

Brown carbon production by aqueous-phase interactions of glyoxal and SO₂

David O. De Haan,¹* Kevin Jansen,² Alec D. Rynaski,¹ W. Ryan P. Sueme,¹ Ashley K.

Torkelson,¹ Eric T. Czer,¹ Alexander K. Kim,¹ Michael A. Rafla,¹ Audrey C. De Haan,¹ Margaret A. Tolbert²

6 1: Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San
7 Diego, California 92110, United States

8 2: Cooperative Institute for Research in Environmental Sciences, and Department of Chemistry
9 and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States

10 * Corresponding author E-mail: ddehaan@sandiego.edu, (619) 260-6882, (619) 260-2211 fax

11

12

13

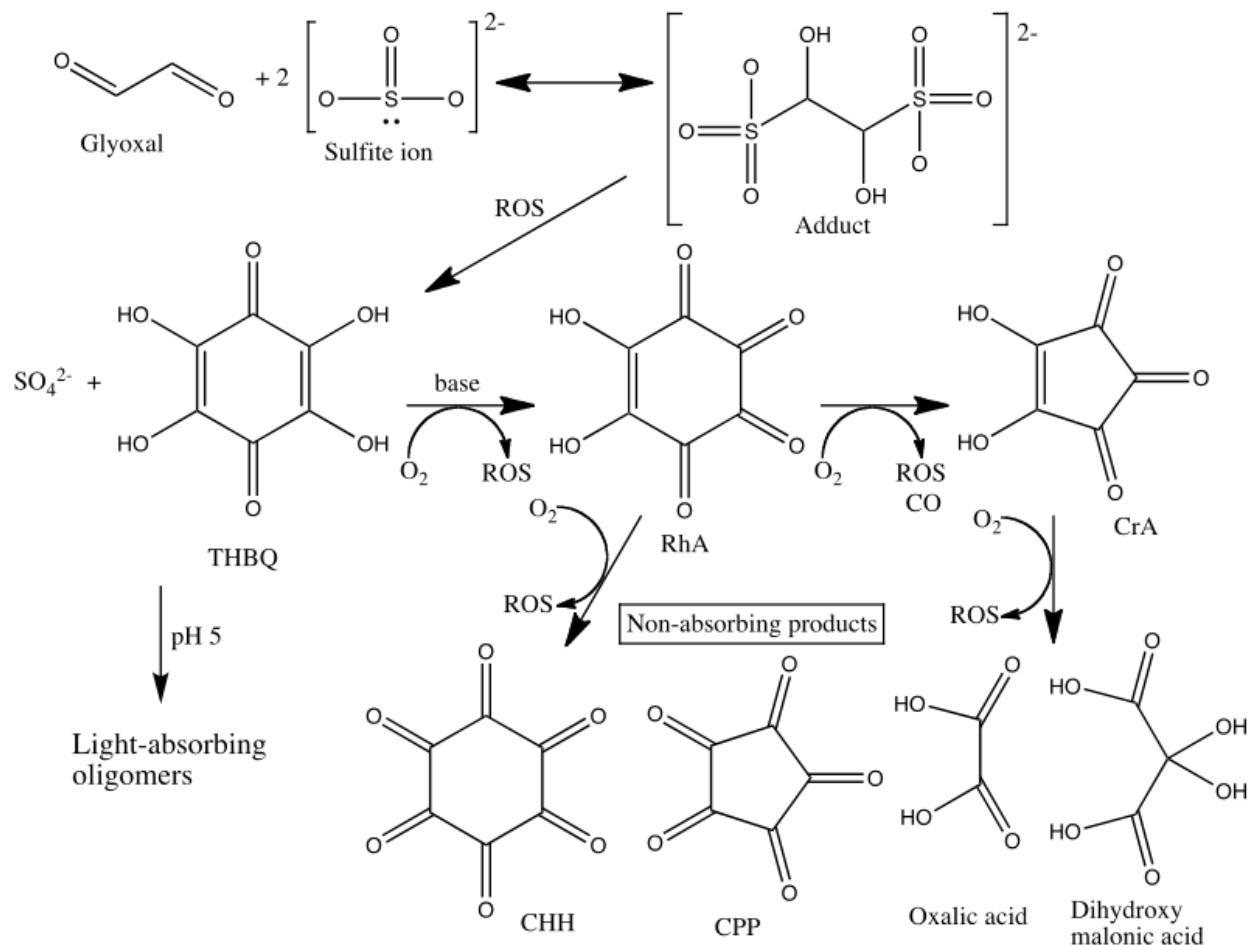
14 ABSTRACT: Oxalic acid and sulfate salts are major components of aerosol particles. Here we
15 explore the potential for their respective precursor species, glyoxal and SO₂, to form atmospheric
16 brown carbon via aqueous-phase reactions in a series of bulk aqueous and flow chamber aerosol
17 experiments. In bulk aqueous solutions, UV- and visible-light absorbing products are observed at
18 pH 3 – 4 and 5 – 6, respectively, with small but detectable yields of hydroxyquinone and
19 polyketone products formed, especially at pH 6. Hydroxymethanesulfonate (HMS), C₂, and C₃
20 sulfonates are major products detected by ESI-MS at pH 5. Past studies have assumed that the
21 reaction of formaldehyde and sulfite was the only atmospheric source of HMS. In flow chamber
22 experiments involving sulfite aerosol and gas-phase glyoxal with only 1-minute residence times,
23 significant aerosol growth is observed. Rapid brown carbon formation is seen with aqueous
24 aerosol particles at >80% RH. Brown carbon formation slows at 50 - 60% RH and when the
25 aerosol particles are acidified with sulfuric acid, but stops entirely only under dry conditions. This
26 chemistry may therefore contribute to brown carbon production in cloud-processed pollution
27 plumes as oxidizing VOCs interact with SO₂ and water.

28 Keywords: cloud processing, sulfonate formation, secondary organic aerosol, sulfite oxidation
29

30 **Introduction**

31 Sulfur dioxide, a S(IV) compound emitted from volcanoes, coal-burning power plants, smelters,
32 and oil refineries, is oxidized to sulfate in the atmosphere with a lifetime of 4-12 h, as estimated
33 from satellite retrievals.(1) This oxidation takes place mainly in cloudwater(2) or aqueous
34 aerosol,(3) where dissolved SO₂ reacts with dissolved oxidants, especially HOOH(4) and organic
35 peroxides.(5) The sulfate produced is a major component of submicron aerosol particles,(6) which
36 affects human health and climate. Atmospheric sulfate concentrations are typically correlated with
37 other products of oxidative cloud processing, such as oxalate ions,(7) produced from aqueous
38 glyoxal oxidation. Recent observations of extremely rapid SO₂ oxidation at high RH during

39 pollution episodes over northeast China have highlighted remaining gaps in our understanding of
40 relevant oxidation pathways.(8-10)


41 Oxidation is not the only chemical reaction that dissolved SO₂ participates in. Glyoxal, like
42 other aldehydes,(4, 11) reacts rapidly with S(IV) compounds in aqueous media, reversibly forming
43 sulfonate adduct molecules(12) containing C-S bonds.(13) No further products are observed in
44 the dark when oxidants are excluded, leading to the conclusion that sulfonates serve only as
45 condensed-phase atmospheric reservoirs for aldehydes and S(IV),(14) thereby increasing SO₂
46 partitioning(12) and glyoxal uptake into clouds.(15) However, when exposed to air, aqueous
47 mixtures of glyoxal and sodium sulfite (which have pH > 7 due to sulfite basicity) quickly produce
48 the redox-active, aromatic compound tetrahydroxybenzoquinone (THBQ)(16) at the air-water
49 interface. THBQ is a black precipitate, and is red when dissolved in aqueous solution, strongly
50 absorbing visible light ($\sigma = 3.7 \times 10^{-17} \text{ cm}^2$ at $\lambda_{\text{max}} = 485 \text{ nm}$). THBQ is itself oxidized under basic
51 conditions to form the light-absorbing, redox-active species rhodizonic acid (RhA) and croconic
52 acid (CrA), of which the latter is more stable. This oxidation pathway is summarized in Scheme
53 1.

54 Redox-active quinone species have been implicated, along with transition metals ions, in the
55 widespread toxicity of atmospheric aerosol.(17-21) These compounds can generate free radical
56 oxidants in lung fluid for hours after inhalation, triggering adverse health effects.(20-25) Thus, it
57 is critical to determine to what extent reactions between glyoxal and SO₂ dissolved in aqueous
58 aerosol and cloud droplets might produce quinone species and brown carbon under
59 atmospherically relevant conditions. In this work we performed a series of aerosol and bulk
60 aqueous experiments involving glyoxal and dissolved SO₂ at pH < 7. We find that fast production
61 of brown carbon products is maximized in aqueous aerosol at high RH and slowed by acidification

62 of the aerosol phase. In bulk phase simulations at pH < 6, sulfonates with C-S bonds and odd
 63 carbon numbers are major products detected by ESI-MS, along with small yields of quinones
 64 generated at pH ≥ 5 .

65

66 Scheme 1: Summary of Reported Glyoxal + Sulfite Reaction Products Under Basic Conditions

67

68 ROS = reactive oxidant species. Light absorbing products (middle row): THBQ =
 69 tetrahydroxybenzoquinone; RhA = rhodizonic acid; CrA = croconic acid. Non-light-absorbing
 70 products (bottom row): CHH = cyclohexahexanone; CPP = cyclopenta-pentanone. All structures
 71 from ref (16). The pH 5 oligomer pathway is proposed in this work.

72

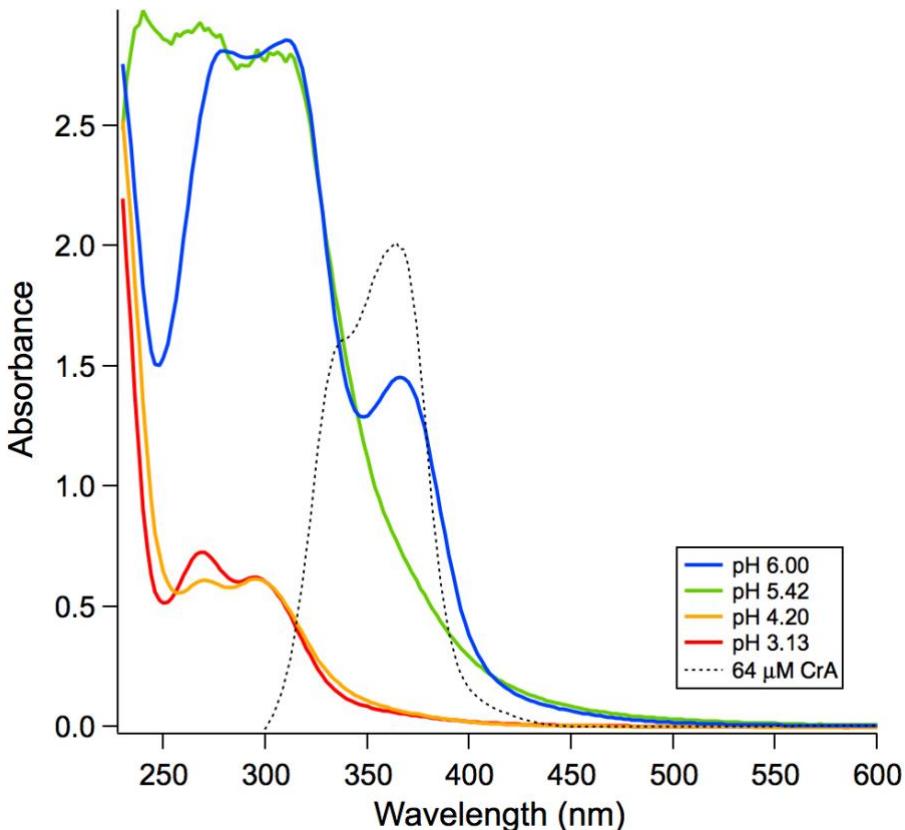
73

74 **Materials and Methods**

75 All chemicals were used as received from Sigma-Aldrich except as noted.

76 **Bulk studies.** Sodium sulfite (Spectrum) solutions were pH-buffered with formic acid (pH 3),
77 acetic acid (pH 4 and 5.4) or malonic acid (pH 6) and reacted with aqueous glyoxal generated by
78 hydrolysis of solid glyoxal trimer dihydrate (GTD, Fluka) at 0.25 M concentrations. Standards of
79 tetrahydroxybenzoquinone (THBQ), rhodizonic acid (RhA, disodium salt), croconic acid (CrA,
80 disodium salt), and glyoxal bis-disulfite adduct (GBDS, disodium salt hydrate) were made in N₂-
81 bubbled deionized water to minimize the presence of dissolved oxidants. Sodium sulfite - glyoxal
82 reaction mixtures and standards were analyzed as a function of time by diode array UV/vis
83 absorbance spectrometry (HP 8452A) and/or negative-mode electrospray ionization mass
84 spectroscopy (Thermo LTQ).85 **Aerosol flow chamber studies.** A schematic of the experimental system is shown in Figure S1.
86 Aqueous aerosols were generated from 0.05 – 0.15% w/w aqueous sodium sulfite solutions (TSI
87 3076 atomizer), pH buffered in one experiment with sulfuric acid. In certain experiments the
88 aerosol flow was diffusion dried. Hydrogen peroxide gas was added in certain experiments by
89 bubbling 0.2 L/min N₂ through a 30% w/w solution. A continuous flow of glyoxal gas was
90 generated by flowing N₂ over a mixture of solid GTD and P₂O₅ heated to 45 – 80 °C.(26) Glyoxal
91 production was monitored by absorbance at 405 nm using a cavity ringdown (CRD) spectrometer
92 and a cross section of 4.491×10^{-20} cm² molecule⁻¹.(27) The various inlet flows totaling 2.5 L/min
93 were mixed at the inlet to a 2.5 L Pyrex vessel, such that the average reaction time was 1 min.
94 Aerosol particles exiting the reaction vessel were diffusion dried and monitored by Q-AMS
95 (Aerodyne), CAPS-ssa (450 nm, Aerodyne), scanning mobility particle sizing (SMPS), CRD (530
96 nm), and photoacoustic spectrometers (405 and 530 nm), with total sampling flows set to match

97 the inlet flows (2.5 L/min). Two-minute averaging of 1-Hz CAPS data allows albedo to be
98 measured with precision typically between ± 0.001 and ± 0.005 , while geometric mean diameters
99 extracted from SMPS size distributions have ± 2 nm precision. RH sensors monitored humidity
100 levels at the aerosol inlet, chamber outlet, and dried chamber outlet flows.


101

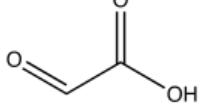
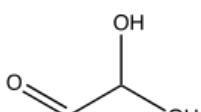
102 **Results and Discussion**

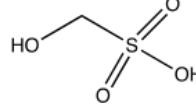
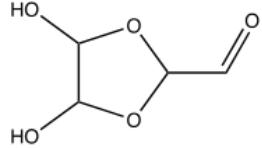
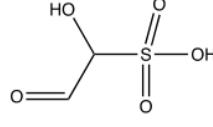
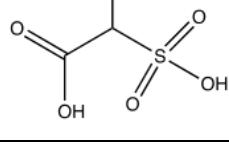
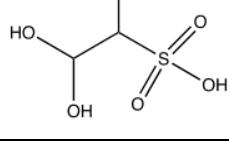
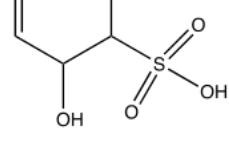
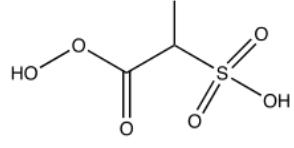
103 **Bulk studies.** In cloudwater (or other aqueous samples with pH between 2 and 7), acid-base
104 equilibria will cause dissolved SO₂ to exist mainly as bisulfite ions (HSO₃⁻) since H₂SO₃ has *pKa*
105 values of 1.9 and 7.2. The initial reaction between glyoxal and bisulfite is rapid. For example, in
106 N₂-bubbled pH 4 buffer, 0.1 M HSO₃⁻ reacted with 0.1 M glyoxal with *t_{1/2}* = 9 s (Figure S2). These
107 aqueous-phase concentrations are 40 and 80x higher, respectively, than estimated equilibrium
108 concentrations in atmospheric cloud droplets at pH 6.(12) The measured half-life implies a rate
109 constant *k* = 1.11 s⁻¹M⁻¹, which is lower than (but within a factor of 7 of) earlier measurements
110 conducted at pH = 3.26 and 0.0015 M.(12) This difference could be due to dehydration of glyoxal
111 becoming rate-determining above pH 3.26.(12) The reversible formation of bisulfite dimer ions
112 does not appear to be favorable enough to impact reaction rates even in our highest concentration
113 experiments (Figure S3).(28)

114 The pH-dependence of brown carbon products generated in 2 days by glyoxal + bisulfite
115 reactions is summarized in Figure 1. At pH 3.1 or 4.2, reaction products absorb light only in the
116 UV range, while at pH 5.4 (Figure S4) and 6.0, visible light absorbers were produced. Importantly,
117 at no point in the glyoxal + sulfite reaction in experiments at pH ≤ 5.4 do the characteristic visible
118 absorbance bands of THBQ or RhA appear (both with $\lambda_{\text{max}} = 485$ nm, Figures S5 and S6),
119 suggesting that if these species are formed they are either reactive intermediates or minor products.

120 At pH 6.0, CrA can be quantified by its absorbance and fluorescence bands (Figures 1 and S7) at
 121 a 0.02% yield. The major products formed at mildly acidic pH are therefore different than the
 122 hydroquinones that form at high yields under basic conditions.

123
 124 **Figure 1:** UV-vis absorbance spectra of 0.25 M glyoxal + 0.25 M sodium sulfite solutions after
 125 2 days reaction time, buffered to initial pH 6.00 (blue), pH 5.42 (green), pH 4.20 (orange), and pH
 126 3.13 (red). Spectrum of 64 μ M aqueous croconic acid standard is overlaid for comparison.



127
 128 The observed product differences may be due to pH-dependent hydroquinone instability. Both
 129 THBQ and RhA are unstable in aqueous solution at pH 5.5, having respective lifetimes of only 42
 130 and 70 min (Figures S5 and S6) even after initial N_2 bubbling to remove oxidants. A 1 mM THBQ
 131 solution aged at pH 3 for 24 h turned from red to yellow and showed an unmistakable oligomer
 132 pattern(29) when analyzed by ESI-MS, with dominant peaks in the C₁₀-C₁₁ mass range (Figure








133 S8). Thus, it is plausible that glyoxal + sulfite reactions under slightly acidic conditions produce
 134 a small amount THBQ as an intermediate, which then forms other light-absorbing oligomers.

135 To better characterize glyoxal + HSO_3^- chemistry, a pH 5.4 reaction sample was analyzed by
 136 negative ion mode ESI-MS after 12 d reaction time in capped vials. Major peaks detected are
 137 listed in Table 1, along with proposed peak assignments. Even after 12 d, glyoxal and its self-
 138 reaction oligomers are responsible for 5 peaks, including 3 of the 8 largest peaks. Bisulfite adducts
 139 of these molecules (sulfonates) make up another 5 of the largest 15 peaks, and the HSO_4^- (bisulfate,
 140 m/z 97) peak is small, evidence that oxidation of the sample has been minimal. Glyoxal
 141 monobisulfite (GMBS), m/z 139, and glyoxal dibisulfite, m/z 221, major products observed by
 142 Olson and Hoffmann,(12) are the 2nd and 14th largest peaks detected in the mass spectrum,
 143 respectively. The ESI-MS peak areas of these sulfonates were largest upon initial measurement (t
 144 = 3 h) and showed a slow downward trend thereafter (Figure S9), evidence that they are quickly
 145 formed and quite stable, consistent with prior work.(12)

146

147 Table 1: Peak Ions Detected in Solution Containing 0.25 M Glyoxal and NaHSO_3 at pH 5.42 After
 148 13 d Reaction Time.

m/z of detected ion	assigned formula	identity	product generation	peak size ranking	proposed neutral structure
73	C_2HO_3^-	glyoxylic acid	1 st	22	
75	$\text{C}_2\text{H}_3\text{O}_3^-$	glyoxal monohydrate GX.H ₂ O	reactant	7	

81	HSO ₃ ⁻	bisulfite	reactant	13	
97	HSO ₄ ⁻	bisulfate	1 _{st}	18	
111	CH ₃ SO ₄ ⁻	hydroxymethane-sulfonic acid, HMS	3 _{rd}	3	
133	C ₄ H ₅ O ₅ ⁻	GX ₂ .H ₂ O	reactant oligomer	8	
139	C ₂ H ₃ SO ₅ ⁻	GX.HSO ₃ ⁻ -GMBS	1 _{st}	2	
151	C ₄ H ₇ O ₆ ⁻	GX ₂ .2H ₂ O	reactant oligomer	11	
155	C ₂ H ₃ SO ₆ ⁻	glyoxylic acid.HSO ₃ ⁻	2 _{nd}	10	
157	C ₂ H ₅ SO ₆ ⁻	GX.HSO ₃ ⁻ .H ₂ O	1 _{st}	4	
169	C ₃ H ₅ SO ₆ ⁻	GX-HMS	3 _{rd}	1	
171	C ₂ H ₃ SO ₇ ⁻	HOO-GX-HSO ₃ ⁻	2 _{nd}	6	

209	C ₆ H ₉ O ₈ -	GX ₃ .2H ₂ O	reactant oligomer	5	
215	C ₄ H ₇ SO ₈ -	GX ₂ .HSO ₃ -	1 st	9	
221	C ₂ H ₅ S ₂ O ₈ -	GX.2HSO ₃	2 _{nd}	14	
267	C ₈ H ₁₁ O ₁₀ -	GX ₄ .2H ₂ O	reactant oligomer	16	
273	C ₆ H ₉ SO ₁₀ -	GX ₃ .HSO ₃ -	1 st	15	
335	C ₁₀ H ₇ O ₁₃ -	CrA ₂ .3H ₂ O	5 th	minor	

149 Notes: While *m/z* 171 is also the unit mass of THBQ, the dominant product at high pH, the low
 150 yields of THBQ determined by spectrophotometry in the previous section means that THBQ
 151 cannot contribute more than 1% to the *m/z* 171 ESI-MS signal. Similarly, RhA contributes less
 152 than 0.05% of the signal at *m/z* 169. These hydroquinone products are too unstable in aqueous
 153 solution to build up to high concentrations at long reaction times. The ESI-MS spectrum is shown
 154 in Figure S3.

155
 156 Other detected peaks show evidence of oxidation, presumably caused by ambient oxidants
 157 introduced when reaction vials were sampled (every 2 d on average). A small peak at *m/z* 73 is
 158 likely due to glyoxylic acid, formed by oxidation of glyoxal monomer. A minor peak at *m/z* 335,
 159 which was the largest peak in the 24-h aged THBQ solution (Figure S8), may be a light-absorbing

160 CrA dimer trihydrate formed via THBQ. If an OH radical abstracts a proton from GMBS, the
161 addition of O₂ produces a peroxyacid sulfonate molecule at *m/z* 171. OH radical addition converts
162 GMBS to a carboxylic sulfonic acid (*m/z* 155), which could also be produced by reaction between
163 glyoxylic acid and bisulfite. OH radical oxidation of this carboxylic sulfonic acid followed by
164 decarboxylation is the likely path to two major products with odd numbers of carbon:
165 hydroxymethanesulfonate (HMS, *m/z* 111, 3_{rd} largest peak) and a C₃ sulfonate (*m/z* 169, largest
166 peak) likely formed via glyoxal addition to the HMS radical (as summarized in Scheme S1). The
167 formation of HMS was confirmed by ¹H NMR through its characteristic CH₂ peak at 4.23 ppm
168 (Figure S10).

169 Peak areas were examined as a function of reaction times between 3 h and 15 d for three oxidized
170 products (*m/z* 97, bisulfate ion; *m/z* 169, C₃ sulfonate; and *m/z* 171, C₂ peroxy sulfonate). All 3
171 slowly increased with reaction time (Figure S9). In contrast, the peak areas of four 1_{st}-generation
172 sulfonate products generated by direct (non-oxidative) reactions slowly decreased over the same
173 time period, presumably after being formed earlier in the reaction (*t* < 3 h). This is consistent with
174 oxidation reactions converting some 1_{st} generation sulfonates into other sulfonate species, at rates
175 limited by the supply of oxidant species.

176 It is notable that OH radical oxidation of GMBS appears to occur much more readily on the
177 organic end of the molecule rather than at the sulfite group. The small size of the bisulfate ion
178 peak at *m/z* 97 suggests that sulfur is protected from oxidation via incorporation into sulfonates,
179 and that sulfonate C-S bonds are largely preserved during the limited oxidation of this sample.
180 This is consistent with earlier studies that noted that while S(IV) can be oxidized by HOOH and
181 ozone, once S(IV) is converted to HMS it does not react appreciably with either oxidant.(11)

182

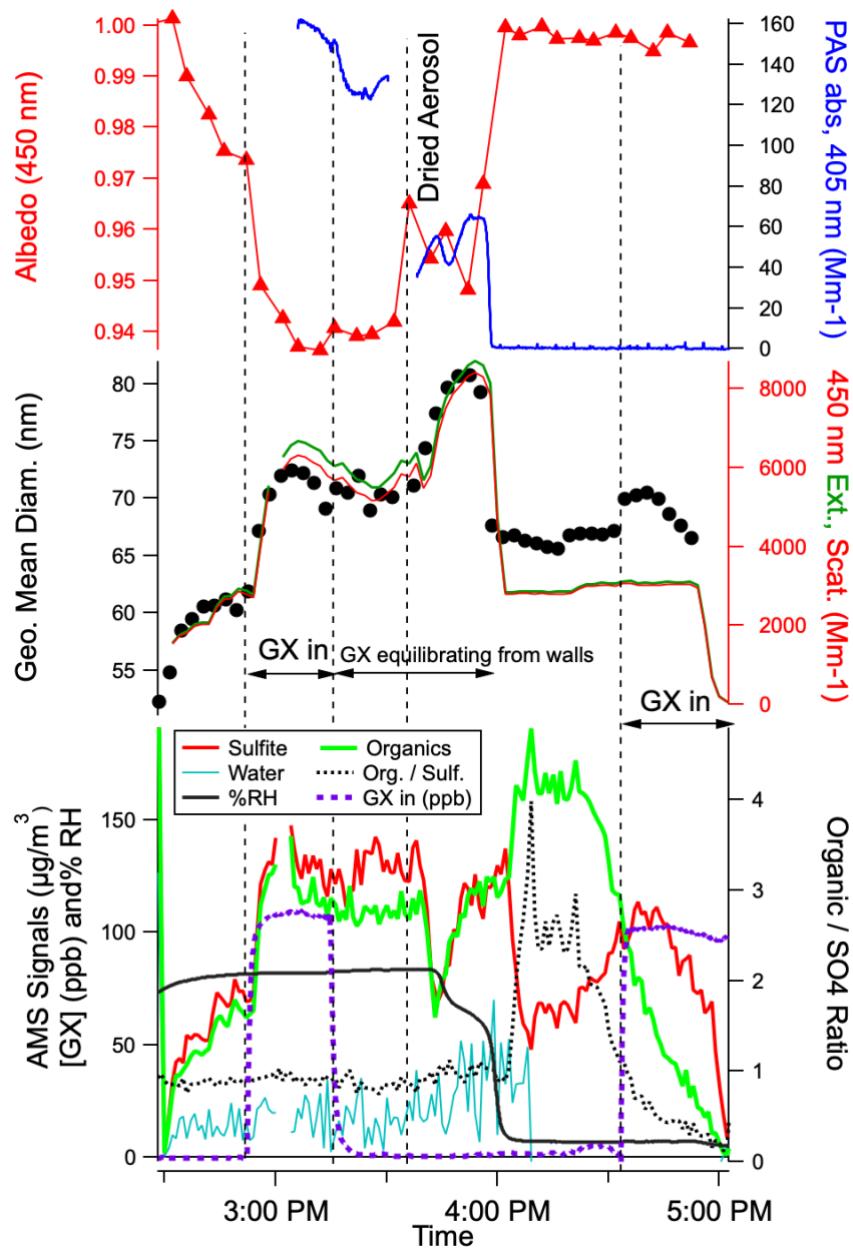
183 Flow chamber studies. The ability of glyoxal gas to cause rapid browning of Na₂SO₃ aerosol
184 particles was tested in a series of 7 flow chamber experiments with 1-min residence times (Table
185 2). Significant browning was observed at 405 and 450 nm by photoacoustic and cavity-attenuated
186 phase-shift spectroscopy, respectively, in experiment 1 (Figure 2), where a constant flow of
187 aqueous Na₂SO₃ aerosol was mixed in this chamber with a smaller flow of dry N₂ / glyoxal to
188 achieve 80% RH and 100 ppb glyoxal after mixing. In experiment 6, the only experiment with a
189 gas-phase source of S(IV) and the only experiment with NaCl instead of Na₂SO₃ seed particles, no
190 gas-phase reaction between SO₂ and glyoxal was observed. However, NaCl seeds have been
191 shown to catalyze SO₂ uptake,(30) and once aqueous NaCl seed particles were added, the second-
192 lowest 450 nm albedo of 0.96 was achieved (Figure S11). AMS organic aerosol signals were also
193 clearly present as soon as NaCl seeds were added. These observations suggest that both SO₂ and
194 glyoxal were taken up by aqueous NaCl aerosol particles, where they reacted to form measurable
195 brown carbon within on a 1-min timescale. In all other experiments (2-5 and 7), less browning
196 was observed despite generally higher glyoxal concentrations and high SOA growth via glyoxal
197 uptake. Browning in these experiments was likely slowed by much lower levels of aerosol-phase
198 water (Expts. 3-5 and 7), or by the presence of 60% mole fraction aerosol-phase sulfuric acid
199 (Expt. 2, Figure 3), which converted SO₃₂₋ ions to a mixture of less reactive(31) HSO₃₋ and H₂SO₃.
200 Experiments 1 and 2 are discussed in detail below.

201

202

203 Table 2: Summary of Flow Chamber Experiments: Sodium Sulfite Aerosol + Glyoxal (g)

expt.	figure	PAS _{abs} , 405 nm (Mm ⁻¹)	albedo, 450 nm	[GX] (ppb) ^a	[Na ₂ SO ₃] (μ g/m ³)	% RH	AMS Org/SO ₄ ratio	growth, (μ g/m ³)	notes
1	2	160	0.940	110	80 wet	80	0.9	55	
2	3	2	0.986	90	40 wet	80	0.4	24	Acidified pH 4 ^b (2:3 Na ₂ SO ₃ / H ₂ SO ₄ mole ratio)
3	S12	15	0.988	450	200 wet	50	0.9	150	
4	S12	10	0.980	500	180 wet	60	1.4	310	in air
5	S13	0.2	0.983	700	40 wet	50	1.0	52	HOOH (g) present
6	S11	<i>c</i>	0.960	~100 ^d	Wet NaCl	80	Org/Cl = 3	<i>c</i>	SO ₂ (g) from Na ₂ SO ₃ (aq) bubbler
7	S14	<0.1	0.983	2500	420 dry	60-80	2.0	210	In 7% O ₂ , 93% N ₂


204 *Not measured. PAS = photoacoustic spectroscopy. GX = peak glyoxal conc. RH = relative
 205 humidity. AMS = aerosol mass spectrometer. Aerosol particles had 1 min lifetime in flow
 206 chamber. **a**: peak glyoxal concentrations are shown. **b**: before atomization into aerosol. **c**: no
 207 measurement. **d**: estimated from glyoxal source temperature.

208

209 In experiment 1 (Figure 2), deliquesced Na₂SO₃ aerosol were sent through the flow chamber in
 210 humidified N₂ from 2:45 until 3:36 pm. At 2:50 pm the dry N₂ flow was routed through a heated
 211 glyoxal source, rapidly reaching a calculated steady-state concentration of ~110 ppb glyoxal in the
 212 mixing chamber. (Actual glyoxal concentrations may have been significantly lower due to uptake
 213 by chamber walls at 80% RH.) Glyoxal addition caused SMPS particle diameters to increase by
 214 20% and particle masses to increase by 70%, indicating significant and rapid glyoxal uptake. At
 215 the same time, albedo at 450 nm declined from 0.97 to 0.94, indicating brown carbon formation

216 by glyoxal + sulfite reactions on a 1-min timescale. Interestingly, AMS signals for both organics
217 and sulfate rose upon glyoxal addition, such that their ratio remains near 1. While sulfonates are
218 efficiently broken down in the AMS inlet into organic and sulfate fragments,(3) the formation and
219 destruction of sulfonates would not be expected to increase sulfate signals. Instead, this increase
220 in sulfate signal indicates that the uptake of glyoxal (and formation of sulfonates) caused a
221 significant shift in the effective Henry's Law equilibrium of S(IV) (SO_2 and sulfite) towards the
222 aqueous phase, as predicted by Olson & Hoffmann.(12) The glyoxal source was turned off at 3:15
223 pm (Figure 2), but albedo at 450 nm, aerosol absorbance at 405 nm, particle size, and AMS particle
224 chemistry all remained constant, likely due to the preservation of glyoxal steady-state
225 concentrations caused by equilibration from the glass walls in the humid chamber.(32, 33)

226 At 3:36 pm, the aerosol source was routed through a diffusion dryer, generating effloresced
227 instead of aqueous Na_2SO_3 aerosol even as RH remains between 60 and 84% for 20 more min due
228 to water equilibrium from the walls. (Solid Na_2SO_3 aerosol deliquesces above 85% RH.(31)) The
229 change in particle phase from liquid to solid caused SMPS particle diameter to increase by an
230 additional 11%. This suggests that glyoxal uptake is enhanced by oligomer formation in the high
231 concentration environment of the surface water layer, such that particle growth is greater than it
232 was on deliquesced aerosol. This effect has been seen in prior studies involving glyoxal.(34) At
233 the same time, the switch to solid aerosol particles coincided with a 450 nm albedo rise from 0.94
234 to 0.96, and a 60% decline in absorbance at 405 nm, both indicative of less brown carbon formation
235 during the 1 min chamber residence time. This effect is likely due to aerosol-phase diffusion
236 limitations that limit the supply of sulfite ions to the surface water layer where glyoxal is reacting.
237 These observations show that glyoxal and sulfite ions can react in aqueous aerosol (and to a lesser
238 extent in surface water layers on solid aerosol particles) to rapidly form brown carbon products.

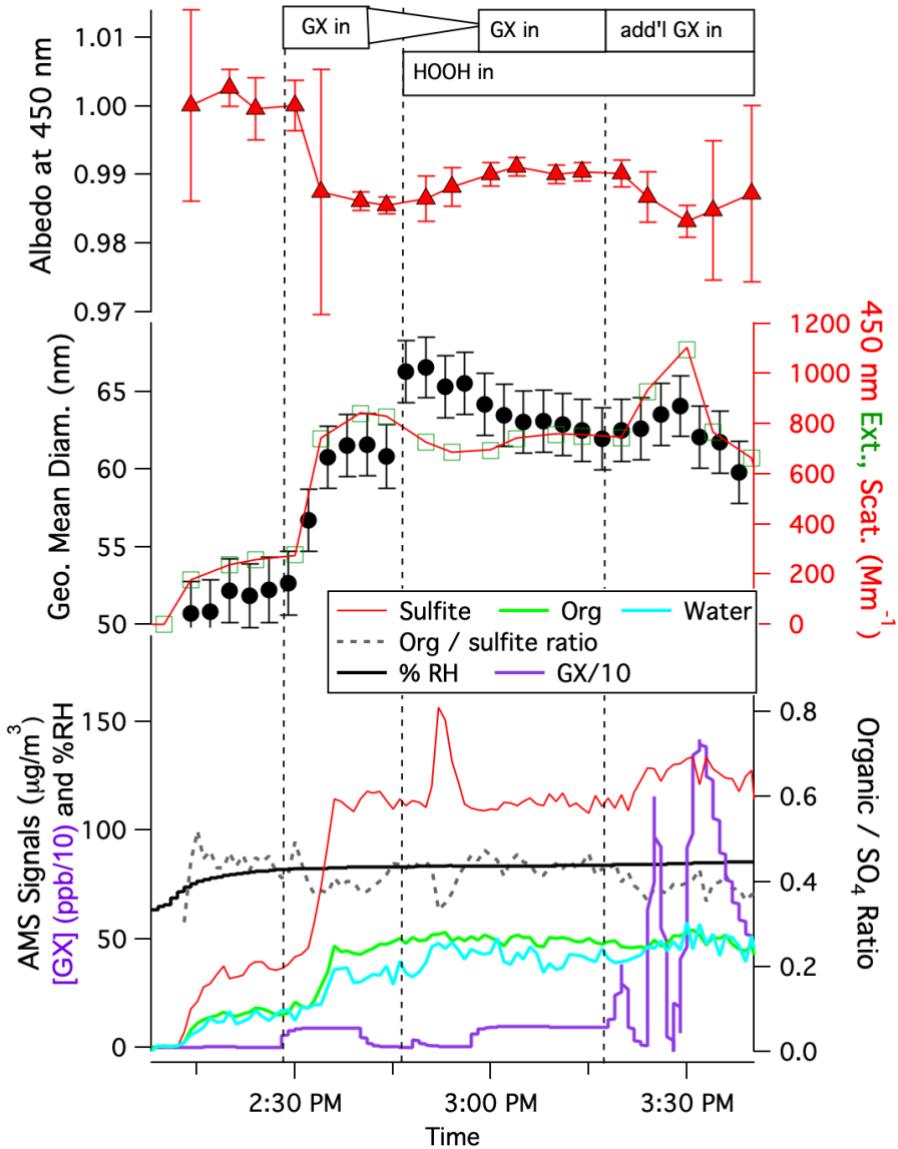
Figure 2: Gas-phase glyoxal uptake experiment 1: aqueous Na_2SO_3 aerosol (before 3:35 pm) and effloresced Na_2SO_3 aerosol in flowing chamber (1 min residence time). **Top:** CAPS single-scattering albedo of dried aerosol at 450 nm (red triangles), recorded immediately after instrument baseline taken through filter; photoacoustic absorbance (Mm^{-1} , blue line) of dried aerosol at 405 nm. **Middle:** SMPS geometric mean diameters of dried aerosol (black circles); CAPS-ssa inlet-dilution-corrected 2-min-averaged extinction (green line), scattering (red line). **Bottom:** Glyoxal (g) concentrations in ppb, calculated based on dilution and cavity ringdown spectroscopic measurements made at 405 nm at the chamber inlet and no wall equilibria (purple line, left axis); relative humidity measured at chamber outlet (black line); dilution

273

274 corrected aerosol mass spectrometer loadings by category (left axis; water, light blue; sulfite, red; 275 organics, green); and organic / sulfate ratio (dark green dotted line, right axis). Vertical dotted 276 lines mark beginning and ending of glyoxal addition, the switch from aqueous to deliquesced 277 Na_2SO_3 seed aerosol, and the start of 2nd glyoxal addition, as labeled. AMS water signals are 278 qualitative due to drying in the low-pressure inlet; water signals are included to show that particles 279 pass through the chamber and the AMS sampling line fully dry only after ~4:10 pm.

281 After 27 min. of dry gas and aerosol input (*i.e.*, ~4:00 pm in Figure 2), the flowing reaction cell
282 surfaces were depleted of water, and RH in the chamber outflow declined to < 10%. Under these
283 fully dry conditions, Na_2SO_3 aerosol passed through the glyoxal-containing chamber without
284 browning: aerosol albedo (450 nm) promptly rose to 1.00 and aerosol absorbance (405 nm)
285 dropped to zero. At the same time, AMS sulfite signals declined by approximately 50%, back to
286 pre-glyoxal-addition levels. These changes indicate that glyoxal and sulfite cannot react in the dry
287 aerosol phase on a 1 min timescale, such that sulfite gas-particle partitioning is no longer perturbed
288 and brown carbon is no longer formed.

289 Glyoxal uptake to Na_2SO_3 particles did not end at this point, however. Although SMPS
290 geometric mean diameters of the dried aerosol declined from 81 to 66 nm upon chamber drying,
291 66 nm is still 6% larger than initial pre-glyoxal diameters. Furthermore, the organic AMS signal
292 actually rises after the RH drops to below 10%, peaking at 16:09 just as the AMS water signal
293 drops to zero. AMS data collected during this period (Figure S15) shows prominent increases at
294 m/z 18, 44, 45, and 46 (likely oxalic acid), and relative increases in minor peaks at m/z 80 and 98
295 (sulfuric acid). These increases suggest that glyoxal and sulfite ions are more susceptible to
296 oxidation under dry conditions when they do not react with each other. When glyoxal addition
297 was restarted in the fully dried chamber (100 ppb, 4:33 pm), a statistically significant 5% increase
298 in aerosol diameters was observed, but albedo did not change. This is further evidence that a
299 small amount of glyoxal can be taken up by residual surface water on dry Na_2SO_3 aerosol, but no
300 brown carbon is formed without an aqueous phase.


301 Experiment 2 (Figure 3) was conducted at the same RH as experiment 1, but with aqueous-phase
302 sulfite ions converted to an equimolar mix of HSO_3^- and H_2SO_3 by the addition of sulfuric acid to
303 pH 4.0. (Na_2SO_3 / H_2SO_4 were mixed at a 2:3 mole ratio). When 90 ppb glyoxal was added to the

304 flowing chamber at 2:28 pm, once again we observed a decline in albedo, an increase in SMPS
305 particle mean diameter, and proportional (4×) increases in AMS signals for sulfate and organics,
306 all occurring on a 1-min timescale (the residence time of aerosol particles in the flowing chamber).
307 While the increases in particle size and AMS signals are comparable in magnitude to experiment
308 1 with non-acidified sulfite aerosol, the albedo decline is at least a factor of 2 smaller. This
309 suggests that glyoxal uptake and reaction with HSO_3^- to form sulfonates is still fast, but brown
310 carbon formation is slowed, consistent with the pH-sensitivity observed in bulk-phase
311 experiments.

312 The change in detected ions upon glyoxal addition is summarized in Figure S16. Because of the
313 proportional 4× increase in AMS sulfate and organics, most signals fall on a new 4:1 line, with
314 m/z 29, 30, 31 and 58 (glyoxal and its EI major fragments) being prominent organic ions detected.
315 A few low-abundance ion signals increased by an order of magnitude, however, including m/z 80
316 and 97 (bisulfate ion) and 111 and 112 (HMS). These are some of the same products detected in
317 bulk, acidified glyoxal + S(IV) solutions after very long reaction times, especially given that the
318 glyoxal hydrates and oligomers (and perhaps adducts with S(IV)) detected by ESI-MS would
319 undergo thermal breakdown to glyoxal monomer(35) during vaporization in the high-temperature
320 AMS inlet.

321 The addition of HOOH gas from a bubbler at 2:45 pm (Figure 3) caused further growth in particle
322 size, but brown carbon formation declined slightly (450 nm albedo increased). Starting at 3:20
323 pm, three pulses of very high (ppm) levels of glyoxal were introduced to the flowing chamber, but
324 these additions caused only minor changes in physical or optical properties of the aerosol (max
325 change in albedo = -0.007, max change in particle mass = +10%). It appears that the effects of

326 glyoxal exposure on S(IV)-containing aerosol particles became saturated due to chamber wall
 327 uptake / wall equilibrium at 80% RH.

Figure 3: Gas-phase glyoxal uptake experiment 2: aqueous pH 4 Na_2SO_3 / H_2SO_4 aerosol in flowing chamber (1 min residence time). **Top:** CAPS single-scattering albedo of dried aerosol at 450 nm (red triangles), recorded immediately after instrument baseline taken through filter, error bars show standard deviation of the 2-min. averages; **Middle:** SMPS geometric mean diameters of dried aerosol (black circles); CAPS-ssa inlet-dilution-corrected 2-min-averaged extinction (green squares), scattering (red line). **Bottom:** Glyoxal (g) concentrations in ppb after dividing by 10, calculated based on dilution and cavity ringdown spectroscopic measurements made at 405 nm at the chamber inlet and no wall equilibria (purple line, left scale); relative humidity measured at chamber outlet (black line); dilution corrected AMS loadings by category (left scale; water, light blue; nitrate, dark blue; sulfite, red; organics, green); and organic / sulfite ratio (dark green dotted line, right axis). Vertical dotted lines mark beginnings of glyoxal or HOOH additions, as labeled.

359 calculated based on dilution and cavity ringdown spectroscopic measurements made at 405 nm at
 360 the chamber inlet and no wall equilibria (purple line, left scale); relative humidity measured at
 361 chamber outlet (black line); dilution corrected AMS loadings by category (left scale; water, light
 362 blue; nitrate, dark blue; sulfite, red; organics, green); and organic / sulfite ratio (dark green dotted
 363 line, right axis). Vertical dotted lines mark beginnings of glyoxal or HOOH additions, as labeled.
 364

365 In summary, fast particle growth due to glyoxal uptake is most pronounced in the surface water
 366 layer of solid Na_2SO_3 aerosol at high RH, but brown carbon formation on a 1-min timescale is

367 maximized when Na_2SO_3 aerosol particles are deliquesced. Some glyoxal uptake onto solid
368 Na_2SO_3 aerosol is observed even under completely dry conditions (< 5% RH), but brown carbon
369 is not formed. In aqueous Na_2SO_3 aerosol particles acidified to pH 4, aerosol growth and
370 partitioning of S(IV) to the aqueous aerosol phase are observed that are similar in magnitude to
371 unacidified experiments, but brown carbon formation is lessened. On the other hand, while in bulk
372 liquid studies no visible light absorbers were produced at pH 4.2 or less over 2 d reaction times, in
373 aerosol particles generated from pH 4 solution measurable absorbance at 450 nm was generated in
374 only 1 min. Thus, it appears that glyoxal uptake, reaction with S(IV) to form sulfonic acids, and
375 to a lesser extent brown carbon formation from these precursors can all occur rapidly at acidic pH
376 in aqueous aerosol. Reaction acceleration in aerosol particles (relative to bulk liquid experiments)
377 has been observed in many other systems,(30, 36-40) and is likely caused by surface-reactive
378 species. Such reactions are likely to show a particle size dependence. We note that dried particle
379 sizes in this study (50-80 nm) were slightly smaller than atmospheric accumulation mode particles
380 (> 100 nm).

381

382 **Atmospheric Significance**

383 In the flowing aerosol experiments with deliquesced Na_2SO_3 aerosol at 80% RH, glyoxal
384 concentrations were ~110 ppb, and reaction times were 1 minute. If the initial reaction between
385 glyoxal (g) and sulfite ions is the rate-limiting step in brown carbon formation, and since that step
386 is first order with respect to glyoxal,(12) then we can scale down to atmospheric conditions using
387 an “integrated glyoxal” concept that is analogous to “integrated OH” in oxidation studies using
388 OH reactors. Using this concept, the 1-minute lifetime in our aerosol experiments corresponds to
389 about 18 h of glyoxal exposure at atmospheric concentrations of 100 ppt. Thus, given that glyoxal

390 is efficiently scavenged by aqueous aerosol, it appears that glyoxal exposure could reasonably
391 depress the albedo of atmospheric aerosol particles in humid, polluted regions where aerosol
392 particles are liquid and contain significant quantities of dissolved SO₂.

393 The pH dependence seen in our aerosol and bulk studies suggests that brown carbon formation
394 by glyoxal-SO₂ reactions would be most pronounced in aerosol that are neutralized by ammonia
395 and amines, a situation that is becoming more common in the atmosphere as ammonia and amine
396 emissions are uncontrolled and rising. It should also be noted that aqueous reactions between
397 glyoxal and ammonia and amines under neutral conditions have also been identified as a source of
398 brown carbon.(41-45) Aqueous-phase glyoxal + S(IV) reactions produce hydroquinones at very
399 low yields at pH ≤ 6, but oligomer products in this pathway may nevertheless be contributing
400 significantly to light absorption.

401 Recent work has suggested that HMS is the most abundant organosulfate compound in the
402 aerosol phase during Chinese winter haze events.(3) Because it can be easily converted to sulfate
403 by typical AMS and ion chromatography methods, HMS may be responsible for 1/3 of the
404 unexplained “sulfate” formation reported there. In this work we have shown that HMS, long
405 assumed to be formed only from formaldehyde and S(IV),(3, 46) is also an important product of
406 aqueous phase glyoxal + S(IV) reactions under mildly acidic conditions. Cloudwater
407 concentrations of formaldehyde and glyoxal in the atmosphere are comparable, with measured
408 formaldehyde:glyoxal ratios between 0.7 and 4.(47-50) Given that bisulfite reaction rates with
409 formaldehyde in bulk aqueous solution are 6000x faster than with glyoxal,(14) it seems at first
410 glance unlikely that glyoxal + S(IV) could be a significant source of atmospheric HMS. However,
411 glyoxal + S(IV) reactions begin with a nucleophilic attack by the S(IV) lone pair on a non-hydrated
412 carbonyl functional group. Glyoxal preferentially forms a monohydrate (with a non-hydrated

413 carbonyl) at air-water interfaces, causing nucleophilic attack reaction rates on glyoxal to be
414 enhanced by orders of magnitude in aerosol experiments, compared with bulk solution
415 measurements.(36) Even in Los Angeles, where cloud formaldehyde levels are typically in excess
416 of S(IV) levels,(51) Richards *et al.* determined that only 1/3 of the S(IV) in clouds and fog had
417 reacted with formaldehyde to form HMS, based on measurements of free formaldehyde.(52) It
418 thus appears that there is enough S(IV) in clouds and aqueous aerosol to react with glyoxal, and it
419 is at least possible that glyoxal + S(IV) reactions contribute to observed HMS concentrations.

420 Field measurements of the glyoxal sulfonate C₂ adduct molecule could establish an upper limit
421 on the size of this HMS source. Based on comparative ESI-MS and NMR peak heights in this
422 work, the ratio of glyoxal sulfonate C₂ adduct to HMS produced in glyoxal + sulfite reactions at
423 pH 5 is 9 +/-4 even after long reaction times. Production of HMS at moderate yield by glyoxal +
424 S(IV) reactions may help explain the correlation between HMS, oxalic acid, and sulfate noted in
425 field measurements, where elevated levels are associated with aged, cloud-processed pollution
426 plumes.(13)

427

428 **Supporting Information Available:** Experimental schematic, additional UV/vis, fluorescence,
429 NMR, and mass spectra for reaction mixtures and standard compounds, AMS spectra comparisons,
430 summaries of flow chamber experiments 3 – 7, and reaction scheme.

431
432

Acknowledgments: This work was funded by NSF grants AGS-1523178 and AGS-1826593.

433

434 **References**

435 1. Fioletov, V. E.; McLinden, C. A.; Krotkov, N.; Li, C., Lifetimes and emissions of SO₂ from
436 point sources estimated from OMI. *Geophys. Res. Lett.* **2015**, *42*, (6), 1969-1976.

437 2. Lelieveld, J.; Heintzenberg, J., Sulfate Cooling Effect on Climate Through In-Cloud Oxidation
438 of Anthropogenic SO₂. *Science* **1992**, *258*, (5079), 117.

439 3. Song, S.; Gao, M.; Xu, W.; Sun, Y.; Worsnop, D. R.; Jayne, J. T.; Zhang, Y.; Zhu, L.; Li, M.;
440 Zhou, Z.; Cheng, C.; Lv, Y.; Wang, Y.; Peng, W.; Xu, X.; Lin, N.; Wang, Y.; Wang, S.;
441 Munger, J. W.; Jacob, D. J.; McElroy, M. B., Possible heterogeneous chemistry of
442 hydroxymethanesulfonate (HMS) in northern China winter haze. *Atmos. Chem. Phys.* **2019**,
443 *19*, (2), 1357-1371.

444 4. Rao, X.; Collett, J. L., Jr., Behavior of S(IV) and Formaldehyde in a Chemically
445 Heterogeneous Cloud. *Environ Sci Technol* **1995**, *29*, (4), 1023-1031.

446 5. Ye, J.; Abbatt, J. P. D.; Chan, A. W. H., Novel pathway of SO₂ oxidation in the atmosphere:
447 reactions with monoterpene ozonolysis intermediates and secondary organic aerosol. *Atmos.*
448 *Chem. Phys.* **2018**, *18*, (8), 5549-5565.

449 6. Jimenez, J. L.; Canagaratna, M. R.; Donahue, N. M.; Prevot, A. S. H.; Zhang, Q.; Kroll, J. H.;
450 DeCarlo, P. F.; Allan, J. D.; Coe, H.; Ng, N. L.; Aiken, A. C.; Docherty, K. S.; Ulbrich, I. M.;
451 Grieshop, A. P.; Robinson, A. L.; Duplissy, J.; Smith, J. D.; Wilson, K. R.; Lanz, V. A.;
452 Hueglin, C.; Sun, Y. L.; Tian, J.; Laadsonen, A.; Raatikainen, T.; Rautiainen, J.; Vaattovaara,
453 P.; Ehn, M.; Kulmala, M.; Tomlinson, J. M.; Collins, D. R.; Cubison, M. J.; Dunlea, E. J.;
454 Huffman, J. A.; Onasch, T. B.; Alfarra, M. R.; Williams, P. I.; Bower, K.; Kondo, Y.;
455 Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Salcedo, D.; Cottrell,
456 L.; Griffin, R.; Takami, A.; Miyoshi, T.; Hatakeyama, S.; Shimono, A.; Sun, J. Y.; Zhang, Y.
457 M.; Dzepina, K.; Kimmel, J. R.; Sueper, D.; Jayne, J. T.; Herndon, S. C.; Trimborn, A. M.;
458 Williams, L. R.; Wood, E. C.; Middlebrook, A. M.; Kolb, C. E.; Baltensperger, U.; Worsnop,
459 D. R., Evolution of organic aerosols in the atmosphere. *Science* **2009**, *326*, 1525-1529.

460 7. Yu, J. Z.; Huang, X. H. H.; Xu, J.; Hu, M., When aerosol sulfate goes up, so does oxalate:
461 Implications for the formation mechanisms of oxalate. *Environ. Sci. Technol.* **2005**, *39*, (1),
462 128-133.

463 8. Wang, Y.; Zhang, Q.; Jiang, J.; Zhou, W.; Wang, B.; He, K.; Duan, F.; Zhang, Q.; Philip, S.;
464 Xie, Y., Enhanced sulfate formation during China's severe winter haze episode in January 2013
465 missing from current models. *Journal of Geophysical Research: Atmospheres* **2014**, *119*, (17),
466 10,425-10,440.

467 9. Zheng, B.; Zhang, Q.; Zhang, Y.; He, K. B.; Wang, K.; Zheng, G. J.; Duan, F. K.; Ma, Y. L.;
468 Kimoto, T., Heterogeneous chemistry: a mechanism missing in current models to explain
469 secondary inorganic aerosol formation during the January 2013 haze episode in North China.
470 *Atmos. Chem. Phys.* **2015**, *15*, (4), 2031-2049.

471 10. Li, G.; Bei, N.; Cao, J.; Huang, R.; Wu, J.; Feng, T.; Wang, Y.; Liu, S.; Zhang, Q.; Tie, X.;
472 Molina, L. T., A possible pathway for rapid growth of sulfate during haze days in China. *Atmos.*
473 *Chem. Phys.* **2017**, *17*, (5), 3301-3316.

474 11. Kok, G. L.; Gitlin, S. N.; Lazarus, A. L., Kinetics of the formation and decomposition of
475 hydroxymethanesulfonate. *Journal of Geophysical Research: Atmospheres* **1986**, *91*, (D2),
476 2801-2804.

477 12. Olson, T. M.; Hoffmann, M. R., Kinetics, mechanism, and thermodynamics of glyoxal-S(IV)
478 adduct formation. *J. Phys. Chem. A* **1988**, *92*, (2), 533-540.

479 13. Scheinhardt, S.; van Pinxteren, D.; Müller, K.; Spindler, G.; Herrmann, H.,
480 Hydroxymethanesulfonic acid in size-segregated aerosol particles at nine sites in Germany.
481 *Atmos. Chem. Phys.* **2014**, *14*, (9), 4531-4538.

482 14. Olson, T. M.; Hoffmann, M. R., Hydroxyalkylsulfonate formation: its role as a S(IV) reservoir
483 in atmospheric water droplets. *Atmos. Environ.* **1989**, *23*, (5), 985-997.

484 15. Schweitzer, F.; Magi, L.; Mirabel, P.; George, C., Uptake rate measurements of
485 methanesulfonic acid and glyoxal by aqueous droplets. *J. Phys. Chem.* **1998**, *102*, (3), 593-
486 600.

487 16. Fatiadi, A. J.; Sanger, W. F., Tetrahydroquinone. *Organic Syntheses* **1962**, *42*, 90.

488 17. Rodriguez, C. E.; Shinyashiki, M.; Froines, J.; Yu, R. C.; Fukuto, J. M.; Cho, A. K., An
489 examination of quinone toxicity using the yeast *Saccharomyces cerevisiae* model system.
490 *Toxicology* **2004**, *201*, (1), 185-196.

491 18. Kennedy, I. M., The health effects of combustion-generated aerosols. *Proceedings of the
492 Combustion Institute* **2007**, *31*, (2), 2757-2770.

493 19. Verma, V.; Rico-Martinez, R.; Kotra, N.; Rennolds, C.; Liu, J.; Snell, T. W.; Weber, R. J.,
494 Estimating the toxicity of ambient fine aerosols using freshwater rotifer *Brachionus
495 calyciflorus* (Rotifera: Monogononta). *Environ. Pollut.* **2013**, *182*, 379-384.

496 20. Dellinger, B.; Pryor, W. A.; Cueto, R.; Squadrito, G. L.; Hegde, V.; Deutsch, W. A., Role of
497 Free Radicals in the Toxicity of Airborne Fine Particulate Matter. *Chemical Research in
498 Toxicology* **2001**, *14*, (10), 1371-1377.

499 21. Tao, F.; Gonzalez-Flecha, B.; Kobzik, L., Reactive oxygen species in pulmonary inflammation
500 by ambient particulates. *Free Radical Biology and Medicine* **2003**, *35*, (4), 327-340.

501 22. Chung, M. Y.; Lazaro, R. A.; Lim, D.; Jackson, J.; Lyon, J.; Rendulic, D.; Hasson, A. S.,
502 Aerosol-Borne Quinones and Reactive Oxygen Species Generation by Particulate Matter
503 Extracts. *Environ Sci Technol* **2006**, *40*, (16), 4880-4886.

504 23. Gilmour, P. S.; Brown, D. M.; Lindsay, T. G.; Beswick, P. H.; MacNee, W.; Donaldson, K.,
505 Adverse health effects of PM10 particles: involvement of iron in generation of hydroxyl
506 radical. *Occup Environ Med* **1996**, *53*, (12), 817-822.

507 24. Li, X. Y.; Gilmour Ps Fau - Donaldson, K.; Donaldson K Fau - MacNee, W.; MacNee, W.,
508 Free radical activity and pro-inflammatory effects of particulate air pollution (PM10) in vivo
509 and in vitro. *Thorax* **1996**, *51*, (0040-6376 (Print)), 1216-1222.

510 25. Fang, T.; Lakey, P. S. J.; Weber, R. J.; Shiraiwa, M., Oxidative Potential of Particulate Matter
511 and Generation of Reactive Oxygen Species in Epithelial Lining Fluid. *Environ Sci Technol*
512 **2019**, *53*, (21), 12784-12792.

513 26. Volkamer, R.; Ziemann, P. J.; Molina, M. J., Secondary organic aerosol formation from
514 acetylene (C₂H₂): seed effect on SOA yields due to organic photochemistry in the aerosol
515 aqueous phase. *Atmos. Chem. Phys.* **2009**, *9*, 1907-1928.

516 27. Volkamer, R.; Spietz, P.; Burrows, J.; Platt, U., High-resolution absorption cross-section of
517 glyoxal in the UV-vis and IR spectral ranges. *Journal of Photochemistry and Photobiology A: Chemistry* **2005**, *172*, (1), 35-46.

519 28. Eldridge, D. L.; Guo, W.; Farquhar, J., Theoretical estimates of equilibrium sulfur isotope
520 effects in aqueous sulfur systems: Highlighting the role of isomers in the sulfite and sulfoxylate
521 systems. *Geochimica et Cosmochimica Acta* **2016**, *195*, 171-200.

522 29. Tolocka, M. P.; Jang, M.; Ginter, J. M.; Cox, F. J.; Kamens, R. M.; Johnston, M. V., Formation
523 of oligomers in secondary organic aerosol. *Environ. Sci. Technol.* **2004**, *38*, (5), 1428-1434.

524 30. Clarke, A. G.; Radojevic, M., Oxidation rates of SO₂ in sea-water and sea-salt aerosols.
525 *Atmospheric Environment (1967)* **1984**, *18*, (12), 2761-2767.

526 31. Brandt, C.; van Eldik, R., Transition Metal-Catalyzed Oxidation of Sulfur(IV) Oxides.
527 Atmospheric-Relevant Processes and Mechanisms. *Chem. Rev.* **1995**, *95*, (1), 119-190.

528 32. Liggio, J.; Li, S.-M.; McLaren, R., Reactive uptake of glyoxal by particulate matter. *J. 529 Geophys. Res.* **2005**, *110*, D10304.

530 33. Kroll, J. H.; Ng, N. L.; Murphy, S. M.; Varutbangkul, V.; Flagan, R. C.; Seinfeld, J. H., 531 Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl 532 compounds. *J. Geophys. Res.* **2005**, *110*, D23207.

533 34. Corrigan, A. L.; Hanley, S. W.; De Haan, D. O., Uptake of glyoxal by organic and inorganic 534 aerosol. *Environ. Sci. Technol.* **2008**, *42*, (12), 4428-4433.

535 35. Hastings, W. P.; Koehler, C. A.; Bailey, E. L.; De Haan, D. O., Secondary organic aerosol 536 formation by glyoxal hydration and oligomer formation: humidity effects and equilibrium 537 shifts during analysis. *Environ. Sci. Technol.* **2005**, *39*, (22), 8728-8735.

538 36. De Haan, D. O.; Corrigan, A. L.; Smith, K. W.; Stroik, D. R.; Turley, J. T.; Lee, F. E.; Tolbert, 539 M. A.; Jimenez, J. L.; Cordova, K. E.; Ferrell, G. R., Secondary organic aerosol-forming 540 reactions of glyoxal with amino acids. *Environ. Sci. Technol.* **2009**, *43*, (8), 2818-2824.

541 37. De Haan, D. O.; Hawkins, L. N.; Welsh, H. G.; Pednekar, R.; Casar, J. R.; Pennington, E. A.; 542 de Loera, A.; Jimenez, N. G.; Symons, M. A.; Zauscher, M.; Pajunoja, A.; Caponi, L.; 543 Cazaunau, M.; Formenti, P.; Gratien, A.; Pangui, E.; Doussin, J. F., Brown carbon production 544 in ammonium- or amine-containing aerosol particles by reactive uptake of methylglyoxal and 545 photolytic cloud cycling. *Environ Sci Technol* **2017**, *51*, (13), 7458-7466.

546 38. Girod, M.; Moyano, E.; Campbell, D. I.; Cooks, R. G., Accelerated bimolecular reactions in 547 microdroplets studied by desorption electrospray ionization mass spectrometry. *Chemical 548 Science* **2011**, *2*, (3), 501-510.

549 39. Bain, R. M.; Sathyamoorthi, S.; Zare, R. N., "On-Droplet" Chemistry: The Cycloaddition of 550 Diethyl Azodicarboxylate and Quadricyclane. *Angewandte Chemie International Edition* 551 **2017**, *56*, (47), 15083-15087.

552 40. Banerjee, S.; Zare, R. N., Syntheses of Isoquinoline and Substituted Quinolines in Charged 553 Microdroplets. *Angewandte Chemie International Edition* **2015**, *54*, (49), 14795-14799.

554 41. Davidek, T.; Velisek, J.; Davidek, J.; Pech, P., Amino acids derived 1,3-disubstituted 555 imidazoles in nonenzymatic browning reactions. *Sbornik Vysoke Skoly Chemicko- 556 Technologicke v Praze, E. Potraviny* **1991**, *62*, 165-182.

557 42. Velisek, J.; Davidek, T.; Davidek, J.; Trska, P.; Kvasnicka, F.; Velcova, K., New imidazoles 558 formed in nonenzymatic browning reactions. *J. Food Sci.* **1989**, *54*, (6), 1544-1546.

559 43. Shapiro, E. L.; Szprengiel, J.; Sareen, N.; Jen, C. N.; Giordano, M. R.; McNeill, V. F., Light- 560 absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics. *Atmos. 561 Chem. Phys.* **2009**, *9*, 2289-2300.

562 44. Powelson, M. H.; Espelien, B. M.; Hawkins, L. N.; Galloway, M. M.; De Haan, D. O., Brown 563 carbon formation by aqueous-phase aldehyde reactions with amines and ammonium sulfate. 564 *Environ Sci Technol* **2014**, *48*, (2), 985-993.

565 45. Maxut, A.; Noziere, B.; Fenet, B.; Mechakra, H., Formation mechanisms and yields of small 566 imidazoles from reactions of glyoxal with NH₄⁺ in water at neutral pH. *Phys. Chem. Chem. 567 Phys.* **2015**, *17*, (31), 20416-20424.

568 46. Ang, C. C.; Lipari, F.; Swarin, S. J., Determination of hydroxymethanesulfonate in wet 569 deposition samples. *Environ Sci Technol* **1987**, *21*, (1), 102-105.

570 47. Igawa, M.; Munger, J. W.; Hoffmann, M. R., Analysis of aldehydes in cloud- and fogwater 571 samples by HPLC with a postcolumn reaction detector. *Environ. Sci. Technol.* **1989**, *23*, (5), 556-561.

573 48. Munger, J. W.; Jacob, D. J.; Daube, B. C.; Horowitz, L. W.; Keene, W. C.; Heikes, B. G.,
574 Formaldehyde, glyoxal, and methylglyoxal in air and cloudwater at a rural mountain site in
575 central Virginia. *J. Geophys. Res.* **1995**, *100*, (D5), 9325-9333.

576 49. Matsumoto, K.; Kawai, S.; Igawa, M., Dominant factors controlling concentrations of
577 aldehydes in rain, fog, dew water, and in the gas phase. *Atmos. Environ.* **2005**, *39*, 7321-7329.

578 50. van Pinxteren, D.; Plewka, A.; Hofmann, D.; Muller, K.; Kramberger, H.; Svrcina, B.;
579 Bachmann, K.; Jaeschke, W.; Mertes, S.; Collett Jr., J. L.; Herrmann, H., Schmucke hill cap
580 cloud and valley stations aerosol characterisation during FEBUKO (II): organic compounds.
581 *Atmos. Environ.* **2005**, *39*, 4305-4320.

582 51. Munger, J. W.; Jacob, D. J.; Hoffmann, M. R., The occurrence of bisulfite-aldehyde addition
583 products in fog- and cloudwater. *J. Atmos. Chem.* **1984**, *1*, (4), 335-350.

584 52. Richards, L. W.; Anderson, J. A.; Blumenthal, D. L.; McDonald, J. A.; Kok, G. L.; Lazrus, A.
585 L., Hydrogen peroxide and sulfur (IV) in Los Angeles cloud water. *Atmospheric Environment*
586 (1967) **1983**, *17*, (4), 911-914.

587

588

589 TOC artwork

590