
Separate Your Domains:
NIST PQC KEMs, Oracle Cloning and

Read-Only Indifferentiability

Mihir Bellare1, Hannah Davis1, and Felix Günther2

1 Dept. of Computer Science & Engineering, University of California San Diego.
{mihir,h3davis}@eng.ucsd.edu https://cseweb.ucsd.edu/˜{mihir,h3davis}

2 Department of Computer Science, ETH Zürich.
mail@felixguenther.info https://www.felixguenther.info

Abstract. It is convenient and common for schemes in the random or-
acle model to assume access to multiple random oracles (ROs), leaving
to implementations the task —we call it oracle cloning— of constructing
them from a single RO. The first part of the paper is a case study of oracle
cloning in KEM submissions to the NIST Post-Quantum Cryptography
standardization process. We give key-recovery attacks on some submis-
sions arising from mistakes in oracle cloning, and find other submissions
using oracle cloning methods whose validity is unclear. Motivated by
this, the second part of the paper gives a theoretical treatment of oracle
cloning. We give a definition of what is an “oracle cloning method” and
what it means for such a method to “work,” in a framework we call read-
only indifferentiability, a simple variant of classical indifferentiability that
yields security not only for usage in single-stage games but also in multi-
stage ones. We formalize domain separation, and specify and study many
oracle cloning methods, including common domain-separating ones, giv-
ing some general results to justify (prove read-only indifferentiability of)
certain classes of methods. We are not only able to validate the oracle
cloning methods used in many of the unbroken NIST PQC KEMs, but
also able to specify and validate oracle cloning methods that may be
useful beyond that.

1 Introduction

Theoretical works giving, and proving secure, schemes in the random oracle (RO)
model [11], often, for convenience, assume access to multiple, independent ROs.
Implementations, however, like to implement them all via a single hash function
like SHA256 that is assumed to be a RO.

The transition from one RO to many is, in principle, easy. One can use
a method suggested by BR [11] and usually called “domain separation.” For
example to build three random oracles H1, H2, H3 from a single one, H, define

H1(x) = H(〈1〉‖x), H2(x) = H(〈2〉‖x) and H3(x) = H(〈3〉‖x) , (1)
where 〈i〉 is the representation of integer i as a bit-string of some fixed length,
say one byte. One might ask if there is justifying theory: a proof that the above

2 Bellare, Davis, Günther

“works,” and a definition of what “works” means. A likely response is that it is
obvious it works, and theory would be pedantic.

If it were merely a question of the specific domain-separation method of
Equation (1), we’d be inclined to agree. But we have found some good reasons
to revisit the question and look into theoretical foundations. They arise from the
NIST Post-Quantum Cryptography (PQC) standardization process [35].

We analyzed the KEM submissions. We found attacks, breaking some of
them, that arise from incorrect ways of turning one random oracle into many,
indicating that the process is error-prone. We found other KEMs where methods
other than Equation (1) were used and whether or not they work is unclear.
In some submissions, instantiations for multiple ROs were left unspecified. In
others, they differed between the specification and reference implementation.

Domain separation as per Equation (1) is a method, not a goal. We identify
and name the underlying goal, calling it oracle cloning— given one RO, build
many, independent ones. (More generally, given m ROs, build n > m ROs.) We
give a definition of what is an “oracle cloning method” and what it means for
such a method to “work,” in a framework we call read-only indifferentiability,
a simple variant of classical indifferentiability [29]. We specify and study many
oracle cloning methods, giving some general results to justify (prove read-only
indifferentiability of) certain classes of them. The intent is not only to validate
as many NIST PQC KEMs as possible (which we do) but to specify and validate
methods that will be useful beyond that.

Below we begin by discussing the NIST PQC KEMs and our findings on
them, and then turn to our theoretical treatment and results.

NIST PQC KEMs. In late 2016, NIST put out a call for post-quantum crypto-
graphic algorithms [35]. In the first round they received 28 submissions targeting
IND-CCA-secure KEMs, of which 17 remain in the second round [37].

Recall that in a KEM (Key Encapsulation Mechanism) KE, the encapsulation
algorithm KE.E takes the public key pk (but no message) to return a symmetric
key K and a ciphertext C∗ encapsulating it, (C∗,K)←$ KE.E(pk). Given an
IND-CCA KEM, one can easily build an IND-CCA PKE scheme by hybrid
encryption [18], explaining the focus of standardization on the KEMs.

Most of the KEM submissions (23 in the first round, 15 in the second round)
are constructed from a weak (OW-CPA, IND-CPA, ...) PKE scheme using either
a method from Hofheinz, Hövelmanns and Kiltz (HHK) [24] or a related method
from [21, 40, 27]. This results in a KEM KE4, the subscript to indicate that it
uses up to four ROs that we’ll denote H1,H2,H3,H4. Results of [24, 21, 40, 27]
imply that KE4 is provably IND-CCA, assuming the ROs H1,H2,H3,H4 are
independent.

Next, the step of interest for us, the oracle cloning: they build the multiple
random oracles via a single RO H , replacing Hi with an oracle F[H](i, ·), where
we refer to the construction F as a “cloning functor,” and F[H] means that F
gets oracle access to H . This turns KE4 into a KEM KE1 that uses only a single
RO H , allowing an implementation to instantiate the latter with a single NIST-
recommended primitive like SHA3-512 or SHAKE256 [36]. (In some cases, KE1

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 3

uses a number of ROs that is more than one but less than the number used by
KE4, which is still oracle cloning, but we’ll ignore this for now.)

Often the oracle cloning method (cloning functor) is not specified in the
submission document; we obtained it from the reference implementation. Our
concern is the security of this method and the security of the final, single-RO-
using KEM KE1. (As above we assume the starting KE4 is secure if its four ROs
are independent.)
Oracle cloning in submissions. We surveyed the relevant (first- and second-
round) NIST PQC KEM submissions, looking in particular at the reference code,
to determine what choices of cloning functor F was made, and how it impacted
security of KE1. Based on our findings, we classify the submissions into groups
as follows.

First is a group of successfully attacked submissions. We discover and specify
attacks, enabled through erroneous RO cloning, on three (first-round) submis-
sions: BIG QUAKE [8], DAGS [7] and Round2 [22]. (Throughout the paper, first-
round submissions are in gray, second-round submissions in bold.) Our attacks
on BIG QUAKE and Round2 recover the symmetric key K from the ciphertext C∗
and public key. Our attack on DAGS succeeds in partial key recovery, recovering
192 bits of the symmetric key. These attacks are very fast, taking at most about
the same time as taken by the (secret-key equipped, prescribed) decryption al-
gorithm to recover the key. None of our attacks needs access to a decryption
oracle, meaning we violate much more than IND-CCA.

Next is submissions with questionable oracle cloning. We put just one in this
group, namely NewHope [2]. Here we do not have proof of security in the ROM
for the final instantiated scheme KE1. We do show that the cloning methods
used here do not achieve our formal notion of rd-indiff security, but this does
not result in an attack on KE1, so we do not have a practical attack either. We
recommend changes in the cloning methods that permit proofs.

Next is a group of ten submissions that use ad-hoc oracle cloning methods —
as opposed, say, to conventional domain separation as per Equation (1)— but for
which our results (to be discussed below) are able to prove security of the final
single-RO scheme. In this group are BIKE [3], KCL [44], LAC [28], Lizard [16],
LOCKER [4], Odd Manhattan [38], ROLLO-II [30], Round5 [6], SABER [19] and
Titanium [43]. Still, the security of these oracle cloning methods remains brittle
and prone to vulnerabilities under slight changes.

A final group of twelve submissions did well, employing something like Equa-
tion (1). In particular our results can prove these methods secure. In this group
are Classic McEliece [13], CRYSTALS-Kyber [5], EMBLEM [41], FrodoKEM [34],
HQC [32], LIMA [42], NTRU-HRSS-KEM [25], NTRU Prime [14], NTS-KEM [1], RQC [31],
SIKE [26] and ThreeBears [23].

This classification omits 14 KEM schemes that do not fit the above frame-
work. (For example they do not target IND-CCA KEMs, do not use HHK-style
transforms, or do not use multiple random oracles.)
Lessons and response. We see that oracle cloning is error-prone, and that it
is sometimes done in ad-hoc ways whose validity is not clear. We suggest that

4 Bellare, Davis, Günther

oracle cloning not be left to implementations. Rather, scheme designers should
give proof-validated oracle cloning methods for their schemes. To enable this,
we initiate a theoretical treatment of oracle cloning. We formalize oracle cloning
methods, define what it means for one to be secure, and specify a library of
proven-secure methods from which designers can draw. We are able to justify
the oracle cloning methods of many of the unbroken NIST PQC KEMs. The
framework of read-only indifferentiability we introduce and use for this purpose
may be of independent interest.

The NIST PQC KEMs we break are first-round candidates, not second-round
ones, and in some cases other attacks on the same candidates exist, so one may
say the breaks are no longer interesting. We suggest reasons they are. Their value
is illustrative, showing not only that errors in oracle cloning occur in practice, but
that they can be devastating for security. In particular, the extensive and long
review process for the first-round NIST PQC submissions seems to have missed
these simple attacks, perhaps due to lack of recognition of the importance of
good oracle cloning.

Indifferentiability background. Let SS,ES be sets of functions. (We will
call them the starting and ending function spaces, respectively.) A functor F: SS
→ ES is a deterministic algorithm that, given as oracle a function s ∈ SS, defines
a function F[s] ∈ ES. Indifferentiability of F is a way of defining what it means
for F[s] to emulate e when s, e are randomly chosen from SS,ES, respectively.
It permits a “composition theorem” saying that if F is indifferentiable then use
of e in a scheme can be securely replaced by use of F[s].

Maurer, Renner and Holenstein (MRH) [29] gave the first definition of in-
differentiability and corresponding composition theorem. However, Ristenpart,
Shacham and Shrimpton (RSS) [39] pointed out a limitation, namely that it only
applies to single-stage games. MRH-indiff fails to guarantee security in multi-
stage games, a setting that includes many goals of interest including security
under related-key attack, deterministic public-key encryption and encryption of
key-dependent messages. Variants of MRH-indiff [17, 39, 20, 33] tried to address
this, with limited success.

Rd-indiff. Indifferentiability is the natural way to treat oracle cloning. A cloning
of one function into n functions (n = 4 above) can be captured as a functor (we
call it a cloning functor) F that takes the single RO s and for each i ∈ [1..n]
defines a function F[s](i, ·) that is meant to emulate a RO. We will specify many
oracle cloning methods in this way.

We define in Section 4 a variant of indifferentiability we call read-only indif-
ferentiability (rd-indiff). The simulator —unlike for reset-indiff [39]— has access
to a game-maintained state st, but —unlike MRH-indiff [29]— that state is
read-only, meaning the simulator cannot alter it across invocations. Rd-indiff is
a stronger requirement than MRH-indiff (if F is rd-indiff then it is MRH-indiff)
but a weaker one than reset-indiff (if F is reset-indiff then it is rd-indiff). Despite
the latter, rd-indiff, like reset-indiff, admits a composition theorem showing that
an rd-indiff F may securely substitute a RO even in multi-stage games. (The
proof of RSS [39] for reset-indiff extends to show this.) We do not use reset-

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 5

indiff because some of our cloning functors do not meet it, but they do meet
rd-indiff, and the composition benefit is preserved.
General results. In Section 4, we define translating functors. These are simply
ones whose oracle queries are non-adaptive. (In more detail, a translating functor
determines from its input W a list of queries, makes them to its oracle and, from
the responses and W , determines its output.) We then define a condition on a
translating functor F that we call invertibility and show that if F is an invertible
translating functor then it is rd-indiff. This is done in two parts, Theorems 1
and 2, that differ in the degree of invertibility assumed. The first, assuming
the greater degree of invertibility, allows a simpler proof with a simulator that
does not need the read-only state allowed in rd-indiff. The second, assuming the
lesser degree of invertibility, depends on a simulator that makes crucial use of
the read-only state. It sets the latter to a key for a PRF that is then used to
answer queries that fall outside the set of ones that can be trivially answered
under the invertibility condition. This use of a computational primitive (a PRF)
in the indifferentiability context may be novel and may seem odd, but it works.

We apply this framework to analyze particular, practical cloning functors,
showing that these are translating and invertible, and then deducing their rd-
indiff security. But the above-mentioned results are stronger and more general
than we need for the application to oracle cloning. The intent is to enable further,
future applications.
Analysis of oracle cloning methods. We formalize oracle cloning as the
task of designing a functor (we call it a cloning functor) F that takes as oracle
a function s ∈ SS in the starting space and returns a two-input function e =
F[s] ∈ ES, where e(i, ·) represents the i-th RO for i ∈ [1..n]. Section 5 presents
the cloning functors corresponding to some popular and practical oracle cloning
methods (in particular ones used in the NIST PQC KEMs), and shows that
they are translating and invertible. Our above-mentioned results allow us to then
deduce they are rd-indiff, which means they are safe to use in most applications,
even ones involving multi-stage games. This gives formal justification for some
common oracle cloning methods. We now discuss some specific cloning functors
that we treat in this way.

The prefix (cloning) functor Fpf(p) is parameterized by a fixed, public vec-
tor p such that no entry of p is a prefix of any other entry of p. Receiving
function s as an oracle, it defines function e = Fpf(p)[s] by e(i,X) = s(p[i]‖X),
where p[i] is the ith element of vector p. When p[i] is a fixed-length bitstring
representing the integer i, this formalizes Equation (1).

Some NIST PQC submissions use a method we call output splitting. The sim-
plest case is that we want e(i, ·), . . . , ε(n, ·) to all have the same output length L.
We then define e(i,X) as bits (i−1)L+1 through iL of the given function s applied
to X. That is, receiving function s as an oracle, the splitting (cloning) functor
Fspl returns function e = Fspl[s] defined by e(i,X) = s(X)[(i− 1)L+1..iL].

An interesting case, present in some NIST PQC submissions, is trivial cloning:
just set e(i,X) = s(X) for all X. We formalize this as the identity (cloning) func-
tor Fid defined by Fid[s](i,X) = s(X). Clearly, this is not always secure. It can

6 Bellare, Davis, Günther

be secure, however, for usages that restrict queries in some way. One such re-
striction, used in several NIST PQC KEMs, is length differentiation: e(i, ·) is
queried only on inputs of some length li, where l1, . . . , ln are chosen to be dis-
tinct. We are able to treat this in our framework using the concept of working
domains that we discuss next, but we warn that this method is brittle and prone
to misuse.
Working domains. One could capture trivial cloning with length differenti-
ation as a restriction on the domains of the ending functions, but this seems
artificial and dangerous because the implementations do not enforce any such
restriction; the functions there are defined on their full domains and it is, ap-
parently, left up to applications to use the functions in a way that does not get
them into trouble. The approach we take is to leave the functions defined on their
full domains, but define and ask for security over a subdomain, which we called
the working domain. A choice of working domain W accordingly parameterizes
our definition of rd-indiff for a functor, and also the definition of invertibility of
a translating functor. Our result says that the identity functor is rd-indiff for
certain choices of working domains that include the length differentiation one.

Making the working domain explicit will, hopefully, force the application
designer to think about, and specify, what it is, increasing the possibility of
staying out of trouble. Working domains also provide flexibility and versatility
under which different applications can make different choices of the domain.

Working domains not being present in prior indifferentiability formalizations,
the comparisons, above, of rd-indiff with these prior formalizations assume the
working domain is the full domain of the ending functions. Working domains
alter the comparison picture; a cloning functor which is rd-indiff on a working
domain may not be even MRH-indiff on its full domain.
Application to KEMs. The framework above is broad, staying in the land of
ROs and not speaking of the usage of these ROs in any particular cryptographic
primitive or scheme. As such, it can be applied to analyze RO instantiation in
many primitives and schemes. In the full version of this paper [10], we exemplify
its application in the realm of KEMs as the target of the NIST PQC designs.

This may seem redundant, since an indifferentiability composition theorem
says exactly that once indifferentiability of a functor has been shown, “all” uses of
it are secure. However, prior indifferentiability frameworks do not consider work-
ing domains, so the known composition theorems apply only when the working
domain is the full one. (Thus the reset-indiff composition theorem of [39] extends
to rd-indiff so that we have security for applications whose security definitions
are underlain by either single or multi-stage games, but only for full working
domains.)

To give a composition theorem that is conscious of working domains, we must
first ask what they are, or mean, in the application. We give a definition of the
working domain of a KEM KE. This is the set of all points that the scheme
algorithms query to the ending functions in usage, captured by a certain game
we give. (Queries of the adversary may fall outside the working domain.) Then
we give a working-domain-conscious composition theorem for KEMs that says

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 7

the following. Say we are given an IND-CCA KEM KE whose oracles are drawn
from a function space KE.FS. Let F: SS → KE.FS be a functor, and let KE be
the KEM obtained by implementing the oracles of the KE via F. (So the oracles
of this second KEM are drawn from the function space KE.FS = SS.) Let W
be the working domain of KE, and assume F is rd-indiff over W. Then KE is
also IND-CCA. Combining this with our rd-indiff results on particular cloning
functors justifies not only conventional domain separation as an instantiation
technique for KEMs, but also more broadly the instantiations in some NIST
PQC submissions that do not use domain separation, yet whose cloning functors
are rd-diff over the working domain of their KEMs. The most important example
is the identity cloning functor used with length differentiation.

A key definitional element of our treatment that allows the above is, fol-
lowing [9], to embellish the syntax of a scheme (here a KEM KE) by having it
name a function space KE.FS from which it wants its oracles drawn. Thus, the
scheme specification must say how many ROs it wants, and of what domains
and ranges. In contrast, in the formal version of the ROM in [11], there is a
single, scheme-independent RO that has some fixed domain and range, for ex-
ample mapping {0, 1}∗ to {0, 1}. This leaves a gap, between the object a scheme
wants and what the model provides, that can lead to error. We suggest that, to
reduce such errors, schemes specified in standards include a specification of their
function space.

2 Oracle Cloning in NIST PQC Candidates

Notation. A KEM scheme KE specifies an encapsulation KE.E that, on input
a public encryption key pk returns a session key K, and a ciphertext C∗ en-
capsulating it, written (C∗,K)←$ KE.E(pk). A PKE scheme PKE specifies an
encryption algorithm PKE.E that, on input pk, message M ∈ {0, 1}PKE.ml and
randomness R, deterministically returns ciphertext C ← PKE.E(pk,M ;R). For
neither primitive will we, in this section, be concerned with the key generation or
decapsulation / decryption algorithm. We might write KE[X1, X2, . . .] to indicate
that the scheme has oracle access to functions X1, X2, . . ., and correspondingly
then write KE.E[X1, X2, . . .], and similarly for PKE.

2.1 Design process

The literature [24, 21, 40, 27] provides many transforms that take a public-key
encryption scheme PKE, assumed to meet some weaker-than-IND-CCA notion of
security we denote Spke (for example, OW-CPA, OW-PCA or IND-CPA), and,
with the aid of some number of random oracles, turn PKE into a KEM that is
guaranteed (proven) to be IND-CCA assuming the ROs are independent. We’ll
refer to such transforms as sound. Many (most) KEMs submitted to the NIST
Post-Quantum Cryptography standardization process were accordingly designed
as follows:
(1) First, they specify a Spke-secure public-key encryption scheme PKE.

8 Bellare, Davis, Günther

(2) Second, they pick a sound transform T and obtain KEM KE4[H1,H2,H3,H4]
= T[PKE,H2,H3,H4]. (The notation is from [24]. The transforms use up
to three random oracles that we are denoting H2,H3,H4, reserving H1 for
possible use by the PKE scheme.) We refer to KE4 (the subscript refers to
its using 4 oracles) as the base KEM, and, as we will see, it differs across
the transforms.

(3) Finally —the under-the-radar step that is our concern— the ROs H1, . . . ,H4
are constructed from cryptographic hash functions to yield what we call
the final KEM KE1. In more detail, the submissions make various choices
of cryptographic hash functions F1, . . . ,Fm that we call the base functions,
and, for i = 1, 2, 3, 4, specify constructions Ci that, with oracle access to the
base functions, define the Hi, which we write as Hi ← Ci[F1, . . . ,Fm]. We
call this process oracle cloning, and we call Hi the final functions. (Com-
mon values of m are 1, 2.) The actual, submitted KEM KE1 (the subscript
because m is usually 1) uses the final functions, so that its encapsulation
algorithm can be written as:

KE1.E[F1, . . . ,Fm](pk)
For i = 1, 2, 3, 4 do Hi ← Ci[F1, . . . ,Fm]
(C∗,K)←$ KE4.E[H1,H2,H3,H4](pk)
Return (C∗,K)

The question now is whether the final KE1 is secure. We will show that, for some
submissions, it is not. This is true for the choices of base functions F1, . . . ,Fm

made in the submission, but also if these are assumed to be ROs. It is true
despite the soundness of the transform, meaning insecurity arises from poor
oracle cloning, meaning choices of the constructions Ci. We will then consider
submissions for which we have not found an attack. In the latter analysis, we are
willing to assume (as the submissions implicitly do) that F1, . . . ,Fm are ROs,
and we then ask whether the final functions are “close” to independent ROs.

2.2 The base KEM

We need first to specify the base KE4 (the result of the sound transform, from
step (2) above). The NIST PQC submissions typically cite one of HHK [24],
Dent [21], SXY [40] or JZCWM [27] for the sound transform they use, but our
examinations show that the submissions have embellished, combined or mod-
ified the original transforms. The changes do not (to best of our knowledge)
violate soundness (meaning the used transforms still yield an IND-CCA KE4
if H2,H3,H4 are independent ROs and PKE is Spke-secure) but they make a
succinct exposition challenging. We address this with a framework to unify the
designs via a single, but parameterized, transform, capturing the submission
transforms by different parameter choices.

Figure 1 (top) shows the encapsulation algorithm KE4.E of the KEM that
our parameterized transform associates to PKE and H1, H2, H3, H4. The param-
eters are the variables X,Y, Z (they will be functions of other quantities in the

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 9

Algorithm KE4.E[H1, H2, H3, H4](pk):
1 M←$ {0, 1}PKE.ml ; R← ε

2 If (D = true) then R ‖K′ ← H2(X) // |K′| = k∗
3 C ← PKE.E[H1](pk, M ; R)
4 C∗ ← C ‖Y

5 K ← H4(Z) ; Return (C∗, K)

D k∗ X Y Z Used in

T1 true 0 M ε M
LIMA,

Odd Manhattan
T2 true 0 pk‖M ε pk‖M ThreeBears

T3 true 0 M ε M‖C BIKE-1-CCA
BIKE-3-CCA, LAC

T4 true 0 M‖pk ε M‖C SIKE
T5 true 0 M H3(X) M‖C HQC, RQC, ROLLO-II, LOCKER
T6 true > 0 M‖H3(pk) ε K ′‖C SABER
T7 true > 0 H3(pk)‖H3(M) ε K ′‖H3(C) CRYSTALS-Kyber
T8 true 0 M H3(X) M DAGS, NTRU-HRSS-KEM

T9 true 0 M H3(X) M‖C‖Y BIG QUAKE, EMBLEM,
Lizard, Titanium

T10 true > 0 H4(M)‖H4(pk) H3(X) K ′‖H4(C‖Y) NewHope

T11 true > 0 M‖pk H3(X) K ′‖C‖Y FrodoKEM, Round2
Round5

T12 true > 0 pk‖M H3(X) K ′‖C KCL
T13 true > 0 H3(pk)‖M ε C‖K ′ FrodoKEM
T14 false 0 ⊥ H3(M) M‖C‖Y Classic McEliece
T15 true 0 M ε R‖M NTS-KEM
T16 false 0 ⊥ H3(M‖pk) M‖C‖Y Streamlined NTRU Prime
T17 true 0 M H3(M‖pk) M‖C‖Y NTRU LPRime

Fig. 1. Top: Encapsulation algorithm of the base KEM scheme produced by our pa-
rameterized transform. Bottom: Choices of parameters X, Y, Z, D, k∗ resulting in spe-
cific transforms used by the NIST PQC submissions. Second-round submissions are in
bold, first-round submissions in gray. Submissions using different transforms in the
two rounds appear twice.

algorithms), a boolean D, and an integer k∗. When choices of these are made,
one gets a fully-specified transform and corresponding base KEM KE4. Each row
in the table in the same Figure shows one such choice of parameters, resulting in
15 fully-specified transforms. The final column shows the submissions that use
the transform.

The encapsulation algorithm at the top of Figure 1 takes input a public key
pk and has oracle access to functions H1, H2, H3, H4. At line 1, it picks a random
seed M of length the message length of the given PKE scheme. Boolean D being

10 Bellare, Davis, Günther

true (as it is except in two cases) means PKE.E is randomized. In that case,
line 2 applies H2 to X (the latter, determined as per the table, depends on M
and possibly also on pk) and parses the output to get coins R for PKE.E and
possibly (if the parameter k∗ 6= 0) an additional string K ′. At line 3, a ciphertext
C is produced by encrypting the seed M using PKE.E with public key pk and
coins R. In some schemes, a second portion of the ciphertext, Y , often called
the “confirmation”, is derived from X or M , using H3, as shown in the table,
and line 4 then defines C∗. Finally, H4 is used as a key derivation function to
extract a symmetric key K from the parameter Z, which varies widely among
transforms.

In total, 26 of the 39 NIST PQC submissions which target KEMs in either
the first or second round use transforms which fall into our framework. The
remaining schemes do not use more than one random oracle, construct KEMs
without transforming PKE schemes, or target security definitions other than
IND-CCA.

2.3 Submissions we break

We present attacks on BIG QUAKE [8], DAGS [7], and Round2 [22]. These attacks
succeed in full or partial recovery of the encapsulated KEM key from a ciphertext,
and are extremely fast. We have implemented the attacks to verify them.

Although none of these schemes progressed to Round 2 of the competition
without significant modification, to the best of our knowledge, none of the attacks
we described were pointed out during the review process. Given the attacks’
superficiality, this is surprising and suggests to us that more attention should be
paid to oracle cloning methods and their vulnerabilities during review.
Randomness-based decryption. The PKE schemes used by BIG QUAKE and
Round2 have the property that given a ciphertext C ← PKE.E(pk,M ;R) and
also given the coins R, it is easy to recover M , even without knowledge of
the secret key. We formalize this property, saying PKE allows randomness-based
decryption, if there is an (efficient) algorithm PKE.DecR such that PKE.DecR(pk,
PKE.E(pk,M ;R), R) = M for any public key pk, coins R and message m. This
will be used in our attacks.
Attack on BIG QUAKE. The base KEM KE1[H1, H2, H3, H4] is given by the
transform T9 in the table of Figure 1. The final KEM KE2[F] uses a single
function F to instantiate the random oracles, which it does as follows. It sets
H3 = H4 = F and H2 = W [F] ◦ F for a certain function W (the rejection
sampling algorithm) whose details will not matter for us. The notation W [F]
meaning that W has oracle access to F . The following attack (explanations
after the pseudocode) recovers the encapsulated KEM key K from ciphertext
C∗←$ KE1.E[F](pk)—

Adversary A[F](pk, C∗) // Input public key and ciphertext, oracle for F
1. C‖Y ← C∗ // Parse C∗ to get PKE ciphertext C and Y = H3(M)
2. R←W [F](Y) // Apply function W [F] to Y to recover coins R

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 11

3. M ← PKE.DecR(pk, C,R) // Use randomness-based decryption for PKE
4. K ← F (M) ; Return K

As per T9 we have Y = H3(M) = F (M). The coins for PKE.E are R = H2(M) =
(W [F] ◦ F)(M) = W [F](F (M)) = W [F](Y). Since Y is in the ciphertext, the
coins R can be recovered as shown at line 2. The PKE scheme allows randomness-
based decryption, so at line 3 we can recover the message M underlying C using
algorithm PKE.DecR. But K = H4(M) = F (M), so K can now be recovered as
well. In conclusion, the specific cloning method chosen by BIG QUAKE leads to
complete recovery of the encapsulated key from the ciphertext.
Attack on Round2. The base KEM KE1[H2, H3, H4] is given by the transform
T11 in the table of Figure 1. The final KEM KE2[F] uses a single base function
F to instantiate the final functions, which it does as follows. It sets H4 = F .
The specification and reference implementation differ in how H2, H3 are defined:
In the former, H2(x) = F (F (x)) ‖F (x) and H3(x) = F (F (F (x))), while, in the
latter, H2(x) = F (F (F (x))) ‖F (x) and H3(x) = F (F (X)). These differences
arise from differences in the way the output of a certain function W [F] is parsed.

Our attack is on the reference-implementation version of the scheme. We need
to also know that the scheme sets k∗ so that R‖K ′ ← H2(X) with H2(X) =
F (F (F (X)))‖F (X) results in R = F (F (F (X))). But Y = H3(X) = F (F (X)),
so R = F (Y) can be recovered from the ciphertext. Again exploiting the fact
that the PKE scheme allows randomness-based decryption, we obtain the fol-
lowing attack that recovers the encapsulated KEM key K from ciphertext C∗
←$ KE1.E[F](pk)—
Adversary A[F](pk, C∗) // Input public key and ciphertext, oracle for F
1. C‖Y ← C∗; R← F (Y)
2. M ← PKE.DecR(pk, C,R) ; K ← F (M) ; Return K

This attack exploits the difference between the way H2, H3 are defined across
the specification and implementation, which may be a bug in the implementa-
tion with regard to the parsing of W [F](x). However, the attack also exploits
dependencies between H2 and H3, which ought not to exist when instantiating
what are required to be distinct random oracles.

Round2 was incorporated into the second-round submission Round5, which
specifies a different base function and cloning functor (the latter of which uses
the secure method we call “output splitting”) to instantiate oracles H2 and H3.
This attack therefore does not apply to Round5.
Attack on DAGS. If x is a byte string we let x[i] be its i-th byte, and if x is a bit
string we let xi be its i-th bit. We say that a function V is an extendable output
function if it takes input a string x and an integer ` to return an `-byte output,
and `1 ≤ `2 implies that V (x, `1) is a prefix of V (x, `2). If v = v1v2v3v4v5v6v7v8
is a byte then let Z(v) = 00v3v4v5v6v7v8 be obtained by zeroing out the first
two bits. If y is a string of ` bytes then let Z ′(y) = Z(y[1])‖ · · · ‖Z(y[`]). Now let
V ′(x, `) = Z ′(V (x, `)).

The base KEM KE1[H1, H2, H3, H4] is given by the transform T8 in the
table of Figure 1. The final KEM KE2[V] uses an extendable output function

12 Bellare, Davis, Günther

V to instantiate the random oracles, which it does as follows. It sets H2(x) =
V ′(x, 512) and H3(x) = V ′(x, 32). It sets H4(x) = V (x, 64).

As per T8 we have K = H4(M) and Y = H3(M). Let L be the first 32
bytes of the 64-byte K. Then Y = Z ′(L). So Y reveals 32 · 6 = 192 bits of K.
Since Y is in the ciphertext, this results in a partial encapsulated-key recovery
attack. The attack reduces the effective length of K from 64 · 8 = 512 bits to
512− 192 = 320 bits, meaning 37.5% of the encapsulated key is recovered. Also
R = H2(M), so Y , as part of the ciphertext, reveals 32 bytes of R, which does
not seem desirable, even though it is not clear how to exploit it for an attack.

2.4 Submissions with unclear security

For the scheme NewHope [2], we can give neither an attack nor a proof of secu-
rity. However, we can show that the final functions H2, H3, H4 produced by the
cloning functor FNewHope with oracle access to a single extendable-output func-
tion V are differentiable from independent random oracles. The cloning functor
FNewHope sets H1(x) = V (x, 128) and H4 = V (x, 32). It computes H2 and H3 from
V using the output splitting cloning functor. Concretely, KE2 parses V (x, 96) as
H2(x) ‖H3(x), where H2 has output length 64 bytes and H3 has output length
32 bytes. Because V is an extendable-output function, H4(x) will be a prefix of
H2(x) for any string x.

We do not know how to exploit this correlation to attack the IND-CCA
security of the final KEM scheme KE2[V], and we conjecture that, due to the
structure of T10, no efficient attack exists. We can, however, attack the rd-
indiff security of functor FNewHope, showing that that the security proof for the
base KEM KE1[H2, H3, H4] does not naturally transfer to KE2[V]. Therefore, in
order to generically extend the provable security results for KE1 to KE2, it seems
advisable to instead apply appropriate oracle cloning methods.

2.5 Submissions with provable security but ambiguous specification

In their reference implementations, these submissions use cloning functors which
we can and do validate via our framework, providing provable security in the
random oracle model for the final KEM schemes. However, the submission doc-
uments do not clearly specify a secure cloning functor, meaning that variant
implementations or adaptations may unknowingly introduce weaknesses. The
schemes BIKE [3], KCL [44], LAC [28], Lizard [16], LOCKER [4], Odd Manhattan [38],
ROLLO-II [30], Round5 [6], SABER [19] and Titanium [43] fall into this group.
Length differentiation. Many of these schemes use the “identity” func-
tor in their reference implementations, meaning that they set the final func-
tions H1 = H2 = H3 = H4 = F for a single base function F . If the scheme
KE1[H1, H2, H3, H4] never queries two different oracles on inputs of a single
length, the domains of H1, . . . ,H4 are implicitly separated. Reference imple-
mentations typically enforce this separation by fixing the input length of every
call to F . Our formalism calls this query restriction ”length differentiation” and

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 13

proves its security as an oracle cloning method. We also generalize it to all meth-
ods which prevent the scheme from querying any two distinct random oracles on
a single input.

In the following, we discuss two schemes from the group, ROLLO-II and
Lizard, where ambiguity about cloning methods between the specification and
reference implementation jeopardizes the security of applications using these
schemes. It will be important that, like BIG QUAKE and RoundTwo, the PKE
schemes defined by ROLLO-II and Lizard allow randomness-based decryption.

The scheme ROLLO-II [30] defines its base KEM KE1[H1, H2, H3, H4] using
the T5 transform from Figure 1. The submission document states that H1, H2,
H3, and H4 are “typically” instantiated with a single fixed-length hash func-
tion F , but does not describe the cloning functors used to do so. If the identity
functor is used, so that H1 = H2 = H3 = H4 = F , (or more generally, any func-
tor that sets H2 = H3), an attack is possible. In the transform T5, both H2 and
H3 are queried on the same input M . Then Y = H3(M) = F (M) = H2(M) = R
leaks the PKE’s random coins, so the following attack will allow total key re-
covery via the randomness-based decryption.

Adversary A[F](pk, C∗) // Input public key and ciphertext, oracle for F
1. C‖Y ← C∗ ; M ← PKE.DecR(pk, C, Y) // (Y = R is the coins)
2. K ← F (M ‖C ‖Y) ; Return K

In the reference implementation of ROLLO-II, however, H2 is instantiated using
a second, independent function V instead of F , which prevents the above attack.
Although the random oracles H1, H3 and H4 are instantiated using the identity
functor, they are never queried on the same input thanks to length differentia-
tion. As a result, the reference implementation of ROLLO-II is provably secure,
though alternate implementations could be both compliant with the submission
document and completely insecure. The relevant portions of both the specifica-
tion and the reference implementation were originally found in the corresponding
first-round submission (LOCKER).

Lizard [16] follows transform T9 to produce its base KEM KE1[H2, H3, H4].
Its submission document suggests instantiation with a single function F as fol-
lows: it sets H3 = H4 = F , and it sets H2 = W ◦ F for some postprocessing
function W whose details are irrelevant here. Since, in T9, Y = H3(M) = F (M)
and R = H2(M) = W ◦ F (M) = W (Y), the randomness R will again be leaked
through Y in the ciphertext, permitting a key-recovery attack using randomness-
based decryption much like the others we have described. This attack is pre-
vented in the reference implementation of Lizard, which instantiates H3 and
H4 using an independent function G. The domains of H3 and H4 are separated
by length differentiation. This allows us to prove the security of the final KEM
KE2[G,F], as defined by the reference implementation.

However, the length differentiation of H3 and H4 breaks down in the chosen-
ciphertext-secure PKE variant specification of Lizard, which transforms KE1.
The PKE scheme, given a plaintext P , chooses a random message M , computes
R = H2(M) and Y = H3(M) according to T9, but it computes K = H4(M),

14 Bellare, Davis, Günther

then includes the value B = K ⊕ P as part of the ciphertext C∗. Both the
identity functor and the functor used by the KEM reference implementation set
H3 = H4, so the following attack will extract the plaintext from any ciphertext–
Adversary A(pk, C∗) // Input public key and ciphertext
1. C‖B‖Y ← C∗ // Parse C∗ to get Y and B = P ⊕K
2. P ← Y ⊕B ; Return P // Y = H3(M) = H4(M) = K is the mask.

The reference implementation of the public-key encryption schemes prevents
the attack by cloning H3 and H4 from G via a third cloning functor, this one
using the output splitting method. Yet, the inconsistency in the choice of cloning
functors between the specification and both implementations underlines that ad-
hoc cloning functors may easily “get lost” in modifications or adaptations of a
scheme.

2.6 Submissions with clear provable security

Here we place schemes which explicitly discuss their methods for domain separa-
tion and follow good practice in their implementations: Classic McEliece [13],
CRYSTALS-Kyber [5], EMBLEM [41], FrodoKEM [34], HQC [32], LIMA [42], NTRU-HRSS-
KEM [25], NTRU Prime [14], NTS-KEM [1], RQC [31], SIKE [26] and ThreeBears [23].
These schemes are careful to account for dependencies between random oracles
that are considered to be independent in their security models. When choosing
to clone multiple random oracles from a single primitive, the schemes in this
group use padding bytes, deploy hash functions designed to accommodate do-
main separation, or restrictions on the length of the inputs which are codified
in the specification. These explicit domain separation techniques can be cast in
the formalism we develop in this work.

HQC and RQC are unique among the PQC KEM schemes in that their specifica-
tions warn that the identity functor admits key-recovery attacks. As protection,
they recommend that H2 and H3 be instantiated with unrelated primitives.
Signatures. Although the main focus of this paper is on domain separation
in KEMs, we wish to note that these issues are not unique to KEMs. At least
one digital signature scheme in the second round of the NIST PQC competition,
MQDSS [15], models multiple hash functions as independent random oracles in its
security proof, then clones them from the same primitive without explicit domain
separation. We have not analyzed the NIST PQC digital signature schemes’
security to see whether more subtle domain separation is present, or whether
oracle collisions admit the same vulnerabilities to signature forgery as they do
to session key recovery. This does, however, highlight that the problem of random
oracle cloning is pervasive among more types of cryptographic schemes.

3 Preliminaries

Basic notation. By [i..j] we abbreviate the set {i, . . . , j}, for integers i ≤ j.
If x is a vector then |x| is its length (the number of its coordinates), x[i] is its

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 15

i-th coordinate and [x] = {x[i] : i ∈ [1..|x|]} is the set of its coordinates. The
empty vector is denoted (). If S is a set, then S∗ is the set of vectors over S,
meaning the set of vectors of any (finite) length with coordinates in S. Strings
are identified with vectors over {0, 1}, so that if x ∈ {0, 1}∗ is a string then |x|
is its length, x[i] is its i-th bit, and x[i..j] is the substring from its i-th to its
j-th bit (including), for i ≤ j. The empty string is ε. If x, y are strings then we
write x � y to indicate that x is a prefix of y. If S is a finite set then |S| is its
size (cardinality). A set S ⊆ {0, 1}∗ is length closed if {0, 1}|x| ⊆ S for all x ∈ S.

We let y ← A[O1, . . .](x1, . . . ; r) denote executing algorithm A on inputs
x1, . . . and coins r, with access to oracles O1, . . ., and letting y be the result. We
let y←$A[O1, . . .](x1, . . .) be the resulting of picking r at random and letting
y ← A[O1, . . .](x1, . . . ; r). We let OUT(A[O1, . . .](x1, . . .)) denote the set of all
possible outputs of algorithm A when invoked with inputs x1, . . . and access to
oracles O1, Algorithms are randomized unless otherwise indicated. Running
time is worst case. An adversary is an algorithm.

We use the code-based game-playing framework of [12]. A game G (see Fig-
ure 2 for an example) starts with an init procedure, followed by a non-negative
number of additional procedures, and ends with a fin procedure. Procedures are
also called oracles. Execution of adversary A with game G consists of running
A with oracle access to the game procedures, with the restrictions that A’s first
call must be to init, its last call must be to fin, and it can call these two proce-
dures at most once. The output of the execution is the output of fin. We write
Pr[G(A)] to denote the probability that the execution of game G with adversary
A results in the output being the boolean true. Note that our adversaries have
no output. The role of what in other treatments is the adversary output is, for
us, played by the query to fin. We adopt the convention that the running time
of an adversary is the worst-case time to execute the game with the adversary,
so the time taken by game procedures (oracles) to respond to queries is included.
Functions. As usual g: D → R indicates that g is a function taking inputs
in the domain set D and returning outputs in the range set R. We may denote
these sets by Dom(g) and Rng(g), respectively.

We say that g: Dom(g) → Rng(g) has output length ` if Rng(g) = {0, 1}`.
We say that g is a single output-length (sol) function if there is some ` such
that g has output length ` and also the set D is length closed. We let SOL(D, `)
denote the set of all sol functions g: D → {0, 1}`.

We say g is an extendable output length (xol) function if the following are
true: (1) Rng(g) = {0, 1}∗ (2) there is a length-closed set Dom∗(g) such that
Dom(g) = Dom∗(g)×N (3) |g(x, `)| = ` for all (x, `) ∈ Dom(g), and (4) g(x, `) �
g(x, `′) whenever ` ≤ `′. We let XOL(D) denote the set of all xol functions
g: D → {0, 1}∗.

4 Read-only indifferentiability of translating functors

We define read-only indifferentiability (rd-indff) of functors. Then we define a
class of functors called translating, and give general results about their rd-indiff

16 Bellare, Davis, Günther

security. Later we will apply this to analyze the security of cloning functors, but
the treatment in this section is broader and, looking ahead to possible future
applications, more general than we need for ours.

4.1 Functors and read-only indifferentiability

A random oracle, formally, is a function drawn at random from a certain space of
functions. A construction (functor) is a mapping from one such space to another.
We start with definitions for these.
Function spaces and functors. A function space FS is simply a set of func-
tions, with the requirement that all functions in the set have the same domain
Dom(FS) and the same range Rng(FS). Examples are SOL(D, `) and XOL(D).
Now f←$ FS means we pick a function uniformly at random from the set FS.

Sometimes (but not always) we want an extra condition called input inde-
pendence. It asks that the values of f on different inputs are identically and
independently distributed when f←$ FS. More formally, let D be a set and let
Out be a function that associates to any W ∈ D a set Out(W). Let Out(D) be
the union of the sets Out(W) as W ranges over D. Let FUNC(D,Out) be the
set of all functions f : D → Out(D) such that f(W) ∈ Out(W) for all W ∈ D.
We say that FS provides input independence if there exists such a Out such that
FS = FUNC(Dom(FS),Out). Put another way, there is a bijection between FS
and the set S that is the cross product of the sets Out(W) as W ranges over
Dom(FS). (Members of S are |Dom(FS)|-vectors.) As an example the function
space SOL(D, `) satisfies input independence, but XOL(D) does not satisfy input
independence.

Let SS be a function space that we call the starting space. Let ES be another
function space that we call the ending space. We imagine that we are given
a function s ∈ SS and want to construct a function e ∈ ES. We refer to the
object doing this as a functor. Formally a functor is a deterministic algorithm F
that, given as oracle a function s ∈ SS, returns a function F[s] ∈ ES. We write
F: SS→ ES to emphasize the starting and ending spaces of functor F.
Rd-indiff. We want the ending function to “emulate” a random function from
ES. Indifferentiability is a way of defining what this means. The original definition
of MRH [29] has been followed by many variants [17, 39, 20, 33]. Here we give
ours, called read-only indifferentiability, which implies composition not just for
single-stage games, but even for multi-stage ones [39, 20, 33].

Let ES and SS be function spaces, and let F: SS → ES be a functor. Our
variant of indifferentiability mandates a particular, strong simulator, which can
read, but not write, its (game-maintained) state, so that this state is a static
quantity. Formally a read-only simulator S for F specifies a setup algorithm
S.Setup which outputs the state, and a deterministic evaluation algorithm S.Ev
that, given as oracle a function e ∈ ES, and given a string st ∈ OUT(S.Setup)
(the read-only state), defines a function S.Ev[e](st, ·): Dom(SS)→ Rng(SS).

The intent is that S.Ev[e](st, ·) play the role of a starting function s ∈ SS
satisfying F[s] = e. To formalize this, consider the read-only indifferentiability

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 17

Game Grd-indiff
F,SS,ES,W,S

init:
1 s←$ SS
2 e1 ← F[s] ; e0←$ ES
3 b←$ {0, 1}
4 st←$ S.Setup()

priv(W):
5 If W ∈ W then return eb(W)
6 Else return ⊥

pub(U):
7 if (b = 1) then return s(U)
8 else return S.Ev[e0](st, U)

fin(b′):
9 return (b = b′)

Fig. 2. Game defining read-only indifferentiability.

game Grd-indiff
F,SS,ES,W,S of Figure 2, where W ⊆ Dom(ES) is called the working do-

main. The adversary A playing this game is called a distinguisher. Its advantage
is defined as

Advrd-indiff
F,SS,ES,W,S(A) = 2 · Pr

[
Grd-indiff

F,SS,ES,W,S(A)
]
− 1.

To explain, in the game, b is a challenge bit that the distinguisher is trying to
determine. Function eb is a random member of the ending space ES if b = 0 and
is F[s](·) if b = 1. The query W to oracle priv is required to be in Dom(ES).
The oracle returns the value of eb on W , but only if W is in the working domain,
otherwise returning ⊥. The query U to oracle pub is required to be in Dom(SS).
The oracle returns the value of s on U in the b = 1 case, but when b = 0, the
simulator evaluation algorithm S.Ev must answer the query with access to an
oracle for e0. The distinguisher ends by calling fin with its guess b′ ∈ {0, 1} of
b and the game returns true if b′ = b (the distinguisher’s guess is correct) and
false otherwise.

The working domainW ⊆ Dom(ES), a parameter of the definition, is included
as a way to allow the notion of read-only indifferentiability to provide results
for oracle cloning methods like length differentiation whose security depends on
domain restrictions.

The S.Ev algorithm is given direct access to e0, rather than access to priv as
in other definitions, to bypass the working domain restriction, meaning it may
query e0 at points in Dom(ES) that are outside the working domain.

All invocations of S.Ev[e0] are given the same (static, game-maintained) state
st as input, but S.Ev[e0] cannot modify this state, which is why it is called
read-only. Note init does not return st, meaning the state is not given to the
distinguisher.

Discussion. To compare rd-indiff to other indiff notions, we setW = Dom(ES),
because prior notions do not include working domains. Now, rd-indiff differs
from prior indiff notions because it requires that the simulator state be just
the immutable string chosen at the start of the game. In this regard, rd-indiff
falls somewhere between the original MRH-indiff [29] and reset indiff [39] in the
sense that our simulator is more restricted than in the first and less than in
the second. A construction (functor) that is reset-indiff is thus rd-indiff, but not

18 Bellare, Davis, Günther

necessarily vice-versa, and a construct that is rd-indiff is MRH-indiff, but not
necessarily vice-versa. Put another way, the class of rd-indff functors is larger
than the class of reset-indiff ones, but smaller than the class of MRH-indiff ones.
Now, RSS’s proof [39] that reset-indiff implies security for multi-stage games
extends to rd-indiff, so we get this for a potentially larger class of functors. This
larger class includes some of the cloning functors we have described, which are
not necessarily reset-indiff.

4.2 Translating functors

Translating functors. We focus on a class of functors that we call translat-
ing. This class includes natural and existing oracle cloning methods, in particular
all the effective methods used by NIST KEMs, and we will be able to prove gen-
eral results for translating functors that can be applied to the cloning methods.

A translating functor T: SS → ES is a functor that, with oracle access to s
and on input W ∈ Dom(ES), non-adaptively calls s on a fixed number of inputs,
and computes its output T[s](W) from the responses and W . Its operation can
be split into three phases which do not share state: (1) a pre-processing phase
which chooses the inputs to s based on W alone (2) the calls to s to obtain
responses (3) a post-processing phase which uses W and the responses collected
in phase 2 to compute the final output value T[s](W).

Proceeding to the definitions, let SS,ES be function spaces. A (SS,ES)-query
translator is a function (deterministic algorithm) QT: Dom(ES) → Dom(SS)∗,
meaning it takes a point W in the domain of the ending space and returns
a vector of points in the domain of the starting space. This models the pre-
processing. A (SS,ES)-answer translator is a function (deterministic algorithm)
AT: Dom(ES) × Rng(SS)∗ → Rng(ES), meaning it takes the original W , and a
vector of points in the range of the starting space, to return a point in the range
of the ending space. This models the post-processing. To the pair (QT,AT), we
associate the functor TFQT,AT: SS→ ES, defined as follows:

Algorithm TFQT,AT[s](W) // Input W ∈ Dom(ES) and oracle s ∈ SS
U ← QT(W)
For j = 1, . . . , |U | do V [j]← s(U [j]) // U [j] ∈ Dom(SS)
Y ← AT(W,V) ; Return Y

The above-mentioned calls of phase (2) are done in the second line of the code
above, so that this implements a translating functor as we described. Formally
we say that a functor F: SS→ ES is translating if there exists a (SS,ES)-query
translator QT and a (SS,ES)-answer translator AT such that F = TFQT,AT.
Inverses. So far, query and answer translators may have just seemed an unduly
complex way to say that a translating oracle construction is one that makes non-
adaptive oracle queries. The purpose of making the query and answer translators
explicit is to define invertibility, which determines rd-indiff security.

Let SS and ES be function spaces. Let QTI be a function (deterministic
algorithm) that takes an input U ∈ Dom(SS) and returns a vector W over

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 19

Dom(ES). We allow QTI to return the empty vector (), which is taken as an
indication of failure to invert. Define the support of QTI, denoted sup(QTI), to
be the set of all U ∈ Dom(SS) such that QTI(U) 6= (). Say that QTI has full
support if sup(QTI) = Dom(SS), meaning there is no U ∈ Dom(SS) such that
QTI(U) = (). Let ATI be a function (deterministic algorithm) that takes U ∈
Dom(SS) and a vector Y over Rng(ES) to return an output in Rng(SS). Given
a function e ∈ ES, we define the function P[e]QTI,ATI: Dom(SS)→ Rng(SS) by

Function P[e]QTI,ATI(U) // U ∈ Dom(SS)
W ← QTI(U) ; Y ← e(W) ; V ← ATI(U,Y) ; Return V

Above, e is applied to a vector component-wise, meaning e(W) is defined as the
vector (e(W [1]), . . . , e(W [|W |])).

We require that the function P[e]QTI,ATI belong to the starting space SS.
Now let QT be a (SS,ES)-query translator and AT a (SS,ES)-answer translator.
Let W ⊆ Dom(ES) be a working domain. We say that QTI,ATI are inverses of
QT,AT over W if two conditions are true. The first is that for all e ∈ ES and all
W ∈ W we have

TFQT,AT[P[e]QTI,ATI](W) = e(W) . (2)

This equation needs some parsing. Fix a function e ∈ ES in the ending space.
Then s = P[e]QTI,ATI is in SS. Recall that the functor F = TFQT,AT takes a
function s in the starting space as an oracle and defines a function e′ = F[s]
in the ending space. Equation (2) is asking that e′ is identical to the original
function e, on the working domain W. The second condition (for invertibility)
is that if U ∈ {QT(W)[i] : W ∈ W} —that is, U is an entry of the vector U
returned by QT on some input W— then QTI(U) 6= (). Note that if QTI has
full support then this condition is already true, but otherwise it is an additional
requirement.

We say that (QT,AT) is invertible over W if there exist QTI,ATI such that
QTI,ATI are inverses of QT,AT over W, and we say that a translating functor
TFQT,AT is invertible over W if (QT,AT) is invertible over W.

In the rd-indiff context, function P[e]QTI,ATI will be used by the simulator.
Roughly, we try to set S.Ev[e](st, U) = P[e]QTI,ATI(U). But we will only be able
to successfully do this for U ∈ sup(QTI). The state st is used by S.Ev to provide
replies when U 6∈ sup(QTI).

Equation (2) is a correctness condition. There is also a security metric. Con-
sider the translation indistinguishability game Gti

SS,ES,QTI,ATI of Figure 3. Define
the ti-advantage of adversary B via

Advti
SS,ES,QTI,ATI(B) = 2 · Pr

[
Gti

SS,ES,QTI,ATI(B)
]
− 1.

In reading the game, recall that () is the empty vector, whose return by QTI
represents an inversion error. TI-security is thus asking that if e is randomly
chosen from the ending space, then the output of P[e]QTI,ATI on an input U is
distributed like the output on U of a random function in the starting space, but
only as long as QTI(U) was non-empty. We will see that the latter restriction
creates some challenges in simulation whose resolution exploits using read-only

20 Bellare, Davis, Günther

Game Gti
SS,ES,QTI,ATI

init:
1 b←$ {0, 1} ; e←$ ES
2 s1←$ SS ; s0 ← P[e]QTI,ATI

pub(U): // U ∈ Dom(SS)
3 If QTI(U) = () then return ⊥
4 return sb(U)

fin(b′):
5 return (b = b′)

Fig. 3. Game defining translation indistinguishability.

Algorithm S.Setup:
1 Return ε

Algorithm S.Ev[e](st, U):
1 W ← QTI(U) ; Y ← e(W) ; V ← ATI(U,Y)
2 Return V

Algorithm S.Setup:
1 st←$ {0, 1}G.kl

2 Return st

Algorithm S.Ev[e](st, U):
1 W ← QTI(U)
2 If W = () then return Gst[e](U)
3 Y ← e(W) ; V ← ATI(U,Y)
4 Return V

Fig. 4. Simulators for Theorem 1 (top) and Theorem 2 (bottom).

state. We say that (QTI,ATI) provides perfect translation indistinguishability if
Advti

SS,ES,QTI,ATI(B) = 0 for all B, regardless of the running time of B.
Additionally we of course ask that the functions QT,AT,QTI,ATI all be ef-

ficiently computable. In an asymptotic setting, this means they are polynomial
time. In our concrete setting, they show up in the running-time of the simulator
or constructed adversaries. (The latter, as per our conventions, being the time
for the execution of the adversary with the overlying game.)

4.3 Rd-indiff of translating functors

We now move on to showing that invertibility of a pair (QT,AT) implies rd-
indifferentiability of the translating functor TFQT,AT. We start with the case
that QTI has full support.

Theorem 1. Let SS and ES be function spaces. Let W be a subset of Dom(ES).
Let QT,AT be (SS,ES) query and answer translators, respectively. Let QTI,ATI
be inverses of QT,AT over W. Assume QTI has full support. Define read-only
simulator S as per the top panel of Figure 4. Let F = TFQT,AT. Let A be any
distinguisher. Then we construct a ti-adversary B such that

Advrd-indiff
F,SS,ES,W,S(A) ≤ Advti

SS,ES,QTI,ATI(B) .

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 21

Games G0, G1

init:
1 s←$ SS // Game G0

2 e0←$ ES ; s ← P[e0]QTI,ATI // Game
G1

priv(W):
3 If W ∈ W then return F[s](W)
4 Else return ⊥

pub(U):
5 return s(U)

fin(b′):
6 return (b′ = 1)

Game G2

init:
1 e0←$ ES
2 s← P[e0]QTI,ATI

priv(W):
3 If W ∈ W then return e0(W)
4 Else return ⊥

pub(U):
5 return s(U)

fin(b′):
6 return (b′ = 1)

Adversary B:
1 init()
2 A[init′, pub′, priv′, fin′]()

init′:
3 Return

pub′(U):
4 return pub(U)

priv′(W):
5 if W 6∈ W then return ⊥
6 U ← QT(W)
7 For j = 1, . . . , |U | do V [j]← pub(U [j])
8 return AT(W,V)

fin′(b′):
9 fin(b′)

Fig. 5. Top: Games for proof of Theorem 1. Bottom: Adversary for proof of Theorem 1.

Let ` be the maximum output length of QT. If A makes qpriv, qpub queries to its
priv,pub oracles, respectively, then B makes ` · qpriv + qpub queries to its pub
oracle. The running time of B is about that of A.

Proof (Theorem 1). Consider the games of Figure 5. In the left panel, line 1 is
included only in G0 and line 2 only in G1, and this is the only way the games
differ. Game G0 is the real game, meaning the case b = 1 in game Grd-indiff

F,SS,ES,W,S. In
game G2, oracle priv is switched to a random function e0. From the description
of the simulator in Figure 4 we see that

S.Ev[e0](ε, U) = P[e0]QTI,ATI(U)
for all U ∈ Dom(SS) and all e0 ∈ ES, so that oracle pub in game G2 is responding
according to the simulator based on e0. So game G2 is the case b = 0 in game
Grd-indiff

F,SS,ES,W,S. Thus

Advrd-indiff
F,SS,ES,W,S(A) = Pr[G0(A)]− Pr[G2(A)]

= (Pr[G0(A)]− Pr[G1(A)]) + (Pr[G1(A)]− Pr[G2(A)]) .

22 Bellare, Davis, Günther

Gprf
G,SS,ES

init():
1 b←$ {0, 1}
2 e←$ ES
3 st←$ {0, 1}G.kl

4 s1 ← G[e](st, ·)
5 s0←$ SS

RO(W):
6 Return e(W)

FnO(U):
7 V ← sb(U)
8 Return V

fin(b′):
9 Return (b′ = b)

Fig. 6. Game to define PRF security of (SS, ES)-oracle aided PRF G.

We define translation-indistinguishability adversary B in Figure 5 so that
Pr[G0(A)]− Pr[G1(A)] ≤ Advti

SS,ES,QTI,ATI(B) .
Adversary B is playing game Gti

SS,ES,QTI,ATI. Using its pub oracle, it presents
the interface of G0 and G1 to A. In order to simulate the priv oracle, B runs
TFQT,AT[pub]. This is consistent with G0 and G1. If b = 1 in Gti

SS,ES,QTI,ATI, then
B perfectly simulates G0 for A. If b = 1, then B correctly simulates G1 for A.
To complete the proof we claim that

Pr[G1(A)] = Pr[G2(A)] .
This is true by the correctness condition. The latter says that if s← P[e0]QTI,ATI
then F[s] is just e0 itself. So e1 in game G1 is the same as e0 in game G2, making
their priv oracles identical. And their pub oracles are identical by definition. ut

The simulator in Theorem 1 is stateless, so when W is chosen to be Dom(ES)
the theorem is establishing reset indifferentiability [39] of F.

For translating functors where QTI does not have full support, we need an
auxiliary primitive that we call a (SS,ES)-oracle aided PRF. Given an ora-
cle for a function e ∈ ES, an (SS,ES)-oracle aided PRF G defines a function
G[e]: {0, 1}G.kl ×Dom(SS)→ Rng(SS). The first input is a key. For C an adver-
sary, let Advprf

G,SS,ES(C) = 2 Pr[Gprf
G,SS,ES(C)] − 1, where the game is in Figure 6.

The simulator uses its read-only state to store a key st for G, then using G(st, ·)
to answer queries outside the support sup(QTI).

We introduce this primitive because it allows multiple instantiations. The
simplest is that it is a PRF, which happens when it does not use its oracle.
In that case the simulator is using a computational primitive (a PRF) in the
indifferentiability context, which seems novel. Another instantiation prefixes st
to the input and then invokes e to return the output. This works for certain
choices of ES, but not always. Note G is used only by the simulator and plays
no role in the functor.

The proof of the following is in [10].

Theorem 2. Let SS and ES be function spaces, and assume they provide input
independence. Let W be a subset of Dom(ES). Let QT,AT be (SS,ES) query and

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 23

answer translators, respectively. Let QTI,ATI be inverses of QT,AT over W. De-
fine read-only simulator S as per the bottom panel of Figure 4. Let F = TFQT,AT.
Let A be any distinguisher. Then we construct a ti-adversary B and a prf-
adversary C such that

Advrd-indiff
F,SS,ES,W,S(A) ≤ Advti

SS,ES,QTI,ATI(B) + Advprf
G,SS(C) .

Let ` be the maximum output length of QT and `′ the maximum output length of
QTI. If A makes qpriv, qpub queries to its priv,pub oracles, respectively, then B
makes `·qpriv+qpub queries to its pub oracle and C makes at most `·`′ ·qpriv+qpub
queries to its RO oracle and at most qpub + ` · qpriv queries to its FnO oracle.
The running times of B, C are about that of A.

5 Analysis of cloning functors

Section 4 defined the rd-indiff metric of security for functors and give a frame-
work to prove rd-indiff of translating functors. We now apply this to derive
security results about particular, practical cloning functors.

Arity-n function spaces. The cloning functors apply to function spaces where
a function specifies sub-functions, corresponding to the different random oracles
we are trying to build. Formally, a function space FS is said to have arity n if its
members are two-argument functions f whose first argument is an integer i ∈
[1..n]. For i ∈ [1..n] we let fi = f(i, ·) and FSi = {fi : f ∈ FS}, and refer to the
latter as the i-th subspace of FS. We let Domi(FS) be the set of all X such that
(i,X) ∈ Dom(FS).

We say that FS has sol subspaces if FSi is a set of sol functions with domain
Domi(FS), for all i ∈ [1..n]. More precisely, there must be integers OL1(FS), . . . ,
OLn(FS) such that FSi = SOL(Domi(FS),OLi(FS)) for all i ∈ [1..n]. In this case,
we let Rngi(FS) = {0, 1}OLi(FS). This is the most common case for practical uses
of ROs.

To explain, access to n random oracles is modeled as access to a two-argument
function f drawn at random from FS, written f←$ FS. If FS has sol subspaces,
then for each i, the function fi is a sol function, with a certain domain and
output length depending only on i. All such functions are included. This ensures
input independence as we defined it earlier. Thus if f←$ FS, then for each i
and any distinct inputs to fi, the outputs are independently distributed. Also
functions f1, . . . , fn are independently distributed when f←$ FS. Put another
way, we can identify FS with FS1 × · · · × FSn.

Domain-separating functors. We can now formalize the domain separation
method by seeing it as defining a certain type of (translating) functor.

Let the ending space ES be an arity n function space. Let F: SS→ ES be a
translating functor and QT,AT be its query and answer translations, respectively.
Assume QT returns a vector of length 1 and that AT((i,X),V) simply returns
V [1]. We say that F is domain separating if the following is true: QT(i1, X1) 6=
QT(i2, X2) for any (i1, X1), (i2, X2) ∈ Dom(ES) that satisfy i1 6= i2.

24 Bellare, Davis, Günther

To explain, recall that the ending function is obtained as e ← F[s], and
defines ei for i ∈ [1..n]. Function ei takes input X, lets (u) ← QT(i,X) and
returns s(u). The domain separation requirement is that if (ui) ← QT(i,Xi)
and (uj)← QT(j,Xj), then i 6= j implies ui 6= uj , regardless of Xi, Xj . Thus if
i 6= j then the inputs to which s is applied are always different. The domain of
s has been “separated” into disjoint subsets, one for each i.

Practical cloning functors. We show that many popular methods for or-
acle cloning in practice, including ones used in NIST KEM submissions, can be
cast as translating functors.

In the following, the starting space SS = SOL({0, 1}∗,OL(SS)) is assumed
to be a sol function space with domain {0, 1}∗ and an output length denoted
OL(SS). The ending space ES is an arity n function spaces that has sol subspaces.

Prefixing. Here we formalize the canonical method of domain separation.
Prefixing is used in the following NIST PQC submissions: ClassicMcEliece,
FrodoKEM, LIMA, NTRU Prime, SIKE, QC-MDPC, ThreeBears.

Let p be a vector of strings. We require that it be prefix-free, by which we
mean that i 6= j implies that p[i] is not a prefix of p[j]. Entries of this vector will
be used as prefixes to enforce domain separation. One example is that the entries
of p are distinct strings all of the same length. Another is that a p[i] = E(i) for
some prefix-free code E like a Huffman code.

Assume OLi(ES) = OL(SS) for all i ∈ [1..n], meaning all ending functions
have the same output length as the starting function. The functor Fpf(p): SS→
ES corresponding to p is defined by Fpf(p)[s](i,X) = s(p[i]‖X). To explain,
recall that the ending function is obtained as e ← Fpf(p)[s], and defines ei for
i ∈ [1..n]. Function ei takes input X, prefixes p[i] to X to get a string X ′, applies
the starting function s to X ′ to get Y , and returns Y as the value of ei(X).

We claim that Fpf(p) is a translating functor that is also a domain-separating
functor as per the definitions above. To see this, define query translator QTpf(p)
by QTpf(p)(i,X) = (p[i]‖X), the 1-vector whose sole entry is p[i]‖X. The answer
translator ATpf(p), on input (i,X),V , returns V [1], meaning it ignores i,X and
returns the sole entry in its 1-vector V .

We proceed to the inverses, which are defined as follows:

Algorithm QTIpf(p)(U)
W ← ()
For i = 1, . . . , n do

If p[i] � U then p[i]‖X ← U ; W [1]← (i,X)
Return W

Algorithm ATIpf(p)(U,Y)
If Y 6= () then V ← Y [1]
Else V ← 0OL(SS)

Return V

The working domain is the full one:W = Dom(ES). We now verify Equation (2).
Let QT,QTI,AT,ATI be QTpf(p),QTIpf(p),ATpf(p),ATIpf(p), respectively. Then

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 25

for all W = (i,X) ∈ Dom(ES), we have:
TFQT,AT[P[e]QTI,ATI](W) = P[e]QTI,ATI(p[i]‖X)

= ATI(p[i]‖X, (e(i,X)))

= e(i,X) .
We observe that (QTIpf(p),ATIpf(p)) provides perfect translation indistinguisha-
bility. Since QTIpf(p) does not have full support, we can’t use Theorem 1, but
we can conclude rd-indiff via Theorem 2.

Identity. Many NIST PQC submissions simply let ei(X) = s(X), meaning the
ending functions are identical to the starting one. This is captured by the identity
functor Fid: SS → ES, defined by Fid[s](i,X) = s(X). This again assumes
OLi(ES) = OL(SS) for all i ∈ [1..n], meaning all ending functions have the
same output length as the starting function. This functor is translating, via
QTid(i,X) = X and ATid((i,X),V) = V [1]. It is however not, at least in
general, domain separating.

Clearly, this functor is not, in general, rd-indiff. To make secure use of it
nonetheless, applications can restrict the inputs to the ending functions to en-
force a virtual domain separation, meaning, for i 6= j, the schemes never query
ei and ej on the same input. One way to do this is length differentiation. Here,
for i ∈ [1..n], the inputs to which ei is applied all have the same length li,
and l1, . . . , ln are distinct. Length differentiation is used in the following NIST
PQC submissions: BIKE,EMBLEM, HQC, RQC, LAC, LOCKER, NTS-KEM, SABER, Round2,
Round5,Titanium. There are, of course, many other similar ways to enforce the
virtual domain separation.

There are two ways one might capture this with regard to security. One is
to restrict the domain Dom(ES) of the ending space. For example, for length
differentiation, we would require that there exist distinct l1, . . . , ln such that for
all (i,X) ∈ Dom(ES) we have |X| = li. For such an ending space, the identity
functor would provide security. The approach we take is different. We don’t
restrict the domain of the ending space, but instead define security with respect
to a subdomain, which we called the working domain, where the restriction is
captured. This, we believe, is better suited for practice, for a few reasons. One
is that a single implementation of the ending functions can be used securely
in different applications that each have their own working domain. Another
is that implementations of the ending functions do not appear to enforce any
restrictions, leaving it up to applications to figure out how to securely use the
functions. In this context, highlighting the working domain may help application
designers think about what is the working domain in their application and make
this explicit, which can reduce error.

But we warn that the identity functor approach is more prone to misuse and
in the end more dangerous and brittle than some others.

As per the above, inverses can only be given for certain working domains.
Let us say thatW ⊆ Dom(ES) separates domains if for all (i1, X1), (i2, X2) ∈ W
satisfying i1 6= i2, we have X1 6= X2. Put another way, for any (i,X) ∈ W

26 Bellare, Davis, Günther

there is at most one j such that X ∈ Domj(ES). We assume an efficient inverter
for W. This is a deterministic algorithm InW that on input X ∈ {0, 1}∗ returns
the unique i such that (i,X) ∈ W if such an i exists, and otherwise returns ⊥.
(The uniqueness is by the assumption that W separates domains.)

As an example, for length differentiation, we pick some distinct integers
l1, . . . , ln such that {0, 1}li ⊆ Domi(ES) for all i ∈ [1..n]. We then let W =
{(i,X) ∈ Dom(ES) : |X| = li}. This separates domains. Now we can define
InW(X) to return the unique i such that |X| = li if |X| ∈ {l1, . . . , ln}, otherwise
returning ⊥.

The inverses are then defined using InW , as follows, where U ∈ Dom(SS) =
{0, 1}∗:

Algorithm QTIid(U)
W ← () ; i← InW(U)
If i 6= ⊥ then W [1]← (i, U)
Return W

Algorithm ATIid(U,Y)
If Y 6= () then V ← Y [1]
Else V ← 0OL(SS)

Return V

The correctness condition of Equation (2) over W is met, and since InW(X)
never returns ⊥ for X ∈ W, the second condition of invertibility is also met.
(QTIid,ATIid) provides perfect translation indistinguishability. Since QTIid does
not have full support, we can’t use Theorem 1, but we can conclude rd-indiff via
Theorem 2.
Output-splitting. We formalize another method that we call output splitting.
It is used in the following NIST PQC submissions: FrodoKEM, NTRU-HRSS-KEM,
Odd Manhattan,QC-MDPC, Round2, Round5.

Let `i = OL1(ES)+ · · ·+OLi(ES) for i ∈ [1..n]. Let ` = OL(SS) be the output
length of the sol functions s ∈ SS, and assume ` = `n. The output-splitting
functor Fspl: SS → ES is defined by Fspl[s](i,X) = s(X)[`i−1 +1..`i]. That is,
if e← Fspl[s], then ei(X) lets Z ← s(X) and then returns bits `i−1+1 through
`i of Z. This functor is translating, via QTspl(i,X) = X and ATspl((i,X),V) =
V [1][`i−1+1..`i]. It is however not domain separating.

The inverses are defined as follows, where U ∈ Dom(SS) = {0, 1}∗:
Algorithm QTIspl(U)
For i = 1, . . . , n do W [i]← (i, U)
Return W

Algorithm ATIspl(U,Y)
V ← Y [1]‖ · · · ‖Y [n]
Return V

The correctness condition of Equation (2) overW = ES is met, and (QTIspl,ATIspl)
provides perfect translation indistinguishability. Since QTIspl has full support,
we can conclude rd-indiff via Theorem 1.
Rd-indiff of NewHope. We next demonstrate how read-only indifferentiability
can highlight subpar methods of oracle cloning, using the example of NewHope [2].
The base KEM KE1 defined in the specification of NewHope relies on just two
random oracles, G and H4. (The base scheme defined by transform T10, which
uses 3 random oracles H2, H3, and H4, is equivalent to KE1 and can be obtained
by applying the output-splitting cloning functor to instantiate H2 and H3 with
G. NewHope’s security proof explicitly claims this equivalence [2].)

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 27

Adversary Ainit,pub,priv,fin

init()
y ← pub(0) ; d←$ {1, 2} ; yd ← priv(d, 0)
If (yd[1..256]) = y[1..256] then fin(1) else fin(0)

Fig. 7. Adversary against the rd-indiff security of FNewHope.

The final KEM KE2 instantiates these two functions through SHAKE256
without explicit domain separation, setting H4(X) = SHAKE256(X, 32) and
G(X) = SHAKE256(X, 96). For consistency with our results, which focus on sol
function spaces, we model SHAKE256 as a random member of a sol function
space SS with some very large output length L, and assume that the adversary
does not request more than L bits of output from SHAKE256 in a single call.
We let ES be the arity-2 sol function space defining sub-functions G and H4. In
this setting, the cloning functor FNewHope : SS → ES used by NewHope is defined
by FNewHope[s](1, X) = s(X)[1..256] and FNewHope[s](2, X) = s(X)[1..768]. We will
show that this functor cannot achieve rd-indiff for the given oracle spaces and
the working domainW = {0, 1}∗. In Figure 7, we give an adversary A which has
high advantage in the rd-indiff game Grd-indiff

FNewHope,SS,ES,W,S for any indifferentiability
simulator S. When b = 1 in game Grd-indiff

FNewHope,SS,ES,W,S, we have that

yd[1..256] = FNewHope[s](d, 0)[1..256] = s(0)[1..256] = y[1..256],
so adversary A will always call fin on the bit 1 and win. When b = 0 in game
Grd-indiff

FNewHope,SS,ES,W,S, the two strings y1 = e0(1, X) and y2 = e0(2, X) will have
different 256-bit prefixes, except with probability ε = 2−256. Therefore, when A
queries pub(0), the simulator’s response y can share the prefix of most one of the
two strings y1 and y2. Its response must be independent of d, which is not chosen
until after the query to pub, so Pr[y[1..256] = yd[1..256]] ≤ 1/2 + ε, regardless of
the behavior of S. Hence, A breaks the indifferentiability of QNewHope with prob-
ability roughly 1/2, rendering NewHope’s random oracle functor differentiable.

The implication of this result is that NewHope’s implementation differs notice-
ably from the model in which its security claims are set, even when SHAKE256 is
assumed to be a random oracle. This admits the possibility of hash function col-
lisions and other sources of vulnerability that are not eliminated by the security
proof. To claim provable security for NewHope’s implementation, further justifica-
tion is required to argue that these potential collisions are rare or unexploitable.
We do not claim that an attack on read-only indifferentiability implies an attack
on the IND-CCA security of NewHope, but it does highlight a gap that needs to
be addressed. Read-only indifferentiability constitutes a useful tool for detecting
such gaps and measuring the strength of various oracle cloning methods.

28 Bellare, Davis, Günther

Acknowledgments

The authors were supported in part by NSF grant CNS-1717640 and a gift from
Microsoft. Günther was additionally supported by Research Fellowship grant
GU 1859/1-1 of the German Research Foundation (DFG).

References
1. M. Albrecht, C. Cid, K. G. Paterson, C. J. Tjhai, and M. Tomlinson. NTS-KEM.

NIST PQC Round 2 Submission, 2019. 3, 14
2. E. Alkim, R. Avanzi, J. Bos, L. Ducas, A. de la Piedra, T. Pöppelmann, P. Schwabe,

and D. Stebila. NewHope: Algorithm specifications and supporting documentation.
NIST PQC Round 2 Submission, 2019. 3, 12, 26

3. N. Aragon, P. S. L. M. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville,
P. Gaborit, S. Gueron, T. Güneysu, C. Aguilar Melchor, R. Misoczki, E. Persichetti,
N. Sendrier, J.-P. Tillich, V. Vasseur, and G. Zémor. BIKE: Bit flipping key
encapsulation. NIST PQC Round 2 Submission, 2019. 3, 12

4. N. Aragon, O. Blazy, J.-C. Deneuville, P. Gaborit, A. Hauteville, O. Ruatta, J.-P.
Tillich, and G. Zémor. LOCKER: Low rank parity check codes encryption. NIST
PQC Round 1 Submission, 2017. 3, 12

5. R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé. CRYSTALS-Kyber: Algorithm specifications
and supporting documentation. NIST PQC Round 2 Submission, 2019. 3, 14

6. H. Baan, S. Bhattacharya, S. Fluhrer, O. Garcia-Morchon, T. Laarohoven,
R. Player, R. Rietman, M.-J. O. Saarinen, L. Tolhuizen, J. L. Torre-Arce, and
Z. Zhang. Round5: KEM and PKE based on (ring) learning with rounding. NIST
PQC Round 2 Submission, 2019. 3, 12

7. G. Banegas, P. S. L. M. Barreto, B. O. Boidje, P.-L. Cayrel, G. N. Dione, K. Gaj,
C. T. Gueye, R. Haeussler, J. B. Klamti, O. N’diaye, D. T. Nguyen, E. Persichetti,
and J. E. Ricardini. DAGS: Key encapsulation from dyadic GS codes. NIST PQC
Round 1 Submission, 2017. 3, 10

8. M. Bardet, É. Barelli, O. Blazy, R. Canto-Torres, A. Couvreur, P. Gaborit, A. Ot-
mani, N. Sendrier, and J.-P. Tillich. BIG QUAKE: Binary goppa quasi-cyclic key
encapsulation. NIST PQC Round 1 Submission, 2017. 3, 10

9. M. Bellare, D. J. Bernstein, and S. Tessaro. Hash-function based PRFs: AMAC and
its multi-user security. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 566–595. Springer, Heidelberg, May 2016. 7

10. M. Bellare, H. Davis, and F. Günther. Separate your domains: NIST PQC KEMs,
oracle cloning and read-only indifferentiability. Cryptology ePrint Archive, 2020.
6, 22

11. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and
V. Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993. 1, 7

12. M. Bellare and P. Rogaway. The security of triple encryption and a framework
for code-based game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 409–426. Springer, Heidelberg, May / June 2006. 15

13. D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. N. Rafael Misoczki, E. Per-
sichetti, C. Peters, P. Schwabe, N. Sendrier, J. Szefer, and W. Wang. Classic
McEliece: conservative code-based cryptography. NIST PQC Round 2 Submis-
sion, 2019. 3, 14

NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability 29

14. D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. NTRU
Prime. NIST PQC Round 2 Submission, 2019. 3, 14

15. M.-S. Chen, A. Hülsing, J. Rijneveld, S. Samardjiska, and P. Schwabe. MQDSS
specifications. NIST PQC Round 2 Submission, 2019. 14

16. J. H. Cheon, S. Park, J. Lee, D. Kim, Y. Song, S. Hong, D. Kim, J. Kim, S.-M.
Hong, A. Yun, J. Kim, H. Park, E. Choi, K. Kim, J.-S. Kim, and J. Lee. Lizard
public key encryption. NIST PQC Round 1 Submission, 2017. 3, 12, 13

17. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited:
How to construct a hash function. In V. Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 430–448. Springer, Heidelberg, Aug. 2005. 4, 16

18. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2003. 2

19. J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren. SABER: Mod-LWR
based KEM. NIST PQC Round 2 Submission, 2019. 3, 12

20. G. Demay, P. Gaži, M. Hirt, and U. Maurer. Resource-restricted indifferentiability.
In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of
LNCS, pages 664–683. Springer, Heidelberg, May 2013. 4, 16

21. A. W. Dent. A designer’s guide to KEMs. In K. G. Paterson, editor, 9th IMA In-
ternational Conference on Cryptography and Coding, volume 2898 of LNCS, pages
133–151. Springer, Heidelberg, Dec. 2003. 2, 7, 8

22. O. Garcia-Morchon and Z. Zhang. Round2: KEM and PKE based on GLWR.
NIST PQC Round 1 Submission, 2017. 3, 10

23. M. Hamburg. Post-quantum cryptography proposal: ThreeBears. NIST PQC
Round 2 Submission, 2019. 3, 14

24. D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In Y. Kalai and L. Reyzin, editors, TCC 2017, Part I,
volume 10677 of LNCS, pages 341–371. Springer, Heidelberg, Nov. 2017. 2, 7, 8

25. A. Hülsing, J. Rijneveld, J. M. Schanck, and P. Schwabe. NTRU-HRSS-KEM:
Algorithm specifications and supporting documentations. NIST PQC Round 1
Submission, 2017. 3, 14

26. D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. D. Feo, B. hess, A. Jalali,
B. Koziel, B. LaMacchia, P. Longa, M. Naehring, J. Renes, V. Soukharev, and
D. Urbanik. Supersingular isogeny key encapsulation. NIST PQC Round 2 Sub-
mission, 2019. 3, 14

27. H. Jiang, Z. Zhang, L. Chen, H. Wang, and Z. Ma. IND-CCA-secure key encapsu-
lation mechanism in the quantum random oracle model, revisited. In H. Shacham
and A. Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages
96–125. Springer, Heidelberg, Aug. 2018. 2, 7, 8

28. X. Lu, Y. Liu, D. Jia, H. Xue, J. He, and Z. Zhang. LAC: Lattice-based cryptosys-
tems. NIST PQC Round 2 Submission, 2019. 3, 12

29. U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodology. In
M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages 21–39. Springer, Heidel-
berg, Feb. 2004. 2, 4, 16, 17

30. C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville,
P. Gaborit, A. Hauteville, O. Ruatta, J.-P. Tillich, and G. Zémor. ROLLO: Rank-
ouroboros, LAKE, & LOCKER. NIST PQC Round 2 Submission, 2018. 3, 12,
13

30 Bellare, Davis, Günther

31. C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville,
P. Gaborit, and G. Zémor. Rank quasi-cyclic (RQC). NIST PQC Round 2 Sub-
mission, 2019. 3, 14

32. C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. D. P. Gaborit,
and E. P. G. Zémor. Hamming quasi-cyclic (HQC). NIST PQC Round 2 Submis-
sion, 2019. 3, 14

33. A. Mittelbach. Salvaging indifferentiability in a multi-stage setting. In P. Q.
Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages
603–621. Springer, Heidelberg, May 2014. 4, 16

34. M. Naehrig, E. Alkim, J. W. Bos, L. Ducas, K. Easterbrook, B. LaMacchia,
P. Longa, I. Mironov, V. Nikolaenko, C. Peikert, A. Raghunathan, and D. Ste-
bila. FrodoKEM: Learning with errors key encapsulation. NIST PQC Round 2
Submission, 2019. 3, 14

35. NIST. Post-Quantum Cryptography Standardization Process. https://csrc.
nist.gov/projects/post-quantum-cryptography. 2

36. NIST. Federal Information Processing Standard 202, SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions, Aug 2015. 2

37. NIST. PQC Standardization Process: Second Round Candidate Announce-
ment. https://csrc.nist.gov/news/2019/pqc-standardization-process-2nd-
round-candidates, Jan. 2019. 2

38. T. Plantard. Odd manhattan’s algorithm specifications and supporting documen-
tation. NIST PQC Round 1 Submission, 2017. 3, 12

39. T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with composition: Lim-
itations of the indifferentiability framework. In K. G. Paterson, editor, EURO-
CRYPT 2011, volume 6632 of LNCS, pages 487–506. Springer, Heidelberg, May
2011. 4, 6, 16, 17, 18, 22

40. T. Saito, K. Xagawa, and T. Yamakawa. Tightly-secure key-encapsulation mecha-
nism in the quantum random oracle model. In J. B. Nielsen and V. Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 520–551. Springer,
Heidelberg, Apr. / May 2018. 2, 7, 8

41. M. Seo, J. H. Park, D. H. Lee, S. Kim, and S.-J. Lee. Proposal for NIST post-
quantum cryptography standard: EMBLEM and R.EMBLEM. NIST PQC Round
1 Submission, 2017. 3, 14

42. N. P. Smart, M. R. Albrecht, Y. Lindell, E. Orsini, V. Osheter, K. G. Paterson,
and G. Peer. LIMA: A PQC encryption scheme. NIST PQC Round 1 Submission,
2017. 3, 14

43. R. Steinfeld, A. Sakzad, and R. K. Zhao. Titanium: Proposal for a NIST post-
quantum public-key encryption and KEM standard. NIST PQC Round 1 Submis-
sion, 2017. 3, 12

44. Y. Zhao, Z. Jin, B. Gong, and G. Sui. A modular and systematic approach to key
establishment and public-key encryption based on LWE and its variants. NIST
PQC Round 1 Submission, 2017. 3, 12

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/news/2019/pqc-standardization-process-2nd-round-candidates
https://csrc.nist.gov/news/2019/pqc-standardization-process-2nd-round-candidates

	Separate Your Domains:NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability
	Introduction
	Oracle Cloning in NIST PQC Candidates
	Design process
	The base KEM
	Submissions we break
	Submissions with unclear security
	Submissions with provable security but ambiguous specification
	Submissions with clear provable security

	Preliminaries
	Read-only indifferentiability of translating functors
	Functors and read-only indifferentiability
	Translating functors
	Rd-indiff of translating functors

	Analysis of cloning functors

