2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

TRADER: Trace Divergence Analysis and Embedding Regulation
for Debugging Recurrent Neural Networks

Guanhong Tao Shiging Ma Yingqi Liu
taog@purdue.edu shiqing. ma@rutgers.edu liu1751@purdue.edu
Purdue University Rutgers University Purdue University
Qiuling Xu Xiangyu Zhang
xul230@purdue.edu xyzhang@cs.purdue.edu

Purdue University

ABSTRACT

Recurrent Neural Networks (RNN) can deal with (textual) input
with various length and hence have a lot of applications in software
systems and software engineering applications. RNNs depend on
word embeddings that are usually pre-trained by third parties to
encode textual inputs to numerical values. It is well known that
problematic word embeddings can lead to low model accuracy.
In this paper, we propose a new technique to automatically diag-
nose how problematic embeddings impact model performance, by
comparing model execution traces from correctly and incorrectly
executed samples. We then leverage the diagnosis results as guid-
ance to harden/repair the embeddings. Our experiments show that
TRADER can consistently and effectively improve accuracy for real
world models and datasets by 5.37% on average, which represents
substantial improvement in the literature of RNN models.

ACM Reference Format:

Guanhong Tao, Shiging Ma, Yingqi Liu, Qiuling Xu, and Xiangyu Zhang.
2020. TRADER: Trace Divergence Analysis and Embedding Regulation for
Debugging Recurrent Neural Networks. In 42nd International Conference on
Software Engineering (ICSE °20), May 23-29, 2020, Seoul, Republic of Korea.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3377811.3380423

1 INTRODUCTION

Deep learning (DL) models are becoming an integral part of many
modern computing systems. For example, a self-driving car system
often makes use of DL models to recognize objects and even maneu-
ver vehicles; online advertisement leverages DL models to identify
potential customers and deliver the corresponding ads; latest mo-
bile/wearable devices use various DL techniques to authenticate
users, detect and monitor user behaviors. Engineering DL models is
becoming a critical step of engineering such intelligent computing
systems. Among the various kinds of DL models, Recurrent Neural
Networks (RNNs) are particularly useful in software related applica-
tions as they are designed to deal with textual inputs (of arbitrary
length) and inputs in sequence. Note that many software artifacts

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7121-6/20/05...$15.00
https://doi.org/10.1145/3377811.3380423

986

Purdue University

are in the form of text or sequences. For example, a program can
be considered as a piece of text in some special language; program
comments are essentially texts in natural language with specific
semantics; and execution traces are a sequence of values of arbi-
trary length. As such, RNN models find their way to many software
engineering applications.

Wang et al. [88] leveraged RNNSs to construct semantic program
embeddings, which are a way to encode textual programs to nu-
merical values. The embeddings were further employed in a search-
based program repair system to correct errors in programs [88].
Henkel et al. [29] used a DL model called GloVe [65] to construct
word embeddings for abstract symbolic traces of programs. The
learned embeddings were used to find bugs, which were further con-
firmed by traditional static analysis. Panichella et al. [61] employed
a model [72] to assess the polarity of app reviews, which can pro-
vide developers with informative feedback to improve application
quality and facilitate software maintenance. Du et al. [21] modeled
RNN as an abstract state transition system for test generation and
adversarial sample detection. Tian et al. [83] proposed a testing tool
for automatically detecting erroneous behaviors of DNN-driven
vehicles with CNN or RNN as the internal model. RNN models
[36, 49, 72] are also widely used in processing textual software
artifacts, such as code comments [33, 60, 81], developer commits
[75], and app reviews [27, 61].

DL model reliability is hence a critical part of the overall relia-
bility of many software systems. Just like software, DL models may
have undesirable behaviors, such as exceptionally low test accuracy.
They are called model bugs in the literature [52]. Such model bugs
may lead to undesirable system-wide behaviors. For example, Sen-
tiStrength [82] is a state-of-the-art tool that can predict sentiment
of developer comments. Such sentiment information is further used
to extract problematic API features [102]. However, a recent study
[49] showed that its underlying model achieved recall and precision
lower than 40% on negative sentences. Since negative sentences
are critical indicators for problematic APIs, the low model accuracy
will cause many problems for the downstream analyses.

Different from normal programs, DL models are difficult to de-
bug due to their “black box” (unexplainable) nature [3, 6, 68]. Most
existing works focused on providing more data to improve model
performance [16, 25]. Generative adversarial networks (GANSs) [25]
are also widely used to generate additional data for further training
[41]. However, these methods can hardly be considered as debug-
ging techniques as they lack the diagnosis step that identifies the
root cause. MODE [52] is a recent model debugging technique for

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

convolutional neural networks (CNNs) that often deal with fixed size
inputs such as images. It leverages differential analysis to identify
faulty neurons and selects additional training inputs to “correct”
such neurons’ behavior. However, MODE cannot handle RNNs.

In this paper, we focus on debugging RNN models for textual
inputs (e.g., sentiment analysis for developer comments), especially
for a type of bugs in which problematic word embeddings lead to
suboptimal model accuracy. Many studies [5, 73, 86, 96] have shown
that word embeddgings are critical for RNN model accuracy. For
those textual tasks, input words/tokens are always converted to em-
beddings first before training/testing. Although embeddings seem
external to the model, the model itself cannot be studied/debugged
separately without considering embeddings. Inspired by software
debugging [10, 18, 23], we view an RNN model as a program with
very specific semantics. Therefore, the traditional trace analysis in
software debugging can be adopted to debug RNN models, as long
as the specific semantics are properly modeled. In particular, given
a buggy model, our technique performs trace divergence analysis
that identifies the problematic internal model state vector dimen-
sions responsible for the misclassification, called the faulty state
dimensions. Intuitively, the state vectors are a number of buffers
that are updated after the model processes each word or input ele-
ment. A dimension is essentially a buffer element at a specific index,
which semantically encodes some feature of the current input word
and its preceding context. Hence, the faulty dimensions represent
the features (of words and their contexts) that the model has con-
fusing/buggy behavior. Then an embedding regulation algorithm is
proposed to mitigate the problem by hardening the model behaviors
for those dimensions. Intuitively, it applies small mutations to those
dimensions and then forces the model to learn to disambiguate the
perturbations. The more the model can disambiguate, the better
accuracy it can achieve (as it is less confused on those dimensions).

Our contributions are summarized in the following.

o We identify buggy behaviors of RNN models through a trace
divergence analysis, and locate faulty state dimensions re-
sponsible for misclassification.

e We propose an RNN repair technique, a new training pro-
cedure that freezes model parameters and regulates word
embeddings according to observed trace divergences.

e We develop a prototype TRADER (TRAce Divergence anal-
ysis and Embedding Regulation). Experimental evaluations
are conducted on five public datasets, three word embed-
dings, and three model structures, with a total of 135 models.
TRADER can consistently and effectively improve the per-
formance by 5.37% on average, substantially outperforming
a state-of-the-art embedding regulation technique based on
four regularization strategies [63], which improves model
accuracy by 0.6% on average. Note that due to the need of
dealing with inputs of arbitrary length, it is challenging to
improve RNN accuracy in general. Most reported improve-
ment in the literature (not using debugging techniques, but
rather new model architecture or new optimizers) range from
0.05%-3.76% with a median of 0.7% [17, 38, 39, 51, 64, 94].

e Our implementation, datasets, configurations, and model
checkpoints are publicly available at [84].

987

Guanhong Tao, Shiqing Ma, Yingqi Liu, Qiuling Xu, and Xiangyu Zhang

(a) Unrolled RNN structure

(b) LSTM cell

Figure 1: Architecture of recurrent neural networks. (a) An
unrolled representation of RNN architecture. (b) The internal struc-
ture of Long Short Term Memory networks.

2 BACKGROUND

2.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a family of neural networks
designed to tackle problems with sequential inputs. Different from
traditional neural networks that require fixed-length inputs, RNNs
can handle sequential inputs of arbitrary length. That is, input is
received continuously through many steps, via a loop structure as
shown in Figure 1a. The sequential inputs are fed into the RNN
model one by one. At each time step, the model leverages the previ-
ous hidden value and the current input so as to update the hidden
value. For specific tasks, the prediction outputs are obtained by
adding an output layer using the hidden value, such as in machine
translation [4, 79], speech recognition [30], and image caption gen-
eration [95]. More specifically, x; (blue circle) is the input at step ¢
and h; (green circle) is the hidden value. Intuitively, h; encodes the
history/context in the previous t — 1 steps. At each time step, an
input x; and the previous hidden value h;_; are fed into the RNN
cell (yellow rectangle), and the hidden value for the next step h;
is computed. A vanilla RNN cell contains a regular feed-forward
neural network with layers of neurons. We can obtain the hidden
value h; at step t using the following formula.

ht = o(Wy, - [he—1,x¢] + by), (1

where o is the activation function. Wy, denotes the weight matrix
and by, the bias. The operation [,] concatenates two vectors. For a
specific task (e.g., sentiment analysis), the final prediction is com-
puted using the last hidden value hy:

prediction =W - hp + b, (2)

where W and b are the weight matrix and bias of the output layer,
respectively; and n denotes the length of an input sequence which
can be arbitrarily large. The output prediction is normally a vector
of logits, and the final predicted class can be obtained by applying
function arg max() on the output prediction vector.

Vanilla RNNs are not able to “remember” temporal context of
long sequences [8, 31]. In order to deal with long-term dependencies,
a new type of RNN model, called Long Short Term Memory (LSTM)
networks, was proposed by Hochreiter et al. [32]. LSTMs inherit
the same loop structure to deal with arbitrary input length. For
the cell structure, instead of using regular feed-forward neural
networks, LSTMs are designed with multiple gates to control how
much information from the previous and current contexts is being
passed on to later computation. Figure 1b illustrates the internal

TRADER: Trace Divergence Analysis and Embedding Regulation
for Debugging Recurrent Neural Networks

structure of an LSTM cell. The leftmost two inputs are hidden
values from the previous step, where the top c;—1 is called cell state
and the bottom h;_1 is called hidden state. Cell state encodes the
contextual information through the entire sequence (a kind of long
term memory). Hidden state is similar to the hidden state in a vanilla
RNN, representing recent historic information. An LSTM cell can
be formalized as follows.

ft = oWy - [he—1,x¢] + by) ®3)
ir = o(Wi - [he—1,x¢] + by) 4)
or = a(Wo - [Ar—1,x¢] + bo) ®)
¢ = tanh(We - [hy—1, x¢] + be) (6)
cr=ftOci1+ir O6 ()
ht = oy © tanh(cy), ®)

where operators - and © denote matrix multiplication and element-
wise vector multiplication, respectively; o() and tanh() denote sig-
moid and tanh activation functions that crop/normalize activation
values; f; denotes the forget gate that controls how much infor-
mation from previous steps needs to be forgotten/remembered; i,
acts as the input gate that determines how information needs to
be added to cell state; o; is the output gate that decides the degree
of output information being accumulated to hidden state; cell state
c; is updated according to the preceding cell state c;—1 and the
current context ¢;; and finally the hidden state h; is updated based
on current cell state ¢; and output o;.

2.2 Word Embeddings

In Natural Language Processing (NLP) tasks, the inputs are nor-
mally texts containing various numbers of words. Existing machine
learning (ML) models (e.g., RNNs) require numerical inputs so as
to do mathematical computation. To integrate NLP tasks into ML
models, word embeddings are adopted to address this issue. That is,
each word is represented as a numerical vector. For instance, in the
sentence “I like movies”, word “T” is represented as [1, 0, 0], word
“like” as [0, 1,0], and word “movies” as [0, 0, 1]. This type of word
embeddings is called one-hot embeddings, where the length of each
embedding is the size of the dictionary and only one dimension has
value 1. It is straightforward to encode words into one-hot embed-
dings. Such word embeddings, however, are too sparse for storage
and computation. A more concise way of representing words is
to leverage all the dimensions of word embeddings with continu-
ous values, which is called distributed representations. For instance,
word “T” will be represented as [0.9, 0.3], word “like” as [0.2, 0.4],
and word “movies” as [0.5, 0.6]. Researchers have been exploring
different approaches to achieve such a dense form of word em-
beddings. A typical approach is to train a neural network model
with a large corpus (e.g., Wikipedia pages). The task of the neural
network is to predict the center word given a sequence of (usually
5) words in a sentence. The learned weight of the neural network is
regarded as word embeddings [55]. Such learned word embeddings
have a nice property that words with similar meanings have small
embedding distances (e.g., Euclidean distance between two word
embeddings). This allows the model to generalize. Intuitively, even
though a model may not have seen some words/sentences during

988

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

error great reinstall
errors errors good good reinstalling reinstalling
mistake well well uninstall install
mistake difference much refresh / uninstall
difference much experience install refresh

Figure 2: Nearest neighbors of words according to their em-
beddings. The top row denotes the target words, and the following
rows are their nearest words measured by cosine similarity. Column
Original denotes words using GloVe word embeddings and column
Regulated denotes word embeddings after regulation.

training, it can still perform prediction based on their embedding
neighbors that appear during training.

Distributed representations of word embeddings are widely used
in NLP tasks [76, 87, 93] as well as software engineering (SE) tasks
[1, 28, 34, 91, 92]. According to many studies [5, 73, 86, 96], word
embeddings are the dominating factor in model accuracy in RNN
applications. For example in sentiment analysis, according to Schn-
abel et al. [73], the same ML model using different word embeddings
as features can have divergent prediction accuracy ranging from
62.95% to 88.90%, indicating its importance. Figure 2 demonstrates
examples of words represented using the GloVe word embeddings
[65]. The top row denotes the target words and the following rows
are the nearest neighbors of target words measured by cosine simi-
larity. Column Original lists the nearest words based on the original
GloVe word embeddings, while column Regulated are based on our
regulated word embeddings. It can be observed that for target word
“error”, word “correct” is the second nearest word using GloVe
while it is moved down the list after embedding regulation. Word
“little” is the third nearest word for “great” using GloVe and
it is not in the top list after regulation. It is similar for the case
“reinstall”. One can easily tell that models generalize better with
the regulated embeddings.

2.3 Model Debugging

Just like software inevitably contains bugs and software debug-
ging is a key step in software development, DL models may have
undesirable behaviors, called model bugs [52]. Model debugging
is becoming an essential step in intelligent software engineering.
Model bugs are different from traditional coding bugs. They are mis-
conducts in the model engineering process, such as biased training
data [52] and problematic model structure, which lead to undesir-
able consequences such as low model accuracy and vulnerabilities
to adversarial sample attacks [26, 80], in which normal inputs are
mutated (e.g., by perturbations not human perceptible) to induce
mis-classification. In our context, model debugging is a procedure to
study model internals to understand the root cause of mis-classification
and then conduct counter-measure to “fix" the root cause.

Model debugging is difficult as DL models are not interpretable [6,
68]. There are techniques that use data augmentation (e.g., image
reflection, cropping, and rotations for CNN models) to provide ad-
ditional data to improve model performance [16, 25, 43]. Another
method is to use GANs [25] to generate additional training data
[89, 103]. However, these methods are not feedback driven, meaning
that they do not intend to understand what causes the low accuracy
before trying to fix the problem, which limits their effectiveness.

ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

def count(data):
output =
for i in range(len(data)):
embed =
if embed >=
output +=
return output

and embed <

def main():
data = [' ' ' 1

print (data)

P O®UOVUOONOUTAWNE

B

(data[i]) # map to integer

Guanhong Tao, Shiging Ma, Yinggqi Liu, Qiuling Xu, and Xiangyu Zhang

1 def RNN(text):

2 outputs = []

3 hidden = (size)

4 for i in range(len(text)):

5 # map to word embedding

6 embed = (text[i])

7 input = (hidden, embed)
8 hidden = (input, W_h) + b_h

9 output = (hidden, W_out) + b_out
10 outputs. (output)

11 return outputs[len(text) - 1]

Figure 3: Comparison between code snippets of a simple counting program and an RNN model. The left code snippet shows a

simple program for counting the number of data points within range [1, 2). The right code snippet gives a simplified RNN model for predicting

the label of an input sentence.

MODE [52] is a recent feed-back driven technique for CNNs. It an-
alyzes model internals to identify “faulty” neurons and then selects
additional training inputs to “correct” such neuron behaviors.

These existing approaches, including MODE, are mostly de-
signed to improve image-related models (e.g., handwritten digit
recognition and object classification). For text-related models (e.g.,
sentiment analysis), they are hardly applicable. For example, using
GANS to generate text inputs often suffers from low quality and
lack of diversity [89]. According to Wang et al. [89], most generated
texts have fewer than 15 words, whereas sentences in real-world
training datasets have more than a few hundreds words.

In this paper, we focus on debugging text input oriented RNN
models that have a lot of software engineering applications [9, 29,
35, 36, 47, 49, 88, 90]. While there are many possible kinds of bugs
for these models, such as biased training inputs [52], sub-optimal
model structures, and incorrect hyper parameter settings. We focus
on problematic word embeddings as the literature has indicated that
embeddings are critical for RNN model accuracy [5, 73, 86, 96].

In our view, an RNN model is essentially a program with special
semantics. Therefore, our overarching idea is to adapt existing soft-
ware debugging techniques (e.g., [10, 18, 23]), especially execution
trace analysis, to debug RNN models, by properly modeling RNN
models’ special semantics. Next, we will use a program example
and an RNN example side-by-side to intuitively illustrate our idea.

The left part of Figure 3 shows a simple program for counting
the number of data points within range [1, 2). The functionality
of method embedding() at line 4 is to convert string values to nu-
merical values and then map them to discrete values. The mapping
can be implemented as a rounding operation, where values are
converted to their closest discrete numbers. For instance, value 1.1
becomes 1 while 1.8 becomes 2. When the developer executes this
piece of code, value 2 is printed as the output, which is incorrect.
To locate the bug, the developer prints out the value of variable
output at each iteration of the loop, and obtains the value trace
of [1, 1,2, 2]. For this simple program, the developer has the oracle
that the value trace of variable output should be [1,1, 2, 3]. By
comparing the actual trace to the oracle, the developer can easily
locate the trace diverged at the fourth iteration and finally identify
the buggy implementation of method embedding().

Interestingly, RNNs have a very similar loop structure as shown
on the right of Figure 3. Method embedding() at line 6 maps each
word to its corresponding embedding. Method concatenate() at

989

= Oracle trace Buggy trace
1 Positive
0
A
2 ~
-4
Also JodaTime makes calculations with time much simpler

Figure 4: The trace of a sample text from Stack overflow
dataset [49] predicted by a real-world LSTM model [19]. The
blue line denotes the oracle trace with correct prediction of positive
sentiment. The green line denotes the buggy trace produced by the
LSTM model with incorrect prediction of neutral sentiment.

line 7 concatenates two vectors and matmul () is the matrix mul-
tiplication method. Analogous to the simple program on the left,
we can use the same trace divergence analysis to inspect the state
at each iteration if undesired behaviors happen. Figure 4 demon-
strates a sample text from the Stack overflow dataset [49]: “Also,
JodaTime! makes calculations with time much simpler”.
It is labeled as having positive sentiment. An LSTM model [19],
however, predicts a neutral sentiment. We record the state values
at each iteration (i.e., after each word) and also query the oracle
for the same step. The green line in Figure 4 shows the trace of
the LSTM model, while the blue line is the trace acquired from the
oracle. As we will discuss in Section 3.1, having an oracle model
that always produces the correct intermediate model states is in-
feasible, just like having a correct reference program for regular
program debugging is infeasible in general. In the literature, various
techniques were proposed to approximate the reference (e.g., using
a similar but correct execution as in Delta Debugging [56, 78, 97]).
Similarly, in our context of RNN model debugging, we train a model
from validation data set to approximate the reference model (see
Section 3.1). From Figure 4, it can be observed that at the step with
word “much”, the two traces start to diverge, which finally leads to
different output labels.

We hence further inspect the state differences at the divergence
step. Figure 5 presents the comparison. In the figure, the input sen-
tence @ is in the middle. The blue arrow to ® denotes the model
state after the word “much". Here, a model state is the concatena-
tion of the input, cell state, and hidden state vectors [x;, c;—1, ht—1],
followed by the output (1 denotes neutral sentiment and 2 denotes

!A data and time library for Java. https://www.joda.org/joda-time/

TRADER: Trace Divergence Analysis and Embedding Regulation
for Debugging Recurrent Neural Networks

@ Create the number of buttons that you want with differentl%utton id.
RNN

@ <[+ 0.1483 - -0.0057 -+ -0.1084 -], 1 >
<1, 1>

(&) <[+ 0.1172 +++(-0.0063]+++ -0.0977 ** ANN

@ Also, JodaTime makes calculations with time much|simpler.

@© <[-0.1017 00773 -], 2 > Qracle

(@ <[+ 0.1120 =+ 0.0107 +++ -0.0747 ++1, 2 > <5

@ Databases are much better’waa than Java.

Figure 5: Analysis of an example text (shown in @). Vectors
@-@ denote the model states (i.e., [xt, c;—1, hy—1]) at the step
of the underlined words in sentences M-Q), followed by the
prediction result at the end (gray background), 1 for neutral
and 2 for positive. @ and ®) are states generated by a buggy
RNN model. © and @ are states from the oracle. @ is a state
closest to ® produced by a buggy RNN model, whereas @ is

a state closest to © by the oracle. @ is a test sentence; @ is
from the training set and G from the validation set.

positive). As sentence @) is not in the training data set, the model
has to generalize based on what it has seen during training. Further
inspection shows that sentence (@ is in the training set, and its state
@ after word “different”is very close to ® and the corresponding
output is neutral, which explains why the model predicts neutral
sentiment. Below sentence @), we show the state after word “much"
by the oracle model, which approximates model output when given
the concatenation of the input, cell state, and hidden state vectors
[xt,cr—1, he—1] for all the correctly classified sentences in the valida-
tion set. Its construction will be discussed in Section 3.1. When we
provide the concatenated vector of sentence @) to the oracle model,
it predicts positive as shown in ©. This is because © is close to
state @ after word “better" in sentence @ from the validation set,
which has the positive sentiment.

The state vector values heavily depend on the word embeddings.
If we consider © denotes the state derived from the ideal embed-
dings, the root cause lies in that the current problematic embeddings
lead to the state divergence of ® and ©, which are highlighted by
the red and blue rectangles. There may exist multiple state diver-
gence dimensions, we only highlight one for demonstration. As
the oracle has the knowledge of @), this is the reason it produces
different prediction in contrast with the buggy RNN model. The
essence of our technique is hence to harden the word embeddings to
minimize such differences.

Note that although we use a single input sentence to intuitively
explain the idea, our technique essentially has to minimize such
differences for all misclassified sentences in the training set to
achieve the effect of improving overall accuracy.

3 DESIGN

Given an RNN model to debug, we leverage the validation dataset
to inspect the problematic behaviors. Figure 6 illustrates the over-
all design of our approach. Data in the validation set can be first
processed by the model to identify the correctly classified and mis-
classified samples. We consider that traces of the correctly classified
samples to-some-extent denote the desired behaviors of the model,
while traces of the misclassified samples represent undesired behav-
iors. A trace divergence analysis is then performed on the traces
from these two sets of samples. That is, we utilize the traces to

990

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

.
S>EP e o ||| - <)
® N .
Input Pre-trained Trace Divergence Defective Dimension Embedding Model
Texts Models Analysis Identification Regulation Retraining

Figure 6: Overview of TRADER.

construct two models, called the oracle machine and the buggy ma-
chine, which approximate the distributions of state values from the
correctly classified samples and from misclassified samples, respec-
tively. These two machines are the reference models for identifying
diverged steps (Section 3.1). We aggregate all the diverged steps
of misclassified samples in the validation dataset, and inspect the
difference of their state vectors to identify the critical dimensions,
which have large aggregated differences. We consider them the
faulty state dimensions. Intuitively, they denote the sub-space that
the model gets “confused”. In the fixing step, we target on further
training these faulty dimensions to alleviate the confusion. Specif-
ically, we add small perturbations to these dimensions and then
retrain the word embeddings using the original training set so that
the perturbations only cause minimal output variations. Intuitively,
we are tuning the embeddings so that the model becomes more
affirmative and have stable prediction even when confusion (per-
turbation) is intentionally injected in the faulty dimensions. As we
observed during experiments, identifying the faulty dimensions is
critical as perturbing all dimensions leads to accuracy degradation.

One may wonder why not simply train the model using the val-
idation set or even both the training set and validation set. Note
that the essence of our technique is not to leverage the additional
samples in the validation set to train. Instead, we utilize the val-
idation set just to locate the dimensions that do not generalize
well to new data and then further harden these dimensions. In fact,
we will show in Section 4 that training the model using both the
training set and the validation set cannot achieve the same level of
improvement as TRADER.

3.1 Trace Divergence Analysis

DL models are normally trained on a training set and then tested
on a test set, which is unseen to DL models during training. It is
essential to have another set (also unseen during training) for de-
bugging models and avoiding over-fitting on the training set, which
is referred to as the validation set. Following a similar philosophy,
our technique leverages the validation set for model debugging.
As shown in Figure 7, text samples in the validation set are fed
to the model. By comparing to the ground truth labels, we can
acquire two sets of samples: the correctly classified samples (in
the top box) and the misclassified samples (in the bottom box).
These text samples can be further processed by the same model
separately to record their traces. More specifically, given a text
sample, for each step an input word is fed into the model, we
record the input embedding x; and the previous contexts ¢;—1 and
h;—1 as the state vector p;. The output vector q; produced by the
output layer is also recorded. The state vector p; and the output
vector ¢; are regarded as a trace entry. Hence, a sequence of trace
entries can be generated for each input sample. We use the same
procedure to generate two separate trace sets, called the oracle
traces (generated from the correctly classified samples) and the

ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

But | want to connect...
I'm looking for a well...
However, I'd suggest...

Also, JodaTime makes...
But | want to connect...
I'm looking for a well...

v

| understand the boolean... —’ LSTM|
However, I'd suggest... Also, JodaTime makes...
As others have already... Q I understand the boolean...
As others have already...
Validation Pre-trained Predicted
Data Models Samples

Guanhong Tao, Shiging Ma, Yinggqi Liu, Qiuling Xu, and Xiangyu Zhang

Oracle

(Output Layer | Traces
;T - ‘/

@ 4 3 < @ ’ > —

v
b 6 - 6 06 \m
[1 =
i Buggy
— | Trace Traces
@ | Generation

Figure 7: Trace generation for samples in the validation set. Words in input sentences are mapped to their corresponding word embed-
dings x;. Internal states c; and h; are the initial internal state vectors for LSTM models. The output layer is used to predict the final output

label as discussed in Equation 2. Here, it has been extended to the whole sequence for acquiring the internal output at each step.

Oracle
Machine

Oracle
Traces

Fitting / Trace
/ approaches Divergence
Buggy Buggy
Traces < @ ’ @ > Machine

Also, JodaTime makes... <@ ,>

Figure 8: Construction of oracle machineand buggy machine,
and trace divergence analysis. Trace divergence analysis is con-
ducted on a sample text by feeding its traces to the two machines
and comparing the output values.

buggy traces (from the misclassified samples). These two set of
traces are crucial for debugging RNN models as they represent
models’ internal behaviors on unseen data.

We utilize the two sets of traces acquired from the validation set
to learn the distributions of model’s proper and buggy behaviors.
Figure 8 illustrates the procedure of trace divergence analysis. To
model the distribution of oracle/buggy traces, we employ the linear
regression approach to approximate the relation between state
vector p; and output value g, using the following equation:

qr = Wy - pt + by, 9)
where W, and b, are weight and bias of linear regression, respec-
tively. These parameters will be updated based on all the traces,
and each dimension of weight W, denotes the importance of the
corresponding state vector dimensions with respect to the output
value. The fitted models for oracle (buggy) traces are called oracle
(buggy) machine. In other words, these machines predict output g,
from given state p;. Note that they are not RNN models but rather
simple classifiers to predict one step of model behavior. The two
machines approximate the desired and undesired behaviors of the
model, respectively, in the presence of unseen data.

For a given misclassified sample from the validation set (boxed
text in the bottom), traces are extracted from the RNN model, and
fed to both the oracle machine and the buggy machine. We then
compare the outputs from the two machines to identify the diverged

991

Algorithm 1 Aggregated Divergence Analysis

1: function DIVERGENCE(dataset S)

2 d « zero vector with size of step input
3 for sample in S do

4 T « generate_trace(sample)

5: for pin 7 do

6: qo — argmax(OM.predict(p))
7 qp < argmax(BM.predict(p))
8 if not g, == q; then

9 d « add_vector(d, p)

10: Wo, Wp < get_weight(OM, BM)
11: wg < sub_vector(wy, wp)

12: d = abs(mul_vector(d, wg))

13: return d

steps. Note that such divergence cannot be directly identified by
monitoring the original model operations.

As we aim to identify the root cause of trace divergence, i.e., the
faulty dimensions, we aggregate the state vectors from the diverged
steps. Algorithm 1 details the aggregation procedure. The algorithm
loops over all the misclassified samples in the validation set. For
each sample, it first generates the corresponding traces from the
RNN model (line 4). The trace divergence analysis is conducted
on each step. The Oracle machine (OM) is provided with the state
vector p and outputs an oracle value g, (line 6). Similarly, the Buggy
machine (BM) is also provided with the same state vector p, and
outputs a buggy value gy, (line 7). These two output values g, and q;,
are compared to identify the diverged steps. Those diverged steps
are aggregated in d (line 9). The comparison is needed because
not all the steps in a buggy trace are wrong. In line 10, we acquire
the weights from both the oracle machine and the buggy machine,
which indicate the importance of state vector for oracle traces
and buggy traces. Intuitively, the difference between these two
weight vectors denotes the importance divergence of the individual
dimensions of state vector (line 11). At the end, we multiple d with
wy to compute the weighted differences for individual dimensions
(line 12). The faulty dimensions are the ones with exceptionally
large values. Figure 10 shows an example of vector d for an LSTM
model (the red bars). Observe that there are a number of dimensions
that have much larger values than the others. They denote the
split/confusing behaviors of the subject model in the presence of

TRADER: Trace Divergence Analysis and Embedding Regulation
for Debugging Recurrent Neural Networks

@_bLSTM_’
LT l9-0 9-¢-

@ Divergence
T loss

Figure 9: Structure of embedding regulation. The left LSTM
has the original model structure. The right LSTM is extended with

LSTM @+®
©+0

4
(T

perturbations for input embeddings x; as well as internal states c;_;
and h;_1; g and g5 are the final outputs from the original model and
the perturbed model, respectively.

unseen data. While these dimensions are not human interpretable,
they provide sufficient guidance for embedding tuning as shown in
the next section.

3.2 Embedding Regulation

After identifying the faulty state vector dimensions, which intu-
itively are the places the model is very unstable and has diverging
behaviors for correctly and incorrectly classified samples, we next
aim to mitigate the problem by regulating word embeddings. The
essence of state divergence lies in that the model is so sensitive for
these dimensions that small changes can lead to substantial output
changes. A key feature of RNN type of models is that the encoded
values of state vectors are largely determined by word embeddings.
That is, words close to each other in the embedding space tend to
lead to state vector values close to each other. Our fixing strategy
is hence to change word embeddings so that the model becomes
less sensitive along the faulty dimensions, by enlarging the embed-
ding distances of the words that could lead to substantial output
variations. This is done by applying perturbations to the faulty
dimensions and then searching for minimal output variations by
tuning word embeddings. Since RNN type of models have a loopy
structure, the perturbations are applied to each iteration.

Figure 9 demonstrates the detailed procedure of our embedding
regulation. The left LSTM model is the original model, which takes
an input embedding x; at each time and outputs the final result
q. The right LSTM model is the perturbed LSTM model, where a
perturbation vector € is added to the input embedding x; and a
perturbation vector A is added to both cell state c¢;—; and hidden
state h;— at each step. The output g5 from the perturbed model is
compared to the output ¢ from the original model. The difference
between the two outputs is then propagated to the input word
embeddings. We propose a divergence loss to propagate error infor-
mation from the output differences to the input embeddings. The
divergence loss is formalized as follows.

Laiv = Lee + L, (10)

where L is cross entropy loss [24] and L;, is L2 (squared error)
loss. The loss functions are used to express our objective to minimize
output variations in the presence of perturbations. Cross entropy
loss is widely used in classification tasks. The following formula
defines its essence.

N C
-Lcez_ ZZ OCI(P 9
=1

where N is the number of training samples, and C is the number
of classes. For each sample n, if the final output o is different from

(11)

992

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

Algorithm 2 Embedding Regulation

1: function REGuLATION(model M, dataset S, embedding &, divergence
D)

2: u « zero vector with dimension size of embedding

3: v « zero vector with dimension size of hidden neurons
4: for d in D do

5: if d > 0 then

6: idx « D.index(d)

7: if idx belongs to & then

8: ulidx] « random_normal(0, €)

9: else

10: v[idx] « random_normal(0, 1)

11: & « get_variable(&)

12: & « add_vector(&, u)

13: ct, hy « initialized with dimension size of hidden neurons
14: for i in range(max_step) do

15: ¢; < add_vector(ct, v)

16: hy « add_vector(h;, v)

17: ¢ty hy & LSTM(cy, hy)

18: S « embedding(S, &)

19: M.freeze()

20: LSTM.train(M, S, Lgiv)

21: return &

ground truth label ¢, then yyy € is 1; otherwise 0. py € is the predicted
probability of output o at class c. Intuitively, cross entropy loss
gauges the scale of output differences. Note that in our method,
perturbations are added to faulty dimensions for all the steps. Such
perturbations may accumulate over time and have inappropriate
impact on the final output. We hence employ L2 (squared error) loss
to reduce the influence from perturbations. It is commonly used for
regression tasks [46, 59]. In our scenario, it is formalized as follows.

L=+ ZZ(pn pn ’

nlcl

(12)

where N is the number of training samples, and C is the number of
classes. p, is the original prediction, and p¢ is the regulated predic-
tion. Intuitively, it minimizes the difference between the original
prediction and the perturbed prediction.

DL models are usually trained by minimizing the loss function,
during which model parameters are updated through backpropaga-
tion [45]. Different from general DL training, we introduce a new
training procedure, where model parameters are frozen and only
input embeddings are updated during training, as our purpose is to
regulate input embeddings according to the divergence loss. That is,
the gradients calculated from our divergence loss is backpropagated
to only the embedding variables, which are updated during training.
Algorithm 2 illustrates the procedure of embedding regulation. In
Section 3.1, aggregated divergence analysis is conducted on all the
misclassified samples in the validation set. A vector of dimension di-
vergence is generated for identifying faulty state vector dimensions.
Here, we utilize this divergence vector to only apply perturbations
to the faulty dimensions, which are essentially the most influential
dimensions. More specifically, we traverse over all the dimensions
and find the ones that are faulty (line 4-5). For dimensions denot-
ing input x;, a random value sampled from a normal distribution
N(0, €) (i.e., mean of 0, variance of €) is added to those dimensions
(line 7-8). The variance value € is chosen based on the standard

ICSE °20, May 23-29, 2020, Seoul, Republic of Korea
50

® Original ® Regulated

40

30

20

25 50 75 100 125 150 175
| | | |

Embedding (50) Cell state (64) Hidden state (64)

Figure 10: An example of vector d for an LSTM model.

deviation of original word embeddings as it should not overshadow
the original values. For dimensions denoting the hidden states, a
random value sampled from a normal distribution with mean of
0 and variance of 1 is added to those dimensions. Different from
€ that is only added to the input vector, the variance value A is
added to internal states at each step. A large value of A will ac-
cumulate over time and can significantly affect normal behaviors
of models. Thus, A is much smaller than €. Lines 11-12 apply the
input perturbations. RNN kind of models have a loopy structure
where internal states are computed through multiple steps. Thus,
for internal hidden states, perturbations are added for every step
(line 14-17). Training inputs of text tasks are sequences of words,
which are mapped to the corresponding word embeddings before
training (line 18). Model parameters are frozen during training as
we aim to regulate embeddings (line 19). Finally, we leverage the
divergence loss to tune word embeddings (line 20). The blue bars in
Figure 10 presents the trace divergence analysis results for the same
model after embedding regulation. Observe that the significance of
the faulty dimensions are substantially reduced.

After we acquire the new embeddings, we freeze the embeddings
and retrain the model (by updating model parameters). This is a typ-
ical procedure for training RNN type of models when embeddings
are changed.

4 EVALUATION

We evaluate TRADER on various datasets, word embeddings, and
RNN model structures. Most experiments were conducted on a
server equipped with two Xeon E5-2667 3.20GHz 8-core processors,
128 GB of RAM, 2 Tesla K40c GPU, 2 GeForce GTX TITAN X GPU
and 4 TITAN Xp GPU cards.

4.1 Setup

We use five datasets, three well-known word embeddings, and three
widely used RNN model structures (each having three different
settings), with a total of 135 models. The scale of our experiments
is much larger than similar works on RNN models [17, 38, 39, 51,
63, 94], which use 2-13 models.

Datasets. Five datasets are employed in the evaluation. Three of
them, stack overflow discussions, mobile app reviews, JIRA issue
comments, are from the software engineering (SE) community pro-
vided by Lin et al. [49]. IMDB dataset [53] is a large dataset for
movie reviews. Another dataset, Yelp reviews [100], is one of the

993

Guanhong Tao, Shiging Ma, Yinggqi Liu, Qiuling Xu, and Xiangyu Zhang

Table 1: Statistics of datasets.

Dataset #samples # negative # neutral # positive Max length

App reviews 341 130 25 186 231
IMDB 50,000 25,000 0 25,000 2,506
JIRA issues 926 636 0 290 49
Stack overflow 1,500 131 1,191 178 52
Yelp 5,946,620 1,544,553 0 4,402,067 3,929
Table 2: Word embeddings.
Embedding # dimensions Mean Standard deviation
GloVe 50 0.020941 0.644104
Word2vec 300 -0.004118 0.107278
Adversarial 256 -0.053817 0.767211

largest datasets for sentiment analysis. Table 1 shows the statistics
of these five datasets. The app reviews dataset has 341 samples with
3 sentiment classes. The longest sentence in this dataset has 231
words. The IMDB dataset has 50,000 samples with two sentiment
classes. The max length of sentences in IMDB is 2,506. The JIRA
issues dataset has 926 samples with two sentiment classes. The
longest sentence in this dataset has 49 words. The stack overflow
dataset has 1,500 samples with three sentiment classes. Most of
the samples are from the neutral class. The Yelp reviews dataset
is obtained from the Yelp Dataset Challenge in 2015 containing
around 6 million samples. The max length of sentences in Yelp is
3,929. For the three SE datasets and the Yelp dataset, we partition
them into three disjoint sets: training set (80%), validation set (10%),
testing set (10%), which is consistent with the setting in [17, 58, 94].
The original IMDB dataset has already been split into two sets with
25,000 samples for training and 25,000 samples for testing. We fol-
low the convention by preserving the test set, and further partition
the training set to two parts: 22,500 samples in training and 2,500 in
validation. Thus, the IMDB dataset is split into three parts: training
(45%), validation (5%), and testing (50%).

Word Embeddings. Three kinds of word embeddings are stud-
ied in our experiments. The GloVe word embedding was proposed
by Jeffrey et al. [65]. It leverages statistical information in a large
corpus and only trains on the nonzero elements in a word-word co-
occurrence matrix. We employ a pre-trained GloVe embedding from
a real-word application [19]. The Word2vec embedding was intro-
duced by Mikolov et al. [54]. It is one of the most widely employed
embeddings with many applications [48, 74, 98]. We also obtain a
pre-trained word2vec from an existing project [15]. The Adversarial
word embedding was especially optimized for text classification
[58]. We utilize the original implementation from the authors [57]
to train the embedding. Table 2 illustrates the statistics of these
three embeddings. GloVe has 50 dimensions for each word, and
has the largest mean value compared to the other two embeddings.
Word2vec has 300 dimensions, the largest number of dimensions
among all three embeddings. The standard deviation of word2vec is
smaller than other embeddings, meaning the perturbation variance
€ should be small for word2vec. The Adversarial embedding has
256 dimensions. It has the largest standard deviation, meaning a
large variance value of perturbation e should be chosen.

Models. We use three popular RNN model structures, each having
three different settings (on the number of hidden neurons, namely,
64, 128, and 256). The vanilla RNN is a basic RNN model with

TRADER: Trace Divergence Analysis and Embedding Regulation
for Debugging Recurrent Neural Networks

Table 3: Trace divergence analysis overhead.

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

Vanilla RNN

LSTM

GRU

Overhead Dataset GloVe

Word2vec Adversarial

GloVe

Word2vec Adversarial

GloVe

Word2vec

Adversarial

64 128

256 64

128 256 64 128 256

64

128

256

64 128 256 64 128 256

64

128 256

64

128

256 64

128 256

1.737
0.742
1.070
1.277
0.206

1779
0.967
1.034
1.242
0.305

App reviews
IMDB (x10)
JIRA issues
Stack overflow
Yelp (x10°)

Time (s)

1.823
0.912
1.057
1.220
0.466

0.91

1.927

1.272
1.223
0.536

1.833
1 1.279
1.164
1.109
0.638

1.958 1.679
1.174 0.939
1.409 1.142
1.266 1.107
0.842 0.491

1.798
1.096
1.275
1.243
0.613

2.085
1.097
1.161
1.442
0.775

2.950
1.523
1.499
1.366
0.278

2.841

1.276
1.313
1.553
0.404

3.029
1.550
1.339
1.616
0.707

3.151
1.994
1.430
1.486
0.553

3.108
1.822
1.276
1.634
0.717

3.216
2.024
1.383
1.609
1117

2.903
1.672
1.397
1.500
0.494

2.720
1.665
1.435
1.503
0.625

2.526
1.946
1.463
1.508
0.970

3.454
1.483
1.415
1.638
0.502

4.063
1.346
1.374
1.611
0.605

4.223
1.633
1.527
1.502
0.820

3.856
1.678
1.481
1.706
1.725

5.137
1.690
1.716
1.435
2.149

3.511 4.823
2.053 1.694
1.331 1.505
1.594 1.664
1.836 1.182

6.064 3.706
1.651 1.906
1.483 1.525
1.555 1.767
1.097 1.315

0.399
1.943

0.616
3.015
0.327 0.507
0.742 1.147
0.483 0.766

App reviews

IMDB (x10%)
Space (M) JIRA issues

Stack overflow

1.052
5.160
0.866
1.958
1.290

1.249
6.131
1.029
2.326
1.560

1.467
7.203
1.209
2.731
1.822

1.903
9.348
1.569
3.542
2.382

1.100
5.394
0.906
2.047
1.407

1.317
6.466
1.086
2.453
1.660

1.753
8.610
1.446
3.264
2.191

0.616
1.943
0.507
1.147
6.933

3.015

1.052

0.866
1.958
1.124

Yelp (x10%)

1.923
5.160
1.586
3.580
2.000

1.467
6.131
1.209
2.731
1.515

1.903
7.203
1.569
3.542
1.931

2.774
9.348
2.289
5.165
2.787

1.317
5.394
1.086
2.453
1.339

1.753
6.466
1.446
3.264
1.756

2.624
8.610
2.165
4.886
2.592

0.399
1.943
0.327
0.742
4.561

0.616
3.015
0.507 0.866
1.147 1.958
6.879 1.154

1.052
5.160

1.249
6.131
1.029
2.326
1319

1.467
7.203
1.209
2.731
1.521

1.903 1.100
9.348 5.394
1.569 0.906
3.542 2.047
1.955 1.118

1317 1.753
6.466 8.610
1.086 1.446
2.453 3.264
1319 1.730

Table 4: Fitting scores of oracle traces and buggy traces generated for each model.

Vanilla RNN

LSTM GRU

Dataset Trace GloVe Word2vec Adversarial GloVe

Word2vec Adversarial GloVe Word2vec Adversarial

64 128 256 64 128 256 64 128 256 64 128

256

64

128 256 64 128 256 64 128 256 64 128 256 64 128 256

0.974
0.995

0.971
0.970

0.679
0.466

0.971
0.991

0.955
0.988

0.967
0.993

0.980
0.978

0.983
1.000

0.989
1.000

0.992
0.994

0.981
1.000

Oracle

App Reviews
P Buggy

0.999
1.000

0.997
1.000

0.984
1.000

0.989
1.000

0.989
1.000

0.990
1.000

0.994
1.000

0.983
0.998

0.975 0.987
1.000 1.000

0.993
1.000

0.998
1.000

0.986
0.996

0.993
1.000

1.000
1.000

0.978
1.000

0.933
0.932

0.965
0.968

0.966
0.983

0.986
0.985

0.985
0.986

0.985
0.986

0.884
0.868

0.858
0.851

0.830
0.816

0.975
0.949

0.984
0.967

Oracle

IMDB
Buggy

0.964
0.932

0.990
0.985

0.993
0.982

0.992
0.980

0.996
0.991

0.995
0.988

0.996
0.990

0.992
0.981

0.991 0.985
0.979 0.965

0.989
0.980

0.985
0.977

0.912
0.852

0.917
0.853

0.963
0.932

0.992
0.978

0.943
1.000

0.949
1.000

0.828
1.000

0.977
1.000

0.987
1.000

0.993
1.000

0.973
1.000

0.974
1.000

0.989
1.000

0.986
1.000

0.984
1.000

Oracle

IRA issues
! Buggy

0.994
1.000

0.999
1.000

0.941
1.000

0.950
1.000

0.993
1.000

0.996
1.000

0.998
1.000

0.974
1.000

0.986 0.995
1.000 1.000

0.999
1.000

0.999
1.000

0.987
1.000

0.991
1.000

0.999
1.000

0.960
1.000

0.862
0.875

0.858
0.882

0.899
0.970

0.868
0.944

0.865
0.944

0.973
0.988

0.904
0.944

0.817
0.934

0.916
1.000

0.994
0.997

0.902
0.950

Stack overflow Oracle
Buggy

0.891
0.893

0.994
0.999

0.948
0.969

0.944
0.977

0.967
0.991

0.987
0.993

0.881
0.987

0.880
0.966

0.908 0.953
0.990 0.999

0.954
0.998

0.975
0.997

0.950
0.993

0.917
0.998

0.933
0.997

0.948
0.967

0.946
0.947

0.958
0.962

0.970
0.978

0.986
0.987

0.990
0.989

0.919
0.950

0.925
0.930

0.915
0.913

0.915
0.918

0.987
0.967

0.988
0.970

Oracle

Yelp Buggy

0.988
0.969

0.991
0.978

0.990
0.976

0.989
0.975

0.993
0.983

0.993
0.981

0.994
0.984

0.990
0.974

0.990 0.990
0.971 0.971

0.992
0.979

0.991
0.981

0.979
0.948

0.969
0.925

0.971
0.928

0.990
0.978

one hidden state (see Section 2.1). LSTM has a complicated model
structure with three different types of control gates as discussed
in Section 2.1. GRU is a more advanced RNN model introduced by
Cho et al. [14]. It has been shown to be one of the state-of-the-arts.
A batch size of 24 samples is used for each training iteration, except
for Yelp (which has the size of 512, its default setting). We use the
Adam optimizer [40] with the learning rate of 0.001. Note that we
train these models by ourselves, which is consistent with existing
works on RNN [19, 77]. The accuracy of the trained models align
well with the literature [49].

Hyper-parameters. Three hyper-parameters (i.e., 6, €, 1) are used
for embedding regulation. Parameter 0 is used for selecting faulty
dimensions. The value of 6 can vary from the minimum value to
the maximum of the divergence vector. Parameter € and A are used
to perturb embedding vectors and internal states, with € ranging
from (0, 1) and A = 107 The values of # and € are chosen using the
validation set. Specifically, we uniformly sample ten values from
their range and select the one that produces the best result on the
validation set. In most cases, 0 is close to the mean and € is in (0.1,
0.3) depending on the model. Concrete settings can be found in [84].
Note that such parameter tuning is typical in deep learning.
Baseline. We compare our technique with a state-of-the-art RNN
hardening technique [63] that does not use debugging feedback, but
rather standard model hardening strategies, including penalizing
weights/embeddings which adds lz-norm of weights/embeddings
to the cost function (e.g., Lnew = Lo1q + [IW||2 where W is the
model weights), re-embedding words which minimizes difference
between pre-trained embeddings and the embeddings fine-tuned

994

during supervised training, and dropout which sets each neuron to
0 with a probability p during training. Since it is a general technique
likes ours (without requiring any model structure enhancement)
and reports state-of-the-art results, we use it as the baseline. Note
that we cannot use GANs as a baseline like in MODE [52] because
high quality GANs for RNN models are still an open challenge, as
pointed out in [89].

To reduce the uncertainty introduced by random perturbation.
We ran each experiment 10 times and report the average, except
Yelp, which we can only afford running it 3 times due to its ex-
tremely large size.

4.2 Evaluation of Trace Divergence Analysis

We leverage traces acquired from the validation set to learn the
distributions of model behaviors. We first collect the time and space
cost of the trace divergence analysis. We then study the effective-
ness of the linear regression approaches in approximating distribu-
tions of the oracle traces and the buggy traces.

Table 3 presents the overhead introduced by the trace divergence
analysis. From the table, it can be observed that for SE datasets,
the analysis time is less than 7 seconds and the space overhead is
mostly around a few MBs. Thus, it is negligible compared to the
millions of weights and hours of training. For the large datasets
IMDB and Yelp, the analysis time is around a few minutes and the
space overhead is around thousands of MBs. Note that their results
have different scales from the others (indicated by the parentheses
in column 2). We argue the analysis cost is still reasonable.

ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

Guanhong Tao, Shiging Ma, Yinggqi Liu, Qiuling Xu, and Xiangyu Zhang

Vanilla RNN LSTM GRU

Embedding Dataset Original RS TRADER Original RS TRADER Original RS TRADER
64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256
App reviews 67.65 67.65 58.82 67.65 67.65 58.82 79.41 73.53 73.53 73.53 70.59 70.59 67.65 70.59 70.59 79.41 82.35 82.35 76.47 76.47 76.47 76.47 76.47 76.47 79.41 79.41 82.35
IMDB 64.81 63.42 60.32 61.91 66.52 65.70 71.47 69.40 72.17 84.67 84.51 84.28 84.48 84.82 84.74 87.13 86.80 85.72 85.63 85.82 85.50 85.11 85.05 84.82 87.44 87.41 86.98
GloVe JIRA issues 88.04 91.30 84.78 89.13 89.13 81.52 96.74 96.74 97.83 94.57 94.57 93.48 93.48 92.39 91.30 97.83 97.83 97.83 91.30 92.39 94.57 94.57 93.48 93.48 97.83 96.74 96.74
Stack overflow 86.00 86.00 86.00 86.00 86.00 86.00 88.00 88.00 88.00 86.00 86.00 86.00 86.67 86.67 86.00 89.33 89.33 89.33 86.67 86.67 86.00 86.67 86.67 86.67 88.67 89.33 89.33
Yelp 79.56 78.51 77.70 79.33 80.67 77.67 83.11 83.17 89.90 92.02 92.45 92.09 92.79 92.94 92.93 94.07 94.67 94.81 91.45 91.34 90.89 92.14 92.06 91.90 94.19 94.36 94.50
App reviews 61.76 55.88 67.65 67.65 58.82 58.82 79.41 85.29 79.41 79.41 73.53 67.65 82.35 79.41 76.47 88.24 88.24 88.24 79.41 76.47 76.47 82.35 79.41 79.41 82.35 88.24 85.29
IMDB 68.86 63.62 70.62 72.09 73.34 71.01 77.27 78.73 77.32 87.42 87.88 87.33 87.18 87.28 87.18 88.26 88.23 87.75 88.02 88.45 88.38 87.75 87.56 87.41 88.67 88.60 88.34
Word2vec JIRA issues 92.39 91.30 88.04 93.48 94.57 88.04 98.91 97.83 97.83 93.48 94.57 91.30 94.57 96.74 95.65 96.74 96.74 97.83 93.48 96.74 96.74 94.57 96.74 96.74 97.83 97.83 97.83
Stack overflow 86.67 86.67 86.00 86.67 86.67 86.00 88.00 88.00 88.00 86.67 86.00 86.00 86.67 86.00 86.67 89.33 89.33 89.33 86.67 86.67 86.67 87.33 86.00 86.00 88.00 88.67 88.00
Yelp 82.91 82.10 88.86 84.02 89.76 86.64 87.00 90.85 89.93 92.50 93.10 93.32 93.40 93.57 93.49 94.62 95.02 95.16 92.82 92.70 92.80 92.90 92.84 92.76 94.62 94.73 94.87
App reviews 55.88 58.82 52.94 61.76 61.76 58.82 76.47 79.41 82.35 76.47 61.76 64.71 67.65 61.76 67.65 85.29 82.35 82.35 73.53 70.59 73.53 76.47 76.47 76.47 82.35 85.29 85.29
IMDB 76.22 74.20 67.75 76.62 73.09 70.35 78.78 79.33 79.68 87.94 88.39 88.51 87.13 88.44 89.07 88.62 89.07 89.20 88.96 88.52 88.65 88.94 89.12 88.79 89.25 89.42 89.70
Adversarial JIRA issues 89.13 90.22 89.13 91.30 89.13 91.30 96.74 96.74 97.83 93.48 93.48 94.57 94.57 93.48 96.74 96.74 96.74 97.83 95.65 96.74 96.74 96.74 96.74 95.65 98.91 98.91 98.91
Stack overflow 86.00 84.67 86.67 82.67 85.33 84.00 88.00 88.00 88.00 86.67 85.33 86.67 86.67 86.00 86.00 88.67 88.67 90.00 86.67 86.67 86.00 86.67 86.67 86.67 88.00 89.33 89.33
Yelp 85.19 86.30 85.27 85.33 86.29 79.35 87.92 88.54 91.67 93.11 93.49 93.14 94.04 94.26 94.38 94.52 94.97 95.10 93.69 93.84 93.80 94.07 94.15 94.12 94.60 94.77 94.96

Table 5: Results of regulating all dimensions of embeddings.

Vanilla RNN LSTM GRU
Embedding Dataset
64 128 256 64 128 256 64 128 256
App reviews 55.88 50.00 55.88 70.59 64.71 64.71 76.47 73.53 73.53
IMDB 58.52 66.33 59.25 86.78 85.29 84.61 85.11 86.16 85.96
GloVe JIRA issues 93.48 90.22 86.96 95.65 96.74 93.48 95.65 95.65 95.65
Stack overflow 8533 79.33 84.00 85.33 86.67 87.33 87.33 86.00 86.00
Yelp 77.58 77.15 77.32 93.79 94.51 94.54 93.83 94.19 94.25
App reviews 61.76 58.82 70.59 79.41 70.59 58.82 79.41 8235 82.35
IMDB 55.77 56.70 61.01 87.44 87.60 85.03 87.45 88.04 87.51
Word2vec JIRA issues 94.57 94.57 90.22 92.39 93.48 91.30 95.65 96.74 95.65
Stack overflow 86.00 84.00 86.00 86.67 87.33 86.67 86.00 86.67 86.67
Yelp 75.56 77.74 84.86 94.00 94.82 94.87 94.48 94.52 94.59
App reviews 5294 64.71 67.65 76.47 70.59 76.47 76.47 70.59 70.59
IMDB 68.23 70.98 63.65 87.84 88.37 88.74 88.61 89.09 88.52
Adversarial JIRA issues 90.22 9348 90.22 92.39 92.39 9239 95.65 94.57 95.65
Stack overflow 84.67 82.00 83.33 84.67 88.00 87.33 88.00 83.33 86.00
Yelp 86.26 85.85 81.85 94.49 94.69 95.00 9445 94.76 94.91

Linear regression is utilized to approximate the distributions of
oracle traces and buggy traces to construct the oracle machine and
the buggy machine. To evaluate the performance of the approach,
we demonstrate the results in Table 4. The first column denotes the
datasets. The second column denotes the trace types. The following
columns denote different models (Vanilla RNN, LSTM and GRU),
word embeddings (GloVe, Word2vec, Adversarial), and model set-
tings (64, 128, 256) that are used for training the original application
models. The fitting score in Table 4 denotes the coefficient of de-
termination R?, which is used to measure the fitting performance.
It ranges from 0 (worst) to 1 (best). Almost all the scores are over
0.9, which indicates that our oracle (buggy) machine effectively
approximates the distribution of oracle (buggy) traces.

4.3 Evaluation of Fixing Model Bugs

The results of bug fixing are presented in Table ??. The first column
denotes the three word embeddings. The second column denotes the
five applications. The following columns denote the test accuracy
for different models and settings. Column “original” denotes the
results for original models. Column RS detotes the baseline, a state-
of-the-art embedding regulation technique [63]. The original and RS
models are trained on both the training and the validation sets. We
chose to do that as TRADER essentially makes use of the validation
set in its debugging procedure. We also evaluate the effectiveness
of defective dimension identification in Table 5. Particularly, we
use our proposed embedding regulation technique to regulate all

995

the dimensions of embeddings and retrain models based on those
embeddings.

We have the following observations. For various applications
using different word embeddings and model structures, TRADER
can consistently improve the test accuracy, compared to the original
models trained on both the training set and the validation set. The
baseline RS [63] can improve a subset of models, some with substan-
tial improvement (e.g., 8.82% for App reviews dataset using LSTM
with 256 neurons and word2vec embeddings). However, it leads
to degradation in a number of models as well (e.g., -5.93% for Yelp
dataset using vanilla RNN with 256 neurons and Adversarial embed-
dings). The average improvement is 0.6%. In comparison, TRADER
achieves 5.37% improvement on average (over the original models),
which is substantially larger than RS, and in fact also much larger
than the improvement reported in the literature for RNN types
of models, which is typically 0.05%-3.76% [17, 38, 39, 51, 64, 94]
with a median of 0.7%. The improvement on the largest dataset
Yelp is relatively smaller than the others, especially for the set-
ting (GRU structure + Adversarial embedding). This is because
the original model already achieves very high accuracy. When all
the dimensions are considered during embedding regulation, the
improvement on the test accuracy is inconsistent, comparing to
TRADER. Especially, in some cases (e.g., App reviews dataset using
vanilla RNN and GloVe embedding), the result even drops lower
than original models. This observation supports the importance of
identifying faulty dimensions when regulating embeddings.

4.4 Case Study

In this section, we study individual cases to show why the buggy
model mis-predicts input samples and how the fixed model per-
forms. Figure 11 shows four text samples from the app reviews
dataset and the stack overflow dataset. For each sentence, we
present a pair of results, with the first predicted by the buggy
model and the second predicted by the fixed model. The color from
red to green and then to blue denotes the sentiment from negative
to neutral and then to positive. The brightness of colors represents
the degree of sentiment values. Brighter the color, larger the degree
towards the corresponding sentiment. For the first case, the ground
truth label is positive but the buggy model predicts neutral. It can
be observed that the sentiment output stays neutral at the step with

TRADER: Trace Divergence Analysis and Embedding Regulation
for Debugging Recurrent Neural Networks

And this ‘Gadelworked.
And this code worked

But sadly t-not w@

(Negative)

' But sadly this is not working.

very
Earlier | was w
Positi
Earlis]1 was writiglihe RBIED SCE R

was working fine.
Legend [F I .

Figure 11: Prediction by the buggy model and the fixed
model. Each pair shows the prediction results by the buggy model
(top) and the fixed model (bottom). The color from red to green and
then to blue denotes the sentiment from negative to neutral and
then to positive. The brightness of colors represents the degree of
sentiment values. Brighter the color, larger the degree towards the
corresponding sentiment.

word “worked”. In this context, word “worked” has positive senti-
ment and should significantly contribute to the final prediction. The
fixed model acts as expected. In the second case, the buggy model
treats word “working” non-negatively. However, in this context, it
comes after word “not”, which should be considered jointly. The
third case shows that in long sentences, the buggy model may focus
locally without considering the whole context (“lower energy
settings”), which produces wrong prediction. In the fourth case,
the buggy model focuses too much on the previous context with-
out considering the local information (“fine”). We think that after
regulating the embeddings, the model substructures (e.g., forget
gates) have more appropriate behaviors (e.g., remembering the right
context and forgetting the undesirable ones) as their behaviors are
not perturbed by words that have different meanings but similar
embeddings.

5 THREAT TO VALIDITY

Since we use random perturbation during training, which is typ-
ical in model hardening [66], the results may have uncertainty.
To reduce the threat, we run our experiments multiple times and
report the average. The results are achieved on specific settings,
such as batch size, optimizer, learning rate, and hyper-parameter
values. To achieve fair comparison, we follow the same setting in
existing works as much as possible (e.g., regarding how to partition
datasets). We also release our settings in [84] for reproduction. Note
that although cross-validation is often used to reduce uncertainty in
machine learning results, due to the large scale of data, most exist-
ing works on RNN, especially those considering datasets like IMDB
and Yelp, cannot afford cross-validation [17, 51, 58, 94]. The original
models may have bugs other than problematic embeddings (e.g.,
data bias). The good results we achieve could be partially attributed
to that the hardening alleviates some of those bugs. However, the
fact that we only perform guided hardening on embedding (instead
of on weights like in [52]) indicates that the other bugs, if they exist,
have substantial confounding with embeddings. The evaluations
are conducted on sentiment analysis task. The proposed TRADER,
however, is not application specific. For instance, in sequence-to-
sequence tasks (e.g., neural machine translation), two RNN models

996

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

are usually used: one (Encoder) for encoding input sequences to
hidden states and the other one (Decoder) for decoding target se-
quences from hidden states together with the output of the previous
step. The Decoder is similar to RNN models used in sentiment anal-
ysis, where hidden states and an input element are fed to the model
to obtain an output. We can use TRADER to identify the divergence
steps of Decoder and locate faulty dimensions in hidden states and
input elements. The embedding regulation can be conducted on
both source language and target language embeddings.

6 RELATED WORK

Our technique is inspired by software debugging (e.g., [10, 18, 22,
23, 44, 67, 71, 97, 99]). Many techniques use trace analysis and
differential analysis. They locate bugs by tracing program execution
and comparing buggy runs with correct runs. Similarly, we trace
RNN executions and locate divergence. Unlike traditional software,
RNN uses high dimension embeddings and has much more complex
data dependences between the embeddings and neuron activation
values, so we use embedding regulation and retraining to repair
RNN models.

There are many works [2, 7, 13, 20, 28, 50, 62, 85] that employ
general machine learning methods and some works [9, 29, 35, 36,
47, 49, 88] specifically use RNN models in software engineering
tasks. TRADER can help software engineering researchers debug
their RNN models. Researchers have also proposed different meth-
ods to debug the machine learning models [11, 12, 52]. However,
these works focused on specific machine learning models or feed-
forward Neural Networks and are not applicable to RNN models. In
the article [70], researchers aim at debugging NLP models by gen-
erating adversarial examples as training data. In articles [37, 101],
researchers propose methods to debug models by cleaning up the
wrongly labeled training data. These approaches debug RNN mod-
els by providing better training data and do not analyze model
internals. TRADER is orthogonal to these works. There are also
works [42, 69] that explain NLP models and use model explanations
to help data engineers debug models. These approaches require
human efforts while TRADER is fully automated.

7 CONCLUSION

We develop a novel technique to automatically diagnose how prob-
lematic word embeddings influence model accuracy, by collecting
and comparing model execution traces for correctly and incorrectly
classified samples. A new embedding regulation/tuning algorithm
is proposed to leverage the diagnosis results to harden the embed-
dings. Our experiments show that our technique can consistently
and effectively improve accuracy for real world models and datasets
by 5.37% on average.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive com-
ments. This research was supported, in part by DARPA FA8650-15-
C-7562, NSF 1748764, 1901242 and 1910300, ONR N000141410468
and N000141712947, and Sandia National Lab under award 1701331.
Any opinions, findings, and conclusions in this paper are those of
the authors only and do not necessarily reflect the views of our
sponsors.

ICSE

’20, May 23-29, 2020, Seoul, Republic of Korea

REFERENCES

(1]

[2

(3]

=

[5

[6

[

(10]

[11

[12

(13

=
)

=
X2

™
=

[21

[22

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-
ing distributed representations of code. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 40.

Dalal Alrajeh and Alessandra Russo. 2018. Logic-Based Learning: Theory and
Application. In Machine Learning for Dynamic Software Analysis: Potentials and
Limits.

Mathieu Aubry and Bryan C Russell. 2015. Understanding Deep Features with
Computer-Generated Imagery. In IEEE International Conference on Computer
Vision (ICCV). 2875-2883.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine
translation by jointly learning to align and translate. In International Conference
on Learning Representations (ICLR).

Marco Baroni, Georgiana Dinu, and German Kruszewski. 2014. Don’t count,
predict! A systematic comparison of context-counting vs. context-predicting
semantic vectors. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), Vol. 1. 238-247.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. 2017.
Network Dissection: Quantifying Interpretability of Deep Visual Representa-
tions. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Raja Ben Abdessalem, Shiva Nejati, Lionel C Briand, and Thomas Stifter. 2016.
Testing advanced driver assistance systems using multi-objective search and
neural networks. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering. ACM, 63-74.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term
dependencies with gradient descent is difficult. IEEE transactions on neural
networks 5, 2 (1994), 157-166.

Sahil Bhatia, Pushmeet Kohli, and Rishabh Singh. 2018. Neuro-symbolic program
corrector for introductory programming assignments. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). IEEE, 60-70.

Ivan Boci¢ and Tevfik Bultan. 2016. Finding access control bugs in web ap-
plications with CanCheck. In 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 155-166.

Gabriel Cadamuro, Ran Gilad-Bachrach, and Xiaojin Zhu. 2016. Debugging
machine learning models. In ICML Workshop on Reliable Machine Learning in
the Wild.

Aleksandar Chakarov, Aditya Nori, Sriram Rajamani, Shayak Sen, and Deepak
Vijaykeerthy. 2016. Debugging machine learning tasks. arXiv preprint
arXiv:1603.07292 (2016).

Chunyang Chen, Zhenchang Xing, and Yang Liu. 2017. By the community &
for the community: a deep learning approach to assist collaborative editing in
q&a sites. Proceedings of the ACM on Human-Computer Interaction (2017).
Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
In Empirical Methods in Natural Language Processing (EMNLP).

Google Code. 2013. Word2vec. https://code.google.com/archive/p/word2vec/
Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le.
2018. AutoAugment: Learning Augmentation Policies from Data. arXiv preprint
arXiv:1805.09501 (2018).

Andrew M Dai and Quoc V Le. 2015. Semi-supervised sequence learning. In
Advances in neural information processing systems. 3079-3087.

Loris D’Antoni, Rishabh Singh, and Michael Vaughn. 2017. NoFAQ: synthesizing
command repairs from examples. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. ACM, 582-592.

Adit Deshpande. 2017. Sentiment Analysis with LSTMs. https://github.com/
adeshpande3/LSTM-Sentiment- Analysis

Dario Di Nucci, Fabio Palomba, Damian A Tamburri, Alexander Serebrenik,
and Andrea De Lucia. 2018. Detecting code smells using machine learning
techniques: are we there yet?. In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 612-621.
Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. Deep-
Stellar: model-based quantitative analysis of stateful deep learning systems. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ACM,
477-487.

Qiang Fu, Jian-Guang Lou, Qing-Wei Lin, Rui Ding, Dongmei Zhang, Zihao Ye,
and Tao Xie. 2012. Performance issue diagnosis for online service systems. In
2012 IEEE 31st Symposium on Reliable Distributed Systems. IEEE, 273-278.
Zheng Gao, Christian Bird, and Earl T Barr. 2017. To type or not to type:
quantifying detectable bugs in JavaScript. In Proceedings of the 39th International
Conference on Software Engineering. IEEE Press, 758-769.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial
Nets. In Advances in Neural Information Processing Systems (NIPS). 2672-2680.

997

[26]

[27]

[28

[29

[30

[31

[32

[33

[34

[35

[36]

[37

[38

[39

[40

[41

[42]

[43

[44

[45

[46

[47

[48

[49

[50

[51]

Guanhong Tao, Shiging Ma, Yinggqi Liu, Qiuling Xu, and Xiangyu Zhang

Tan] Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
Harnessing Adversarial Examples. arXiv preprint arXiv:1412.6572 (2014).
Michael Goul, Olivera Marjanovic, Susan Baxley, and Karen Vizecky. 2012. Man-
aging the enterprise business intelligence app store: Sentiment analysis sup-
ported requirements engineering. In 2012 45th Hawaii International Conference
on System Sciences. IEEE, 4168-4177.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In
2018 IEEE/ACM 40th International Conference on Software Engineering.

Jordan Henkel, Shuvendu K Lahiri, Ben Liblit, and Thomas Reps. 2018. Code vec-
tors: understanding programs through embedded abstracted symbolic traces. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering.
Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. 2012. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal processing
(2012).

Sepp Hochreiter. 1991. Untersuchungen zu dynamischen neuronalen Netzen.
Diploma, Technische Universitit Miinchen 91, 1 (1991).

Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long short-term memory.
Neural computation 9, 8 (1997), 1735-1780.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2019. Deep code comment
generation with hybrid lexical and syntactical information. Empirical Software
Engineering (2019), 1-39.

Nasif Imtiaz, Justin Middleton, Peter Girouard, and Emerson Murphy-Hill. 2018.
Sentiment and politeness analysis tools on developer discussions are unreliable,
but so are people. In 2018 IEEE/ACM 3rd International Workshop on Emotion
Awareness in Software Engineering (SEmotion). IEEE, 55-61.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics.

Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-
ing commit messages from diffs using neural machine translation. In Proceedings
of IEEE/ACM International Conference on Automated Software Engineering.
Yuan Jiang and Zhi-Hua Zhou. 2004. Editing training data for kNN classifiers
with neural network ensemble. In International symposium on neural networks.
Rie Johnson and Tong Zhang. 2015. Semi-supervised convolutional neural
networks for text categorization via region embedding. In Advances in neural
information processing systems. 919-927.

Rie Johnson and Tong Zhang. 2016. Supervised and Semi-Supervised Text
Categorization using LSTM for Region Embeddings. In International Conference
on Machine Learning (ICML). 526-534.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In International Conference on Learning Representations (ICLR).
Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions
via influence functions. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org, 1885-1894.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems (NIPS). 1097-1105.

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.
2012. Genprog: A generic method for automatic software repair. leee transactions
on software engineering 38, 1 (2012), 54-72.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
Based Learning Applied to Document Recognition. Proc. IEEE (1998).
Christopher J Leggetter and Philip C Woodland. 1995. Maximum likelihood
linear regression for speaker adaptation of continuous density hidden Markov
models. Computer speech & language 9, 2 (1995), 171-185.

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. VulDeePecker: A deep learning-based system for
vulnerability detection. arXiv preprint arXiv:1801.01681 (2018).

Joseph Lilleberg, Yun Zhu, and Yanqing Zhang. 2015. Support vector machines
and word2vec for text classification with semantic features. In 2015 IEEE 14th
International Conference on Cognitive Informatics & Cognitive Computing.

Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, Michele
Lanza, and Rocco Oliveto. 2018. Sentiment Analysis for Software Engineering:
How Far Can We Go?. In Proceedings of 40th International Conference on Software
Engineering (ICSE).

Zhongxin Liu, Xin Xia, Ahmed E Hassan, David Lo, Zhenchang Xing, and Xinyu
Wang. 2018. Neural-machine-translation-based commit message generation:
how far are we?. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ACM, 373-384.

Di Lu, Leonardo Neves, Vitor Carvalho, Ning Zhang, and Heng Ji. 2018. Visual
Attention Model for Name Tagging in Multimodal Social Media. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics.

TRADER: Trace Divergence Analysis and Embedding Regulation

for Debugging Recurrent Neural Networks ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

[52] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama. 2013 Conference on Empirical Methods in Natural Language Processing. Asso-

2018. MODE: automated neural network model debugging via state differential
analysis and input selection. In Proceedings of the 2018 26th ACM Joint Meeting

ning, Andrew Ng, and Christopher Potts. 2013. Recursive Deep Models for
Semantic Compositionality Over a Sentiment Treebank. In Proceedings of the

ciation for Computational Linguistics, Seattle, Washington, USA, 1631-1642.
https://www.aclweb.org/anthology/D13-1170

on European Software Engineering Conference and Symposium on the Foundations [78] William N Sumner and Xiangyu Zhang. 2013. Comparative causality: Explaining
of Software Engineering (ESEC/FSE). ACM, 175-186. the differences between executions. In 2013 35th International Conference on

] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, Software Engineering (ICSE). IEEE, 272-281.
and Christopher Potts. 2011. Learning word vectors for sentiment analysis. In [79] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence
Proceedings of annual meeting of the association for computational linguistics. learning with neural networks. In Advances in neural information processing

] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient esti- systems. 3104-3112.
mation of word representations in vector space. arXiv preprint arXiv:1301.3781 [80] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
(2013). Erhan, Ian Goodfellow, and Rob Fergus. 2014. Intriguing Properties of Neural

] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Networks. In International Conference on Learning Representations (ICLR).
Distributed representations of words and phrases and their compositionality. In [81] Ted Tenny. 1988. Program readability: Procedures versus comments. IEEE
Advances in neural information processing systems. Transactions on Software Engineering 14, 9 (1988), 1271-1279.

] Ghassan Misherghi and Zhendong Su. 2006. HDD: hierarchical delta debugging. [82] Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvid Kappas.
In Proceedings of the 28th international conference on Software engineering. 2010. Sentiment strength detection in short informal text. Journal of the
Takeru Miyato. 2018. Adversarial Text Classification. https://github.com/ American Society for Information Science and Technology (2010).
tensorflow/models/tree/master/research/adversarial_text [83] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Auto-
Takeru Miyato, Andrew M Dai, and Ian Goodfellow. 2017. Adversarial training mated testing of deep-neural-network-driven autonomous cars. In Proceedings
methods for semi-supervised text classification. In International Conference on of the 40th International Conference on Software Engineering. ACM, 303-314.
Learning Representations (ICLR). [84] trader rnn. 2019. TRADER. https://github.com/trader-rnn/TRADER
John Neter, William Wasserman, and Michael H Kutner. 1989. Applied linear [85] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and
regression models. (1989). Denys Poshyvanyk. 2019. On Learning Meaningful Code Changes via Neural
Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. 2009. Listening to programmers Machine Translation. arXiv preprint arXiv:1901.09102 (2019).

Taxonomies and characteristics of comments in operating system code. In [86] Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and Dan Roth. 2016. Cross-
Proceedings of the 31st International Conference on Software Engineering. lingual models of word embeddings: An empirical comparison. arXiv preprint
Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A Visag- arXiv:1604.00425 (2016).

gio, Gerardo Canfora, and Harald C Gall. 2015. How can i improve my app? [87] Alex Wang, Amapreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R
classifying user reviews for software maintenance and evolution. In 2015 IEEE Bowman. 2018. GLUE: A Multi-Task Benchmark and Analysis Platform for
International Conference on Software Maintenance and Evolution. Natural Language Understanding. arXiv preprint arXiv:1804.07461 (2018).

] Corina S Pasdreanu, Divya Gopinath, and Huafeng Yu. 2019. Compositional [88] Ke Wang, Rishabh Singh, and Zhendong Su. 2017. Dynamic Neural Program
Verification for Autonomous Systems with Deep Learning Components. In Safe, Embedding for Program Repair. arXiv preprint arXiv:1711.07163 (2017).
Autonomous and Intelligent Vehicles. Springer, 187-197. [89] Ke Wang and Xiaojun Wan. 2018. SentiGAN: generating sentimental texts

] Hao Peng, Lili Mou, Ge Li, Yunchuan Chen, Yangyang Lu, and Zhi Jin. 2015. via mixture adversarial networks. In Proceedings of the 27th International Joint
A comparative study on regularization strategies for embedding-based neural Conference on Artificial Intelligence. AAAI Press, 4446-4452.
networks. In Proceedings of the 2015 Conference on Empirical Methods in Natural [90] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional
Language Processing (EMNLP). 2106-2111. Clone Detection by Exploiting Lexical and Syntactical Information in Source

] Minlong Peng, Qi Zhang, Yu-gang Jiang, and Xuanjing Huang. 2018. Cross- Code.. In IJCAI 3034-3040.

Domain Sentiment Classification with Target Domain Specific Information. In [91] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
Proceedings of the 56th Annual Meeting of the Association for Computational 2016. Deep learning code fragments for code clone detection. In Proceedings of
Linguistics (Volume 1: Long Papers), Vol. 1. 2505-2513. the 31st IEEE/ACM International Conference on Automated Software Engineering.

] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: [92] Martin White, Christopher Vendome, Mario Linares-Vasquez, and Denys Poshy-
Global Vectors for Word Representation. In Empirical Methods in Natural Lan- vanyk. 2015. Toward deep learning software repositories. In Proceedings of the
guage Processing (EMNLP). 1532-1543. 12th Working Conference on Mining Software Repositories.

] Ben Poole, Jascha Sohl-Dickstein, and Surya Ganguli. 2014. Analyzing noise in [93] Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A Broad-Coverage
autoencoders and deep networks. arXiv preprint arXiv:1406.1831 (2014). Challenge Corpus for Sentence Understanding through Inference. In Proceedings

] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto of the 2018 Conference of the North American Chapter of the Association for
Bacchelli, and Premkumar Devanbu. 2016. On the" naturalness" of buggy code. Computational Linguistics.

In 2016 IEEE/ACM 38th International Conference on Software Engineering. [94] Yijun Xiao and Kyunghyun Cho. 2016. Efficient character-level document

] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I classification by combining convolution and recurrent layers. arXiv preprint
Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the arXiv:1602.00367 (2016).
22nd International Conference on Knowledge Discovery and Data Mining. [95] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan

] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High- Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and tell: Neu-
precision model-agnostic explanations. In Thirty-Second AAAI Conference on ral image caption generation with visual attention. In International Conference
Artificial Intelligence. on Machine Learning (ICML). 2048-2057.

] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Semantically [96] Liang-Chih Yu, Jin Wang, K Robert Lai, and Xuejie Zhang. 2017. Refining word
Equivalent Adversarial Rules for Debugging NLP models. In Association for embeddings for sentiment analysis. In Proceedings of the 2017 Conference on
Computational Linguistics (ACL). Empirical Methods in Natural Language Processing. 534-539.

] Abhik Roychoudhury and Satish Chandra. 2016. Formula-based software de- [97] Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why?.
bugging. Commun. ACM 59, 7 (2016), 68-77. In ACM SIGSOFT Software engineering notes.

] Stuart J Russell and Peter Norvig. 2016. Artificial intelligence: a modern approach. [98] Dongwen Zhang, Hua Xu, Zengcai Su, and Yunfeng Xu. 2015. Chinese comments
Malaysia; Pearson Education Limited,. sentiment classification based on word2vec and SVMperf. Expert Systems with

] Tobias Schnabel, Igor Labutov, David Mimno, and Thorsten Joachims. 2015. Applications 42, 4 (2015), 1857-1863.

Evaluation methods for unsupervised word embeddings. In Proceedings of the [99] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. 2003. Precise dynamic slic-
2015 Conference on Empirical Methods in Natural Language Processing. ing algorithms. In 25th International Conference on Software Engineering, 2003.

] Scharolta Katharina Sien¢nik. 2015. Adapting word2vec to named entity recog- Proceedings. IEEE, 319-329.
nition. In Proceedings of the 20th nordic conference of computational linguistics. [100] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional

] Vinayak Sinha, Alina Lazar, and Bonita Sharif. 2016. Analyzing developer networks for text classification. In Advances in neural information processing
sentiment in commit logs. In Proceedings of the 13th International Conference on systems (NIPS). 649-657.

Mining Software Repositories. ACM, 520-523. [101] Xuezhou Zhang, Xiaojin Zhu, and Stephen Wright. 2018. Training set debugging

] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, using trusted items. In Thirty-Second AAAI Conference on Artificial Intelligence.
Andrew Ng, and Christopher Potts. 2013. Recursive deep models for semantic [102] Yingying Zhang and Daqing Hou. 2013. Extracting problematic API features
compositionality over a sentiment treebank. In Proceedings of the 2013 conference from forum discussions. In 2013 21st International Conference on Program Com-
on empirical methods in natural language processing (EMNLP). 1631-1642. prehension (ICPC). IEEE, 142-151.

] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Man- [103] Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2017. Generating natural adver-

sarial examples. arXiv preprint arXiv:1710.11342 (2017).

