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Abstract—Providing high quality-of-service for live commu-
nication is a pervasive challenge which is plagued by packet
losses during transmission. Streaming codes are a class of erasure
codes specifically designed for such low-latency streaming com-
munication settings. We consider the recently proposed setting
of streaming codes under variable-size messages which reflects
the requirements of applications such as live video streaming. In
practice, streaming codes often need to operate in an “online”
setting where the sizes of the future messages are unknown. Yet,
previously studied upper bounds on the rate apply to “offline”
coding schemes with access to all (including future) message sizes.

In this paper, we evaluate whether the optimal offline rate is
a feasible goal for online streaming codes when communicating
over a burst-only packet loss channel. We identify two broad
parameter regimes where, perhaps surprisingly, online streaming
codes can, in fact, match the optimal offline rate. For both of these
settings, we present rate-optimal online code constructions. For
all remaining parameter settings, we establish that it is impossible
for online schemes to attain the optimal offline rate.

An extended version of this paper is accessible at: [1].

I. INTRODUCTION

Real-time communication with high quality-of-service is
critical to many pervasive streaming applications, including
VoIP and video conferencing. These live streaming applica-
tions rely on transmitting packets of information and must
contend with packet losses during transmission. A standard
solution to recover from packet loss is to retransmit lost pack-
ets. However, it is infeasible to use the retransmission-based
approach in the live communication setting, as the three-way
delay of transmission, feedback, and retransmission exceeds
the real-time latency constraint [2]. One viable technique to
provide robustness to packet loss is forward error correction.
Yet using conventional coding schemes while complying with
the real-time delay constraint induces a significant bandwidth
overhead.

Coding schemes which are designed specifically for live
streaming communication can attain significantly higher rate
than traditional coding schemes (including the class of maxi-
mal distance separable (MDS) codes). This improved perfor-
mance was demonstrated in [3] in which the authors proposed
a new “streaming model” for real-time communication. The
authors also presented a coding scheme and an upper bound
on rate for the model. Under the streaming model, at each
time slot, a “message packet” arrives at a sender who then
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Fig. 1. Overview of the streaming model. At each time slot i, a sender
receives a message packet S[i] and transmits a channel packet X[i] over a
packet loss channel to a receiver. The message packet S[i] is to be decoded
within delay τ , i.e. by time slot (i+ τ).

transmits a “channel packet” to a receiver. The channel packets
are transmitted over a burst-only packet loss channel. Due to
the real-time latency constraints, each message packet must be
decoded by the receiver within the delay of a strict fixed num-
ber of time slots. The streaming model is depicted in Figure 1.
Code constructions designed specifically for the streaming
model can have significantly higher rate than traditional code
constructions. This has motivated numerous subsequent works
on the streaming model (discussed briefly in Section II).

The streaming model proposed in [3] and studied further
in several subsequent works considers a setting where at each
time slot a sender receives a message packet comprising some
fixed constant number of source symbols to be transmitted to
a receiver. However, many applications intrinsically require
transmitting a stream of variable-size messages. For exam-
ple, in video conferencing a sender transmits a sequence of
compressed video frames of fluctuating sizes. Consequently,
a new streaming model incorporating variable-size messages
was introduced in [4]. In this work, we focus on the setting
of communicating variable-size messages over a burst-only
packet loss channel.

Under the setting of variable-size messages, the upper bound
on rate of the fixed-size regime still applies. However, the
variability in the message sizes can induce more stringent rate
constraints. Moreover, at each time slot, the optimal number
of symbols to transmit can depend on the sizes of future
messages, which are inherently variable and unknown. This
leads to the distinction between “offline” coding schemes,
which have access to the sizes of messages of future time
slots, and “online” schemes, which do not have access to
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such information. Online constructions are of practical interest,
as future message sizes are often unknown in live streaming
applications. This leads to the natural question of “whether
online coding schemes can match the rate of offline coding
schemes?”

In this work, we identify two broad parameter regimes
where, perhaps surprisingly, online coding schemes can match
the rate of optimal offline coding schemes. For both these
settings, we present rate-optimal online code constructions.
For all remaining parameter regimes, we demonstrate that
online coding schemes necessarily have strictly lower rate than
optimal offline coding schemes.

II. BACKGROUND, SYSTEM MODEL AND NOTATION

As discussed in Section I, the streaming model was pro-
posed in [3]. It captures the setting of real-time communication
of a sequence of messages of a fixed constant size over a
burst-only packet loss channel. The authors also introduced a
class of code constructions applicable to the streaming model,
called “streaming codes,” along with an upper bound on rate
(which will be discussed shortly). Later, this bound was met
by a construction proposed in [5]. Streaming codes have sig-
nificantly higher rate than traditional code constructions under
the streaming model. This improvement in rate has prompted
several works on bounds on rate and code constructions for
the streaming model under a variety of settings [6]–[19].

In applications such as video communication, the sizes of
the messages to be transmitted fluctuate considerably. To incor-
porate this, a streaming model for variable-size messages was
introduced in [4]. The authors designed streaming codes for
this new setting with higher rate than constructions designed
for the setting of fixed-size messages. We later present rate-
optimal streaming codes for two parameter regimes which
outperform the code construction from [4].

This work considers the streaming model from [4] (with a
few minor changes in how time slots are indexed). There is a
finite stream of t messages for an arbitrary natural number t.
At each time slot i ∈ {0, . . . , t}, a sender receives a message
packet S[i] comprised of ki symbols from a finite field Fq . The
number of symbols is between 0 and m for a natural number
m representing the maximum message packet size. The sender
then transmits a channel packet, X[i], consisting of ni symbols
from Fq to a receiver. Each channel packet X[i] either arrives
at the receiver or is lost. We denote a lost packet by ∗. Each
channel packet X[i] depends only on the symbols of previous
message packets (i.e. S[0], . . . , S[i]). Due to real-time latency
constraints, each message packet S[i] must be decoded by the
receiver within a delay of τ time slots (i.e. S[i] is recovered
using the channel packets received by time slot (i+ τ)). This
requirement is called the worst-case-delay constraint.

In this setting, the rate Rt is defined as Rt =
∑t

i=0 ki∑t
i=0 ni

.

The channel packets are transmitted over a burst-only packet
loss channel equivalent to the one considered in [3]. This
channel is denoted C(b, w) and may introduce a single burst
loss of length at most b packets within every sliding window
of length w packets. We restrict our attention to (w > τ) in

this work. Under a C(b, w > τ) channel for any sequence of
t message packets, the rate Rt is upper bounded by τ

τ+b . This
upper bound was initially shown for the setting of fixed-size
message packets in [5] and was shown to hold for the setting
of variable-size message packets in [4]. Depending on the sizes
of the message packets, the upper bound may be loose, as will
be seen later in this work.

We refer to constructions which at time slot i ∈ {0, . . . , t}
can access all future message packet sizes (ki+1, . . . , kt) as
“offline.” Offline schemes have access to the sizes but not
the symbols of the future message packets. In contrast, when
a code construction cannot access future message packet
sizes, we denote it as “online.” Thus, at time slot i, for an
online construction, the future message sizes (ki+1, . . . , kt)
are unknown. We distinguish between the feasible rates for
offline and online coding schemes. We denote the best possible
rate for offline coding schemes as the “offline-optimal-rate”
and for online coding schemes as the “online-optimal-rate.”

Under the setting of variable-size messages, it was shown
in [4] that there is an inherent tradeoff between rate of a code
and the decoding delay under lossless transmission (i.e. the
number of time slots needed to decode a message packet when
all channel packets are received). This tradeoff is captured
in [4] via a new delay constraint called the lossless-delay
constraint: When there are no losses, the receiver must decode
each message packet S[i] within a delay of τL (< τ ) time
slots.1 The lossless-delay constraint is relevant to applications
which can infrequently tolerate a worst-case-delay of τ but
require faster decoding for most message packets.

The valid value ranges for parameters b, τ, and τL are:
1 ≤ b ≤ τ and 0 ≤ τL ≤ τ − b. A maximum burst length
of 0 is not considered, as coding is unnecessary in lossless
transmission. Moreover, reliable transmission is impossible
when b exceeds τ , as S[i] cannot be decoded by its deadline
when X[i], . . . , X[i+τ ] are all lost in a burst. The restrictions
on τL hold without loss of generality. τL cannot be negative
and S[i] is decoded by time slot (i + τ − b) if there are no
losses since a burst can eliminate X[i+τ−b+1], . . . , X[i+τ ].

This paper uses the following notation. All vectors are row
vectors. The length of a vector V is denoted |V |. A vector V
is indexed using the notation V = (V0, . . . , V|V |−1). Let A be
a matrix with n columns and I ⊆ {0, . . . , n−1}. The quantity
AI refers to restriction of A to the columns in I . The term [n]
denotes {0, . . . , n}. For message packets S[0], . . . , S[t], we
call k0, . . . , kt the “message size sequence.”

The following conventions are used throughout this work.
We restrict the parameter t to be at least τ and the final
τ message packets to have size 0. This ensures that coding
schemes can encode the final message packet of nonzero size
using τ extra channel packets. Furthermore, these restrictions
can be satisfied by appending τ message packets of size 0 to
the stream of messages. This appending does not impact the
rate of the code. Furthermore, for convenience of notation of
edge cases, k1−b, . . . , k−1 are each defined to be 0. Finally, a

1The notation of lossless-delay constraint has been changed from [4].
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burst loss of X[i], . . . , X[i + b − 1] for i ∈ {1 − b, . . . ,−1}
denotes the burst loss of X[0], . . . , X[i+ b− 1].

III. ONLINE CODE CONSTRUCTIONS WITH OPTIMAL RATE

In this section, we identify two broad parameter regimes
where it is possible for online coding schemes to match
the offline-optimal-rate. We then present online constructions
which do so. Both the settings have unique characteristics that
enable the online-optimal-rate to match the offline-optimal-
rate. In the first regime, a simple scheme which encodes
each message packet separately has optimal rate. Hence, the
knowledge of future messages sizes does not provide any
leverage. In the second regime, the lossless-delay constraint
forces the encoder to send each message packet immediately
rather than distributing its symbols over multiple channel
packets. This serves to mitigate the potential advantage of
offline schemes, enabling online coding schemes to attain the
offline-optimal-rate. Later, in Section IV, we show that for all
other parameter settings it is impossible for an online code
construction to meet the offline-optimal-rate.

The two domains where the online-optimal-rate equals the
offline-optimal-rate are: Regime 1: (τL = τ − b and b|τ ) and
Regime 2: (τL = 0).

Under Regime 1, for any parameters (τ, b) in the regime,
a simple online coding scheme applied to each message
packet separately meets the upper bound on the rate of
τ
τ+b . Each message packet S[i] is partitioned evenly into
τ
b components which are transmitted in channel packets
X[i], X[i + b], . . . , X[i + τ − b] respectively. This satisfies
the lossless-delay constraint. The summation of these com-
ponents is sent in channel packet X[i + τ ]. At most one of
X[i], X[i+ b], . . . , X[i+ τ − b], X[i+ τ ] is lost in a burst of
length b. Thus, the worst-case-delay constraint is satisfied.2

The remainder of this section focuses on Regime 2. In-
tuitively, in this regime, it is possible for an online coding
scheme to match the offline-optimal-rate for the following
reason: at each time slot i, for any code construction, at least ki
symbols are sent in channel packet X[i] to meet the lossless-
delay constraint. This eliminates the choice of distributing
symbols corresponding to S[i] over multiple channel packets.

We next present an online coding scheme for any (τ, b)
which meets the offline-optimal-rate. We include a high level
description, then present a toy example, and finally provide its
details. The scheme can be viewed as extending the General-
ized Maximally Short Codes presented in [14] to incorporate
variability in the message size sequence. We call the proposed
scheme the (τ, b)-Variable-sized Generalized MS Code.

Code construction (high level description). During time
slot i, each message packet S[i] is partitioned into two
pieces S[i] = (U [i], V [i]). Redundant parity symbols P [i] =
(U [i − τ ] + P ′[i]) are created where P ′[i] consists of linear
combinations (taken from a Cauchy matrix) of the symbols of
(V [i−τ ], . . . , V [i−1]). Channel packet X[i] = (S[i], P [i]) is

2In a recent work [19], such a coding scheme where each packet is encoded
separately was found to be useful in designing a low complexity streaming
code with linear field size in the setting of fixed-size messages.
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Fig. 2. A toy example of the (4, 2)-Variable-sized Generalized MS Code.
Each message packet S[i] = (U [i], V [i]) is transmitted in the corresponding
channel packet X[i] along with parity symbols P [i] (when applicable). White
boxes with purple dots represent symbols of U [i], white boxes with an orange
grid represent symbols of V [i], and solid red boxes represent symbols of P [i].
The numbers under the lines indicate the time slots.

then sent. This satisfies the lossless-delay constraint (τL = 0).
V [i] is defined to contain as many symbols of S[i] possible
while meeting the following constraint. For any burst loss of
X[j], . . . , X[j + b − 1] which includes X[i], the sum of the
sizes of V [j], . . . , V [i] is at most the number of parity symbols
in X[j + b], . . . , X[j + τ − 1] (i.e. the sum of the sizes of
P [j + b], . . . , P [j + τ − 1]). The remaining symbols of S[i]
are allocated to U [i]. The size of P [i] is defined to be |U [i−τ ]|.

Loss recovery. A burst loss eliminating X[i], . . . , X[i +
b− 1] is recovered in two steps. First, for j ∈ {i+ b, . . . , i+
τ −1}, U [j− τ ] is canceled from P [j] to obtain P ′[j]. P ′[i+
b], . . . , P ′[i+τ−1] are used to recover V [i], . . . , V [i+b−1] at
time slot (i+τ−1). Second, at time slot j ∈ {i+τ, . . . , i+τ+
b−1}, V [i], . . . , V [j−1] is used to compute P ′[j]. Subtracting
P ′[j] from P [j] decodes U [j].

Code construction (toy example). We present a toy ex-
ample of the (4, 2)−Variable-sized Generalized MS Code for
message size sequence k0 = 3, k1 = 2, k2 = 1, k3 = 2, k4 =
1, and kj = 0 for j ∈ {5, . . . , 8} in Figure 2. Each message
packet S[i] is sent in the corresponding channel packet X[i]
for i ∈ [4]. This satisfies the lossless-delay constraint. For
i ∈ {0, 1, 4}, U [i] is defined to equal S[i]. For i ∈ {2, 3} V [i]
is set to be S[i]. P [4] = (S[0] + P ′[4]) is transmitted in X[4]
where P ′[4] = (S0[2], S0[3], S1[3]). P [5] = (S[1] + P ′[5])
is sent in X[5] for P ′[5] = (S0[3], S1[3]). P0[8] = S0[4] is
transmitted in X[8]. If a burst occurs, within delay 3 of its
start all lost symbols of V [2] and or V [3] are decoded. Any
lost symbols of U [0], U [1], and U [4] are each decoded with
delay exactly 4 using P [4], P [5], and P [8] respectively (and
cancelling decoded symbols of V [2] and V [3]). Therefore, the
worst-case-delay constraint is satisfied.

Code construction (detailed description). At each time
slot i, channel packet X[i] = (S[i], P [i]) = (U [i], V [i], P [i])
is sent. The scheme is formally described in three parts:
initialization, partitioning S[i] into (U [i], V [i]), and defining
P [i].

Initialization: The size |P [i]| is set to 0 for i ∈ [τ − 1] and
ki−τ for i ∈ {τ, . . . , τ+b−1}. The quantities U [i] = S[i] and
|V [i]| = 0 are defined for i ∈ [b − 1]. Let A be a τm × τm
Cauchy matrix, where m is the maximum message packet size.

Partitioning S[i]: For any i ≥ b, S[i] is partitioned into
S[i] = (U [i], V [i]) as follows. The auxiliary variable zi is
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computed to encapsulate the minimum number of parity sym-
bols available for use in recovering S[i] when X[i] is dropped
in a burst (i.e. zi = minj∈{i−b+1,...,i}

∑i+τ−1
l=j+b |P [l]| −∑i−1

l=j kl.). V [i] is defined to be the first min(ki, zi) symbols
of S[i]. U [i] is set to be the remaining symbols of S[i].
|P [i + τ ]| = |U [i]| parity symbols are allocated to be sent
in channel packet X[i + τ ], although the actual symbols of
P [i+ τ ] are not yet identified. This ensures for each burst in
X[j], . . . , X[j + b− 1] for j ∈ {i− b+1, . . . , i}, the number
of parity symbols sent after the burst by time slot (i+ τ) (i.e.∑i+τ
l=j+b |P [l]|) is enough to recover S[j], . . . , S[i].
Defining P [i]: P [i] is constructed during time slot (i ≥ τ)

as follows. P [i] = (U [i−τ ]+P ′[i]) where the symbols of P ′[i]
are linear combinations of the symbols of V [i− τ ], . . . , V [i−
1]. The linear combinations are defined to ensure for any
j ∈ {i − τ + 1, . . . , i − b}, V [j], . . . , V [j + b − 1] can be
decoded using V [j+ b− τ ], . . . , V [j−1], V [j+ b], . . . , V [j+
τ − 2], P ′[j + b], . . . , P ′[j + τ − 1]. To meet this objective,
the linear combinations are chosen from a Cauchy matrix, as
described below. Let V ∗[j] be the length m vector obtained by
appending (m− |V [j]|) 0’s to V [j] for j ∈ {i− τ, . . . , i− 1}.
The length τm vector E[i] is defined by placing each V ∗[j]
into m consecutive positions of E[i] starting with position (j
mod τ)m. The Cauchy matrix A is used to define P ′[i] =
E[i]A{(i mod τ)m,...,(i mod τ)m+|P [i]|−1}.

We observe that the field size requirement is dictated by the
Cauchy matrix and is at most 2τm.

In Theorem 1, we verify that the Variable-sized Generalized
MS Code meets the requirements of the model.

Theorem 1: For any parameters (τ, b) and message size
sequence k0, . . . , kt, the (τ, b)-Variable-sized Generalized MS
Code satisfies the lossless-delay and worst-case-delay con-
straints over any C(b, w > τ) channel.

Proof sketch: The detailed proof is included in [1].
The lossless-delay constraint is satisfied since the scheme

transmits X[i] = (S[i], P [i]) for i ∈ [t].
We prove that the worst-case-delay constraint is satisfied

by showing for any burst X[i], . . . , X[i+ b− 1] that each of
S[i], . . . , S[i+ b− 1] are recovered within delay τ . First, we
show that V [i], . . . , V [i + b − 1] are recovered by time slot
(i+ τ − 1). Second, we prove that U [i], . . . , U [i+ b− 1] are
each recovered with delay exactly τ .

First, the construction identifies P ′[j] by time slot j by
canceling U [j−τ ] from P [j] for j ∈ {i+b, . . . , i+τ−1}. The
total number of parity symbols in P ′[i+ b], . . . , P ′[i+ τ − 1]
is at least as many as V [i], . . . , V [i + b − 1] by defini-
tion. P ′[i + b], . . . , P ′[i + τ − 1] can be used to decode
V [i], . . . , V [i+ b− 1] by properties of the Cauchy matrix A.

Second, the scheme uses V [j], . . . , V [j+ τ −1] to compute
P ′[j + τ ] for j ∈ {i, . . . , i+ b− 1}. It then cancels P ′[j + τ ]
from P [j + τ ] to decode U [j] with delay exactly τ .

The below Lemma 1 will later be used to prove Theorem 2.
It essentially shows that whenever the Variable-sized General-
ized MS Code transmits parity symbols in a channel packet,

there is some burst loss for which all of these parity symbols
are needed to satisfy the worst-case-delay constraint.

Lemma 1: Consider any parameters (τ, b) and message size
sequence k0, . . . , kt. For the (τ, b)-Variable-sized Generalized
MS Code for all i ≥ τ where |P [i]| > 0, ∃j ∈ {i − τ − b +
1, . . . , i− τ} such that

∑i−τ
l=j kl =

∑i
l=j+b |P [l]|.

Proof: This holds for i ∈ {τ, . . . , τ + b − 1} due to the
initialization and a burst in X[0], . . . , X[b− 1].

For (i ≥ τ+b), if (|P [i]| = |U [i−τ ]| > 0) then (|V [i−τ ]| <
ki−τ ). By definition of V [i − τ ] there is some j ∈ {i − τ −
b + 1, . . . , i − τ} for which |V [i − τ ]| = (

∑i−1
l=j+b |P [l]| −∑i−τ−1

l=j kl). Thus, (
∑i−τ
l=j kl =

∑i
l=j+b |P [l]|).

In Theorem 2, we show that the Variable-sized Generalized
MS Code meets the offline-optimal-rate by proving that it
transmits the minimum necessary number of symbols.

Theorem 2: For any parameters (τ, b, τL = 0), the (τ, b)-
Variable-sized Generalized MS Code attains the offline-
optimal-rate over a C(b, w > τ) channel.

Proof sketch: The detailed proof is included in [1].
For an arbitrary message size sequence k0, k1, . . . , kt, con-

sider any optimal offline construction O. We use a proof by
induction on time slot i = 0, 1, 2, . . . , t to show that the
cumulative number of symbols sent by O by time slot i is at
least as many as that of the (τ, b)-Variable-sized Generalized
MS Code. Thus, the rate, Rt, of the (τ, b)-Variable-sized
Generalized MS Code is at least as high as that of O.

In the base case, for each i ∈ [τ − 1], channel packet
X[i] under O must contain at least ki symbols to satisfy the
lossless-delay constraint for message packet S[i]. Under the
(τ, b)-Variable-sized Generalized MS Code, |X[i]| = ki.

The inductive step for i ∈ {τ, . . . , t} has two cases.
First, when X[i] = S[i] is sent under the (τ, b)-Variable-

sized Generalized MS Code, at least |S[i]| = ki symbols are
sent in X[i] under O to meet the lossless-delay constraint.

Second, suppose X[i] = (S[i], P [i]) is sent under the (τ, b)-
Variable-sized Generalized MS Code where |P [i]| > 0. Apply-
ing Lemma 1 shows that there is a burst loss starting at time
slot j ∈ {i−τ−b+1, . . . , i−τ} for which the number of parity
symbols received under the (τ, b)-Variable-sized Generalized
MS Code in X[j + b], . . . , X[i] is exactly enough to decode
message packet S[j], . . . , S[i − τ ]. Combining this fact with
satisfying the lossless-delay constraint for S[j + b], . . . , S[i]
necessitates that at least as many symbols are sent under O
between time slots (j+ b) and i as are respectively sent under
the (τ, b)-Variable-sized Generalized MS Code. Applying the
inductive hypothesis for time slot (j + b − 1) concludes the
proof.

IV. INFEASIBLITY OF OFFLINE-OPTIMAL-RATE FOR
ONLINE SCHEMES

In Section III, we presented online code constructions which
match the offline-optimal-rate under the two broad settings
of Regime 1 and Regime 2. This motivates us to ask the
question of whether there are any other parameter settings
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where an online coding scheme can attain the offline-optimal-
rate. In this section, we show that the online-optimal-rate is
strictly less than the offline-optimal-rate for all other parameter
settings.

At a high level, the reason for online coding schemes
being unable to match the offline-optimal-rate stems from the
need to distribute symbols over multiple channel packets. For
all parameter settings besides Regime 1 and Regime 2, the
optimal approach to spreading symbols from a message packet
S[i] over X[i], . . . , X[i+τL] can depend on the sizes of future
message packets (i.e. ki+1, . . . , kt). This dependency enables
offline coding schemes to have higher rate than online coding
schemes. This result is formally established in Theorem 3.

Theorem 3: For any parameters (τ, b, τL) outside of Regime
1 and Regime 2, the online-optimal-rate is strictly less than
offline-optimal-rate.

A. Proof sketch of Theorem 3

The proof is divided into three cases shown in Lemmas 2, 3,
and 4. The proof for each of the three lemmas uses the follow-
ing line of argument. Two distinct message size sequences are
introduced which are identical for the first several time slots.
We show a lower bound on the offline-optimal-rate for the
two message size sequences by presenting an offline coding
scheme with rates R1 and R2 on the first and second message
size sequence respectively. The manner in which symbols are
sent to attain rate R1 on the first message size sequence
prohibits a code construction from having rate R2 on the
second. Combining Lemmas 2, 3, and 4 concludes the proof.

We provide the full proof for Lemma 2 below. Proofs for
Lemmas 3 and 4 are provided in the extended version [1].

Lemma 2: For parameters (τ, b, τL = τ−b) where (τL ≥ b),
the online-optimal-rate is strictly less than offline-optimal-rate.

Proof: Let (a = b τLb c) and (e ≡ τL mod b). We note
(e > 0) since (b 6 | τ). Let d be an arbitrary multiple of (a+1).

Consider the following two message size sequences:
1) k

(1)
j = d for j ∈ [e−1] and k(1)j = 0 for j ∈ {e, . . . , t}.

2) k
(2)
j = d for j ∈ [b−2], k(2)b−1 = d(τL+1), and k(2)j = 0

for j ∈ {b, . . . , t}.
We present an offline coding scheme for message size

sequences 1 and 2 which has rates R1 = a+1
a+2 and R2 = τ

τ+b
on the two message size sequences respectively. We describe
and then validate the scheme for each message size sequence.

On message size sequence 1, each message packet is en-
coded separately with parameters (τ ′ = b τb cb, b

′ = b, τ ′L =
τ ′ − b) as described in Section III and detailed below.
• S[i] is evenly split into S(0)[i], . . . , S(a)[i] for i ∈ [e−1].
• X[i+ zb] = S(z)[i] is sent for z ∈ [a] and i ∈ [e− 1].
• X[i+(a+1)b] =

∑a
z=0X[i+ zb] is sent for i ∈ [e− 1].

The lossless-delay and worst-case-delay constraints are met
since S[i] is sent by time slot ab and at most one of X[i], X[i+
b], . . . , X[i+ ab], X[i+ (a+ 1)b] is lost for i ∈ [e− 1].

Before the scheme for message size sequence 2 is de-
scribed, we present a rate τ

τ+b block code from [9] (or
alternatively a block code from [6]–[8]) which the scheme

will build on. The block code systematically maps τ in-
put symbols (s0, . . . , sτ−1) to (τ + b) codeword symbols
(s0, . . . , sτ−1, p0, . . . , pb−1). For each j ∈ [τ − 1] and any
burst erasing up to b codeword symbols, the non-erased
symbols of (s0, . . . , sτ−1, p0, . . . , pmin(b−1,j)) are sufficient to
decode sj . Hence, each symbol is recovered within τ symbols.

On message size sequence 2, the first (b − 1) message
packets are sent with no delay and the next message packet is
sent evenly over X[b − 1], . . . , X[τ − 1]. d symbols are sent
in each of X[τ ], . . . , X[τ + b − 1] to creates d blocks of the
code from [9]. The scheme is described in detail below.
• X[j] = S[j] is sent for j ∈ [b− 2].
• S[b−1] is divided evenly into S(0)[b−1], . . . , S(τL)[b−1].
• X[b− 1 + j] = S(j)[b− 1] is sent for j ∈ [τL].
• For each z ∈ [d − 1], an instance of the block

code from [9] mapping (Xz[0], . . . , Xz[τ − 1]) to
(Xz[0], . . . , Xz[τ − 1], p

(z)
0 , . . . , p

(z)
b−1) is created.

• X[τ + j] = (p
(0)
j , . . . , p

(d−1)
j ) is sent for j ∈ [b− 1].

The lossless-delay constraint is satisfied, as each message
packet is transmitted within delay τL. Each symbol Xz[i] for
z ∈ [d−1] and i ∈ [τ −1] is decoded within delay τ by prop-
erties of the block code (Xz[0], . . . , Xz[τ−1], p(z)0 , . . . , p

(z)
b−1).

Thus, the worst-case-delay constraint is met.
Due to the offline scheme, the offline-optimal-rate is at least

R1 and R2 for message size sequences 1 and 2 respectively.
Next, we show mutually exclusive conditions for sum of the
sizes of X[0], . . . , X[e−1] to have rates at least R1 and R2 on
message size sequences 1 and 2 respectively. All online coding
schemes, thus, fail the condition for at least one message size
sequence, since they are identical until time slot e.

Consider any coding scheme for message size sequence
1. At least de symbols are sent over X[b], . . . , X[t] since
X[0], . . . , X[b− 1] could be lost. At most d e

a+1 symbols can
be sent over X[0], . . . , X[b− 1] if the rate is at least R1.

Consider an arbitrary coding scheme for message size
sequence 2. At least dτ symbols are sent in X[0], . . . , X[τ−1]
to meet the lossless-delay constraint. Let X(+) ∈ {(X[e +
ib], . . . , X[e + (i + 1)b − 1]) | 0 ≤ i ≤ a}. At least dτ
symbols are sent outside of X(+) in case X(+) is lost. Each
|X(+)| ≤ db and at least (dτ − d(a+ 1)b = de) symbols are
sent in X[0], . . . , X[e− 1] if the rate is at least R2.

Thus, for any online scheme with rate at least R1 on
message size sequence 1, at most d e

a+1 symbols are sent
in X[0], . . . , X[b − 1]. Such a scheme necessarily has rate
less than R2 on message size sequence 2 since fewer than de
symbols are sent in X[0], . . . , X[e− 1].

Lemma 3: For parameters (τ, b, τL = τ−b) where (τL < b),
the online-optimal-rate is strictly less than offline-optimal-rate.

Lemma 4: For parameters (τ, b, τL) where (τL < τ−b), the
online-optimal-rate is strictly less than offline-optimal-rate.
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