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Abstract—Recently, the field of adversarial machine learning
has been garnering attention by showing that state-of-the-art
deep neural networks are vulnerable to adversarial examples,
stemming from small perturbations being added to the input im-
age. Adversarial examples are generated by a malicious adversary
by obtaining access to the model parameters, such as gradient
information, to alter the input or by attacking a substitute model
and transferring those malicious examples over to attack the
victim model. Specifically, one of these attack algorithms, Robust
Physical Perturbations (RP2), generates adversarial images of
stop signs with black and white stickers to achieve high targeted
misclassification rates against standard-architecture traffic sign
classifiers. In this paper, we propose BlurNet, a defense against
the RP2 attack. First, we motivate the defense with a frequency
analysis of the first layer feature maps of the network on the LISA
dataset, which shows that high frequency noise is introduced
into the input image by the RP2 algorithm. To remove the
high frequency noise, we introduce a depthwise convolution layer
of standard blur kernels after the first layer. We perform a
blackbox transfer attack to show that low-pass filtering the
feature maps is more beneficial than filtering the input. We then
present various regularization schemes to incorporate this low-
pass filtering behavior into the training regime of the network
and perform white-box attacks. We conclude with an adaptive
attack evaluation to show that the success rate of the attack drops
from 90% to 20% with total variation regularization, one of the
proposed defenses.

Index Terms—Adversarial Robustness, Adversarial Defense

I. INTRODUCTION

Machine learning has been ubiquitous in various fields like

computer vision and speech recognition. [13], [15] However,

despite these advancements, neural network classifiers have

been found to be susceptible to so called adversarial images

[28]. These images are created by altering some pixels in the

input space so that a human cannot distinguish it from a natural

image but a deep neural network will misclassify the input

[12]. This obviously has severe implications considering the

rise of self-driving cars and computer vision systems being

installed in industrial applications.

To this end, we are interested in exploring a defense to the

attack proposed in Robust Physical-World Attacks [11]. In that

work, the authors designed a general attack algorithm, Robust

Physical Perturbations (RP2) to generate visual adversarial

perturbations which are supposed to mimic real-world obstacles

to object classification. They sample physical stop signs from

varying distances and angles and use a mask to project a

computed perturbation onto these images. On a standard

classifier for road signs, their attack is 100% successful in

misclassifying stop signs.

Many defenses use spatial smoothing [17], [18], [32] as

means to stamp out the perturbation caused by adversarial

attacks. Unfortunately this approach is not always effective

if the perturbation is in the form of a piece of tape on a

stop sign. To verify this, we plot the Fast Fourier Transform

(FFT) spectrum of a vanilla and perturbed stop sign in Figure

1. Qualitatively, there does not seem to be any significant

difference between the two spectra making filtering the input

a questionable defense.

In this paper, we explore introducing low-pass filtering to

the feature maps in the first layer of the network. The main

idea is to curb the spikes in the feature map caused by the

perturbations by convolving them with a standard blur kernel

or via regularization. This will squash the spikes at the expense

of attenuating the signal at the output layer. We begin by giving

an overview of the RP2 algorithm and some background on

machine learning security. In section 3, we discuss details of

adding a filtering layer to dampen high frequency perturbations

and perform a blackbox evaluation of RP2 compared with

input filtering. In section 4, we propose various regularization

schemes for the network to learn the optimal parameters to

incorporate the low-pass filtering behavior: using the L∞ norm,

total variation minimization [25], and Tikhonov regularization

using smoothing regularization operators [24]. We then perform

a white-box evaluation with RP2 and find that the best

performing algorithms are total variation regularization and

Tikhonov regularization, which reduce the attack success rate

from 90% to 17.5% and 10% respectively compared to the

baseline classifier. In section 5, we test the upper bounds of each

of the defense methods proposed with a specialized adaptive

attack for each defense. We observed that the robustness for

the Tikhonov regularization dropped by 30% and that the total

variation regularization is the truly robust solution with the

attack success rate capped at 20%.

II. BACKGROUND

A. Problem definition

Consider a neural network to be a function F (x) = y,

such that F : Rm → R
n, where x is the input image and

m = h ∗ w ∗ c such that h,w, c are the image height, image

width, and channel number and n is a class probability vector

of length of number of classes denoting the class of the image.
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Fig. 1. The frequency spectrum of an unperturbed and perturbed stop sign
with a sticker attack. The spectrum has been log-shifted and normalized.
Frequencies close to the center correspond to lower frequencies and those that
are near the edges correspond to higher ones. Observing the spectrum of the
stop sign does not give a clear indication where the perturbations from the
stickers lie. Yellow corresponds to regions with most information content.

The goal of an attack algorithm is to generate an image, xadv ,

so the classifier output mislabels the input image in this manner,

F (xadv) �= y. The attack success rate is defined as the number

of predictions altered by an attack, that is, 1
N

∑N
n=1 [F (xn) �=

F (xnadv)]. Another metric to characterize the attacker’s success

is the dissimilarity distance between natural and adversarial

images,

1

N

N∑

n=1

||x− xadv||p
||x||p .

where p can take different values depending on the norm

chosen; we restrict ourselves to the L2 case. An adversarial

attack is considered strong if the attack success rate is high

while having a low dissimilarity distance.

B. Robust Physical Perturbations Attack

We provide a description of the threat model that was

considered when developing our defense. This algorithm is

restricted to the domain of road sign classification, focused

on finding effective physical perturbations that are agnostic to

unconstrained environmental conditions such as distance and

the viewing angle of the sign. This is called the Robust Physical

Perturbation Attack, known as RP2. RP2 is formulated as a

single-image optimization problem which seeks to find the

optimal perturbation δ to add to an image x, such that the

perturbed input x′ = x+ δ causes the target classifier, fθ(·) to

incur a misclassification: minH(x+ δ, x), s.t.fθ(x+ δ) = y∗

where H is a chosen distance function and y∗ is the target

class.

To solve the above constrained optimization problem, it

must be reformulated in Lagrangian-relaxed form [5]. This

threat model differs from all the others [5], [12], [16] in

that the noise introduced must be concentrated on a specific

region of image. In the context of road sign classification, an

attacker cannot alter the background of the scene so is therefore

constrained to the sign itself. To mimic this effect, a binary

mask, Mx, is multiplied with the perturbation, δ, to concentrate

the perturbation onto the sign. Since the perturbation is printed

in the real world, we need to account for fabrication error,

which ensures that the perturbation produced is a valid color

in the physical world. This is quantified by the non-printability

score(NPS), defined by Sharif et al. [26] given by:

NPS =
∑

p̂∈R(δ)

∏

p′∈P
|p̂− p′|,

where P is a set of printable colors and R(δ) is the set of

RGB triples used in the perturbation.

The final formulation of the optimization of the perturbation

is presented as follows:

argmin
δ

λ‖Mx · δ‖p +NPS+

J(fθ(xi + Ti(Mx · δ)), y∗). (1)

Here, Ti is an alignment function for the masked perturbation

that is used to account for if the image, xi, was transformed

so it can be placed optimally; J is the cross-entropy loss of

the classifier. For the distance metric in || · ||, both the L1 and

L2 norms can be considered. More details on the algorithm

can be obtain from [11].

C. Transferability and Adaptive Attacks

Another aspect of these adversarial attack algorithms is the

transferability property. The idea behind transferability is that

adversarial examples that are generated from a model where all

the parameters are known, can be transferred over to another

model that is not known to the attacker. It has been shown

these transferability attacks can be performed between different

classes of classifiers such as deep neural networks(DNNs),

SVMs, nearest neighbors, etc. [21] The motivation for black box

attack models arises from this property wherein the adversary is

aware of the defense being deployed but does not have access

to any of the network parameters or the exact training data

[6]. This is the most difficult threat setting for the adversary

to operate under as opposed to a white-box setting, in which

all the information about the model parameters are known.

According to Athalye et al. [2], [4], in order to evaluate any

defense that lacks provable guarantees, it is necessary to modify

the attack algorithm so that the defense’s effectiveness is tested

against new attacks under the specified threat model. This

can be done by modifying the attacker’s loss function. In this

paper, for every new defense method we explore, we attempt

an adaptive attack to capture the true robustness of the defense.

D. Dataset and Model

We adopt the setup from [11] by examining the LISA dataset

[1] and a standard 4 layer DNN classifier in the Cleverhans

framework [20]. LISA is a standard U.S traffic sign dataset

containing 47 various signs, but since there exists a large class

imbalance, we only consider the top 18 classes, just as [11].

The network architecture is comprised of 3 convolution layers

and a fully-connected layer. We train all the classifiers for 2000

epochs with the ADAM optimizer with β1 = 0.9, β2 = 0.999,

and ε = 10−8. We evaluate our defense based on a sample set

of 40 stop sign images provided by [11] in their github repo.
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Fig. 2. The FFT Spectrum of a subsampling of feature maps from the first
layer of the network. Each row corresponds to one unique feature map. The
first column is the spectrum of feature maps of an unperturbed stop sign.
The second column corresponds to the spectrum of feature maps of a stop
sign with the sticker attached. The third column is a difference between the
unperturbed and perturbed spectrum. Finally, the fourth column is a blurred
version of the difference spectrum. Values were normalized.

III. MOTIVATION

We begin by analyzing the effects of adding a sticker via

the RP2 algorithm via observations of the feature maps of

the classifier. Understanding differences in activations in both

natural and adversarial examples can inform the design of an

appropriate defense strategy. When we visualize the feature

maps, we can observe an unwanted spike from the activation

maps from the first layer in the spatial location where the mask

is inserted over the sign. These spikes are large enough that

as the activations propagate through the network they cause

the classifier to misclassify the input [12], [33]. Based on the

assumptions of the threat model, the perturbation is constrained

to be on the stop sign, which suggests that the neighboring

values around the region of the perturbation are dissimilar

in the activation map. In general, we would normally expect

smooth transitions in the activation map of images; that is,

neighbor activations within some spatial window should have

approximately similar values. As a motivating example, we

applied a standard 5x5 low-pass blur kernel over each of the

feature maps. As a result of applying the filter the impact of

the spike was substantially smaller.

This initial analysis motivates us to propose a defense that

applies a set of low-pass filters to the output of first layer of

the network. For isolated spikes that are caused by adversarial

perturbations, low-pass filters are a natural fit for smoothing out

unexpected spatial transitions in the activation maps. We focus

exclusively on the feature maps after the first layer since spatial

locality of the perturbation is still preserved. We insert these

filters by performing a depthwise convolution on the feature

maps to ensure that the filters are applied independently to

each channel [7].

To evaluate the efficacy of inserting the depthwise convolu-

tion layer, we transform the feature maps into the frequency

domain by computing the Fast Fourier Transform (FFT) of the

natural image, adversarial image, and their respective blurred

images, as shown in Figure 2. The spectrum is on a log-

scale and shifted so points close to the center correspond

to lower frequencies and points near the edges to higher

frequencies. Based on Figure 2, most of the high frequency

artifacts introduced from the perturbations were removed. We

do observe some low-frequency components that were induced

by the attack, but the influence from these, compared to the

high frequency spikes, is much lower.

TABLE I
RESULTS FROM BLACK BOX EVALUATION

Accuracy Attack Success Rate
Baseline 100% 90%

Input filter 3x3 100% 87.5%
Input filter 5x5 100% 67.5%

3x3 filter on L1 maps 100% 65%
5x5 filter on L1 maps 87.5% 17.5%

A. Filtering the Input vs. Filtering the feature map

A natural question to ask is what is the motivation for

filtering the feature maps over applying the blur kernel over the

input image. Our hypothesis is that filtering at the input layer

does not remove the perturbation at similar window sizes as

filtering the feature maps. To test this hypothesis, we perform

a black box transferability attack by generating adversarial

examples on the vanilla network and transferring them over

to the same model with a blurring filter at the input and one

on the feature maps. For our transfer attack, we evaluate the

accuracy on a subset of the unperturbed natural stop signs and

then measure the attack success rate on the perturbed stop

signs with λ = 0.002 and ran for 300 epochs. Our results are

shown in Table I. As seen in Table I, for lower kernel sizes,

while blurring the input does not have much of an impact

on the accuracy, it is not effective in alleviating the noise

introduced by RP2. Compared to blurring the input, adding

the blur kernels to the features generated by the first layer

seems to effectively reduce the attack success rate at some

cost in accuracy. This result motivates an attempt to alter the

training regime so it learns the gain parameters in the filter

implicitly, rather than setting them to predefined known values,

so that robustness can be maintained at a minimal accuracy

loss.

B. Evaluating under a different threat model

Before proceeding onto the white box evaluation that

we present in Section IV, we are interested in seeing the

performance of the defenses under the standard ε-bound pixel-

based adversaries. We choose the traditional PGD attack [19]

as our adversary, with ε = 8.0/255, step size, α = 0.01 and 10

steps. The results are reported in Table IV in the Supplementary

Material. Unsuprisingly, all the defenses are broken under the

assumption that the adversary can manipulate any arbitrary

pixel since our defenses rely on the perturbation being localized

on the subject and that neighboring features should be similar

to each other. This finding suggests that there does not exist one

broad defense to all attacks but rather suggests that defenses

should be tailored to defend a restricted class of attacks instead.

IV. LEARNING THE FILTER PARAMETERS

From the previous section, we see that filtering the feature

maps is an effective scheme at discarding the perturbations
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introduced from RP2. However, the side effect of naively

inserting a layer of low-pass filters is that the confidence of

the prediction is reduced. In certain application domains such

as autonomous vehicles, low confidence predictions from the

classifier may not be acceptable. For correcting the reduction

in the confidence, we seek to incorporate an additional loss

term into the training of the classifier. We explore several

different options for loss terms: L∞ norm on the weights of

the depthwise layer (added filter layer), total variance(TV)

minimization applied to the feature map (no added layer) [25],

and Tikhonov regularization [24].

A. Depthwise Convolution Layer

To emulate the effect of adding a layer of low pass filters,

the L∞ norm is an apt choice for the depthwise weights. This

will ensure that the weights in the kernel take similar values

to act much like a low pass filter. The resulting loss that is

minimized, where K is the number of channels in the input, is:

min α
K∑

j=1

‖Wdepthwise[:, :, j]‖∞ + J(fθ(x, y)). (2)

In our white-box evaluation, we explore the effect of filter

width on the effectiveness of the attack algorithm.

B. Total Variation Loss Term

We introduce the TV loss term into the optimization

algorithm for the classifier, without adding an additional

depthwise convolution to the network. Total variation of the

image measures the pixel-level deviations for the nearest

neighbor and minimizes the absolute difference between those

neighbors. For a given image, the TV of an input image x is

given as:

TV (x) =
∑

i,j

|xi+1,j − xi,j |+ |xi,j+1 − xi,j |. (3)

We omit the depthwise convolution layer from the network and

instead let the first layer of the network learn to filter out the

high-frequency spikes in its feature map. Defining F as the

set of feature maps after the first layer, the final optimization

objective is given as:

min αTV
1

N ·K
N∑

i=1

K∑

i=1

TV (F [i, :, :, k]) + J(fθ(x, y)), (4)

where N and K are the batch size and the number of output

channels, respectively. Intuitively, TV removes effects of details

that have high gradients in the image, effectively targeting the

perturbations introduced by RP2 for denoising. TV encourages

the neighboring values in the feature maps to be similar so the

high spike introduced by RP2 would be diminished.

C. Tikhonov Regularization

In our last method, we propose two variants based off of

Generalized Tikhonov Regularization. The general form for

Tikhonov is given usually given as

min μ||L · w0||2 + J(fθ(x, y, w0)), (5)

where w0 is some parameter of the model, μ is the regulariza-

tion parameter, and L is the regularization operator [24] and

is the identity matrix in the L2 regularization case. Similar to

the TV loss terms, we attempt to induce low-pass filtering by

applying regularization to the first layer feature maps. We do

this by selecting a regularization operator L which penalizes

high frequency components in the feature maps. The two

operators are as follows:

• The operator Lhf = (I − Lavg), where Lavg is a matrix

which transforms the input into its moving average and

consequently, Lhf extracts the high frequency components

and gets minimized.

• The operator L+
diff , where Ldiff is a difference matrix

which approximates a derivative operation. When the

difference matrix approximates a derivative operation, its

pseudoinverse approximates an integral operation and is

thus a low pass filter [24]. These are known as smoothing

operators. We compute this pseudoinverse and perform

an elementwise multiplication to apply it to the feature

maps.

Borrowing notation from above, the actual objectives being

minimized are given as:

min αhf
1

N ·K
N∑

i=1

K∑

i=1

||Lhf · F [i, :, :, k]||2

+ J(fθ(x, y)) (6)

min αpseudo
1

N ·K
N∑

i=1

K∑

i=1

||L+
diff · F [i, :, :, k]||2

+ J(fθ(x, y)) (7)

Both of these will be referred to as Tikhf and Tikpseudo

respectively. Similar to the other defenses, this regularization

scheme should enforce the property that lower frequency

representations should be more emphasized in the feature maps.

To reiterate, there are no changes to the model architecture;

the defense is coming from the first layer weights.

D. White-Box Evaluation

We perform a white-box evaluation and sweep the hyperpa-

rameters in the attack algorithm, λ and the attack target, y∗.
Our results are reported in Table II. In the white-box setting,

the attacker has access to all the model parameters as well as

the classification output. The main goal of the evaluation is to

detect if the attack algorithm is able to introduce perturbations

with the knowledge of the model parameters. The legitimate

accuracy corresponds to the accuracy on the test set. We ran

the attack algorithm for 300 epochs. When we sweep the

parameters, we find that the attack target is the parameter

most sensitive to increasing the success rate of the attack and

is relatively invariant to λ. Certain attack targets are more

amenable to attacks because there may be steeper gradients

of the loss function with respect to those target labels. The
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TABLE II
RESULTS FROM WHITE BOX EVALUATION

α Legitimate Acc. Average Success Rate Worst Success Rate L2 Dissimilarity
Baseline 0 91% 49.18% 90% 0.207

Gaussian aug (σ = 0.1) - 84.3% 19.44% 62.5% 0.238
Gaussian aug (σ = 0.2) - 84.4% 55.97% 80% 0.196
Gaussian aug (σ = 0.3) - 85.6% 21.39% 25% 0.198

Rand. sm (σ = 0.1) - 84.3% 19.3% 67.5% 0.236
Rand. sm (σ = 0.2) - 84.4% 55% 70% 0.189
Rand. sm (σ = 0.3) - 85.6% 22.5% 22.5% 0.198

Adv-train - 77.9% 11.94% 20% 0.244
3x3 conv 10−5 86.3% 30% 55% 0.201
5x5 conv 0.1 86.3% 24.11% 47.5% 0.189
7x7 conv 0.1 87% 11.61% 30% 0.203

TV 10−4 85.6% 7.92% 17.5% 0.224
TV 10−5 82.3% 8.47% 30% 0.199

Tikhf 10−4 84.5% 5.416% 10% 0.214
Tikpseudo 10−6 83.6% 13.9% 35% 0.222

legitimate accuracy refers to the accuracy on the test set and the

average success rate is the attack success rate averaged across

all other 17 classes (excluding the true label). We also report

the best case scenario for the attacker and the L2 dissimilarity

distance.

We use Randomized Smoothing [3] as a baseline to compare

our low-pass filtering methods. In their paper, Cohen et. al [8]

leverage the classifier trained with Gaussian-augmented noise

to obtain a new smoothened classifier which gives provable

guarantees on the accuracy of the classifier. Intuitively, it can

be interpreted that this augmentation is acting like a smoothing

operation by drowning the adversarial perturbations, making it

an appropriate method for baseline comparison. We took 100

MC samples when evaluating the forward prediction on the

augmented images. We also use standard PGD-Adversarial

training as a baseline comparison with an L∞ adversary

with ε = 8/255 and step size, α = 0.1 with 7 steps of

gradient descent [19]. For each epoch, we train on 50% on

clean examples and the other half on Adversarial examples.

One potential explanation to why these traditional pixel-based

defenses do not perform as well is that they were developed

under a different threat model and were not designed to defend

against this type of attack, which further supports the point no

universal defense exists against all attacks.

We find that the Tikhf and TV minimization loss term

has superior performance compared to all the other methods,

bringing the attack success rate down to 10% and 17.5%

respectively. Tikhf is able to directly minimize high frequency

components which is why the success rate is lower than the

success rate for total variation regularization. TV is effectively

encouraging the first convolutional weight to not only act as

a feature extractor but also to stifle high variations coming

from the input. For the depthwise convolution layer with the

L∞ norm regularizer, as the width of the filter increases, the

network is able to attenuate the attack success rate because a

large window from the surrounding neighbors will be able to

smooth out the perturbation. However, the TV loss is better

than applying the L∞ as it is directly able to influence the

weights to behave like a low-pass filter rather than indirectly

through the L∞ norm. The Tikpseudo model has comparable

performance to the 7x7 depthwise convolution. A plausible

reason why Tikpseudo performs slightly worse is because it

is an approximation of a low-pass filter, rather than the other

methods which take a more direct approach against the high

frequency components in the feature maps.

V. ADAPTIVE ATTACKS

After presenting the whitebox evaluation, we perform

adaptive attacks for each of the defenses proposed to obtain an

upper bound on the attack success rate. We do this by changing

the loss function of the attacker to reflect what training or

architectural changes we made to make the model more robust.

We make sure to follow guidelines outlined in [29] to show

that we properly evaluate our defenses.

A. Low Frequency Attack on Depthwise Convolution

We begin by trying to introduce low-frequency perturbations

by restricting the δ parameter to a low-frequency region with

a mask, Mdim. We follow Yash et al. [27] by applying the

Direct Cosine Transform (DCT) to the masked perturbation,

argmin
δ

λ‖Mx · δ‖p + J(fθ(xi+

Ti(IDCT (Mdim ·DCT (Mx · δ)))), y∗). (8)

where the default dimension selected was 16. The results from

the low frequency attack is report in Table III. We observe

that the adaptive attack on the 3x3 kernel did not significantly

change, although the robustness of the 3x3 kernel was not as

effective. The 5x5 kernel’s performance was greatly diminished

such that the worst case attack success rate jumped from 47.5%

to 75%.

In the 7x7 case, the attack did not produce an upper bound

on the attack success rate. This could be due to the fact that

the mask used was not restrictive enough for the 7x7 adaptive

to succeed. In Figure 3, we vary the dimension of Mdim to

try to increase the effectiveness of the attack. We observe that

when Mdim is size 8x8, the attack success rate increases to

35% showing that the adaptive attack is effective but not by
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TABLE III
RESULTS FROM ADAPTIVE ATTACK EVALUATION

Average Success Rate Worst Success Rate L2 Dissimilarity
3x3 conv 22.91% 52.5% 0.546
5x5 conv 46.25% 75% 0.539
7x7 conv 10.416% 20% 0.539

TV (10−4) 8.33% 20% 0.044
TV (10−5) 6.11% 25% 0.046

Tikhf 23.6% 47.5% 0.147
Tikpseudo 17.5% 45% 0.141

a large margin showing that using Linf regularized depthwise

convolution is effective even against dynamic adversaries under

the RP2 threat model. When we observe the difference in the

images between the white-box and adaptive attacks, we see that

in the adaptive Adversarial examples the pixels in the sticker

region tend to resemble values closer to their neighboring

values.

B. Attack on Total Variation, Tikhonov Regularized Models

For our adaptive attacks on our regularized models, we adapt

the loss function of the attack to include details on how the

model was trained. Specifically, we add the regularizer that

the model was trained with to the attacker’s loss function. We

execute this attack on TV-regularized models, Tikhf model and

the Tikpseudo model which are shown below. We abbreviate the

previous loss terms in the attack objective as ladv for brevity.

argmin
δ

ladv +
1

N ·K
N∑

i=1

K∑

i=1

TV (F [i, :, :, k]), (9)

argmin
δ

ladv +
1

N ·K
N∑

i=1

K∑

i=1

||Lhf · F [i, :, :, k]||2, (10)

argmin
δ

ladv +
1

N ·K
N∑

i=1

K∑

i=1

||L+
diff · F [i, :, :, k]||2. (11)

We note the results of our adaptive attack in Table III. We

experimented with adding a regularization parameter to the

additional term in the attack objective, but we found that this
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Fig. 3. The impact of the DCT mask dimension on the adaptive attack success
rate for 7x7 depthwise convolution.

reduced the performance of the attack so we omitted these

results. From the white-box evaluation, it seemed that the most

robust model was Tikhf ; however, upon conducting the adaptive

attack, we can see the robustness for Tikhf drop by nearly

30% whereas TV (10−4) suffered only a 2.5% performance

degradation. Tikpseudo’s worst case success rate was 10% over

the white-box evaluation. Clearly, the truly robust model is TV,

maintaining low attack success rate even against a dynamic

adversary. Under the RP2 threat model, this result shows

that performing filtering operations on the feature maps gains

significant robustness with minimal accuracy loss.

One of the possible reasons why Tikhonov regularization

did not produce robust models could be due to the choice of

the regularization operators. In the case of Tikhf , increasing

the effective averaging window of the operator Lavg would be

more aggressive in filtering, potentially at the cost of accuracy.

For Tikpseudo, [24] discusses using a weighted pseudoinverse

with the input (feature maps) may be a better approximation

of a low pass filter. Intuitively, a superior approximation of the

filter would be calculated with knowledge of the input rather

than only a fixed regularization operator.

VI. CONCLUSION

We performed spectral analysis of feature maps and saw

that attacks introduce high-frequency components, which are

amenable to low-pass filtering. Our proposal introduced a

simple solution of adding low-pass filters after the first layer of

the DNN. We compare with this with blurring the input image

and show that blurring at the feature level can confer some

robustness benefit at the cost of some accuracy by performing

a black-box transferability attack with RP2. To compensate for

the loss in accuracy, we explore various regularization schemes:

adding a depthwise convolution, total variation minimization,

and Tikhonov regularization and show that we can recover

the loss in accuracy while retaining significant robustness

benefit under a white-box evaluation. Against the RP2 attack,

we showed that our defense can perform better than more

traditional defenses against norm-bound adversaries such as

[8], [19]. We empirically show the upper bounds of these

methods by performing an adaptive attack on the defense. In

the future, we hope to explore if BlurNet would still be robust

against different kinds of physically realizable attacks.
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VII. SUPPLEMENTARY MATERIAL

A. Inserting filters in higher layers

We choose only to look at the feature maps after the output

of the first layer. We explored adding filters into higher layers of

the neural network and we find that these reduce classification

accuracy. We hypothesize the reason for this accuracy loss is

that the higher layers in the network naturally contain high

frequency information. We verify this hypothesis by computing

the Fast Fourier transform of the activations maps of the higher

level convolutional layers given in Figure 4. From Figure 4, we

can see that the magnitude spectrum shows that the difference

between higher and lower frequencies is not pronounced. If a

low pass filter is introduced at this level in the network, too

much information is lost for the DNN to make a meaningful

prediction. In order to maintain classification accuracy, high

frequencies in the feature maps should not be squashed. Adding

a set of filters to the higher levels of the network is also difficult

to justify from a semantic perspective, since the spatial locality

of the features is not preserved, as the the receptive field of

the neurons in upper layers is wider and even discontinuous

due to non-unit convolution strides and/or max-pooling layers.

B. Plots of the ASR vs. L2 dissimilarity over all targets

In Figure 5 and 6, we plot the L2 dissimilarity distance

against the attack success rate to show the variation of each

defense methods across the target labels. We find that TV and

Tikhonov loss terms have less variation than the other depthwise

convolution layers. TV and Tikhf proposed outperformed the

Gaussian baseline both in terms of both average and worst
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case success rate and L2 dissimilarity distance. 7x7 depthwise

convolution and Tikpseudo were only outshown by 5% by the

best Gaussian augmented model (σ = 0.3) for the worse case

attack success rate while having better average attack success

rates and L2 dissimilarity distance. Empirically, these results

show performing smoothing and filtering operations on the

feature maps rather than the input is more effective.

Fig. 4. The FFT Spectrum of a subsampling of feature maps from the second
layer of the network. These feature maps were obtained from a normal stop
sign. The high values indicated at the edges of the spectrum suggests that
higher frequency information is relevant to maintain decent classification.

C. Comparing Adversarial Training To Adaptive Attacks

In Table V, we compare adversarial training against the TV

adaptive, Tikhf and Tikpseudo attacks. Adversarial training is

able to outperform all the defenses we proposed besides the

TV-regularized defence. This evaluation shows that there is an

advantage using total variation regularization in the case of the

RP2 attack over adversarial training, further reinforcing the

point that no universal defense exists for all threat models. We

would also like to emphasize that performing adaptive attacks

steps outside the RP2 threat model in that manipulating input

pixels falls outside the domain of stickers on a subject.

D. Related Work

Many kinds of defenses have been proposed in the machine

learning security literature. There seems to have been two kinds

of approaches to developing defenses: robust classification and

detection. Robust classification refers to the classifier being able

to correctly classify the input despite the perturbation whereas

detection refers to a scheme of identifying if an example has

been tampered with and rejecting it from the classifier. Recently,

detection methods have seen much more popularity than robust

classification (our method belongs to the latter class). However,

in certain domains such as autonomous vehicles, it is not always

feasible to reject the input from classifier.

1) Adversarial training: Adversarial training is the tech-

nique of injecting adversarial examples and the corresponding

gold standard labels into the training set [12], [19], [28]. The

motivation of this methodology is that the network will learn

the adversarial perturbations introduced by the attacker. The

problem with adversarial training is that it doubles the training

time of the classifier as new examples need to be generated.

Moreover, as shown by Papernot et al., adversarial training

needs all types of adversarial examples produced by all known

attacks, as the training process is non-adaptive [23]. Our method

can be paired with any of these types of defenses. In their paper,

Xie et al. [31] used feature denoising along with adversarial

training to boost the performance of the network. While the

spirit of the prior work is similar, some differences between

Fig. 5. Plot of the L2 Dissimilarity Distance against the Attack Success Rate
for varying convolution widths and TV regularization. Lower and to the right
is better.

Fig. 6. Plot of the L2 Dissimilarity Distance against the Attack Success Rate
for Tikhonov-regularized models and Gaussian augmentation. Lower and to
the right is better.

this method and ours is that in our defense was designed under

a different threat model in which we are focused on removing

high frequency components in the first level feature maps. We

enforce this behavior explicitly by including it in the training

process whereas in the prior work it was embedded into the

model as an architectural element. Since this method is paired

with adversarial training, it is unclear on what robustness of the

denoising operation is providing by itself, making it difficult to

compare to our method which does not involve any adversarial

training.

2) Input transformations: Most previous work has applied

some type of transform to the input image. In their paper, Guo

et al. use total variance minimization and image quilting to

transform the input image. They use random pixel dropout

and reconstruct the image with the removed perturbation [14].

Dziugaite et al. examined the effects of JPEG compression

on adversarial images generated from the Fast Gradient Sign

Method (FGSM) [10], [12]. They report that for perturbations

of small magnitude JPEG compression is able to recover some

of the loss in classification accuracy, but not always. Xu et
al. introduce feature squeezing, a detection method based on

reducing the color bit of each pixel in the input and spatially

smoothing the input with a median filter [32]. In their paper,

Li et al. propose detecting adversarial examples by examining

statistics from the convolutional layers and building a cascade
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TABLE IV
PGD RESULTS EVALUATION

Attack Success Rate L2 Dissimilarity
Baseline 100% 0.53
3x3 conv 100% 0.512
5x5 conv 100% 0.502
7x7 conv 100% 0.511

TV (10−4) 100% 0.455
TV (10−5) 100% 0.437

Tikhf 100% 0.464
Tikpseudo 100% 0.443

TABLE V
EVALUATING ADVERSARIAL TRAINING AGAINST ADAPTIVE ADVERSARIES

Average Success Rate Worst Success Rate L2 Dissimilarity
TV adaptive attack 5.85% 27.5% 0.046

Tikhf attack 17.6% 18% 0.148
Tikpseudo attack 15% 17.5% 0.150

classifier. They discover that they are able to recover some of

the rejected samples by applying an average filter [17]. Liang

et al. looked at using image processing techniques such as

scalar quantization and a smoothing spatial filter to dampen the

perturbations introduced. The authors introduce a metric, which

they define as image entropy, to use different types of filters

to smooth the input [18]. We stress that the key difference

between these approaches and the proposed methods is that we

focus on applying these smoothing techniques through model

changes and regularization on the feature maps rather than the

input.

3) Other Defenses: Gradient masking refers to the phe-

nomenon of the gradients being hidden from the adversary

by reducing model sensitivity to small changes applied to

the input [22]. These can be due to operations that are

added to the network that are not differentiable so regular

gradient based attacks are insufficient. Another class of gradient

masking includes introducing randomization into the network.

Stochastic Activation Pruning essentially performs dropout

at each layer where nodes are dropped according to some

weighted distribution [9]. Xie et al. propose a randomization in

which the defense randomly rescales and randomly zero-pads

the input to an appropriate shape to feed to the classifier [30].

However, as Athalye et al. have shown in their paper, gradient

masking is not an effective defense since the adversary can

apply the Backward Pass Differential Approximation attack, in

which the attacker approximates derivatives by computing the

forward path and backward path with an approximation of the

function. Even against randomization, the authors introduce

another attack, Expectation over Transformation (EOT), where

the optimization algorithm minimizes the expectation of the

transformation applied to the input [2].
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