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The weak gravity conjecture implies the necessary existence of particles with charge-to-mass ratio
q=m ≥ 1 so that the extremal charged black hole can completely evaporate without leaving a dangerous
stable extremal remnant while simultaneously not revealing a naked singularity along the way. In other
words, this inequality ensures that the charge is emitted faster than the mass of a black hole, which is in turn
coincidentally consistent with the fact that gravitational interaction for such parties is weaker than
electromagnetic. To extend this argument to nonextremal black holes, we solve the problem of a charged
shell of mass and charge (m, q) from a black hole with mass (M, Q). We find a more general condition
q=m ≥ Q=M, which obviously reduces to the weak gravity conjecture in the extremal limit; however, it
relaxes the condition for complete evaporation of nonextremal black holes. This condition also allows us to
directly relate the particle content of the theory with the spectrum of black hole states.
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I. INTRODUCTION

The Reissner-Nordström (RN) solution describes a
spacetime geometry sourced by a central mass M and a
Uð1Þ gauge charge, Q (e.g., electromagnetism). When the
mass and charge distribution are both contained below the
horizon radius it is understood that a black hole (BH) is
formed. It is an interesting feature of the RN solution that
the geometry houses two event horizons for well-behaved
values of Q and M located at radii

R� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð1Þ

Here, and in the remainder of this article, we have used
mPl ¼ 1 such that Q and M are of the same dimension. As
we can see, the Schwarzschild solution is obtained by
takingQ → 0. On the other hand, an extremal BH occurs at
the bound Q ¼ M. Beyond the extremal bound, Q > M,
the RN solution no longer houses a horizon and possibly
violates the cosmic censorship conjecture (CCC).
It is evident then, if the CCC is not to be violated, that the

BH evaporation process (whether through Hawking evapo-
ration, Schwinger effect, or some other mechanism) should
not be able to continue past the extremal bound.
We could consider a mechanism that stops the evapo-

ration processes at the extremal bound (much like how
Hawking evaporation already naturally does) and allow the
extremal BH to form a remnant, stable against further
decay. But stable BH remnants are not preferred for at least
two reasons:

(1) The base ΛCDM model has that the early universe,
postinflation but pre-big-bang nucleosynthesis
(BBN), was radiation dominated so that the equation
of state for the universe was close to w ¼ 1=3 at
BBN. Also at this time, primordial BHs (PBHs)
were able to form in abundance with an effective
equation of state w ¼ 0 [1]. So to keep in agreement
with BBN predictions, the majority of PBHs must
have then evaporated away into some massless
degrees of freedom. But for PBHs which have taken
on some net charge, if the evaporation process only
goes down to the extremal bound, stable relics form
and keep the equation of state away from w ¼ 1=3,
or they can even overclose the universe at early times
(see e.g., [2]).

(2) The covariant entropy bound (CEB) [3] places a
fundamental limit on the degrees of freedom allowed
in a theory. Violating the bound could allow for
infinite entropy in some finite volume. Since each
stable object able to be formed in a theory provides a
degree of freedom, the CEB says that the number of
stable objects a theory should be able to form must
be finite. But extremal BHs could have any charge or
mass satisfying Q=M ¼ 1, naively allowing for an
infinite spectrum of degrees of freedom and violat-
ing the CEB.1

This is where the original BH arguments of the weak
gravity conjecture (WGC) come in (see [4]). To keep
from forming dangerous stable BH remnants while
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1The concern here is not entirely unanimous in the literature
since the discretization of charge could lead to a large but finite
number of stable states within a mass range.
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simultaneously not violating the CCC, the WGC proposes
that extremal BHs must decay through some mechanism in
such a way that they satisfy

Q
M

≥
Q0

M0 ð2Þ

where (M, Q) and (M0; Q0) are the mass and charge of the
BH before and after the decay, respectively. In order to
reduce the BH charge, the decay process must produce
particles in theUð1Þ particle spectrum. Thus, the arguments
of the WGC say, for an extremal BH evaporation to occur,
that there must be at least one particle in the spectrum with
mass and charge (m, q) that when far removed has a net
repulsive force from an extremal BH. That is to say

q
m

≥ 1; ð3Þ

where we are using q and Q as the magnitudes of the
charges but assume them to be of like charge. The WGC
has been very useful in labeling unrealistic theories of
quantum gravity by checking if they allow for such a state.
Another simple argument for the WGC was discussed by

Cheung and Remmen in [5] where they consider the BH
with (M, Q) which completely decays away into a final
state of n ¼ Q=q particles with (m, q). Therefore, from
energy conservation we require M ≥ nm, or, defining z≡
q=m and Z≡Q=M,

z ≥ Z: ð4Þ

Cheung and Remmen further argue that it is not sufficient
for just one particle in the spectrum to satisfy this condition
but that some weighted average of the available species
must. We take a similar stance here. But while [5] concerns
the charge-to-mass ratio of the entire final state, we break
up the final state into thin charged shells and show that each
shell, when emitted, must satisfy the bound as well.
It is worth noting that, including higher order derivative

terms in the RN solution, the extremal bound could become
a mass dependent function, pulling away from Q ¼ M at
small masses (see [6]). It still remains to be proven the sign
of these corrections which could either allow for the
extremal bound to lie somewhere in the Q < M or
Q > M space. Some physical arguments have been
made [7–11] calling for the extremal bound to be pushed
toward the Q > M space which would conveniently allow
for overcharged BHs themselves to satisfy the WGC.
For convenience we will ignore these corrections.

II. SHELL EMISSION

Consider again a decay taking us from a BH with
Q=M ≤ 1 to a BH with Q0=M0 ≤ 1. We take this to be
done by emitting a charged, thin, mass shell of rest mass m
and charge q. We could imagine the mass shell to be the

dominant s-wave of a scalar field (see [12]), or as a locus of
Uð1Þ charged particles—since the WGC is a general result
it should bind these decay modes as well. In the case of the
locus of particles, assuming the shell to be a uniform
distribution of identical particles, the charge-to-mass ratio
of the shell will be the same as the individual particles
making up the shell.
The charge of the BH before and after the decay should

be related by

Q ¼ Q0 þ q: ð5Þ

For the mass relation, we refer to Fig. 1. The presence of the
mass shell outsideM0 causes a discontinuity in the extrinsic
curvature tensor, Kij, between regions I and II. The
discontinuity at the shell, denoted by the square brackets,
can be found to be (see [13] or [14])

½Kj
i� ¼ 8πσ

�
ujui þ

1

2
δji

�
ð6Þ

where σ is the mass density of the shell such that
4πR2σ ¼ m, the rest mass of the shell, and u is the
4-velocity of the shell. Considering only radial motion
of the shell we can find that

½Kθθ� ¼ 4πgθθσ ¼ 4πR2σ ¼ m: ð7Þ

We have assumed a dust equation of state for the shell
in (6) so we should not naively take the limit m → 0.
Furthermore, we note that q contributes to the discontinuity
(7) only through its energy content which can be wrapped
up in m (see [15]).
We could also evaluate the discontinuity by taking the

difference of the extrinsic curvature tensor inside and
outside the shell,

½Kj
i� ¼ Kj

i
ðIIÞ − Kj

i
ðIÞ:

For this we consider the metric in region I to be the
Reissner-Nordström solution sourced by M0 and Q0,

ds2I ¼ −fIðrÞdt2I þ f−1I ðrÞdr2 þ r2dΩ2:

FIG. 1. A BH decays into another through the emission of an
outward moving thin, charged mass shell. The shell divides the
space into two regions, interior (I) and exterior (II).
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Likewise, region II will have a metric

ds2II ¼ −fIIðrÞdt2II þ f−1II ðrÞdr2 þ r2dΩ2

where we have introduced the functions

fIðrÞ≡
�
1 −

2M0

r
þQ02

r2

�
;

fIIðrÞ≡
�
1 −

2M
r

þQ2

r2

�

for brevity. There remains a difference in time coordinates
between the two regions as is necessary for the two regions
to match up (see for instance [16]). Calculating the extrinsic
curvature tensor in both regions we obtain

½Kθθ� ¼ −R
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fIIðRÞ þ v2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fIðRÞ þ v2

q �
¼ m ð8Þ

where ur ¼ v is the radial speed in the rest frame of the
shell and R is the radial size of the mass shell centered on
M0. Solving (8) for M0 we can get

M0 ¼ M þ q2 −m2 − 2qQ
2R

−m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fIIðRÞ þ v2

q
: ð9Þ

Notice that M, M0, and m are the constant Arnowitt-Deser-
Misner masses. So if we let R → ∞ then we find

M0 ¼ M −m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2∞

q
; ð10Þ

which one might have guessed allowing for the possibility
that m still has some kinetic energy far removed from the
BH. Combining (2), (5), and (10) with v∞ ¼ 0 we
immediately get that

q=m ≥ Q=M ð11Þ
as we would expect for far removed objects. The relation in
Eq. (11) is more general than WGC since it is valid for a
general charged BH, not only extremal. This obviously
reduces to the WGC, q=m ≥ 1, in the extremal limit. But
since Q < M for nonextremal BHs, the condition for
complete evaporation of nonextremal BHs is relaxed in
comparison to WGC. In particular, particles with q=m ≤ 1
can also reduce the Q=M ratio of a BH.
As an important consequence, the condition in Eq. (11)

also allows us to directly relate the particle content of the
theory with the spectrum of BH states. We show this
in Fig. 2.
Admittedly, going from (9) to (10) we assumed the shell

to be able to escape from the BH which may not be possible
for general values of parameters. To be more precise we can
require

M þ q2 −m2 − 2qQ
2R

−m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fIIðRÞ þ v2

q
≤ M −m

which is equivalent to M0 ≤ M −m. If we consider the
most extreme case where the shell originates from the
horizon of the original BH, R ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
, then

solving for v gives

v ≥ 1þ ðz2 − 1Þ m
2R

− z
Q
R

ð12Þ

where z is defined in the same way as in (4). Thus, for the
shell to escape to infinity we would require

2zQ ≥ ðz2 − 1Þm

or equivalently

2qQþm2 ≥ q2

which is trivially satisfied since q ≤ Q. That is to say,
charged shells are generally able to escape the near-horizon
region of a BH, and as long as the shell’s charge-to-mass
ratio is at least that of the original BH’s then it will allow the
BH to recede from extremality.

III. CONCLUSION

In principle, if we require that BHs are allowed to
evaporate completely without crossing the extremal bound
we can connect the charge-to-mass ratio of the Reissner-
Nordström BH and the particle content in a theory.
Formerly, the WGC and its extensions have shown that
at least one far removed particle—or a combination of far
removed particles—available in a Uð1Þ spectrum must
satisfy q=m ≥ 1. Here we have used the outflow of a
charged thin shell to show that the WGC continues to hold
when the decay product is far removed from the near
horizon geometry and thereby we have tied the WGC

FIG. 2. The shaded region marks those charge-to-mass ratios of
a shell that would allow for a BH of (M, Q) to evaporate away
from extremality. Dashed lines mark the q ¼ m and Q ¼ M
bounds.
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explicitly to BHs in a similar sense to the BH thermody-
namic arguments posed in [17] and others. This agreement
has come at the requirement that the shell have at least
the necessary escape velocity from the BH which in the
extremal limit is found to be zero for a shell with q=m ≥ 1
[see Eq. (12)].
We also wish to note that our main result,

q
m

≥
Q
M

; ð13Þ

directly connects a general charged BH and particle
spectra for a particular Uð1Þ. One could have perhaps
conjectured or guessed this very relationship; however, here
we obtained it by solving an exact general relativistic
problem. As an interesting consequence of Eq. (13),
particles with q=m ≤ 1 can also reduce the Q=M ratio
of a BH with Q < M.
In addition, in some cases, the relation can apply to the

creation of BHs in addition to their evaporation. For
example, we can consider a Uð1Þ with only one particle
species. If the species had q=m < 1 it would apparently
violate the original WGC, but not our relation Eq. (13). In
such a theory, BHs would stay safely away from the
extremal bound since collapse and/or accretion of particles
with q=m < 1 could produce only BHs with strictly

Q < M. As a richer particle spectrum is considered, a
wider variety of BHs can be produced.
Furthermore, while in agreement with previous results,

knowing that particle shells must also satisfy q=m ≥ 1 in
the extremal limit it may be possible to use particle
production rates to reduce the needed charge-to-mass
parameter space for a theory. For instance, if two charged
species (i ¼ 1; 2) exist in a Uð1Þ then the shell will consist
of some percentage of i ¼ 1 particles and i ¼ 2 particles
with their contribution depending on their production rate.
So if species 1 has q1=m1 ≪ 1 but a very high production
rate at the extremal bound compared to species 2, that is to
say hN1i ≫ hN2i, then species 2 would not only need
q2=m2 ≥ 1 but instead q2=m2 ≫ 1. This could in turn
further narrow down the allowed particle content in the
theory. This idea was inspired by the work done in [18] for
the electron-positron pair production through the
Schwinger effect.
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