks of computation and data movement, it becomes increas-
ingly important to couple them tightly with the processor, avoid-
ing long invocation delays. However, the large implementation
design space of these Tightly-Coupled Accelerators (TCAs) makes
it difficult to balance trade-offs between hardware complexity
and accelerator performance. Previous performance models for
accelerators focused on the penalties associated with loosely-
coupled accelerators, which abstracted away many of the fine-
grained interactions with complex out-of-order structures and
program behaviors that have large impacts on TCA performance.
In this paper, we introduce an analytical model that studies
TCA behavior when interacting with the core, in the context of
both high and low memory bandwidth applications supporting
various levels of speculative and out of order (OoO) execution.
Our analytical model reduces the turnaround time in early
design stages when estimating performance gains over detailed
simulation with tolerable error. We also discuss potential design
choices that can impede the benefits that come with TCAs, and
illuminate differences with traditional accelerators.

I. INTRODUCTION

When defining an instruction set architecture (ISA) for
processors, there is often a balance between creating more
complicated, specialized instructions for code density and/or
performance, and simpler instructions for generality. Com-
monly repeated software routines can evolve over time from
software functions to designated hardware units. For example,
floating point operations used to be calculated using floating
point software emulation. When workloads increasingly used
floating point operations, architects tightly integrated specific
hardware units to replace the slower software functions. A
more recent example is how the increase of matrix-matrix
multiplication on GPUs has led architects to create designated
4x4 matrix-matrix multiplication instructions and dedicated
hardware in the Nvidia Volta architecture called ’tensor cores.’
Jia et al. [1] analyze how closely these tensor cores approach
optimal theoretical throughput for matrix multiplication. Sim-
ilarly, SIMD extensions (e.g. [2]) can be viewed as the same
class of specialized hardware, where previously software-
defined loops of operations are replaced with designated wide
registers and operators.

Additionally, computer architects introduced hardware ac-
celerators to specialize very large algorithms and operations to
deliver expected performance improvements without violating
power budgets. These accelerators improve energy efficiency
over a processor’s general-purpose pipeline and increase per-
formance by trading off software flexibility for performance.

Fig. 1: High-level system diagram of a tightly-coupled acceler-
ator (TCA) integrated into an OoO core. Our studies evaluate
how requiring dispatch barriers or reorder buffer (ROB) drains
sometime has significant performance impacts.

Initial hardware accelerators often targeted very large tasks,
such as video encoding [3], graphics, etc. Then, loosely-
coupled sea of accelerators [4] became a model to accelerate
several different domains, which is now a widely adopted
approach in commercial products, such as mobile phones.

Naturally, as designers search for additional acceleration op-
portunities, they necessarily consider increasingly fine-grained
software tasks. For this reason, we see tightly-coupled acceler-
ator (TCA) proposals for heap management, hash maps, string
functions, and other fine-grained tasks [5] [6]. This general
trend has moved towards accelerating smaller algorithms and
groups of instructions, and is increasingly moving into the
realm of specialized functional units, similar to complex
instructions in a CISC (complex instruction set computer) ISA.

Prior work has identified key principles that drive the
increasing popularity of specialized hardware accelerators.
Nowatzki et al. [7] explains in detail the benefits that come
from accelerators, as well as the characteristics of tasks
that can greatly benefit from acceleration. Although their
discussion focused on coarse-grained accelerators, the same
principles are relevant for fine-grained acceleration.

This paper is a first attempt to address these principles,
design choices, and trade-offs in the context of TCAs. For the
rest of this paper, we define a TCA to be an accelerator that
is a hardware block that replaces a software function/routine,
is invoked via a dedicated ISA instruction, reserves an entry

1

Fig. 2: High-level analysis of program speedup for accelerators
invoked at different granularities using the novel analytical
model proposed in this paper. Markers for the granularity
of H.264 [3], Google’s TPU [8], GreenDroid [9], speech
recognition using STTNI [10], heap management [6] [5],
regular expression [6], string function [6], and hash map [6]
acceleration are estimated for points of reference. We insert
parameters into the model based on an ARM A72 processor,
assume 30% of code acceleratable, with an accelerator speedup
of 3x. Note that the TCA mode choice of full (L T), partial
(L NT and NT L), or no (NL NT) support for concurrency
between the accelerator and program execution has a larger
impact on program speedup in fine-grained accelerators.
These 4 modes are explained in detail in Section III.

in the reorder buffer (ROB), has in-order commit semantics,
and integrates with the processor’s register file and/or coherent
memory hierarchy. Fig. 1 shows a high-level diagram of an
example TCA integrated into an OoO core.

II. MOTIVATION

Prior TCA proposals often provide little discussion of how
these accelerators should be integrated into cores, leaving
a large design space to explore, with large differences in
power, area, and even performance. For example, the single
decision on whether or not the accelerator is allowed to execute
speculatively has trade-offs in performance, (by allowing the
core to take advantage of ILP around the accelerator), area,
and power. The performance increase provided by speculative
execution requires dedicated hardware in charge of rollback on
misspeculation, as well as register and memory dependency
resolution mechanisms.

One can imagine that when accelerating small chunks of
code (fine-grained acceleration), failing to support speculation
by forcing the processor to drain its ROB and/or stall dispatch
every time the accelerator is invoked can significantly impact
performance. The analytical model proposed in this paper
captures this expected result, as shown in Fig. 2. For very
coarse-grained accelerators, OoO support is less important for
speedup. For moderate granularity, full OoO support delivers
better speedup than coarse accelerators, since the ROB expe-
riences fewer stalls due to the long latency of the accelerator,
exposing more ILP for non-accelerated instructions. For fine-
grained scenarios, inadequate OoO support (NL NT) can lead

to slowdowns. This result motivates development of analytical
models that provide insight into these effects. Creating a high
level model (discussed in detail in Section III) allows the
designer to numerically estimate these impacts and make in-
formed design estimations as a first step prior to the laborious
development of a detailed simulator.

Prior accelerators focused on coarse-grained tasks, where
pipeline drains and fills created negligible impact on overall
speedup (see left-hand side of Fig. 2). For this reason, prior
work that models accelerator speedup such as LogCA [11]
focused on coarse-grained accelerators. The negligible perfor-
mance impacts from pipeline drains and fills were naturally
ignored in the model. LogCA also assumed that the CPU
was idle during accelerator execution, which similarly targets
coarse-grained accelerators. The Gables Model for SoC accel-
erators [12] focuses mostly on hardware resource utilization,
and estimating an accelerator’s overall speedup given the
architecture’s configuration, memory bandwidth available to
the accelerator, and computational complexity of the work
done by the accelerator per byte of data. This is a useful step
in order to estimate an accelerator’s speedup and could be
used in early design stages or even in conjunction with our
analytical model.

We show that at the granularity of many current accelerators
proposed in academic papers, different implementations have
a dramatic range of overall program speedup, where some
implementations can actually cause slowdown. Combining this
fact with the trend towards accelerating smaller, more fine-
grained tasks motivates the need for being able to accurately
estimate the differences in hardware implementations for var-
ious levels of speculative execution. Further impacts of the
ROB/OoO integration are discussed in subsequent sections.

Understanding the trade-offs between each implementation
will be an important step for choosing the optimal imple-
mentation based on the type of accelerator, processor archi-
tecture, program behavior, and desired metrics. However, to
our knowledge, no prior research has numerically evaluated
these trade-offs, leaving architects to either try to intuitively
predict the optimal implementation or spend a large amount
of time to design and test each potential implementation. We
create an analytical model to quantify these impacts. After
validating the model over various workloads and accelerators,
we discuss overarching trends in TCA design, and summarize
key conclusions. The novel contributions to this work are as
follows:

• Creating a first-order analytical model for estimating
the performance of fine-grained accelerators with and
without support for out-of-order (OoO) execution of
leading and/or trailing instructions (speculation and/or no
dispatch barrier)

• Validating the analytical model and comparing errors of
one synthetic and two realistic accelerators compared to
a cycle-accurate simulator.

• Describing design space considerations, takeaways, over-
arching trends, and conclusions from the analytical model
for architects to consider in building TCAs.

2

III. ANALYTICAL MODEL

When designing a TCA, the architect must decide whether
or not the accelerator is allowed to reorder its execution with
leading (L) and/or trailing (T) instructions. If the accelerator is
allowed to execute concurrently with L instructions, this means
that the accelerator is executing speculatively, since L may
contain unresolved branches or instructions that will raise an
exception. If the accelerator is allowed to execute concurrently
with T instructions, trailing instructions must know whether or
not they are dependent on the TCA’s output(s) through depen-
dency resolution hardware. The result of allowing concurrency
with L and T instructions is improved performance, but the
downside is the complications of designing hardware to ensure
program correctness. Papers have discussed the performance
benefits that can come from tightly-coupled accelerators [6]
[5], and it is often assumed that these accelerators allow full
out of order execution with respect to the rest of the program.
Specifically, speedup is usually estimated by replacing the
time spent within an acceleratable region with the accelerator
execution time, which assumes the core can maintain its OoO
execution rate around the accelerator (or in other words,
similar to having both L and T concurrency enabled). In
this section, we describe the hardware design changes needed
to operate in different modes of OoO execution, and the
equations our analytical model uses to predict performance
when operating in each mode. The full list of input parameters
used in are analytical model are shown in Table I.

Previous work from [13] shows how to create a mechanistic
first-order model for program performance based on interval
analysis. Specifically, performance is estimated by counting
events for branch mispredictions, ICache misses, TLB misses,
short/long DCache misses, etc. After adding penalties as-
sociated for those events, based on the processor/workload
characteristics, one can estimate the overall performance. One
of the key insights is: OoO performance modeling can be
simplified by looking at the throughput of useful instructions
dispatched in the (in-order) front end of the processor. Since
the TCAs described in this paper are invoked by inserting an
instruction through the normal pipeline of an OoO core, one
can view accelerator invocations as a new category of ’special
events’ that occur during program execution. Depending on
the implementation of the TCA, it may act like a branch
misprediction (zero useful dispatches until the accelerator
instruction commits), typical long-latency instruction, or new
type of event whose penalty is related to the window drain
and/or execution time of the TCA.

Our analytical model estimates overall performance changes
using interval analysis of either an entire program or region of
interest. For the rest of the paper, we discuss this in the context
of analyzing an entire program, but the process is identical
for a specific region of interest. Invocation frequency (v) is
calculated by dividing the number of accelerator invocations
by the number of total instructions. This variable represents the
rate of acceleratable tasks in the baseline program. Regardless
how these invocations are distributed throughout execution,

variable name
a % acceleratable code
v invocation frequency
IPC Instrctions / cycle
A Acceleration factor
sROB size of ROB
wissue issue width
tcommit commit stall

TABLE I: Analytical model parameters

the model predicts speedup assuming an even distribution
of accelerator invocations. The model also assumes that that
IPC of the core for non-acceleratable instructions is equal to
the average program IPC before acceleration, and speculative
accelerator instructions can begin execution as soon as they
are dispatched. Note that this assumption may be overly
optimistic for workloads with many dependencies between the
acceleratable and non-acceleratable instructions. The average
dispatch rate is also assumed to be equal to the IPC while the
core is not stalled, and 0 when the core is stalled. The model
also estimates the average non-acceleratable work to be evenly
distributed across accelerator invocations.

When integrating an accelerator into an OoO core, the
simplest hardware design eliminates concurrent execution of
instructions with the accelerator, while fully supporting OoO
execution will lead to the most complicated design. Partially
allowing OoO execution will fall somewhere in between. Fig. 3
shows an overview of the four different degrees of integration
we consider in this work.

The baseline assumes a full software implementation with
no invocations to the accelerator. The time can be estimated
by the number of instructions in the interval divided by the
average program IPC, as shown in (1).

tbaseline =
#inst

IPC
=

1

v ∗ IPC
(1)

Accelerator execution time can either be an explicitly pro-
vided latency inserted by the architect, or estimated by the
number of ’accelerated instructions’ divided by the accelerator
effective IPC (A*IPC). This comes out to be:

taccl =
#accl inst

A ∗ IPC

a

v ∗A ∗ IPC
. (2)

Similarly, we can estimate the execution time of non-
accelerated instructions in the core by taking the total number
of non-accelerated instructions and dividing it by the pro-
gram’s average IPC as shown in (3).

tnon accl =
1− a

v ∗ IPC
(3)

The rest of this section describes penalties specific to the
four different TCA implementations and how they are added
into our analytical model.

A. Non-Leading & Non-Trailing (NL NT)
We call this mode Non-Leading & Non-Trailing (NL NT),

since this mode does not (N) allow TCA execution to over-
lap with leading (L) instructions or trailing (T) instructions.

3

(a) NL NT (b) L NT (c) NL T (d) L T

Fig. 3: Example of effective ILP in the execute stage for a core with a TCA operating in four different modes. This figure
shows an interval with leading (L) instructions, trailing (T) instructions, and a single accelerator (A) instruction. The striped
sections show reduced ILP in the core caused by TCA mode. Interval analysis allows overall program execution to be estimated
by the execution of the average interval.

Specifically, a NL NT TCA must wait until all leading in-
structions commit, and all trailing instructions must stall in
the front end until the TCA commits. This simplifies the TCA
hardware design, in that the designer knows the processor will
never squash an in-flight TCA instruction. It does not have
to checkpoint internal states, since it will never have to roll
back. Similarly, no dependency checking hardware is required
in the accelerator, since the accelerator is never executing
simultaneously with other instructions.

For performance modeling purposes, as soon as the acceler-
ator is dispatched into the issue queue, the dispatch stage will
drop to zero useful instructions dispatched per cycle until the
ROB window drains as shown in Fig. 3. From the front end
perspective, this causes a penalty for ’window drain’ (tdrain)
time, plus the pipeline backend time to commit instructions
(tcommit). Drain time is based on the latency of the critical
path in a given ROB window size. Work from Eyerman et al.
[13] shows a power-law relation between window size and
critical path length for SPEC2006 benchmarks. Our model
allows the user to manually adjust the window drain time if it
is explicitly known for the target program, but by default will
estimate tdrain by knowing the program IPC and using the
power-law relationship to estimate the average critical path
length for the given ROB size. If tnon accl is smaller than
tdrain, denoting shorter instruction execution in the core than
the estimated drain time, tnon accl is used instead.

After the window has drained, the accelerator begins exe-
cution, but the dispatch rate of trailing (T) instructions will
still remain zero until the accelerator executes (taccl cycles)
and commits (for a second tcommit penalty). This second
barrier further simplifies the TCA hardware design, in that
the designer does not need to implement memory or register
renaming for accelerator outputs to eliminate false dependen-
cies in OoO execution of younger instructions. It also does not
require any data forwarding or dependency checks with respect
to the trailing (T) instructions. Adding these fill penalties of
length taccl and tcommit with the drain penalties of tdrain and
tcommit and results in a total NL NT execution time of:

tNL NT = tnon accl + taccl + tdrain + 2 ∗ tcommit. (4)

B. Leading & Non-Trailing (L NT)

We call this mode Leading & Non-Trailing (L NT), since
this mode allows TCA execution to overlap with leading
instructions, but no trailing instructions can be dispatched until
the TCA commits. Designing in this mode means that due to
the very nature of speculative execution, it is possible that
the processor squashes the TCA instruction during or after
execution due to a branch misprediction or other similar event.
The accelerator architect must guarantee any state changed by
the accelerator will be reverted to its previous state if squashed.

Because trailing instructions cannot execute concurrently
with the TCA, the front end stalls, dispatching no useful in-
structions until the TCA commits. From the front end perspec-
tive, no useful instructions are dispatched for taccl + tcommit

cycles. Adding this penalty to the baseline gives us the total
execution of the (L NT) mode shown in (5).

tL NT = tnon accl + taccl + tcommit (5)

C. Non-Leading & Trailing (NL T)

We call this mode Non-Leading & Trailing (NL T), since
this mode does not allow TCA execution to overlap with
leading instructions but does allow the trailing instructions to
be dispatched immediately after the TCA instruction, even as it
waits for younger instructions to drain. Hence, non-dependent
trailing instructions can execute before the TCA finishes, or
even begins execution. This requires the architect to guarantee
dependence checks for registers and memory locations that the
TCA will modify. This dependency check can be done through
modifications of existing structures such as the load/store
queue (LSQ) and register renaming and forwarding logic.

Our model predicts that the front end can continue dis-
patching useful instructions until the ROB (potentially) fills
up during accelerator execution. The front end can issue
wissue instructions per cycle until the ROB becomes full. The
accelerator will have a delayed execution start of tdrain while
the ROB drains. If taccl + tdrain + tcommit is greater than
the ROB fill time (tROB fill =

sROB

wissue
), then the front end

will stall for every cycle after that until the TCA instruction
commits. The time that the core will stall in this NL mode
can then be estimated using (6).

4

tNL ROB full = MAX(0, tdrain+taccl+tcommit−tROB fill)
(6)

The total execution in the NL T mode will be the greater of
the accelerator’s (delayed) execution time or the core execution
time with its penalties.

tNL T = MAX(tnon accl + tNL ROB full,

taccl + tdrain + tcommit)
(7)

D. Leading & Trailing (L T)

We call this mode Leading & Trailing (L T), as it allows
both the TCA to execute speculatively, as well as trailing
instructions to be dispatched while the TCA is executing. This
mode will have the best performance, since under normal
operation, the dispatch stage can continually dispatch use-
ful instructions. In order to prevent any dispatch stalls, the
core/TCA must be able to roll back on misspeculation, and the
control logic must enforce register and memory dependences
correctly between the TCA and both L and T instructions.
From the front end perspective, there is a continuous dispatch
of instructions and there are no penalties unless the accelerator
execution time is long enough to fill the entire ROB. However,
unlike the case in NL T, the accelerator begins execution
immediately, and is not delayed for tdrain cycles. Therefore,
the ROB full time is slightly different:

tROB full = MAX(0, taccl − tROB fill). (8)

In this mode, the CPU’s traditional execute units will have
the highest utilization while the TCA is executing. The total
execution time becomes:

tL T = MAX(tnon accl + tROB full, taccl). (9)

E. Bringing it all together

Analytical models that include variables and terms that are
easily understood can be helpful from an intuitive standpoint.
They can provide important general understanding by enabling
limit studies and analysis of theoretical upper/lower bounds.
They also can help provide early-stage design guidance and
performance estimates without running detailed simulations.
The key factors identified above regarding support for overlap-
ping TCA execution with leading and/or trailing instructions
can dramatically affect the overall speedup, but speedup is
also highly dependent on the characteristics of the individual
accelerator. We use the analytical model to show all estimated
speedups for all four models.

The model attempts to capture the duration of front end
stalls dispatching into the ROB based on architecture, ac-
celerator, and program properties for each of the four levels
of speculation. By incorporating these TCA overheads in a
mechanistic program model of the CPU front end similar to
[13], we use interval analysis to estimate program speedup. On
average, the CPU issues roughly IPC useful instructions per
cycle, but can drop to 0 when the TCA forces a ROB drain

or ROB fill penalty as described in Sections III-A through
III-D and summarized below. The overall speedup can then
be estimated by comparing the execution time and penalties
in all four accelerator modes to the baseline implementation.

• Reorder buffer drain (NL modes): The modes requiring
the ROB drain will have an accelerator dispatch stall time
equal to the window drain time. The window drain time
can be explicitly entered into the formula or estimated
based on ROB window size and program behavior as
described in [13]. However, if T instructions are allowed
to issue OoO, the core front end does not see a drain
penalty until after the ROB is full of T instructions before
the accelerator commits.

• Reorder buffer fill (NT modes): The duration of the
fill penalty for modes that do not allow trailing in-
structions to execute concurrently with the accelerator is
associated with the duration of the accelerator execution
time. Early in the design cycle, this accelerator latency
can be estimated, or it can be exact if the accelerator
design is already well defined. Until the accelerator is
done dispatching, executing, and committing, no further
instructions can be dispatched.

IV. METHODOLOGY

To validate our analytical model, we use the cycle-accurate
simulator gem5 [14]. We test our model over a synthetic
microbenchmark to measure error over many different accel-
erator/workload scenarios, followed by experiments with heap
management and matrix multiplication microbenchmarks to
test real-world proposed accelerators that have both low (heap
accelerator) and high (matrix accelerator) memory bandwidth
requirements.

We replace acceleratable code of the compiled benchmarks
with a special accelerator instruction. The NL drain and NT
dispatch penalties are modeled by setting flags in gem5 for
the accelerator, either to be a non-speculative instruction or
to serialize the pipeline and not allow younger instructions
to be dispatched until commit. Accelerator instructions issue
all memory requests needed required to execute, assuming
ability to issue contiguous loads for sizes up to 64B (same
width as an AVX-512 register). An accelerator instruction
is not considered committed until all memory and compute
(micro)operations of the accelerator have committed.

Our synthetic heap microbenchmarks do not contain de-
pendencies between the acceleratable and non-acceleratable
code, and the matrix-multiplication only has dependencies
from memory loads/stores. As long as the processor has a
large enough window, we assume in the analytical model that
the core can continue executing useful instructions while de-
pendencies are resolved (unless the ROB fills). The accelerator
is assumed to have its own compute resources and does not
need to arbitrate for functional units in the core. However,
all memory requests required by the accelerator pass through
arbitration for shared access to the core’s LSQ and memory
hierarchy. Priority is granted based on age (program order).

5

We first test our model with a sweep of microbenchmarks
which varies over many different invocation frequencies and
percentage of acceleratable code to validate over many dif-
ferent scenarios. The accelerator instructions (or acceleratable
code in the baseline case) are randomly distributed within the
program to see how our model performs while violating our
assumption of uniform TCA distribution. Each point in Fig.
4 represents a separate workload instance with a differing
number of acceleratable instructions replaced by accelerator
invocations. This provides us several different workload sce-
narios to compare our analytical model against. After gaining
confidence in the model over a variety of scenarios and
accelerator designs, we then focus on both heap management
and matrix-matrix multiplication accelerators to test more
realistic TCAs.

Malloc and free calls in the TCMalloc library were eval-
uated to take about 39 and 20 cycles (69 and 37 x86 uops),
respectively [15]. The proposed heap manager accelerator has
single-cycle latency, which we assume in our model as well.
Our heap microbenchmarks randomly perform malloc and free
calls throughout the benchmark for the desired percentage of
acceleratable code under the constraint that the heap accel-
erator will always have a pointer to return on malloc calls
and always have an available entry for free calls (the common
case).

Matrix-matrix multiplication accelerators are currently
available in some of today’s cores. NVIDIA’s Tesla and Turing
GPUs have tensor cores capable of computing 4x4 half-
precision matrix-matrix multiplication. The Tesla-based Volta
as described in [16] shows the major throughput improvements
that this TCA can provide. They perform 4x4 matrix-matrix
multiplications through the register file, with 4x4 FP16 input
registers. Limited information is given on whether loading
the 4x4 input registers happens through separate (vector) load
instructions with coalescing, if the entire matrix is loaded and
stored as 4x4 sub-matrices, or loaded through other means. In
order to support arbitrary 4x4 matrix loads and operations,
we take an educated guess that these registers are filled
through gather operations of matrix load instructions, while
the resulting product matrices are written back to memory via
scatter operations.

Our tested matrix multiplication accelerators act similarly
but with a few differences. Instead of operating through
the register file, our implementation of matrix multiplication
operates through memory loads and stores, since current CPUs
do not have dedicated 4x4 matrix registers. This allows us
to simulate matrix multiplication acceleration without making
significant ISA and microarchitectural changes. By making the
requests through memory rather than registers, we can easily
adjust our instruction to be able to accelerate 2x2, 4x4, and 8x8
matrix multiplication sizes with minor architectural changes in
the core apart from the TCA itself. This allows us to test our
model over various accelerator designs.

However, one downside to this approach is that Volta’s
implementation of register-based acceleration will allow eas-
ier reuse of the output matrix for accumulation, while our

Fig. 4: Error of our analytical model speedup prediction com-
pared to gem5 simulation of a synthetic microbenchmark while
varying the number of accelerator instructions (increasing
invocation freq and % acceleratable code).

implementation of outputs require redundant loads and stores
through memory. Additionally, our implementation has sepa-
rate load instructions for each matrix row, as opposed to the
register-based separate sub-matrix storage which can be loaded
in a single instruction. However, Volta’s registers appear to
be filled through multiple loads prior to invoking the matrix
multiply [16], incurring a similar load latency to ours.

V. MODEL VALIDATION/VERIFICATION

A. Adaptive Microbenchmark

We first validate our model through an adaptive microbench-
mark that varies program and accelerator parameters. As
we increase the number of accelerator instructions, we are
increasing both the invocation frequency and the percent
of acceleratable code. By randomly placing the accelerator
instructions within the baseline microbenchmark, the compiler
creates slightly different optimizations, slightly varying the
program’s base IPC in each resulting microbenchmark. This
also helps compare the simulated versus analytical speedup
when the benchmark does not match the model’s first-order
assumption of evenly distributed accelerator instructions. We
end up testing over a wide variety of program behaviors with
both low and high frequency of accelerator invocation and
determine that our analytical model typically has less than
5% error (see Fig. 4), giving us confidence to test real-world
applications as well.

B. Heap Manager TCA

We then applied this same method to current accelerator
proposals, starting with the heap management accelerator.
This accelerator contains hardware tables to store a subset
of the free lists tracked by the the TCMalloc library, and
provides accelerated (single-cycle) calls to both malloc and
free. We built a microbenchmark that allocated from one
of 4 different class sizes (0-32B, 33-64B, 65-96B, or 97-
128B). The baseline executes the TCMalloc operations by
invoking software library calls to the heap manager. For the
accelerator, since the overwhelming majority of requests hit
in the accelerator, we assume that the accelerator will never
have to fall back to the software subroutine. By inserting

6

(a) Analytical model speedup (b) Gem5 simulation speedup (c) Error of analytical model

Fig. 5: Error of our analytical model in predicting accelerator speedup of heap microbenchmarks with different frequency of
malloc/free function calls, each with 4 different TCA implementations. The NL T line closely follows L T. The highest error
occurs at high invocation frequency, but still remains within a 10% error for a vast sweep of TCA invocation frequencies.

accelerator instructions in place of these function calls, we
see increasing speedup as the frequency of malloc and free
requests increase. Although our model has slightly higher error
at higher invocation frequencies (up to 8.5% as seen in Fig. 5),
we can still observe the same general trends of the effect that
each of the 4 TCA modes has on overall program execution.
This shows that our model still correctly predicts overarching
trends for this workload.

C. Matrix-matrix multiplication TCAs

Since many machine learning and artificial intelligence
applications involve matrix-matrix multiplication, we decided
to further test our analytical model with different hardware
accelerators with different size matrix-matrix operations. We
created a software harness to calculate a 512x512 double-
precision matrix-matrix multiplication. A naive implementa-
tion would do the entire multiplication in one triply-nested
loop. However, since the two input matrices and output matrix
have a total memory footprint of 6MB, much larger than the
L1 D-cache (typically on the order of 32kB), there would be
significant thrashing in the L1 cache that would limit temporal
reuse. To optimize the algorithm to a L1 D-cache of 32kB, we
calculate the 512x512 double-precision floating point matrix
multiplication through 32x32 sub-matrix blocks at a time. The
two input and output sub-matrices now only require 24kB,
and all accesses to elements of these matrices should hit in
the L1 D-cache after the first access. We can calculate a
32x32 output sub-matrix partial product by multiplying the
two input matrices together. The partial product will continue
accumulating by multiplying the next 32x32 sub-matrices in
the larger 512x512 input matrices. After 16 32x32 sub-matrix
multiplications, the first 32x32 sub-matrix in the 512x512
output matrix will be fully calculated. Our performance results
are based on the time it takes to calculate the the full 512x512
output matrix.

Within the 32x32 matrix multiplication operations, we im-
plemented an element-wise software kernel (our baseline),
as well as accelerators that can directly multiply-accumulate
2x2, 4x4, and 8x8 sub-matrices. These accelerators all request
memory addresses for the cache lines that they will need to

Fig. 6: Acceleration of a 512x512 dense matrix multiplication
through 32x32 sub-matrix blocking. Speedup is shown on a
logarithmic scale. ’Meas’ denotes measured speedups of gem5
simulation and ’Est’ denotes our analytical model estimated
speedup, both relative to execution time of a software element-
wise multiplication. Note the same general shape of the
measured vs estimated speedup of the 4 different TCA imple-
mentations for the 2x2, 4x4, and 8x8 DGEMM accelerators.

access to do their computation. Within each of the accelerators,
we also model the 4 different TCA implementations (NL NT,
NL T, L NT, and L T).

As we can see from Fig. 6, our analytical model captures
the general trends for all 4 TCA implementations. However,
we see that the analytical model is slightly pessimistic for the
non-L T modes. Our error reaches as high as 44%. Although
such errors seem rather high, they are being amplified by the
very large speedups in these scenarios, and our model still
accurately predicts the right relative trends, enabling valuable
insights to accelerator design without the need for highly
accurate absolute speedups.

As we consider the overall execution time of the 3 different
accelerator designs and 4 different TCA implementations, note
that there is a larger absolute difference in execution time
between the 4 different modes of the 2x2 accelerator than the
4x4 and 8x8 accelerators. This is because the overall program
speedup is much smaller in the 2x2 TCA case, increasing the
absolute penalty. By the time we get to the 4x4 and 8x8 sub-

7

(a) HP - L T (b) HP - NL T (c) HP - L NT (d) HP - NL NT

(e) LP - L T (f) LP - NL T (g) LP - L NT (h) LP - NL NT

Fig. 7: Heatmap of speedups (red) and slowdown (blue) when sweeping over percent acceleratable code and invocation frequency
(logarithmic scale). We map the locations heap manager and GreenDroid (GD) accelerators would fall over workloads with
different % acceleratable code. The 2 rows from top to bottom show a mid-high performance (HP) OoO core, and low
performance (LP) OoO core. The 4 columns from left to right are the TCAs operating in modes L T, NL T, L NT, NL NT.

matrix multiply-accumulate cases, the larger speedup from the
accelerator amortizes the cost of the drain and fill penalties.

VI. ANALYTICAL MODEL USE CASE

We want to use our analytical model to gain valuable in-
sights into both existing and previously proposed fine-grained
accelerators. In this section, we apply our model to the heap
manager accelerator and to GreenDroid functions. GreenDroid
[9] proposes mapping common functions in Mobile SOC
workloads to TCAs with shared access to the L1 D-cache.
This provides a use case of relatively fine-grained acceleration
(hundreds of instructions) where we can use our analytical
model to gain further insights.

The GreenDroid work shows the percentage of dynamic
code execution that is run inside the given function, as well as
the static number of instructions in that accelerator invocation.
However, dynamic code execution increases both when (a) the
function contains loops, increasing the number of dynamic
instructions for each invocation, and (b) when the function
is called more frequently. If the function has no loops and
executes straight through, the function will have the largest
invocation frequency. However, if the functions iterate many
times per invocation, the accelerator will be called less often.
In this analysis, we consider only the 9 functions described in
[9] and assume straight-through execution of the functions for
the highest invocation frequency case.

We apply our first-order analytical model varying 2 param-
eters (invocation frequency and percent acceleratable code)
to create a 2D heatmap shown in Fig. 7. Red locations
represent program speedup, blue areas represent program
slowdown, and darker shades represent higher magnitudes
of speedup/slowdown. We test over each of the 4 modes,

as well as using processor characteristics from both a high
performance core (1.8 IPC, 256 entry ROB, 4-issue) and low
performance core (0.5 IPC, 64 entry ROB, 2-issue). We use
the power-law analysis from [13] to estimate critical path
instruction length from ROB size. We use the fixed-function
accelerators from the heap manager, as well as estimate
locations of GreenDroid functions and map where they lie on
the 2D map. Each point on the curve represents the invocation
frequency required to achieve a certain percent of acceleratable
code. For example, a fixed-function accelerator will have to be
invoked more frequently to obtain greater coverage (percent
acceleratable code). Since Greendroid is motivated by energy
efficiency rather than performance, we assume a much lower
acceleration factor of 1.5x.

The curve for the heap accelerator is shown for reference of
a more fine-grained accelerator than the GreenDroid functions.
Using the analysis from our model, we make the following
observations:

1) High performance core vs. Low performance core: The
comparison between the first row and second row of Fig. 7
tells us that high performance cores are more sensitive to
different modes of TCA. The first reason is that fixed-function
accelerators will have higher relative acceleration factors on
low performance cores due to the slower baseline execution
time. Additionally, penalties arising from not allowing OoO
execution are relatively higher on a high performance core
due to the larger ROB size and drain penalties. Thus, architects
should pay close attention to OoO integration when designing
TCAs for high performance cores. For low performance cores,
the impact on OoO integration is less severe.

2) Fine-grained vs. less fine-grained: Fine-grained accel-
erators need to be careful about slowdown, especially for NT

8

modes. Although both accelerators are fine-grained compared
to conventional accelerators, Greendroid is less fine-grained
than the heap manager. Consequently, for GreenDroid accel-
eration, the TCA implementation mode is less important, as
the plots never cross into the slowdown range for these input
parameters into our model. However, the heap manager is fine-
grained enough that if it only achieved an acceleration factor
of 1.5x in a HP core, it experiences slowdown when operating
in the NT modes.

3) Limits of the model: Because it is a first-order analytical
model, many details are omitted and these have the potential
to mislead a designer. For example, from comparing L T and
NL T mode, one may draw conclusion to not implement the
L T design, since it leads to a more complicated hardware
design with little performance gain. Here, the penalties from
non-speculative execution of TCA instruction are visually
similar, since the core can usually cover the overheads with
other OoO execution. This may be because of our assumption
made in Section IV that IPC remains constant when the
core is not stalled, regardless of dependencies. When there
are many dependencies between the core and accelerator, the
accelerator has a longer latency before it can begin execution,
and core IPC will likely drop until the dependencies are
satisfied when the accelerator completes execution. This could
create a significant difference in practical use depending on
the actual accelerator and workload. When using malloc/free,
explicit dependencies between instructions will lead to no-
ticeable slowdown in the absence of speculation support for
TCA invocations, e.g. when younger instructions wait for a
malloc pointer. This is a shortcoming of our simple, fast, and
easy first-order model, and represents a very typical trade-
off between a model’s level of abstraction and its ability
to capture every aspect of execution. Our model generally
makes a reasonable prediction, but it is important to understand
scenarios where it may fall short.

VII. DISCUSSION

Accelerators typically have two primary functions: to in-
crease performance and/or increase energy efficiency over the
general-purpose core. For the case of the primarily energy
efficiency-motivated accelerators, the overall speedup may not
seem important. However, even in this case, our model can de-
tect the areas in which non-L T modes start creating program
slowdowns. It is important for these accelerator designers to
make sure these points are avoided for both performance and
energy reasons. Program slowdown requires the core to run
longer, increasing the amount of static energy consumed by
the core, eroding the energy gains created by the accelerator.

For accelerators motivated by speedup, our analytical model
quantifies costs associated with partial or full elimination of
OoO execution. From this model, we can see that the higher
the invocation frequency of the accelerator and the smaller the
region of acceleratable code, the worse the relative penalty that
arises from not supporting full OoO execution.

We also learn from our model that high-performance cores
have the largest discrepancies between the 4 different modes.

Fig. 8: Analytical model predicted speedup for a TCA of 100
instructions with a speedup factor of 2. Note that the maximum
speedup does not occur at 100% acceleratable code, since
concurrency exists between the core and TCA in OoO modes.

This is exacerbated for several reasons. First, the drain penal-
ties are larger because ROB size is bigger. Second, the
pipeline depth is longer in high performance cores, further
increasing the drain and fill penalties. Lastly, barrier penalties
are relatively higher because a fixed-latency accelerator has
less relative acceleration in a high performance core than for
a low performance core, making an effectively longer barrier
penalty. Similarly, the overall speedup factor is higher for low
performance cores. This means that designing accelerators for
low-performance cores, perhaps for energy purposes, designers
may decide to forgo accelerator complexity of L T implemen-
tation with little overall impact on performance. This reduction
of complexity will also further decrease power consumption
of the accelerator.

We also learn from the analytical model that very coarse-
grained acceleration and workloads with a high percentage of
acceleratable code are less sensitive to the execution mode.
Once the duration of the acceleratable code is on par with
the latency of the longest instruction dependency chain in the
processor window, the non-L T modes begin having more
substantial differences across the four modes. In the case
of large portions of work being offloaded, such as the 8x8
matrix multiplication, the overall penalties of non-speculation
are limited. Smaller portions of work that are offloaded, such
as 2x2 matrix multiplication and heap manager accelerators
have increased performance sensitivity and motivate tightly-
coupled OoO execution.

Our model also helps us come to an interesting conclusion
about a new form of concurrency that arises from supporting
full OoO execution (L T mode) for TCAs. We can see from
Fig. 8 that a TCA with an acceleration factor of A = 2
can give the program a speedup of 3. OoO execution allows
concurrency between the core and accelerator executing at the
same time. This means that the maximum obtainable speedup
when introducing a TCA is not just A, but actually A + 1.
The peak overall speedup of 3 occurs when 67% of code is
acceleratable. This is because for an accelerator with A = 2,
work is evenly distributed between the TCA and the core when

9

the accelerator has 2x more work to execute than the core. For
A = 5, the peak occurs when 5x more work is offloaded to the
accelerator, or 5

6 of the workload. Beyond this point, offloading
more work to the accelerator diminishes performance, as the
core becomes underutilized. Our model also shows maximum
concurrency cannot be obtained when introducing dispatch
stalls, non-speculative accelerator execution, and/or when the
ROB fills up. As a side note, even in these cases, our model
can still estimate where the highest possible concurrency is
reached for the given input parameters. We also see interesting
behavior in the NL T mode, where a speedup local maximum
is reached at a lower % acceleratable code, since the concur-
rency is maximized when the TCA latency plus delayed start
(tdrain) is equal to core execution time. After this point, the
TCA execution time plus delay determines overall speedup. At
first, offloading more work to the TCA slows down execution
due to work imbalance, but eventually the global maximum
is reached once enough code is offloaded from the core to
reduce the core’s ROB drain time (tdrain approaches 0 as the
program approaches 100% acceleratable code).

VIII. FUTURE WORK

In this work, we have discussed the performance evaluation
for TCAs. However, each of the implementations require
different hardware, each with various area and power costs. In
order to create a more complete evaluation, a pareto-optimal
curve of design implementations could show the trade-off be-
tween hardware costs, performance, and which (if any) design
implementations fall outside of the curve and should not be
considered. This paper assumes the ability to integrate with
existing core structures such as the register file and memory
cache hierarchy. Further microarchitectural analysis would be
beneficial in determining the specific implementation details
required to integrate various TCAs of different input/output
requirements into core structures such as the register file and
memory cache hierarchy.

Since each TCA has slightly different requirements, in order
to easily integrate new TCAs into the same core, it may be
beneficial to define a standard interface between each element
of the core. This could allow more application-specific cores
with faster turnaround and lower costs and effort towards
processor design and validation.

On a different note, since misspeculation can cause addi-
tional delay penalties on the core, and branch mispredictions
are the most common cause of misspeculation, partial TCA
speculation (such as only speculating when on an instruction
path with high-confidence outstanding branches) could also be
a possible implementation for a design somewhere between the
L and NL modes described in this work.

IX. CONCLUSION

In this paper, we describe and validate a model that es-
timates TCA performance with various levels of OoO exe-
cution. The model shows that for increasingly fine-grained
accelerators, allowing OoO execution around the accelerator
can have significant impacts on overall performance. Through

this model, we also evaluate likely candidates for TCAs, and
calculate different speedups based on implementation. Even
with very different workloads, ranging from high memory
and low memory applications, as well as high invocation
frequency, the analytical model seems to show reasonable
error and allow a designer to make general conclusions about
specific accelerators. Through this, we show robustness in our
analytical model.

X. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful feed-
back. This work was supported in part by the National Science
Foundation under grants CCF-1615014, CCF-1628384, and
CCF-1813434.

REFERENCES

[1] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
nvidia volta gpu architecture via microbenchmarking,” arXiv preprint
arXiv:1804.06826, 2018.

[2] Intel, Intel Architecture Instruction Set Extensions and Future Features
Programming Reference, April 2019.

[3] Y.-W. Huang, B.-Y. Hsieh, T.-C. Chen, and L.-G. Chen, “Analysis,
fast algorithm, and vlsi architecture design for h. 264/avc intra frame
coder,” IEEE Transactions on Circuits and systems for Video Technology,
vol. 15, no. 3, pp. 378–401, 2005.

[4] Y.-T. Chen, J. Cong, M. A. Ghodrat, M. Huang, C. Liu, B. Xiao, and
Y. Zou, “Accelerator-rich cmps: From concept to real hardware,” in
Computer Design (ICCD), 2013 IEEE 31st International Conference
on, pp. 169–176, IEEE, 2013.

[5] S. Kanev, S. L. Xi, G.-Y. Wei, and D. Brooks, “Mallacc: Accelerating
memory allocation,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 33–45, ACM, 2017.

[6] D. Gope, D. J. Schlais, and M. H. Lipasti, “Architectural support
for server-side php processing,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, pp. 507–520, ACM,
2017.

[7] T. Nowatzki, V. Gangadhan, K. Sankaralingam, and G. Wright, “Pushing
the limits of accelerator efficiency while retaining programmability,” in
High Performance Computer Architecture (HPCA), 2016 IEEE Interna-
tional Symposium on, pp. 27–39, IEEE, 2016.

[8] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, et al., “In-datacenter
performance analysis of a tensor processing unit,” arXiv preprint
arXiv:1704.04760, 2017.

[9] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio,
P.-C. Huang, M. Arora, S. Nath, V. Bhatt, J. Babb, et al., “The greendroid
mobile application processor: An architecture for silicon’s dark future,”
IEEE Micro, vol. 31, no. 2, pp. 86–95, 2011.

[10] G. Shi, M. Li, and M. Lipasti, “Accelerating search and recognition
workloads with sse 4.2 string and text processing instructions,” in
Performance Analysis of Systems and Software (ISPASS), 2011 IEEE
International Symposium on, pp. 145–153, IEEE, 2011.

[11] M. S. B. Altaf and D. A. Wood, “Logca: a performance model for
hardware accelerators,” IEEE Computer Architecture Letters, vol. 14,
no. 2, pp. 132–135, 2015.

[12] M. Hill and V. J. Reddi, “Gables: A roofline model for mobile socs,”
in 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 317–330, IEEE, 2019.

[13] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanis-
tic performance model for superscalar out-of-order processors,” ACM
Transactions on Computer Systems (TOCS), vol. 27, no. 2, p. 3, 2009.

[14] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[15] D. Gope, Architectural Support for Scripting Languages. The University
of Wisconsin-Madison, 2017.

[16] J. Choquette, O. Giroux, and D. Foley, “Volta: performance and pro-
grammability,” IEEE Micro, vol. 38, no. 2, pp. 42–52, 2018.

10

