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Abstract. We bypass impossibility results for the deterministic encryp-
tion of public-key-dependent messages, showing that, in this setting, the
classical Encrypt-with-Hash scheme provides message-recovery security,
across a broad range of message distributions. The proof relies on a new
variant of the forking lemma in which the random oracle is reprogrammed
on just a single fork point rather than on all points past the fork.

1 Introduction

Deterministic encryption. In a scheme DE for Deterministic Public-Key Encryp-
tion (D-PKE) [2], the encryption algorithm DE.Enc takes public encryption key
ek and message m to deterministically return a ciphertext ¢. The standard pri-
vacy goal is most easily understood as the same as for randomized public-key
encryption —IND-CPA, asking for indistinguishability of encryptions of different
messages— but with two restrictions: (1) That messages not depend on the pub-
lic key, and (2) that messages be unpredictable, meaning have high min entropy.
We will use the IND formalism of [5], shown by the latter to be equivalent to the
PRIV formalization of [2] as well as to several other formalizations. A canonical
and practical construction is EwH (Encrypt with Hash) [2]. It encrypts message
m under a (any) randomized IND-CPA scheme RE with the coins set to a hash
of ek|lm, and is proven IND-secure if the hash function is a random oracle [2].
Further schemes and considerations can be found in [13, 14, 27, 30, 19, 6, 20].

Why D-PKE? Determinism allows sorting of ciphertexts, enabling fast search on
encrypted data, the motivating application in BBO’s introduction of D-PKE [2].
Determinism also closes the door to vulnerabilities arising from poor random-
ness [15, 28]. Understood to be a threat already when its causes were inadvertent
system errors [31], poor randomness is now even more a threat when we see that
it can be intentional, arising from the subversion of RNGs happening as part of
mass-surveillance activities [11].

Narrowing the gap. We benefit, in light of the above motivations for D-PKE, from
the latter providing privacy as close to IND-CPA as possible. We can’t expect
of course to entirely close the gap —no D-PKE scheme can achieve IND-CPA—
but we’ll narrow it. Our target will be the first of the two limitations of IND
noted above, namely that it guarantees no privacy when messages depend on the
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public key. In particular, for all we know, in this case, one could recover the entire
message from an EwH-ciphertext. This is the gap we will close, showing EwH
message recovery is not possible across a broad range of public-key-dependent
message distributions. We’ll explain how this bypasses, rather than contradicts,
prior impossibility results that have inhibited progress on the question, while
also contributing new, more fine-grained impossibility results to indicate that our
own possibility results will not extend much beyond the message distributions for
which we establish them. Underlying our possibility result is a new variant of the
forking lemma [29, 7, 1], that we call the Local Forking Lemma, of independent
interest. We now look at all this in more detail.

Prior work. Given that the public key is, as the name indicates, public, mes-
sages depending on it are a possibility in practice, and IND-CPA provides pri-
vacy even for such messages. But, for D-PKE, the literature says that security
for public-key-dependent messages is impossible [2, 5]. The argument support-
ing this claim is that the following attack violates IND-security of any D-PKE
scheme DE. In its message finding stage, the adversary, given the public key
ek, picks mg, m1 at random —of length, say, equal to the security parameter—
subject to the constraint that the first bits of hy < HASH(DE.Enc(ek,mg))
and hy + HAasSH(DE.Enc(ek,m;y)) are 0,1, respectively, where HASH is a ran-
dom oracle. The messages mg, m; are unpredictable, but given a ciphertext
¢ <+ DE.Enc(ek,my) encrypting my, the adversary can determine b as the first
bit of the hash HASH(c) of the ciphertext.

That IND cannot be achieved for public-key dependent messages doesn’t
mean no security is possible in this setting; perhaps guarantees can be provided
under some other, meaningful metric (definition) of security X. Raghunathan,
Segev and Vadhan (RSV) [30] were the first to pursue this, making a choice
of X that we’ll refer to as PDIND. In X=PDIND, security is parameterized by
the number N(-) of (public-key dependent) distributions from which the message
may be drawn. RSV [30] show that, if one first fixes an upper bound N (-) = 27P()
on the number of allowed message distributions, then one can build a PDIND
secure D-PKE scheme, with the scheme and its parameters depending on N (-).
While theoretically interesting, this result has limitations from a practical per-
spective. The scheme is expensive, with key size and computation time growing
polynomially with p, and this is inherent. Security is fragile: If the number of
message distributions exceeds the bound N(-), security may —and in some of
their schemes, will— fail. There is difficulty of use: it is not clear how a designer
or implementer can, with confidence, pick N(-) a priori, but they must have N(-)
in hand to build the scheme.

PDMR security. Our target is a simple, meaningful security guarantee (when de-
terministically encrypting public-key dependent messages) that we can establish
for practical schemes. We reach this by making a different choice of X above.
We formalize and target X=PDMR, message recovery security for public-key-
dependent messages. The definition, in Section 4, considers a source S that, given
the public key ek and access to the random oracle HASH, returns a sequence of
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unpredictable messages. Encryptions under ek of these messages are then pro-
vided to the adversary A, who, continuing to have ek and access to HASH, must,
to win, recover (in full) one of the messages. Unlike PDIND [30], there is no a
priori restriction on the number of message distributions (here, sources).

One might object that message recovery security is a weak security guaran-
tee, in response to which we note the following. First, in practice adversaries
benefit more by recovering the full message from a ciphertext than by merely
distinguishing the encryptions of two messages. So, even when distinguishing
attacks are possible, a scheme preventing message recovery can add significant
security. Second, right now, practical schemes like EwH are not proven to pro-
vide any security for public-key dependent messages, so if we can show PDMR
is present, we have improved security guarantees without increasing cost. Third,
in providing PDMR, we will insist that IND be maintained, so that overall secu-
rity only goes up, not down. In other words, for messages not depending on the
public key, we continue to provide the guarantee that is standard and viewed as
best possible (IND), supplementing this with a meaningful guarantee (PDMR)
for messages that do depend on the public key.

It is useful to define n(-)-PDMR security as PDMR security for sources that
output n messages. We will establish PDMR first for n = 1 and then boost to
more messages.

One-message PDMR security of EwH. The core possibility result of this paper is
that EwH is 1-PDMR secure, meaning provides message-recovery security for the
encryption of one unpredictable message even when the latter depends arbitrarily
on the public key. The underlying randomized public-key encryption scheme RE
is assumed, only and correspondingly, to itself provide security against message-
recovery. (This is implied by IND-CPA and hence true for EwH [2], but strictly
weaker.) The hash function HASH continues, as in [2], to be modeled as a random
oracle.

The proof requires new techniques. Let m denote the challenge message pro-
duced by the source, and let ¢; < RE.Enc(ek, m;r;) where r1 + HaAsH(ek||m).
The approach of [2] would replace ¢; with a ciphertext ¢y < RE.Enc(ek, m;rq)
for random r(, allowing a reduction to the assumed message-recovery security of
RE. This requires that neither the source nor the adversary make query ek|m to
HasH, for otherwise they can differentiate ¢y from ¢;. But this in turn requires
that the source not have ek. Indeed, in our setting, where it does have ek, it can
query ek|lm to HAsH, and we must assume that it does so. The prior argument
now breaks down entirely and it is not clear how to do the reduction. We obtain
our result, instead, via a novel rewinding argument. Two executions are forked
at the crucial hash query, one corresponding to response r; and the other to
response 1o, but with a twist. In the classical rewinding technique [29, 7], all
answers to random-oracle queries after the fork are random and independent in
the two forks. This fails to work in our case. Instead we are able to re-program
the random oracle at just one point in the rewinding and argue that the two
executions both result in correct guesses by the adversary.
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The analysis relies on what we call the Local Forking lemma, a (new) variant
of the forking lemmas of [29, 7, 1] that we give and prove. As with the General
Forking Lemma of BN [7], our Local Forking Lemma is a purely probabilistic
result, knowing or saying nothing about encryption. Handing off to our Local
Forking Lemma the core probabilistic analysis in the above-discussed proof of 1-
PDMR security not only makes the latter more modular but allows an extension
to security against chosen-ciphertext attacks.

Many-message PDMR security of EwH. We show that EwH provides PDMR se-
curity for all sources (distributions on message sequences) that are what we call
resampling indistinguishible (RI). Very roughly —the formal definition is in Sec-
tion 5— RI asks that different messages in the sequence, although all allowed to
depend on the public key in different ways, are themselves almost independently
distributed.

Our first step is a general result showing that if a D-PKE scheme is 1I-PDMR
then it provides PDMR for any RI source. That is, once we have PDMR secu-
rity when encrypting just one, single message, we also have it when encrypting
any polynomial number of RI messages. This is a general result, holding for
any D-PKE scheme. An interesting element of this result is that the public-key
dependence of messages is a plus, exploited crucially in the proof.

To put this in context, for IND, security for one message does not, in gen-
eral —that is, for arbitrary message distributions— imply security for multiple
messages [2]. It has been shown to do so for particular message distributions,
namely block sources, by Boldyreva, Fehr and O’Neill [13]. But they do not con-
sider public-key-dependent messages, and block sources and RI distributions are
not the same.

That EwH provides PDMR, security for all RI sources now of course follows
directly from the general reduction just mentioned and our above-discussed result
establishing 1-PDMR security of EwH.

That these results are for EwH rather than some other scheme is important
for two reasons. The first is that EwH is efficient and practical. The second is
that we know that EwH already achieves IND for messages that do not depend
on the public key [2]. As discussed above it is important that PDMR, be provided
while maintaining IND so that we augment, not reduce, existing guarantees.

CCA too. All the above considered security under chosen-plaintext attack (CPA).
This is certainly the first and foremost goal, but one can ask also about secu-
rity against chosen-ciphertext attack (CCA), particularly if our quest is par-
ity (to the best extent possible) with randomized encryption, where motivated
by applications [12], efficient IND-CCA schemes have been sought and pro-
vided [9, 18, 17, 25, 23, 21].

Our results extend to CCAs. Namely, we show that, under chosen-ciphertext
attack, EwH continues to provide 1-PPDMR, and PDMR for RI sources, as-
suming the underlying randomized public-key encryption scheme itself provides
message recovery under CCA, which is implied by IND-CCA. Put another way,
EwH promotes message-recovery security of RE to message-recovery security of
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the constructed DE, in both the CPA and the CCA cases, for public-key de-
pendent messages produced by RI sources. In the body of the paper, we give
unified definitions and a single, unified result that cover both CCA and CPA by
viewing the latter as the special case of the former in which adversaries make
no decryption queries, exploiting our Local Forking lemma to provide a modular
proof.

Impossibility results. Our possibility results show that PDMR security is achiev-
able when messages in the sequence are somewhat independent of each other,
formalized as RI. We complement these possibility results with negative ones,
showing that, when messages in a sequence are closely related, PDMR security
is not possible. Section 6 gives attacks to show that PDMR security can be
violated even when encrypting just two, closely related messages, even though
both messages are unpredictable. This is true for any D-PKE scheme. These
attacks are novel; the above-mentioned attacks understood in the literature vio-
late indistinguishability security for public-key-dependent messages, but do not
recover messages and thus, unlike ours, do not violate PDMR. We believe that a
contribution here is not just to give these attacks, but with rigorous and formal
analyses (Theorems 4 and 5), which is unusual in the literature. The proof of
unpredictability in Theorem 5 relies on techniques from the proof of the Leftover
Hash Lemma [24].

Discussion and further directions. It is interesting to note that Goldwasser and
Micali’s original definition of semantic security for public-key encryption [22]
only required privacy for messages not depending on the public key. This was
pointed out by Micali, Rackoff and Sloan (MRS) [26], who strengthened the
definition in this regard. (In their terminology, this corresponds to three pass
versus one pass notions.) Modern definitions of semantic security (IND-CPA)
[4, 16] accordingly ask for privacy even for messages that depend on the public
key, and modern public-key encryption schemes provide this privacy. Our work
continues the quest, started by RSV [30], to bring D-PKE to parity as much as
possible in this regard.

There is a great deal of work on D-PKE including many schemes without
random oracles [13, 14, 27, 30, 19, 6, 20]. A direction for future work is to assess
whether these schemes provide PDMR security, or give new schemes without
random oracles that provide both IND and PDMR security.

The full and most current version of this paper is available as [3].

2 Preliminaries

Notation and terminology. By A € N we denote the security parameter and by

1* its unary representation. We denote the number of coordinates of a vector
x by |x|, the length of a string € {0,1}* by |z| and the size of a set S by
|S]. If = is a string then x[¢] is its i-th bit. Algorithms are randomized unless
otherwise indicated. Running time is worst case. “PT” stands for “polynomial-
time,” whether for randomized algorithms or deterministic ones. For integers
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a < b welet [a.b] = {a,a+1,...,b}. We let y < A% (21,...;7) denote
executing algorithm A on inputs x1, ... and coins r with access to oracles Oy, . ..
and letting y be the result. We let y <—s A% (x1,...) be the resulting of picking
r at random and letting y + A%t (2q,...;7). We let [A®(xq,...)] denote
the set of all possible outputs of A when invoked with inputs z1, ... and oracles
O4,.... We use qgi to denote the number of queries that A makes to O; in the
worst case. We recall that a function f: N — R is negligible if for every positive
polynomial p, there exists n, € N such that f(n) < 1/p(n) for all n > n,. An
adversary is an algorithm or a tuple of algorithms. The running time of a tuple
of algorithms is defined as the sum of the individual running times. We use ¢ 4
to denote the running time of an adversary A.

Games. We use the code based game playing framework of [10]. (See Fig. 4 for an
example.) By G = y we denote the event that the execution of game G results
in output y, the game output being what is returned by the game. We write
Pr[G] as shorthand for Pr[G =- true], the probability that the game returns true.

Random Oracle Model (ROM). In the ROM [8], we give parties a random oracle
HasH that on input a string « € {0,1}* returns a an output y that is (concep-
tually at least) a random, infinite string. The caller will then read a prefix of
y, of any length it wants, and be charged, in terms of computation, an amount
proportional only to the number of bits read.

Let T denote the set of all functions T: {0,1}* — {0,1}°°. Then, mathemat-
ically, a random oracle HASH is a function drawn at random from T. We view
each T € T as a table so that values in it can be reprogrammed, and thus may
write T[] in place of T'(-). HASH could be a procedure in games, for example in
Fig. 3, where return values are sampled lazily as they are needed. Alternatively,
we also sample the table T" that describes HASH uniformly at random from T at
the beginning of the game (and write T in place of HAsH), for example in Fig. 1.
We note that the above two ways of implementing the random oracle HASH are
equivalent.

It is sometimes useful to give parties a variable output length random oracle.
This takes two inputs, € {0,1}* and ¢ € N, and returns a random ¢-bit string,
and, even for a fixed x, the outputs for different lengths £ must be independent.
We can implement such a variable output length RO in our model above, and
now discuss how. First, what does not work is to query = and take the ¢-bit
prefix of the infinite-length string returned, since in this case the result for z, ¢ is
a prefix of the result for z, ¢/ whenever ¢ > £, and so the two are not independent
as required. However, one can first fix an efficient injective encoding of the form
{0,1}* xN — {0, 1}*. Then, a query of the form x, £ to a variable-length RO can
be simulated by quering encoding of the pair (z, ) to our single-input random
oracle HAsH. With this understood, we will work in our model above.
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GaME G5ty | GaME GEURG

7 +s SAMP() 7 <s SAMP()

T<+sT T<+sT

(a,z) < FT(7) | (a,z) + FT(m)

Return (a« >1) | TV« T

T'[z] s {0,1}°°

(of,2') « FT'(x)

Return ((a =a’) A (a > 1))

Fig. 1. Games GiﬁﬂeF (single run) and Gggﬁr‘?}% (double run) associated with algo-

rithms SAMP and F'.

3 The Local Forking Lemma

We consider two algorithms SAMP and F'. The first could be randomized but has
no oracle. The second is deterministic and has access to a random oracle HASH
as defined in Section 2. These algorithms work as follows.

Via 7 <—s SAMP(), algorithm SAMP returns a value m that we think of as
parameters that are input to F. Via (a,z) < FT(m), algorithm F, with input
m, and with access to oracle T" € T, returns a pair, where @ > 0 is an integer
and z is a string. We require that if & > 1 then x must be the a-th query that F’
has made to its oracle. If a = 0, there is no requirement on x. Think of « = 0 as
denoting rejection and a > 1 as denoting acceptance. We let ¢ denote maximum
value that « can take. Furthermore, we require that the first ¢ queries that F
make must be distinct.

Consider the games G;’,{lﬁﬁ p and GEouPlS, in Fig. 1. They are parameterized
by algorithms SAMP and F. Game G?Anﬁs F is a “normal” execution, in which
7 is sampled via SAMP, then F' is executed with oracle T, the game returned
true if v > 1 (acceptance) and false if a = 0 (rejection). Game GEHP'% begins
with the same “normal” run. Then, it reruns I’ with a different oracle T”. The
difference is in just one point, namely the reply to the a-th query. Otherwise, T’
is the same as T. This “local,” as opposed to “global” change in T” versus T is
the main difference from the General Forking Lemma of [7]. Our Local Forking
Lemma relates the probability of these games returning true. Our proof follows
the template of [7].

Lemma 1 (Local Forking Lemma). Let SAMP, F' and q be as above. Then

1 .
doubl ingl

Pr[GSXEP,%‘] 2 5 ’ Pr[GEAJ\%Pe,F}Z : (1)
Proof (Lemma 1). Consider the games of Figure 2. They are like the correspond-
ing games of Figure 1 except that 7 € [SAMP()] is fixed as a parameter of the
game rather than chosen via SAMP in the game. Our main claim, that we will
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GAME Gfrif}?le GAME Gdopple

T<+sT T<+sT

(a,z) < FT(7) | (a,z) + FT(m)

Return (o« >1) | TV« T

T'[z] s {0,1}°°

(of,2') « FT' (x)

Return ((a = /) A (a > 1))

Fig. 2. Games Gf’rif}?lc (single run) and Gi?l‘éble (double run), with the parameter m now
fixed.

establish below, is that for every = € [SAMP()] we have

Pr[GLopPe] > = . Pr(GEg)? . (2)

SEE

From this we obtain Equation (1) as in [7]. Namely, define Y1,Ys: [SAMP()] —
[0,1] by Y1(7) = Pr[ijT}?Ie} and Ya(7) = Pr[G3°p"'], and regard these as random
variables over the choice of 7 +—s SAMP(). Then, from Equation (2), we have

Pr(G§0n ] = E[Y2]

afio
> BV 3)

1 ingl
= 5 : PY[GZI:EIPE,FF )

where Equation (3) is by Jensen’s inequality. This establishes Equation (1). We
proceed to the main task, namely to prove Equation (2). Henceforth, regard
7 € [SAMP()] as fixed.

Since F' makes a finite number of oracle queries and has finite running time,
we can fix an integer L such that any query & made by F has |z| < L and also
the maximum number of bits of any reply read by F' is at most L. This allows
us to work over a finite sample space. Namely, let D = {0,1}=¥ be the set of
all strings of length at most L and let R = {0,1}% be shorthand for the set of
strings of length L. Then let OS be the set of all functions T: D — R. Now we
can view T in the games as being sampled from the finite set OS.

We let Q1,Q2,...,Q, denote the query functions of F', corresponding to
the first ¢ queries. Function Q;: R*~! — D takes a list hq,...,h;_1 of answers
to queries 1,...,7 — 1 and returns the query that F' would make next. To be
formal, the only possible input to @1 is the empty string e, and it returns the
first query made by F, which is uniquely defined since F' is deterministic. On
input a string h; € R, function Qs returns the query that F' would make if
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it received hj as the answer to its first query. And so on, so that function @,
given hy,...,h;—1 € R, returns the i-th query that F' would make had it received
hi,...,h;—1 as responses to its prior queries. We note again that the determinism
of F' is important for these (deterministic) query functions to be well defined.
For ¢ € [1..q] we let Q(hl, ey hifl) = (Q1(5>, Qg(hl), ey Qi(hl, ey hi,1)> be
the vector consisting of the first ¢ queries given responses hq, ..., h;—_1. Note that
by our assumptions on F', the ¢ entries of this vector are always distinct.

We will be wanting to tinker with a function 7', erasing it at some points,
and then adding in new values. We now develop some language to facilitate this.
If V is a vector, we let [V] denote the set whose elements are the entries of V', for
example [(1,7,5)] = {1,7,5}. For a vector Q € D' of possible queries, we let 0Sg
denote the set of all functions S: D\ [@] — R, meaning functions just like those
in OS but undefined at inputs in [Q]. Now if S € OSg and H € R’ is a vector
of possible answers, we let S[H] denote the function T' € OS that reprograms S
on the query points, leaving it intact on others. In detail, for 1 < 5 < i we let
T(QIj]) = H[j], and for = & [Q], we let T(z) = S(z).

Recall that F’s output is a pair of the form (a,x) where 0 < «a < ¢ is
an integer. We are only interested in the first output «, and it is convenient
to let F} denote the algorithm that returns this. Also if i, > 0 are integers,
Ind; () is defined to be 1 if & = ¢ and 0 otherwise. Now suppose i € [1..¢].
We let £2; be the set of all (hy,...,h;—1,S5) such that hy,...,h;—; € R and
S € 0SQ(h,....h;_1)> meaning S is undefined at the first i queries made by F.
The function X;: §2; — [0,1] is then defined by

X;(h1,... hi_1,S) = Pr [a —i: hesR: o« Ff“h“"hf*hh”(w)}

1 ( 2S[(hisehiz1 )]
= 7 };Indz (F1 (7"')> :

This function fixes the answers to the first ¢ — 1 queries, which uniquely deter-
mines the i-th query, and also fixes, as S the answers to all but these ¢ queries,
taking the probability only over the answer h to the i-th query. Let | and I’ be
the random variables taking values o and o, respectively, in game Gfr?}}ble. Then

Pr[GIopP] = Pr[l > 1AV =]

I
.MQ

N
Il
-

Prll=inl =1

Pr{l=i]-Pr[l'=4i|l=1i]

|
.MQ

~
Il
—

1
2 Z Xi(hi,... hi—1,8)?
v (hl,...,hi,l,S)eQi

I
KM"

<
Il
—

E[X]] (4)

Il
.MQ

@
I
—
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> ZE[Xi]Q : (5)

In Equation (4), we regard X; as a random variable over (2;, and refer to its
expectation. Equation (5) is by Jensen’s inequality. Now recall that if ¢ > 1 is
an integer and x1,...,z4 > 0 are real numbers, then

Eq: > <le)2 :

This can be shown via Jensen s mequahty or the Cauchy-Schwartz inequality,
and a proof is in [7]. Setting x; = E[X;], we have

q-ZE[XiP > <ZE[Xi]> .

At this point, we would like to invoke linearity of expectation to say that E[X;]+

-+ E[Xy] = E[X; + --- + X,], but there is a difficulty, namely that linearity
of expectation only makes sense when the random variables are over the same
sample space, and ours are not, so the sum is not really even defined. (This is
glossed over in [7].) So instead we expand the expectations again,

q q
ZE[Xl]:ZLé Z Xi(hl,...,hi_l,S)
=1 i=1

‘ (h1,...;hi—1,5)€82;

:ZPr[ =

= Pr[l > 1] = Pr[GSg]

T, F

Putting all the above together, we have Equation (2). a

4 Public-Key-Dependent Message-Recovery security
We start by recalling definitions for public-key encryption schemes.

Public-key encryption. A public-key encryption (PKE) scheme PKE defines PT al-
gorithms PKE.Kg, PKE.Enc, PKE.Dec, the last deterministic. Algorithm PKE.Kg
takes as input 1* and outputs a public encryption key ek € {0, 1}PKEK() and a
secret decryption key dk, where PKE.ekl: N — N is the public-key length of PKE.
Algorithm PKE.Enc takes as input 1*, ek and a message m with |m| € PKE.IL(\)
to return a ciphertext ¢ € {0, l}PKE'C'(/\"mD, where PKE.IL is the input-length
function of PKE, so that PKE.IL(A) C N is the set of allowed input (message)
lengths, and PKE.cl: N x N — N is the ciphertext length function of PKE. Al-
gorithm PKE.Dec takes 1%, dk,c and outputs m € {0,1}* U {L}. Correctness
requires that PKE.Dec(1*, dk,c) = m for all A € N, all (ek, dk) € [PKE.Kg(1*)]
all m with |m| € PKE.IL(\) and all ¢ € [PKE.Enc(1*, ek, m)]. Let PKE.rl: N — N
denote the randomness-length function of PKE, meaning PKE.Enc(1%,-,-) draws
its coins at random from the set {0, 1}PKEN(Y),
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Gane GEEEA () LR (mo, m1)

(ek, dk) «s PKE.Kg(1*)  If (Imo| # [ma[) Return L

b+s{0,1} ¢ +s PKE.Enc(1*, ek, my)

b s AMBDEC(1A k) S+ Su{c}

Return (b = b’) Return ¢

HasH(z, () DEc(c)

ME] then If ¢ € S then return L
Tz, €] «s {0,1}* m <s PKE.Dec(1*, dk, c)

Return T'[z, /] Return m

Fig. 3. Game G¥"¢ defining $IND security of PKE.

Via game G%,if(‘g 4(A) of Fig. 3, we recall the definition of what is usually called
IND-CCA. We use the notation $IND to emphasize that this is for randomized
schemes and to avoid confusion with “IND” also being a notion for D-PKE
schemes [5], and we cut the “CCA” for succinctness. We explicitly write the
random oracle HASH as a variable-output-length one, so that it takes a string
x and integer ¢ to return a random ¢-bit string. (This can be implemented as
discussed in Section 2 via a RO that, like in Lemma 1, takes one string input
and returns strings of infinite length.) We let

Advpi 4 (A) = 2Pr[GRRE 4 (V)] — 1.

We say that PKE is $IND-secure if the function Advgiﬁg 4(+) is negligible for
every PT adversary A. We don’t have to define what is conventionally called
IND-CPA separately, but can recover it by saying that PKE is $IND-CPA secure
if the function Advﬁiﬁ‘é 4(+) is negligible for every PT adversary A that makes
zero queries to the DEC oracle.

We say that a PKE scheme PKE is a deterministic public-key encryption (D-
PKE) [2] scheme if the encryption algorithm DE.Enc is deterministic. Formally,
PKE.rl(-) = 0, so that the randomness can only be the empty string.

The EwH D-PKE scheme. We recall the Encrypt-with-Hash D-PKE scheme (for-
mally, a transform) [2]. Let PKE be a PKE scheme. Then DE = EwH[PKE] is a
ROM scheme defined as follows. First, DE.Kg = PKE.Kg and DE.Dec = PKE.Dec,
meaning the key generation and decryption algorithms of DE are the same
as those of PKE. We also have that DE.IL(A\) = PKE.IL(A) and DE.cl(\,¢) =
PKE.cl(), £), for all A and message lengths £. We let DE.rl(\) = 0 for all \. The
encryption algorithm of DE is as follows:

DE.Enc™" (1, ek, m)

r + HasH(ek|m, PKE.rl()\)) ; ¢ < PKE.Enc(1*, ek, m; )
Return ¢

Above, HASH is the variable output length random oracle as discussed previously.
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GAME GR&l s p(N) GAME GEEs 4 (A)
(ek, dk) +s PKE.Kg(1*) (ek, dk) +s PKE.Kg(1*)
cc s S.ex(17) cc +s S.cx(1?)
m s S.msg DI (12 ee ek) m s S.msg" DR (12 ee k)
Fori=1,...,|m| do For i =1 to |m| do
£[i] + |ml[i]| cli] «—s PKE.Enc™"(1*, ek, ml[i])
(m, 1) <=8 PISHPEC(QA e ok m), £) |(m, 1) <—s ATSEPEC(1A e ek c)
Return (m = m[i]) Return (m = mli])
HasH(z, 19) HasH(z, 19)
If not Tz, ¢] then If not T'[x, ¢] then
Tz, £] «s {0,1}* Tz, £] +s {0,1}*
Return T'[x, {] Return T'[z, ¢
DEec(c) DEc(c)
Return DE.Dec(1?*, dk, c) If (3 : ¢ = c[i]) then Return L
Return PKE.Dec(1*, dk, c)

Fig. 4. Left: Game defining unpredictability of source S. Right: Game defining PDMR
security of PKE scheme PKE with source S and PDMR adversary A.

PDMR. We know that D-PKE cannot provide indistinguishability-style security
for messages that depend on the public key [2]. We ask whether, for public-
key dependent messages, it could nonetheless provide a form of security that,
although weaker, is desirable and meaningful in practice, namely security against
message recovery. Here we give the necessary definitions, but in the general
setting of PKE instead of restricting to D-PKE.

Let PKE be a PKE scheme. A source S for PKE specifies PT algorithms S.cx
and S.msg, the first called the context sampler and the second called the message
sampler. A PDMR adversary for source S is an algorithm A. We associate to
PKE, S, A, and A € N the game GE&?S,A(A) in the right panel of Fig. 4.
Via cc +s S.cx(17), the game samples the contezt. Via m <s S.msgHASPEC (1A
cc, ek), the message sampler S.msg produces a target-message vector m. We
require that |m[i]| € PKE.IL(X\) for all i¢. The fact that S.msg has ek as input
means that target messages may depend on the public key. Fori =1,...,|m]|, the
game then encrypts message m[i] to create target ciphertext c[é]. Via (m, i) <s
AHASIDEC (1A “ee ok ¢), the adversary A produces a (guess) message m and an
index i in the range 1 < ¢ < |c|; it is guessing that m[i] = m, and wins if this guess
is correct. Note that A is not allowed to query DEC on any of the ciphertexts
in the vector ¢. The PDMR-advantage Advg‘:(rEisyA()\) = Pr[GEiré‘fS’A()\)] of Ais
the probability that the game returns true. For convenience of notation, we omit
writing DEC in the superscript if the source or adversary do not query it.

Classes of sources. We define classes of sources (a set of message samplers) as a
convenient way to state our results. For n: N — N, we let S denote the class of
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S™ |Sources that output n(\) messages
SYP|Unpredictable sources
S" |Resampling-indistinguishable sources

Fig. 5. Classes of message samplers of interest. See text for explanations.

sources whose message sampler’s output vector m < S.msgAsSTPEC(1A . ) has
length |m| = n()). In some of our usage, n will be a constant and we will refer,
for example to S* or S2. Later we will define other classes as well. A summary

is in Figure 5.

Unpredictability. We cannot expect PDMR security for predictable target mes-
sages. Indeed, if, say, there are s known choices for m[1] then A can return one
of them at random to get PDMR advantage 1/s. Alternatively, A could encrypt
all s candidates and return the one whose encryption equals c[1], getting an
advantage of 1. We formalize unpredictability of a source S via game Ggff; s.p
specified in the left panel of Fig. 4, associated to D-PKE scheme PKE, source S
and an adversary P that we call a predictor. Source S is run as in the message-
recovery game. Next, instead of running A, predictor P is run and it tries to
predict (guess) some component of m. Unlike A, predictor P is not given c.
Instead it gets |m|, the lengths of all component messages of this vector, and
1%, cc, ek. Note that P gets the decryption oracle DEC, with no restrictions on
querying it. Predictor P wins the game if m = ml[i]. For A € N we define the
prediction advantage of P to be

Adv‘;’;‘é}S’P(/\) = PT[GEIES,S,P()‘)] .
For A € N we also define

AdvEﬁ%,s(A) = max AdVErEE’S’P()\) '

where the maximum is over all predictors P, with no limit on their running time
or the number of HASH queries. We say that S is unpredictable if Advglicé’s(-) is

negligible. We let S"P be the class of all unpredictable sources S.

Parameterized security. We will see that achievability of PDMR security depends
very much on the class (set) of sources. Let S be a class of sources. We say that
PKE scheme PKE is PDMR-secure against S if Advac:(rEtSA 4(+) is negligible for
all S € S and all PT A. We say that PKE scheme PKE is PDMR-CPA-secure
against S if Adv‘;f("ES’A()\) is negligible for all S € S that make no DEC queries

and all PT A that make no DEC queries.

$IND implies PDMR. We show that $IND-security implies PDMR security for
randomized PKE schemes. It is important that this does not apply to D-PKE
schemes as these cannot achieve $IND security. Let PKE be a PKE scheme, S
be a source for PKE and A be a PDMR adversary for S. The following implies
that if PKE is $IND secure, then it is PDMR-secure against S™ N S"P for any
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polynomial n. Since the reduction preserves the number of decryption queries,
the result holds in that case as well.

Proposition 1. Let PKE be a PKE scheme, and n a polynomial. Let S € S™
be a source for PKE and let A be a PDMR adversary. The proof gives $IND
adversary B and predictor P such that
$in d d
AdVPKé,B(A) + AdVErIEE,S,PO‘) > AdVEKnéts,A()\) .

Furthermore, the resources of adversary B and predictor P relate to those of S
and A as follows:

LR __ Hasu __ _HASsH Hasu Dec __ _DEc DEC ~
gp =N, ¢ =45 +ai, e =45 +ai , lp~tstta,
and
Hasn __  Hasu Hasu Dec __ DEcC ~
gp =44 + 1N dpkEEney 9P =da s P =N -tpKEEnc T4 -

Proof (of Proposition 1). $IND adversary B and predictor P are as follows:

Adversary BVRHASHDEC(1A oL) Adversary PHASIDEC(1A ce ek, £)
cc +s S.cx(1?) Fori=1,...,]¢| do
m s S.msgHASDEC(1A ee ek) m'[i] s {0, 1}#l
Fori=1,...|m| do cli] +s PKE.Enc™ " (1 ek, m’[i])
m’[i] +s {0, 1}‘“‘[1‘]| (T, 1) < AHASH*DECSI“’I(IA, cc, ek, c)
c[i] +—s LR(m’[z], m[¢]) Return (7, ¢)
(71,) HSI;AHASH’D.EC(V\’ cc, ek, c) Algorithm DECSIM(2)
Return (7 = ml[i]) - :
If (3i : = c[i]) then return L
Return DEC(x)

Adversary B uses m output by S.msg as well as m’ that is sampled uniformly
at random at each component ¢ subjected to |m[i]| = |m'[i]|. Adversary B will
query LR(m’/, m) to obtain ciphertext c¢. Adversary B then runs A on ciphertext
c and checks if the guess of A matches message m. Predictor P obtains the
encryption of a randomly sampled messages m’ where component 4 has length
£[i]. Then it runs A and returns its output. We have

Advire s(\) =2 Prlb=1b] 1
=Pt =1|b=1-(1-Prt/ =0|b=0])
=Prlt) =1|b=1]-Prp' =1|b=0],
where b’ and b are random variables associated to game Gﬁilz‘g (). It is standard
to check that

Pr[t) =1|b=1] = AdvByp's 4(N) (6)
and
Pr[t =1|b=0] = AdvBgt 5 p(N) . (7)

Combining the above two equations, we obtain Proposition 1. a
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5 Possibility Results

In this section, we show that when messages are not too strongly related to each
other —more precisely when they are resampling-indistinguishable, to be defined
shortly— PDMR security is possible. Furthermore this is not just in principle,
but in practice: we show that such PDMR security is provided by the simple
and efficient EwH scheme. Thus we can add, to the IND security for public-key
independent messages we know this scheme already provides [2], a good privacy
guarantee for messages that depend on the public key. This supports the security
of existing or future uses of the scheme.

In more detail, our main technical result, Theorem 1, shows that DE =
EwH[PKE] is PDMR-secure against S' sources (namely, for the encryption of
a single message) as long as the same is true for the randomized PKE. The proof
relies crucially on Lemma 1. Note that this reduction does not need to assume
unpredictability of the source. It follows from Proposition 1 that DE = EwH[PKE]
is PDMR-secure against S"?NS! sources as long as the randomized PKE is $IND-
secure.

The above is all for encryption of a single message. We will then turn to the
encryption of multiple messages. We define a class of sources S" that we call
resampling indistinguishable. Such sources produce a polynomially-long vector
of messages, reflecting that we are asking for privacy when encrypting many
messages. Theorem 2 is a general result saying that any scheme that is PDMR-
secure for S' N SY is automatically PDMR security for S" N SUP, meaning
PDMR-security for a single unpredictable message implies it for any polyno-
mial number of unpredictable resampling-indistinguishable messages. Putting
all this together, we get that DE = EwH[PKE] is PDMR-secure against S N S"
sources as long as the randomized PKE is $IND-secure.

Remark regarding CPA. All of the results in this section are stated in the pres-
ence of a decryption oracle. However, our reductions will preserve the num-
ber of decryption queries, so that analogous CPA-type result can be obtained
simply by restricting the number of decryption queries ¢°"° to be 0 for all
sources and adversaries involved. Thus the statement “... PDMR(-CPA)-secure
...$IND(-CPA)-secure ...”, is read as two separate statements: “...PDMR-
secure ... $3IND-secure” and “... PDMR-CPA-secure ... $IND-CPA-secure ...".

Remark regarding PKE schemes that rely on a random oracle. For simplicity we as-
sume that the starting randomized PKE scheme is not a ROM scheme. However
our result applies also to the case where it is in fact a ROM scheme like those
of [9, 18]. For this, we simply use domain separation, effectively making the RO
used by EwH and the RO used by PKE independent.

5.1 Security of EwH for a single message

Canonical 1-sources and PDMR adversaries. Let S € S' be a source for DE, and
A be a PDMR adversary for S. Since S.msg only produces one message, we can
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BHASHDEC(1X "o ok ) HSm(w)
Q0 ; s ATSMDEC(IX oo ek c) Q « QU {w}
zsQ ; (ek|m”,f) « x Return HasH(w)
Return m™
Algorithm Samp Algorithm F™((ek, dk, cc, ps, pa))
(ek, dk) +s PKE.Kg(1") J05Q <« 0;ms < true
ce s S.CX(lX) m S-mSgHSIM,DHCSIM(:lA’ CC,ek;ps)
ps {0, 1}5me) x + (ek|lm, PKE.rl) ; r <+ HasH(z)[1..PKE.rl]
pa s {0,1}A41N) ¢ + PKE.Enc(1*, ek, m; 1) ; ms « false
Return (ek, dk, cc, ps, pa) 4 ATASHDECSIM (X o ok i pa)

If (x € Q) then a < Idx(z) else o < 0

Subroutine DECSIM(d) Return (a, 7)

If (d = ¢) then return L

Return PKE.Dec(1*, dk, d) Subroutine HS1M(w)
If (ms) then j <+ j + 1 ; Idx(w) < j
Else Q + Q U {w}
Return HASH(w)

Fig. 6. Top is our PDMR adversary B against PKE in the proof of Theorem 1. It
invokes a given PDMR adversary A against EwH[PKE]. Bottom are algorithms SAmP,
F' used in the analysis.

assume that the message index given by A is always 1. Hence, we can view the
output of both S.msg and A as a single message. Next, we note that we can
require S.msg and A to query HASH at (ek||m, PKE.rl(})) if they output m. This
can always be done at the expense of one more query to HASH. For the following
results, we shall assume canonical 1-sources and PDMR adversaries for them.

PDMR-security of PKE implies PDMR of EwH. The following says that if ran-
domized scheme PKE is PDMR-secure for a source S € S, then so is deter-
ministic scheme DE = EwH[PKE]. As noted above, the theorem itself does not
assume unpredictability of the source. That will enter later.

Theorem 1. Let PKE be a public-key encryption scheme. Let DE = EwH[PKE]
be the associated deterministic public-key encryption scheme. Let S € S be a
1-message source. Let A be a PDMR adversary for S, and let B be the PDMR
adversary for S given in Fig. 6. Then

dmr 1 dmr 2
AdVEKE,S,B(/\) 2 (1 + quSH) . (1 _’_qIAIASH) ’ (Adv'[))E,S,A(/\)) .

Additionally 8" < 1+ ¢i{*1, ¢ = g™ and tp ~ t4 + O(g}{*").

Proof (of Theorem 1). Let £ = PKE.rl. We assume that if STASTDPEC(1A e ek)
outputs message m then it has always queried (ek|m,¥¢) to HASH. Likewise,
we assume that if ATASTDPEC(1A ce ek, ¢) outputs message u then it has always
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Games Gg, G1
(ek, dk, cc, ps, pa) s SAMP()
§y3,3"+0;Q,Q,Q" +0;c,c,c”" + L ; ms< true; £ < PKE.rl

T<sT ; m + S.msgBMPESMA ee ok pg) 5z + (ek||m, £)

T T T'[x] ¢ {0,1}°° ; m’ < S.msg M PSS (13 00 ok pg) s @’ < (ek|m’, €)
a + Idx(z) ; o + Idx'(z') ; ms « false

r T(x)[1..0] ;' < T'(2")[1..4] ; " + T'(x)[1..4]

¢ < PKE.Enc(1*, ek, m; 1) ; p — ATSPEDESM(IA “oe ok erpa)

¢« PKE.Enc(1*, ek, m/;r") ; p/ <= APSMODECSME (1A oo ok /s pa)

¢’ < PKE.Enc(1*, ek, m;7") ; p" < APSMDECSMT A e ek s pa)

If ( ¢ Q) then ae < 0

If (z/ ¢ Q") then o’ < 0

Return (z € Q") / Go
Return (z € Q") A (a=a)A(a>1)) [ G,

Procedure DECSIM(d) Procedure HS1M(w)
If (d = ¢) then return L If (ms) then j + 7+ 1 ; Idx(w) < j
Return PKE.Dec(1*, dk, d) Else Q + QU {w}

Return T'(w
Procedure DECSIM’ (d) ()

If (d = ¢) then return L Procedure HS1M'(w)

Return PKE.Dec(1*, dk, d) If (ms) then j/ < j' 4+ 1 ; Idx'(w) + j
Else Q' + Q' U {w

Procedure DECSIM” (d) Return T’ (w) {w}

If (d = ") then return L

Return PKE.Dec(1*, dk, d) Procedure HSim" (w)

If (not ms) then Q" + Q" U {w}
Return T'(w)

Fig. 7. Games Go, G1 for proof of Theorem 1, in the top box, differ only in their Return
statements, and use the procedures in the bottom box.

queried (ek||u, £) to HASH. In both cases, as discussed above, this can be ensured
by modifying the algorithm to make the required query if it did not already do

so, increasing the number of HASH queries by at most one. So, letting ¢ = g2

and ga = ¢1**" we now regard the number of HASH queries of S and A as 1+ ¢
and 1+ go, respectively. We assume that all HASH queries of S are distinct, and
also that all HASH queries of A are distinct. Crucially, we do not, and cannot,
assume distinctness across these queries, meaning A could repeat queries made

by S.

Fix some A € N. We start the analysis with the SAMP algorithm of Figure 6.
(Ignore the rest of that Figure for now.) It picks keys, common coins cc, coins
ps for the message-finding phase of sampler .S, and coins p4 for A, so that these



18 Mihir Bellare, Wei Dai and Lucy Li

Games Gz, G3
(ek, dk, cc, ps, pa) s SAMP()
§y3,3"+0;Q,Q,Q" +0;c,c,c”" + L ; ms< true; £ < PKE.rl

T<sT ; m + S.msgBMPESMA ee ok pg) 5z + (ek||m, £)

T T T'[x] ¢ {0,1}°° ; m’ < S.msg M PSS (13 00 ok pg) s @’ < (ek|m’, €)
a + Idx(z) ; o + Idx'(z') ; ms « false

r <+ T(z)[1..0] ;' + T'(z)[1..4]

¢ <+ PKE.Enc(1*, ek, m;7) ; p = ATSPEDESM(IA "oe ok erpa)

¢« PKE.Enc(1*, ek, m; ') ; p'  ATSMODESMI A oe ok /s pa)

IL‘LN - AHSIM”,DECSIM’(lk’ cc, ek, CI;PA) // G

‘u// - /j / Gs

If (r € Q) then a < 0

If (€ Q) thena' + 0

Return ((z € Q") A (a=a') A (a >

Return ((z € QYA (a=a)A(a>1)) [/ Gs

Fig. 8. Games G2, Gs for the proof of Theorem 1. They use the procedures at the
bottom of Figure 7.

can be fixed and maintained across multiple executions of the algorithms. Now
consider games Gg, G; at the top of Figure 7. They invoke SAMP at the very
beginning. They also invoke the procedures in the bottom of Figure 7. We claim
that

1

1+q

AdVBRE 5 5 (M) > - PGy - (®)

This is justified as follows. The message m in Gg is created just as in game
GE?E%A()\), the oracle HASH being set, by procedure HSIM, to T. In game

GE&?YS 4(A), ciphertext ¢ is created by encryption of m under coins that are

random and independent of HASH, captured in Go as T'[z]. However, B runs
A with its own oracle HAsH, here T, not T, captured in Gy as HSiM”. We
have written HSiM and HSIM” as two, separate, oracles, even though both reply
simply via T', because they keep track of different things. In the message-sampling
phase (flag ms = true) they store the index of each query, and when A is run
(flag ms = false), they store the queries in a set. Note that in Gy, we are not
concerned with ', 7', ¢/, u, i/, a, @', meaning all these quantities can be ignored in
the context of Equation (8). Game G returns true if x € Q”, meaning if A made
query z = (ek|/m,£) to HSiM”. We have assumed that A always makes hash
query (ek||u, £) on output p, and we have |Q”| < 1+ g9, yielding Equation (8).

Games Gg, G differ only in what they return, and the boolean returned by G;
is the one returned by Gg ANDed with more stuff. So, regardless of what is this
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stuff, we must have
PI‘[GQ] Z PI‘[Gl] . (9)

Suppose the winning condition of game G; is met, so that « = o/ # 0. This im-
plies (z,m,r’, ') = (2',m’,r", ¢"). To explain, we have assumed the hash queries
of S are distinct, we have maintained the coins of S across the runs, and T, T"
differ only at x, so until z is queried, the executions of S are the same, so z = z'.
This implies v’ = 7”’. From the definitions of x, 2’ we get m = m’, and thus we
also get ¢/ = ¢’. In game Gy of Figure 8 —the procedures used continue to be
those at the bottom of Figure 7— we rewrite and simplify the code of G; under
the assumption that (z,m,r’,c) = (', m/,r”,¢"”). Since Gy maintains the win-
ning condition of Gy, and we have seen this implies (x, m,r’, ') = (', m/,r", "),
we have

PI‘[Gl] = PI‘[GQ] . (10)

In game Gj, consider the computations of ' and p”. The only difference is
that in the first A has oracle HSIM, and in the second, HSiM”. However, the
replies from these oracles differ only at query x, and the winning condition of
G» depends only on x and other quantities determined prior to the reply to hash
query x being obtained by A. This means that the winning condition of game
G3 is equivalent to that of Go. (Game Gz no longer computes p’ as in game Go
to ensure HSIM” is no longer used, and sets p” instead, correctly, to ', but this
quantity is not used in the winning condition.) We have

Pr[Gg] = Pr[Gg] . (11)
Now consider algorithm F' of Figure 6, and consider executing game Ggg;‘,};{% of

Figure 1. We have

Pr[Gs] > PriGERiF] (12)
1 ingl
> 1+ ¢ 'Pr[GSSAfr:PEjF]Q ’ (13)
where Equation 13 is by Lemma 1. Now we observe that
single dmr
Pr[GSAﬁP,F] > AdVEE,S,A(A) . (14)
Combining the equations above completes the proof. a

PDMR Security of EwH for unpredictable one-message sources. An immediate corol-
lary of Proposition 1 and Theorem 1 is that $IND(-CPA) security of PKE implies
PDMR/(-CPA)-security of EwH[PKE] against S* N SUP.

Corollary 1. Let PKE be a public-key encryption scheme. Let DE = EwH[PKE]
be the associated deterministic public-key encryption scheme. Let S € S be a
1-message source. Let A be a PDMR adversary for S. The proof specifies PDMR
adversary B for S, and predictor P, such that

AV 40 < 10+ )1+ ) (AVERE 5 (3) + AVERE 5 (V)
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Gams e 5,p() Hasi(z, 1)

(ek, dk) + DE.Kg(1*) If not Tz, ¢ thené
cc s S.cx(1?) ; b+ {0,1} Tlx, €] 0,1}
j s [n(\)] Return T'[x, ¢

HASH,DEC(1A

mg s S.msg , cc, ek) DEc(c)

mi < myo A

) Ret DE.Dec(1%, dk
m; [§] <5 S.msg*SHPEC (12 e ek) [4] et ec(1”, dk, c)
B s DMSUPEC(1A e ek, my, 5)
Return (b =)

Fig. 9. Game defining resampling indistinguishability of source S for DE.

The resources of B and P are related to those of S and A as follows:

HasH HasH HasH DEC DEC DEc

4 =4qs t+aqa, 9 =45 +qa , tp=is+ia,
and
ap™" = G gt ap™ = a1 te ~ tenc +ta -

5.2 Resampling Indistinguishability

We define what it means for an adversary A to be resampling indistinguishable.
At a high level, the condition is that, the distribution of the vector of messages
produced by the adversary is not detectably changed by replacing one of the
components of the vector with a component from another vector produced by
a second run of the adversary using independent coins. This captures a weak
form of independence of the components of the vector. We give accompanying
examples after the precise definition.

Definition. Let DE be a D-PKE scheme. Consider the game GBES’D given in
Fig. 9, where S is a n(A)-source for DE and D is an adversary called the resam-
pling distinguisher. In this game, a message vector mg is obtained by running
S.msg. Then m; is created to be the same as m except at one, random, location
j. The value it takes at j is the j-th component of a message vector obtained
by running S.msg again, independently and with fresh coins, but on the same
inputs 1*, cc, ek. Finally, D takes input (1%, cc, ek, my, j) and attempts to guess
the value of b. We let

AdVrDiE,S,D()‘) =2Pr| BE,S,D()‘)] -1.
We say that S is resampling-indistinguishable if the function Advga s.p(+) is

negligible for any PT distinguisher D. We let S" be the class of resampling-
indistinguishable sources.

Examples of message samples in S". We give some examples of RI sources. First,
if each mli] is sampled independently from some distribution depending on 4,
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then S is RI even when these distribution depends on the public key. More pre-
cisely, suppose, for some PT algorithm X and polynomial n(-), sampler S.msg
works as follows:

Adversary S.msg*S" (1% ce, ek)
For i =1,...,n()\) do m[i] <—s XMASH(1* ¢, ek, i)
Return m

Then, for any choices of X, n, sampler S.msg as above (together with any context
sampler) is RI. Moreover, S is perfectly RI, i.e. Adv) p(A) = 0 for any distin-
guisher D. Note that the class of such adversaries, defined by all the choices
of PT X and polynomials n, is too large for the constructions of RSV [30], so
our positive results give schemes providing security for classes of message distri-
butions for which their schemes do not provide security. This example extends
naturally to sources S’ such that the output of S’.msg is indistinguishable from
the output of S.msg (for some choice of X and n(-)). The notion of RI also
allows us to capture correlation in m that cannot be efficiently detected. For
example, consider S that does the following. It first generate a random string
r < {0,1}". Then, it sets m[i] +— HasH(r||7,1") for ¢ € {1,2}. Note that there
is strong information-theoretic correlation between m[1] and m[2], given the en-
tire function table of HASH. However, any distinguisher D making g queries to
HasH cannot detect this correlation with advantage more than ¢/2". Finally,
we note that resampling-indistinguishability is independent of predictability. In
particular, if X always returns a constant message (that is compatible with the
message space of the encryption scheme), then the source constructed before is
still RI, but it is trivially predictable.

Reduction to 1-PDMR security. A useful property of RI adversaries is that their
PDMR security reduces to the PDMR security of the encryption of just one mes-
sage. This is formalized via the theorem below, which says that DE is PDMR-
(CCA-)secure for SU N S, then it is PDMR-(CCA-)secure for SUP N S".

Theorem 2. Let DE be any D-PKE scheme. Let Sy be any n(\)-source and A
be a PDMR adversary for D-PKE scheme DE. Consider the 1-source So and
PDMR adversary B given in Fig. 10. Then

AVETTE, A(N) < n(A) - (AdVBETS, (V) + Advie s, p(V) - (15)

Source So, adversary B, and distinguisher D are efficient as long as S1 and A
are. In particular,
5™ = 45" +n(\) - apeEne T a4, 4™ = a5 +a)™
tp ~ts +n(A)  tpeEnc +ta

HasH HAsH DEcC DEec

0™ =n(N) - @bt + 4™ @™ =d3",

tp ~n(A) - tpEEnc +t4 -
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So.cx(1Y) BHasnDEC (12 55 ek, ¢)
cc s S1.cx(17) 5 j s [n] (cc,j) «cc
Return (cc, j) m s S1.msg™ PP (12 ce, ek)

Fori<«+ 1,...,n(\) do

Sa.msg"*hPR (14 e, ek) c[i] «-s DE.Enc™"(1*, ek, m[i])
: — . ) )

(cc,j) < e clj] ¢

m  Si.msg"P(1A ec, ek) (m, i) « AMSIPESN(IA fee ek, c)

Return m(j] If (i = j) then Return m

Else Return L

Algorithm DECSIM(z)
If (3i : x = c[é]) then return L
Return DEC(z)

DHAIDEC (1A e ek, m, 5)

For i < 1,...,|m| do c[i] <~ DE.Enc™"(1*, ek, m[i])
(m7 Z) s AHASH,DE(?SII\[(IA’ ce, ek, C)

Return —((m[i] = m) and (j = 7))

Algorithm DEcSIM(z)

If (3i : © = c[i]) then return L

Return DEC(z)

Fig. 10. Source Sy (top left), adversary B (top right), and distinguisher D (bottom)
used in Theorem 2.

Furthermore, S is unpredictable if S1 is. Given any predictor Py for So, the
proof gives predictor Py such that

pred pred
AdVDE,Sg,PQ()‘) < AdVDE,Sl,Pl()‘) ) (16)
and
HAsH HaAsH DEc DEc ~
q4s, =4d4s, » d4ds, =g, ls, =g, ,
HasH HasH Dec DEec ~
dp, =4d4p, >, d4p, =4d4p, , tp, = tp, .

The intuition behind the proof of Theorem 2 is straightforward—resampling-
indistinguishability allows a PDMR adversary to simulate the ciphertext vector
c in order to run any RI PDMR adversary. We give the details below.

Proof (of Theorem 2). Consider game G and G; given in Fig. 11, where Gy
contains the boxed code, while Gy does not. By construction,

Pr(Gy] = Pr[GREs, s(V)] - (17)

Next, we claim that

Pr(Go] = ﬁ PHGEE L (V)] (18)
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GAME Gg
ek «+—s DE.Kg(1*) ; cc < S1.cx(11) ; m <—s S .msgtasmDEC (1A e ek)
Jjs[n]; ‘m[j] s S1.msgMASH (12 e, ek)[j]‘

For i < 1,...,|m| do c[i] +- DE.Enc"™"(1*, ek, m[i])

(m, i) s AHASIDEC(1A e ek c) ; Return ((ml[i] = m) and (j = 7))
HasH(z, 1¢)

If not T'[z, ] then Tz, (] s {0, 1}*

Return Tz, ¢

Algorithm DEc(c)
If (3i: ¢ = c[i]) then return L
Return DE.Dec(1?, dk, c)

Fig. 11. Games Go and G; used in the proof of Theorem 2.

This is because j is uniformly sampled and is not used any where in Gy besides
computing the return value. Finally, let us consider G, . We note that by
construction of D, it holds for 4 € {0,1} that

Pr[G;] = Pr[D outputs 0 | b =1] , (19)

where the second probability is taken over game GBE s, p and b is as sampled
in the game. Hence,

Pr[Go] — Pr[G1] = Advipe 5, p(N) - (20)
Combining Equations (17), (18) and (20), we obtain Equation (15). Lastly, let
P, be a predictor for Sy, consider the following predictor P; for Sy:
PSP (1IN T, ek, n, £)

(cc,j) T ;m PQHAS‘H’DEC(lA7 ce, ek, 1, £[5])
Return (m, j)

It is easy to check that Equation (16) holds.

5.3 Security of EwH against S" N S"

Combining Theorem 2 and Corollary 1, we obtain the following theorem, which
says that if PKE is $IND(-CPA) secure, then DE = EwH[PKE] is PDMR(-CPA)-
secure against S N SUP.

Theorem 3. Let PKE be a public-key encryption scheme. Let DE = EwH[PKE]
be the associated deterministic public-key encryption scheme. Let S be a n(\)-
source for DE. Let A be a PDMR adversary for S. $IND adversary B for PKE,
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predictor P, and distinguisher D can be constructed such that
AdVBE™ (A) < n(X) - Adv (N

O (@4 1) (4 g0 + 1) (AR 50 + AMEEY)
Furthermore, D, B and P are efficient as long as S and A are. In particular,
g = 2. gt L IS L () 41, gBPC = 2. gRRC 4 gRe
tg =2-tg+n(\)  tpkeEnc +ta,
AP = )+ g, g5 = 5 4y~ () fo e + L4

and
quSH — quSH 4 qEASH + n()\) 4 1’ qllgEc — q?EC + qBEC’

tp ~ts+n(A) - tpkE.Enc +tA -

The proof of Theorem 3 is straight forward given Theorem 2 and Corollary 1
and we only sketch it here. We first apply Theorem 2 to source S and adversary
A to obtain a 1-source S’, adversary A’ and distinguisher D. Then, we can apply
Corollary 1 to S’ and A’ to obtain adversary B and predictor P.

6 Impossibility Results

In this section, we explore what goes wrong when messages can have correla-
tion. The known attacks showing IND-style security is unachievable [2; 5] only
distinguish between encryptions of unpredictable messages. Here we give attacks
showing that public-key-dependent messages can in fact be recovered in full by
the adversary —that is, PDMR security is violated— as long as two or more
closely related messages are encrypted. In particular, we show that no D-PKE
scheme is secure against SUP (in particular SY?NS?). We start with a basic attack
on schemes that can encrypt messages of any length, and then extend this to
schemes that can only encrypt messages of a fixed length.

Basic attack. The basic PDMR attack works when the D-PKE scheme allows
the encryption of messages of arbitrary length, meaning DE.IL(-) = N. The idea
is simple. Since the message-choosing adversary A; has the public key, it can
encrypt. It sets the second message to the encryption of a first, random message.
The first challenge ciphertext is thus the second message. This requires that the
scheme be able to encrypt messages of varying length because the ciphertext
will not (usually) have the same length as the plaintext. For the attack to be
valid, we must also show that the adversary is unpredictable. The following the-
orem formalizes this intuition. Here p(-) is a parameter representing the message
length. The adversary is statistically unpredictable for pu(-) = w(log(-)), ruling
out even weak PDMR security. The D-PKE scheme is arbitrary subject to being
able to encrypt messages of arbitrary length.
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S.oxast (12 S.oxtast (12
Return e hk s {0, 1}1H
S.mSgHASH(lz\’ , pp) Return hk
m[1] s {0, 1}#*) S.msg!451 (1> hik, pp)
m|[2] < DE.Enc™"(1*, pp, m[1]) m[1] s {0, 1}+)
Return m ¢ < DE.Enc™" (1%, pp, m[1])
m|[2] < H.Ev(1*, hk, c)
AHASH(IA’ £,pp,c) Return m
Return (c[1],2) A" (1A Bk, pp, c)
Return (H.Ev(1*, hk, c[1]), 2)

Fig. 12. Left: Source S and PDMR adversary A used in Theorem 4. Right: Source
S and PDMR adversary A used in Theorem 5.

Theorem 4. Let DE be a D-PKE scheme with DE.IL(X\) = N for all X\. Then,
DE is not PDMR-secure against S"P message samplers. In particular, let p: N
— N be any function, and S, A be the source and adversary given on the left
in Fig. 12. Then, we claim that S € S2NSYP; in particular, for predictors P and
all A,
AdvBEs p(A) < 27+ (21)
But for all X,
AdVRE™S 4 (A) =1 (22)

Proof (of Theorem 4). We first prove Equation (22). Adversary A wins game

GB%?X()\) as long as m[2], as computed by A;, equals ¢[1], as computed by the

game. Both are computed independently as DE.Enc™(1* pp, m[1]), so they
will always be equal, since DE.Enc is deterministic.

We move on to prove Equation (21). Let P be any predictor, and consider game
Ggréd&P()\). For i = 1,2 let E; be the event that in game Ggﬁgp()\), predictor P
outputs a guess of the form (m’, ), for some string m'. The following inequalities,
which complete the proof, are justified after they are stated:

2
AdVDE p(A) =D Pr[GBE p (M) | E; ] - Pr[E]

=1
< 27N Pr{B] + 274 Pr[E,] (23)
< 9n0Y) | (24)

Since the first message m[1] is randomly chosen from {0, 1}*)| the probability
that m’ = m[1] when P returns (m/,1) is at most 27#(*). The second message
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m[2] is the deterministic encryption of the first message, m[1]. Since the function
DE.Enc(1*, ek, ) is injective, and there are 2#(*) possible values for m[1], there
will also be 24N possible values for m|2]. So again, the probability that m’ =
m(2] when P returns (m/,2) is at most 27#(N). This justifies Equation (23).
Equation (24) holds simply because Pr[E1] 4+ Pr[Eq] < 1.

General attack. The basic attack assumed the D-PKE scheme could encrypt mes-
sages of varying length. Many D-PKE schemes —and even definitions— in the
literature restrict the space of allowed messages to ones of a single length. We
now extend the basic attack to one that works in this case, showing that no D-
PKE scheme is (even weakly) PDMR-~secure for the encryption of two or more
messages, even if these are of the same length.

Function families. A family of functions (or function family) F specifies a de-
terministic PT evaluation algorithm F.Ev such that F.Ev(1*,-,-): {0,1}FK() x
{0, 13710 — £0,1}F9'N) for all A € N, where F.kl, F.il and F.ol are the key,
input and ouput length functions, respectively. Many security attributes may be
defined and considered for such families.

Universal hash functions. As a tool we need a family of universal hash functions,
so we start by recalling the definition. Let H be a family of functions. For A € N,
a key hk € {0,1}"¥) and inputs z, 25 € {0,171 we define the collision
probabilities

cpy(\, 1, 22) = Pr[H.Ev(1*, hk,z;) = H.Ev(1*, hk, 25)]

cpy(A) = max cpy(A, 21, 22) ,

where the probability is over hk s {0,1}"X() and the max is over all distinct
x1,x9 € {0,131 We say that H is universal if cpy(\) = 27HX) for all
AeN.

Theorem 5. Let DE be a D-PKFE scheme. Let p: N — N be any function such
that u(A) € DE.IL(X) for all A € N. We claim that DE is not PDMR-secure for
SUP message samplers. More precisely, let H be a universal family of functions
with H.il(A) = DE.cl(\, u(A)) and H.ol(A) = p(A) for all X € N. Let S, A be
the source and PDMR adversary for DE shown on the right in Fig. 12. Then
S € 82N SY; in particular, for all predictors P and all A,

AdVBE's p(\) < V2272 (25)
But for all X,
AdVBE™S 4 (A) =1 (26)

The adversary picks m[1] as before and hashes its encryption down to get m|2].
Note that both these strings have the same length p(\), so the attack works even
if there is just one allowed message length. The key hk for the hash function is
shared using the common coins, so is available to both the message source and
the adversary. The adversary continues to have PDMR advantage one. The more
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difficult task is to establish its unpredictability. The theorem shows that the pre-
diction advantage has degraded (increased) relative to Theorem 4, being about
the square root of what it was before, but this is still exponentially vanishing
with (). The proof of this bound uses techniques from the proof of the Leftover
Hash Lemma [24].

Proof (of Theorem 5). We first prove Equation (26). Adversary A wins game
Gg‘é?;A()\) as long as m[2] from S equals H.Ev(1*, hk, c[1]), as computed by the
game. Both are calculated as H.Ev(1*, hk, DE.Enc™*(1*, pp, m[1])), so they will
always be equal, since DE.Enc is deterministic.

Now we prove Equation (25). Let P be any predictor, and consider game GB‘E’;, p(A).

For i = 1,2 let E; be the event that in game GgrEe‘ig p(A), predictor P outputs a
guess of the form (m’, ), for some string m’. We claim that

Pr[ GRS (\) | Br] < 27+ (27)
Pr[GRE(N) [ Eo] < V2. 2702 (28)

Given the above, we can complete the proof via

2
AdVDEs p(A) = D Pr[ GRS p(A) | E; ] - Pr[Ej]

=1
< 27#N L Pr[E,] 4 v/2 - 27 N/2 . Pr{Ey)
< /3.2

Equation (27) is true for the same reason as in Theorem 4, namely that,
since the first message m[1] is randomly chosen from {0, 1}*(), the probability
that m’ = m[l] when P returns (m’,1) is at most 27#(*). The main issue is
Equation (28), which we now prove.

Let (ek,dk) € [DE.Kg(1*)] and hk € {0,1}"K) Define Xep pi: {0, 1} —
{0,130 by

Xek.nk(m) = H.Ev(1*, hk, DE.Enc(1?, ek, m)) .
Regard this as a random variable over the random choice of m s {0, 1}#(),

Now consider the guessing and collision probabilities of this random variable,

8P (Xek,hk) = he{gll?'}-i(-ol(k) Pr[Xek,ne = h]

cp(Xek,hk) = Z Pr[Xek nx = h)?
hE{O,l}H‘d()‘)
Further define GPy, CPex: {0, 1}HK() — [0,1] by
GPer(hk) = gp(Xek,nk)  and  CPex(hk) = ep(Xek,hk) ,

and regard them as random variables over the random choice of hk s {0, 1}H-K(V),
Below we will show that

E[GPy] < V2.2 H(N)/2 (29)
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for every (ek, dk) € [DE.Kg(1*)]. Now, hk is an input to P, so

Pr[GPd(\) | Ey] < E[GP,
r[GYp (M) 2]_(ck,dk)g[lDaéKg(l>\)] [GPex ]

< V2.2 1N/2
where the second equation is by Equation (29). This proves Equation (28).
Fixing (ek,dk) € [DE.Kg(1*)], we now prove Equation (29). It is clear (and
a standard relation between guessing and collision probabilities of a random
variable) that for all hk we have
gP(Xer.nk)? < ep(Xek hk) -
Thus
GPok < 4/ CPg .

By Jensen’s inequality and concavity of the square-root function,
E[GPek] < E |:\/CPeki| < \/E[Cpek] .

Now with the expectation over hk <s {0, 1}H-*(}) and the probability over m;,
my s {0,1}*N | we have

E[CPui ] = E[Pr[Xok,m(m1) = Xekui (m2)]] < 27V + epy(A) -
This is by considering two cases. The first is that m; = mo, which happens
with probability 2=#("). The second is that m; # ms, in which case the inputs
to H.Ev(1*, hk,-) are different due to the injectivity of DE.Enc(1*,ek,-), and
we can exploit the universality of H. Now by assumption of universality of H,
cpy(A) = 274N so putting everything together we have Equation (29).
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