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ABSTRACT

Recurrent Neural Networks (RNN) can deal with (textual) input
with various length and hence have a lot of applications in software
systems and software engineering applications. RNNs depend on
word embeddings that are usually pre-trained by third parties to
encode textual inputs to numerical values. It is well known that
problematic word embeddings can lead to low model accuracy.
In this paper, we propose a new technique to automatically diag-
nose how problematic embeddings impact model performance, by
comparing model execution traces from correctly and incorrectly
executed samples. We then leverage the diagnosis results as guid-
ance to harden/repair the embeddings. Our experiments show that
TRADER can consistently and effectively improve accuracy for real
world models and datasets by 5.37% on average, which represents
substantial improvement in the literature of RNN models.
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1 INTRODUCTION

Deep learning (DL) models are becoming an integral part of many
modern computing systems. For example, a self-driving car system
often makes use of DL models to recognize objects and even maneu-
ver vehicles; online advertisement leverages DL models to identify
potential customers and deliver the corresponding ads; latest mo-
bile/wearable devices use various DL techniques to authenticate
users, detect and monitor user behaviors. Engineering DL models is
becoming a critical step of engineering such intelligent computing
systems. Among the various kinds of DL models, Recurrent Neural
Networks (RNNs) are particularly useful in software related applica-
tions as they are designed to deal with textual inputs (of arbitrary
length) and inputs in sequence. Note that many software artifacts
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are in the form of text or sequences. For example, a program can
be considered as a piece of text in some special language; program
comments are essentially texts in natural language with specific
semantics; and execution traces are a sequence of values of arbi-
trary length. As such, RNN models find their way to many software
engineering applications.

Wang et al. [88] leveraged RNNSs to construct semantic program
embeddings, which are a way to encode textual programs to nu-
merical values. The embeddings were further employed in a search-
based program repair system to correct errors in programs [88].
Henkel et al. [29] used a DL model called GloVe [65] to construct
word embeddings for abstract symbolic traces of programs. The
learned embeddings were used to find bugs, which were further con-
firmed by traditional static analysis. Panichella et al. [61] employed
a model [72] to assess the polarity of app reviews, which can pro-
vide developers with informative feedback to improve application
quality and facilitate software maintenance. Du et al. [21] modeled
RNN as an abstract state transition system for test generation and
adversarial sample detection. Tian et al. [83] proposed a testing tool
for automatically detecting erroneous behaviors of DNN-driven
vehicles with CNN or RNN as the internal model. RNN models
[36, 49, 72] are also widely used in processing textual software
artifacts, such as code comments [33, 60, 81], developer commits
[75], and app reviews [27, 61].

DL model reliability is hence a critical part of the overall relia-
bility of many software systems. Just like software, DL models may
have undesirable behaviors, such as exceptionally low test accuracy.
They are called model bugs in the literature [52]. Such model bugs
may lead to undesirable system-wide behaviors. For example, Sen-
tiStrength [82] is a state-of-the-art tool that can predict sentiment
of developer comments. Such sentiment information is further used
to extract problematic API features [102]. However, a recent study
[49] showed that its underlying model achieved recall and precision
lower than 40% on negative sentences. Since negative sentences
are critical indicators for problematic APIs, the low model accuracy
will cause many problems for the downstream analyses.

Different from normal programs, DL models are difficult to de-
bug due to their “black box” (unexplainable) nature [3, 6, 68]. Most
existing works focused on providing more data to improve model
performance [16, 25]. Generative adversarial networks (GANSs) [25]
are also widely used to generate additional data for further training
[41]. However, these methods can hardly be considered as debug-
ging techniques as they lack the diagnosis step that identifies the
root cause. MODE [52] is a recent model debugging technique for
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convolutional neural networks (CNNs) that often deal with fixed size
inputs such as images. It leverages differential analysis to identify
faulty neurons and selects additional training inputs to “correct”
such neurons’ behavior. However, MODE cannot handle RNNs.

In this paper, we focus on debugging RNN models for textual
inputs (e.g., sentiment analysis for developer comments), especially
for a type of bugs in which problematic word embeddings lead to
suboptimal model accuracy. Many studies [5, 73, 86, 96] have shown
that word embeddgings are critical for RNN model accuracy. For
those textual tasks, input words/tokens are always converted to em-
beddings first before training/testing. Although embeddings seem
external to the model, the model itself cannot be studied/debugged
separately without considering embeddings. Inspired by software
debugging [10, 18, 23], we view an RNN model as a program with
very specific semantics. Therefore, the traditional trace analysis in
software debugging can be adopted to debug RNN models, as long
as the specific semantics are properly modeled. In particular, given
a buggy model, our technique performs trace divergence analysis
that identifies the problematic internal model state vector dimen-
sions responsible for the misclassification, called the faulty state
dimensions. Intuitively, the state vectors are a number of buffers
that are updated after the model processes each word or input ele-
ment. A dimension is essentially a buffer element at a specific index,
which semantically encodes some feature of the current input word
and its preceding context. Hence, the faulty dimensions represent
the features (of words and their contexts) that the model has con-
fusing/buggy behavior. Then an embedding regulation algorithm is
proposed to mitigate the problem by hardening the model behaviors
for those dimensions. Intuitively, it applies small mutations to those
dimensions and then forces the model to learn to disambiguate the
perturbations. The more the model can disambiguate, the better
accuracy it can achieve (as it is less confused on those dimensions).

Our contributions are summarized in the following.

o We identify buggy behaviors of RNN models through a trace
divergence analysis, and locate faulty state dimensions re-
sponsible for misclassification.

e We propose an RNN repair technique, a new training pro-
cedure that freezes model parameters and regulates word
embeddings according to observed trace divergences.

e We develop a prototype TRADER (TRAce Divergence anal-
ysis and Embedding Regulation). Experimental evaluations
are conducted on five public datasets, three word embed-
dings, and three model structures, with a total of 135 models.
TRADER can consistently and effectively improve the per-
formance by 5.37% on average, substantially outperforming
a state-of-the-art embedding regulation technique based on
four regularization strategies [63], which improves model
accuracy by 0.6% on average. Note that due to the need of
dealing with inputs of arbitrary length, it is challenging to
improve RNN accuracy in general. Most reported improve-
ment in the literature (not using debugging techniques, but
rather new model architecture or new optimizers) range from
0.05%-3.76% with a median of 0.7% [17, 38, 39, 51, 64, 94].

e Our implementation, datasets, configurations, and model
checkpoints are publicly available at [84].
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(a) Unrolled RNN structure

(b) LSTM cell

Figure 1: Architecture of recurrent neural networks. (a) An
unrolled representation of RNN architecture. (b) The internal struc-
ture of Long Short Term Memory networks.

2 BACKGROUND

2.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a family of neural networks
designed to tackle problems with sequential inputs. Different from
traditional neural networks that require fixed-length inputs, RNNs
can handle sequential inputs of arbitrary length. That is, input is
received continuously through many steps, via a loop structure as
shown in Figure 1a. The sequential inputs are fed into the RNN
model one by one. At each time step, the model leverages the previ-
ous hidden value and the current input so as to update the hidden
value. For specific tasks, the prediction outputs are obtained by
adding an output layer using the hidden value, such as in machine
translation [4, 79], speech recognition [30], and image caption gen-
eration [95]. More specifically, x; (blue circle) is the input at step ¢
and h; (green circle) is the hidden value. Intuitively, h; encodes the
history/context in the previous t — 1 steps. At each time step, an
input x; and the previous hidden value h;_; are fed into the RNN
cell (yellow rectangle), and the hidden value for the next step h;
is computed. A vanilla RNN cell contains a regular feed-forward
neural network with layers of neurons. We can obtain the hidden
value h; at step t using the following formula.

ht = o(Wy, - [he—1,x¢] + by), (1

where o is the activation function. Wy, denotes the weight matrix
and by, the bias. The operation [, ] concatenates two vectors. For a
specific task (e.g., sentiment analysis), the final prediction is com-
puted using the last hidden value hy:

prediction =W - hp + b, (2)

where W and b are the weight matrix and bias of the output layer,
respectively; and n denotes the length of an input sequence which
can be arbitrarily large. The output prediction is normally a vector
of logits, and the final predicted class can be obtained by applying
function arg max() on the output prediction vector.

Vanilla RNNs are not able to “remember” temporal context of
long sequences [8, 31]. In order to deal with long-term dependencies,
a new type of RNN model, called Long Short Term Memory (LSTM)
networks, was proposed by Hochreiter et al. [32]. LSTMs inherit
the same loop structure to deal with arbitrary input length. For
the cell structure, instead of using regular feed-forward neural
networks, LSTMs are designed with multiple gates to control how
much information from the previous and current contexts is being
passed on to later computation. Figure 1b illustrates the internal
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structure of an LSTM cell. The leftmost two inputs are hidden
values from the previous step, where the top c;—1 is called cell state
and the bottom h;_1 is called hidden state. Cell state encodes the
contextual information through the entire sequence (a kind of long
term memory). Hidden state is similar to the hidden state in a vanilla
RNN, representing recent historic information. An LSTM cell can
be formalized as follows.

ft = oWy - [he—1,x¢] + by) ®3)
ir = o(Wi - [he—1,x¢] + by) 4)
or = a(Wo - [Ar—1,x¢] + bo) ®)
¢ = tanh(We - [hy—1, x¢] + be) (6)
cr=ftOci1+ir O6 ()
ht = oy © tanh(cy), ®)

where operators - and © denote matrix multiplication and element-
wise vector multiplication, respectively; o() and tanh() denote sig-
moid and tanh activation functions that crop/normalize activation
values; f; denotes the forget gate that controls how much infor-
mation from previous steps needs to be forgotten/remembered; i,
acts as the input gate that determines how information needs to
be added to cell state; o; is the output gate that decides the degree
of output information being accumulated to hidden state; cell state
c; is updated according to the preceding cell state c;—1 and the
current context ¢;; and finally the hidden state h; is updated based
on current cell state ¢; and output o;.

2.2 Word Embeddings

In Natural Language Processing (NLP) tasks, the inputs are nor-
mally texts containing various numbers of words. Existing machine
learning (ML) models (e.g., RNNs) require numerical inputs so as
to do mathematical computation. To integrate NLP tasks into ML
models, word embeddings are adopted to address this issue. That is,
each word is represented as a numerical vector. For instance, in the
sentence “I like movies”, word “T” is represented as [1, 0, 0], word
“like” as [0, 1,0], and word “movies” as [0, 0, 1]. This type of word
embeddings is called one-hot embeddings, where the length of each
embedding is the size of the dictionary and only one dimension has
value 1. It is straightforward to encode words into one-hot embed-
dings. Such word embeddings, however, are too sparse for storage
and computation. A more concise way of representing words is
to leverage all the dimensions of word embeddings with continu-
ous values, which is called distributed representations. For instance,
word “T” will be represented as [0.9, 0.3], word “like” as [0.2, 0.4],
and word “movies” as [0.5, 0.6]. Researchers have been exploring
different approaches to achieve such a dense form of word em-
beddings. A typical approach is to train a neural network model
with a large corpus (e.g., Wikipedia pages). The task of the neural
network is to predict the center word given a sequence of (usually
5) words in a sentence. The learned weight of the neural network is
regarded as word embeddings [55]. Such learned word embeddings
have a nice property that words with similar meanings have small
embedding distances (e.g., Euclidean distance between two word
embeddings). This allows the model to generalize. Intuitively, even
though a model may not have seen some words/sentences during
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error great reinstall
errors errors good good reinstalling reinstalling
mistake well well uninstall install
mistake difference much refresh / uninstall
difference much experience install refresh

Figure 2: Nearest neighbors of words according to their em-
beddings. The top row denotes the target words, and the following
rows are their nearest words measured by cosine similarity. Column
Original denotes words using GloVe word embeddings and column
Regulated denotes word embeddings after regulation.

training, it can still perform prediction based on their embedding
neighbors that appear during training.

Distributed representations of word embeddings are widely used
in NLP tasks [76, 87, 93] as well as software engineering (SE) tasks
[1, 28, 34, 91, 92]. According to many studies [5, 73, 86, 96], word
embeddings are the dominating factor in model accuracy in RNN
applications. For example in sentiment analysis, according to Schn-
abel et al. [73], the same ML model using different word embeddings
as features can have divergent prediction accuracy ranging from
62.95% to 88.90%, indicating its importance. Figure 2 demonstrates
examples of words represented using the GloVe word embeddings
[65]. The top row denotes the target words and the following rows
are the nearest neighbors of target words measured by cosine simi-
larity. Column Original lists the nearest words based on the original
GloVe word embeddings, while column Regulated are based on our
regulated word embeddings. It can be observed that for target word
“error”, word “correct” is the second nearest word using GloVe
while it is moved down the list after embedding regulation. Word
“little” is the third nearest word for “great” using GloVe and
it is not in the top list after regulation. It is similar for the case
“reinstall”. One can easily tell that models generalize better with
the regulated embeddings.

2.3 Model Debugging

Just like software inevitably contains bugs and software debug-
ging is a key step in software development, DL models may have
undesirable behaviors, called model bugs [52]. Model debugging
is becoming an essential step in intelligent software engineering.
Model bugs are different from traditional coding bugs. They are mis-
conducts in the model engineering process, such as biased training
data [52] and problematic model structure, which lead to undesir-
able consequences such as low model accuracy and vulnerabilities
to adversarial sample attacks [26, 80], in which normal inputs are
mutated (e.g., by perturbations not human perceptible) to induce
mis-classification. In our context, model debugging is a procedure to
study model internals to understand the root cause of mis-classification
and then conduct counter-measure to “fix" the root cause.

Model debugging is difficult as DL models are not interpretable [6,
68]. There are techniques that use data augmentation (e.g., image
reflection, cropping, and rotations for CNN models) to provide ad-
ditional data to improve model performance [16, 25, 43]. Another
method is to use GANs [25] to generate additional training data
[89, 103]. However, these methods are not feedback driven, meaning
that they do not intend to understand what causes the low accuracy
before trying to fix the problem, which limits their effectiveness.
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def count(data):
output =
for i in range(len(data)):
embed =
if embed >=
output +=
return output

and embed <

def main():
data = [ ' ' ' 1

print (data)
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B
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1 def RNN(text):

2 outputs = []

3 hidden = (size)

4 for i in range(len(text)):

5 # map to word embedding

6 embed = (text[i])

7 input = (hidden, embed)
8 hidden = (input, W_h) + b_h

9 output = (hidden, W_out) + b_out
10 outputs. (output)

11 return outputs[len(text) - 1]

Figure 3: Comparison between code snippets of a simple counting program and an RNN model. The left code snippet shows a

simple program for counting the number of data points within range [1, 2). The right code snippet gives a simplified RNN model for predicting

the label of an input sentence.

MODE [52] is a recent feed-back driven technique for CNNs. It an-
alyzes model internals to identify “faulty” neurons and then selects
additional training inputs to “correct” such neuron behaviors.

These existing approaches, including MODE, are mostly de-
signed to improve image-related models (e.g., handwritten digit
recognition and object classification). For text-related models (e.g.,
sentiment analysis), they are hardly applicable. For example, using
GANS to generate text inputs often suffers from low quality and
lack of diversity [89]. According to Wang et al. [89], most generated
texts have fewer than 15 words, whereas sentences in real-world
training datasets have more than a few hundreds words.

In this paper, we focus on debugging text input oriented RNN
models that have a lot of software engineering applications [9, 29,
35, 36, 47, 49, 88, 90]. While there are many possible kinds of bugs
for these models, such as biased training inputs [52], sub-optimal
model structures, and incorrect hyper parameter settings. We focus
on problematic word embeddings as the literature has indicated that
embeddings are critical for RNN model accuracy [5, 73, 86, 96].

In our view, an RNN model is essentially a program with special
semantics. Therefore, our overarching idea is to adapt existing soft-
ware debugging techniques (e.g., [10, 18, 23]), especially execution
trace analysis, to debug RNN models, by properly modeling RNN
models’ special semantics. Next, we will use a program example
and an RNN example side-by-side to intuitively illustrate our idea.

The left part of Figure 3 shows a simple program for counting
the number of data points within range [1, 2). The functionality
of method embedding() at line 4 is to convert string values to nu-
merical values and then map them to discrete values. The mapping
can be implemented as a rounding operation, where values are
converted to their closest discrete numbers. For instance, value 1.1
becomes 1 while 1.8 becomes 2. When the developer executes this
piece of code, value 2 is printed as the output, which is incorrect.
To locate the bug, the developer prints out the value of variable
output at each iteration of the loop, and obtains the value trace
of [1, 1,2, 2]. For this simple program, the developer has the oracle
that the value trace of variable output should be [1,1, 2, 3]. By
comparing the actual trace to the oracle, the developer can easily
locate the trace diverged at the fourth iteration and finally identify
the buggy implementation of method embedding().

Interestingly, RNNs have a very similar loop structure as shown
on the right of Figure 3. Method embedding() at line 6 maps each
word to its corresponding embedding. Method concatenate() at
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Figure 4: The trace of a sample text from Stack overflow
dataset [49] predicted by a real-world LSTM model [19]. The
blue line denotes the oracle trace with correct prediction of positive
sentiment. The green line denotes the buggy trace produced by the
LSTM model with incorrect prediction of neutral sentiment.

line 7 concatenates two vectors and matmul () is the matrix mul-
tiplication method. Analogous to the simple program on the left,
we can use the same trace divergence analysis to inspect the state
at each iteration if undesired behaviors happen. Figure 4 demon-
strates a sample text from the Stack overflow dataset [49]: “Also,
JodaTime! makes calculations with time much simpler”.
It is labeled as having positive sentiment. An LSTM model [19],
however, predicts a neutral sentiment. We record the state values
at each iteration (i.e., after each word) and also query the oracle
for the same step. The green line in Figure 4 shows the trace of
the LSTM model, while the blue line is the trace acquired from the
oracle. As we will discuss in Section 3.1, having an oracle model
that always produces the correct intermediate model states is in-
feasible, just like having a correct reference program for regular
program debugging is infeasible in general. In the literature, various
techniques were proposed to approximate the reference (e.g., using
a similar but correct execution as in Delta Debugging [56, 78, 97]).
Similarly, in our context of RNN model debugging, we train a model
from validation data set to approximate the reference model (see
Section 3.1). From Figure 4, it can be observed that at the step with
word “much”, the two traces start to diverge, which finally leads to
different output labels.

We hence further inspect the state differences at the divergence
step. Figure 5 presents the comparison. In the figure, the input sen-
tence @ is in the middle. The blue arrow to ® denotes the model
state after the word “much". Here, a model state is the concatena-
tion of the input, cell state, and hidden state vectors [x;, c;—1, ht—1],
followed by the output (1 denotes neutral sentiment and 2 denotes

!A data and time library for Java. https://www.joda.org/joda-time/
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@ Create the number of buttons that you want with differentl%utton id.
RNN

@ <[+ 0.1483 - -0.0057 -+ -0.1084 -], 1 >
<1, 1>

(&) <[+ 0.1172 +++(-0.0063]+++ -0.0977 ** ANN

@ Also, JodaTime makes calculations with time much|simpler.

@© <[-0.1017 00773 -], 2 > Qracle

(@ <[+ 0.1120 =+ 0.0107 +++ -0.0747 ++1, 2 > <5

@ Databases are much better’waa than Java.

Figure 5: Analysis of an example text (shown in @). Vectors
@-@ denote the model states (i.e., [xt, c;—1, hy—1]) at the step
of the underlined words in sentences M-Q), followed by the
prediction result at the end (gray background), 1 for neutral
and 2 for positive. @ and ®) are states generated by a buggy
RNN model. © and @ are states from the oracle. @ is a state
closest to ® produced by a buggy RNN model, whereas @ is

a state closest to © by the oracle. @ is a test sentence; @ is
from the training set and G from the validation set.

positive). As sentence @) is not in the training data set, the model
has to generalize based on what it has seen during training. Further
inspection shows that sentence (@ is in the training set, and its state
@ after word “different”is very close to ® and the corresponding
output is neutral, which explains why the model predicts neutral
sentiment. Below sentence @), we show the state after word “much"
by the oracle model, which approximates model output when given
the concatenation of the input, cell state, and hidden state vectors
[xt,cr—1, he—1] for all the correctly classified sentences in the valida-
tion set. Its construction will be discussed in Section 3.1. When we
provide the concatenated vector of sentence @) to the oracle model,
it predicts positive as shown in ©. This is because © is close to
state @ after word “better" in sentence @ from the validation set,
which has the positive sentiment.

The state vector values heavily depend on the word embeddings.
If we consider © denotes the state derived from the ideal embed-
dings, the root cause lies in that the current problematic embeddings
lead to the state divergence of ® and ©, which are highlighted by
the red and blue rectangles. There may exist multiple state diver-
gence dimensions, we only highlight one for demonstration. As
the oracle has the knowledge of @), this is the reason it produces
different prediction in contrast with the buggy RNN model. The
essence of our technique is hence to harden the word embeddings to
minimize such differences.

Note that although we use a single input sentence to intuitively
explain the idea, our technique essentially has to minimize such
differences for all misclassified sentences in the training set to
achieve the effect of improving overall accuracy.

3 DESIGN

Given an RNN model to debug, we leverage the validation dataset
to inspect the problematic behaviors. Figure 6 illustrates the over-
all design of our approach. Data in the validation set can be first
processed by the model to identify the correctly classified and mis-
classified samples. We consider that traces of the correctly classified
samples to-some-extent denote the desired behaviors of the model,
while traces of the misclassified samples represent undesired behav-
iors. A trace divergence analysis is then performed on the traces
from these two sets of samples. That is, we utilize the traces to
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Figure 6: Overview of TRADER.

construct two models, called the oracle machine and the buggy ma-
chine, which approximate the distributions of state values from the
correctly classified samples and from misclassified samples, respec-
tively. These two machines are the reference models for identifying
diverged steps (Section 3.1). We aggregate all the diverged steps
of misclassified samples in the validation dataset, and inspect the
difference of their state vectors to identify the critical dimensions,
which have large aggregated differences. We consider them the
faulty state dimensions. Intuitively, they denote the sub-space that
the model gets “confused”. In the fixing step, we target on further
training these faulty dimensions to alleviate the confusion. Specif-
ically, we add small perturbations to these dimensions and then
retrain the word embeddings using the original training set so that
the perturbations only cause minimal output variations. Intuitively,
we are tuning the embeddings so that the model becomes more
affirmative and have stable prediction even when confusion (per-
turbation) is intentionally injected in the faulty dimensions. As we
observed during experiments, identifying the faulty dimensions is
critical as perturbing all dimensions leads to accuracy degradation.

One may wonder why not simply train the model using the val-
idation set or even both the training set and validation set. Note
that the essence of our technique is not to leverage the additional
samples in the validation set to train. Instead, we utilize the val-
idation set just to locate the dimensions that do not generalize
well to new data and then further harden these dimensions. In fact,
we will show in Section 4 that training the model using both the
training set and the validation set cannot achieve the same level of
improvement as TRADER.

3.1 Trace Divergence Analysis

DL models are normally trained on a training set and then tested
on a test set, which is unseen to DL models during training. It is
essential to have another set (also unseen during training) for de-
bugging models and avoiding over-fitting on the training set, which
is referred to as the validation set. Following a similar philosophy,
our technique leverages the validation set for model debugging.
As shown in Figure 7, text samples in the validation set are fed
to the model. By comparing to the ground truth labels, we can
acquire two sets of samples: the correctly classified samples (in
the top box) and the misclassified samples (in the bottom box).
These text samples can be further processed by the same model
separately to record their traces. More specifically, given a text
sample, for each step an input word is fed into the model, we
record the input embedding x; and the previous contexts ¢;—1 and
h;—1 as the state vector p;. The output vector q; produced by the
output layer is also recorded. The state vector p; and the output
vector ¢; are regarded as a trace entry. Hence, a sequence of trace
entries can be generated for each input sample. We use the same
procedure to generate two separate trace sets, called the oracle
traces (generated from the correctly classified samples) and the
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Figure 7: Trace generation for samples in the validation set. Words in input sentences are mapped to their corresponding word embed-
dings x;. Internal states c; and h; are the initial internal state vectors for LSTM models. The output layer is used to predict the final output

label as discussed in Equation 2. Here, it has been extended to the whole sequence for acquiring the internal output at each step.

Oracle
Machine

Oracle
Traces

Fitting / Trace
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Also, JodaTime makes... <@ ,>

Figure 8: Construction of oracle machineand buggy machine,
and trace divergence analysis. Trace divergence analysis is con-
ducted on a sample text by feeding its traces to the two machines
and comparing the output values.

buggy traces (from the misclassified samples). These two set of
traces are crucial for debugging RNN models as they represent
models’ internal behaviors on unseen data.

We utilize the two sets of traces acquired from the validation set
to learn the distributions of model’s proper and buggy behaviors.
Figure 8 illustrates the procedure of trace divergence analysis. To
model the distribution of oracle/buggy traces, we employ the linear
regression approach to approximate the relation between state
vector p; and output value g, using the following equation:

qr = Wy - pt + by, 9)
where W, and b, are weight and bias of linear regression, respec-
tively. These parameters will be updated based on all the traces,
and each dimension of weight W, denotes the importance of the
corresponding state vector dimensions with respect to the output
value. The fitted models for oracle (buggy) traces are called oracle
(buggy) machine. In other words, these machines predict output g,
from given state p;. Note that they are not RNN models but rather
simple classifiers to predict one step of model behavior. The two
machines approximate the desired and undesired behaviors of the
model, respectively, in the presence of unseen data.

For a given misclassified sample from the validation set (boxed
text in the bottom), traces are extracted from the RNN model, and
fed to both the oracle machine and the buggy machine. We then
compare the outputs from the two machines to identify the diverged
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Algorithm 1 Aggregated Divergence Analysis

1: function DIVERGENCE(dataset S)

2 d « zero vector with size of step input
3 for sample in S do

4 T « generate_trace(sample)

5: for pin 7 do

6: qo — argmax(OM.predict(p))
7 qp < argmax(BM.predict(p))
8 if not g, == q; then

9 d « add_vector(d, p)

10: Wo, Wp < get_weight(OM, BM)
11: wg < sub_vector(wy, wp)

12: d = abs(mul_vector(d, wg))

13: return d

steps. Note that such divergence cannot be directly identified by
monitoring the original model operations.

As we aim to identify the root cause of trace divergence, i.e., the
faulty dimensions, we aggregate the state vectors from the diverged
steps. Algorithm 1 details the aggregation procedure. The algorithm
loops over all the misclassified samples in the validation set. For
each sample, it first generates the corresponding traces from the
RNN model (line 4). The trace divergence analysis is conducted
on each step. The Oracle machine (OM) is provided with the state
vector p and outputs an oracle value g, (line 6). Similarly, the Buggy
machine (BM) is also provided with the same state vector p, and
outputs a buggy value gy, (line 7). These two output values g, and q;,
are compared to identify the diverged steps. Those diverged steps
are aggregated in d (line 9). The comparison is needed because
not all the steps in a buggy trace are wrong. In line 10, we acquire
the weights from both the oracle machine and the buggy machine,
which indicate the importance of state vector for oracle traces
and buggy traces. Intuitively, the difference between these two
weight vectors denotes the importance divergence of the individual
dimensions of state vector (line 11). At the end, we multiple d with
wy to compute the weighted differences for individual dimensions
(line 12). The faulty dimensions are the ones with exceptionally
large values. Figure 10 shows an example of vector d for an LSTM
model (the red bars). Observe that there are a number of dimensions
that have much larger values than the others. They denote the
split/confusing behaviors of the subject model in the presence of
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Figure 9: Structure of embedding regulation. The left LSTM
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perturbations for input embeddings x; as well as internal states c;_;
and h;_1; g and g5 are the final outputs from the original model and
the perturbed model, respectively.

unseen data. While these dimensions are not human interpretable,
they provide sufficient guidance for embedding tuning as shown in
the next section.

3.2 Embedding Regulation

After identifying the faulty state vector dimensions, which intu-
itively are the places the model is very unstable and has diverging
behaviors for correctly and incorrectly classified samples, we next
aim to mitigate the problem by regulating word embeddings. The
essence of state divergence lies in that the model is so sensitive for
these dimensions that small changes can lead to substantial output
changes. A key feature of RNN type of models is that the encoded
values of state vectors are largely determined by word embeddings.
That is, words close to each other in the embedding space tend to
lead to state vector values close to each other. Our fixing strategy
is hence to change word embeddings so that the model becomes
less sensitive along the faulty dimensions, by enlarging the embed-
ding distances of the words that could lead to substantial output
variations. This is done by applying perturbations to the faulty
dimensions and then searching for minimal output variations by
tuning word embeddings. Since RNN type of models have a loopy
structure, the perturbations are applied to each iteration.

Figure 9 demonstrates the detailed procedure of our embedding
regulation. The left LSTM model is the original model, which takes
an input embedding x; at each time and outputs the final result
q. The right LSTM model is the perturbed LSTM model, where a
perturbation vector € is added to the input embedding x; and a
perturbation vector A is added to both cell state c¢;—; and hidden
state h;— at each step. The output g5 from the perturbed model is
compared to the output ¢ from the original model. The difference
between the two outputs is then propagated to the input word
embeddings. We propose a divergence loss to propagate error infor-
mation from the output differences to the input embeddings. The
divergence loss is formalized as follows.

Laiv = Lee + L, (10)

where L is cross entropy loss [24] and L;, is L2 (squared error)
loss. The loss functions are used to express our objective to minimize
output variations in the presence of perturbations. Cross entropy
loss is widely used in classification tasks. The following formula
defines its essence.

N C
-Lcez_ ZZ OCI(P 9
=1

where N is the number of training samples, and C is the number
of classes. For each sample n, if the final output o is different from

(11)
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Algorithm 2 Embedding Regulation

1: function REGuLATION(model M, dataset S, embedding &, divergence
D)

2: u « zero vector with dimension size of embedding

3: v « zero vector with dimension size of hidden neurons
4: for d in D do

5: if d > 0 then

6: idx « D.index(d)

7: if idx belongs to & then

8: ulidx] « random_normal(0, €)

9: else

10: v[idx] « random_normal(0, 1)

11: & « get_variable(&)

12: & « add_vector(&, u)

13: ct, hy « initialized with dimension size of hidden neurons
14: for i in range(max_step) do

15: ¢; < add_vector(ct, v)

16: hy « add_vector(h;, v)

17: ¢ty hy & LSTM(cy, hy)

18: S « embedding(S, &)

19: M.freeze()

20: LSTM.train(M, S, Lgiv)

21: return &

ground truth label ¢, then yyy € is 1; otherwise 0. py € is the predicted
probability of output o at class c. Intuitively, cross entropy loss
gauges the scale of output differences. Note that in our method,
perturbations are added to faulty dimensions for all the steps. Such
perturbations may accumulate over time and have inappropriate
impact on the final output. We hence employ L2 (squared error) loss
to reduce the influence from perturbations. It is commonly used for
regression tasks [46, 59]. In our scenario, it is formalized as follows.

L=+ ZZ(pn pn ’

nlcl

(12)

where N is the number of training samples, and C is the number of
classes. p, is the original prediction, and p¢ is the regulated predic-
tion. Intuitively, it minimizes the difference between the original
prediction and the perturbed prediction.

DL models are usually trained by minimizing the loss function,
during which model parameters are updated through backpropaga-
tion [45]. Different from general DL training, we introduce a new
training procedure, where model parameters are frozen and only
input embeddings are updated during training, as our purpose is to
regulate input embeddings according to the divergence loss. That is,
the gradients calculated from our divergence loss is backpropagated
to only the embedding variables, which are updated during training.
Algorithm 2 illustrates the procedure of embedding regulation. In
Section 3.1, aggregated divergence analysis is conducted on all the
misclassified samples in the validation set. A vector of dimension di-
vergence is generated for identifying faulty state vector dimensions.
Here, we utilize this divergence vector to only apply perturbations
to the faulty dimensions, which are essentially the most influential
dimensions. More specifically, we traverse over all the dimensions
and find the ones that are faulty (line 4-5). For dimensions denot-
ing input x;, a random value sampled from a normal distribution
N(0, €) (i.e., mean of 0, variance of €) is added to those dimensions
(line 7-8). The variance value € is chosen based on the standard
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Figure 10: An example of vector d for an LSTM model.

deviation of original word embeddings as it should not overshadow
the original values. For dimensions denoting the hidden states, a
random value sampled from a normal distribution with mean of
0 and variance of 1 is added to those dimensions. Different from
€ that is only added to the input vector, the variance value A is
added to internal states at each step. A large value of A will ac-
cumulate over time and can significantly affect normal behaviors
of models. Thus, A is much smaller than €. Lines 11-12 apply the
input perturbations. RNN kind of models have a loopy structure
where internal states are computed through multiple steps. Thus,
for internal hidden states, perturbations are added for every step
(line 14-17). Training inputs of text tasks are sequences of words,
which are mapped to the corresponding word embeddings before
training (line 18). Model parameters are frozen during training as
we aim to regulate embeddings (line 19). Finally, we leverage the
divergence loss to tune word embeddings (line 20). The blue bars in
Figure 10 presents the trace divergence analysis results for the same
model after embedding regulation. Observe that the significance of
the faulty dimensions are substantially reduced.

After we acquire the new embeddings, we freeze the embeddings
and retrain the model (by updating model parameters). This is a typ-
ical procedure for training RNN type of models when embeddings
are changed.

4 EVALUATION

We evaluate TRADER on various datasets, word embeddings, and
RNN model structures. Most experiments were conducted on a
server equipped with two Xeon E5-2667 3.20GHz 8-core processors,
128 GB of RAM, 2 Tesla K40c GPU, 2 GeForce GTX TITAN X GPU
and 4 TITAN Xp GPU cards.

4.1 Setup

We use five datasets, three well-known word embeddings, and three
widely used RNN model structures (each having three different
settings), with a total of 135 models. The scale of our experiments
is much larger than similar works on RNN models [17, 38, 39, 51,
63, 94], which use 2-13 models.

Datasets. Five datasets are employed in the evaluation. Three of
them, stack overflow discussions, mobile app reviews, JIRA issue
comments, are from the software engineering (SE) community pro-
vided by Lin et al. [49]. IMDB dataset [53] is a large dataset for
movie reviews. Another dataset, Yelp reviews [100], is one of the
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Table 1: Statistics of datasets.

Dataset #samples # negative # neutral # positive Max length

App reviews 341 130 25 186 231
IMDB 50,000 25,000 0 25,000 2,506
JIRA issues 926 636 0 290 49
Stack overflow 1,500 131 1,191 178 52
Yelp 5,946,620 1,544,553 0 4,402,067 3,929
Table 2: Word embeddings.
Embedding  # dimensions Mean Standard deviation
GloVe 50 0.020941 0.644104
Word2vec 300 -0.004118 0.107278
Adversarial 256 -0.053817 0.767211

largest datasets for sentiment analysis. Table 1 shows the statistics
of these five datasets. The app reviews dataset has 341 samples with
3 sentiment classes. The longest sentence in this dataset has 231
words. The IMDB dataset has 50,000 samples with two sentiment
classes. The max length of sentences in IMDB is 2,506. The JIRA
issues dataset has 926 samples with two sentiment classes. The
longest sentence in this dataset has 49 words. The stack overflow
dataset has 1,500 samples with three sentiment classes. Most of
the samples are from the neutral class. The Yelp reviews dataset
is obtained from the Yelp Dataset Challenge in 2015 containing
around 6 million samples. The max length of sentences in Yelp is
3,929. For the three SE datasets and the Yelp dataset, we partition
them into three disjoint sets: training set (80%), validation set (10%),
testing set (10%), which is consistent with the setting in [17, 58, 94].
The original IMDB dataset has already been split into two sets with
25,000 samples for training and 25,000 samples for testing. We fol-
low the convention by preserving the test set, and further partition
the training set to two parts: 22,500 samples in training and 2,500 in
validation. Thus, the IMDB dataset is split into three parts: training
(45%), validation (5%), and testing (50%).

Word Embeddings. Three kinds of word embeddings are stud-
ied in our experiments. The GloVe word embedding was proposed
by Jeffrey et al. [65]. It leverages statistical information in a large
corpus and only trains on the nonzero elements in a word-word co-
occurrence matrix. We employ a pre-trained GloVe embedding from
a real-word application [19]. The Word2vec embedding was intro-
duced by Mikolov et al. [54]. It is one of the most widely employed
embeddings with many applications [48, 74, 98]. We also obtain a
pre-trained word2vec from an existing project [15]. The Adversarial
word embedding was especially optimized for text classification
[58]. We utilize the original implementation from the authors [57]
to train the embedding. Table 2 illustrates the statistics of these
three embeddings. GloVe has 50 dimensions for each word, and
has the largest mean value compared to the other two embeddings.
Word2vec has 300 dimensions, the largest number of dimensions
among all three embeddings. The standard deviation of word2vec is
smaller than other embeddings, meaning the perturbation variance
€ should be small for word2vec. The Adversarial embedding has
256 dimensions. It has the largest standard deviation, meaning a
large variance value of perturbation e should be chosen.

Models. We use three popular RNN model structures, each having
three different settings (on the number of hidden neurons, namely,
64, 128, and 256). The vanilla RNN is a basic RNN model with
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Table 3: Trace divergence analysis overhead.
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Vanilla RNN

LSTM

GRU

Overhead Dataset GloVe

Word2vec Adversarial

GloVe

Word2vec Adversarial

GloVe

Word2vec

Adversarial

64 128

256 64

128 256 64 128 256

64

128

256

64 128 256 64 128 256

64

128 256

64

128

256 64

128 256

1.737
0.742
1.070
1.277
0.206

1779
0.967
1.034
1.242
0.305

App reviews
IMDB (x10)
JIRA issues
Stack overflow
Yelp (x10°)

Time (s)

1.823
0.912
1.057
1.220
0.466

0.91

1.927

1.272
1.223
0.536

1.833
1 1.279
1.164
1.109
0.638

1.958 1.679
1.174 0.939
1.409 1.142
1.266 1.107
0.842 0.491

1.798
1.096
1.275
1.243
0.613

2.085
1.097
1.161
1.442
0.775

2.950
1.523
1.499
1.366
0.278

2.841

1.276
1.313
1.553
0.404

3.029
1.550
1.339
1.616
0.707

3.151
1.994
1.430
1.486
0.553

3.108
1.822
1.276
1.634
0.717

3.216
2.024
1.383
1.609
1117

2.903
1.672
1.397
1.500
0.494

2.720
1.665
1.435
1.503
0.625

2.526
1.946
1.463
1.508
0.970

3.454
1.483
1.415
1.638
0.502

4.063
1.346
1.374
1.611
0.605

4.223
1.633
1.527
1.502
0.820

3.856
1.678
1.481
1.706
1.725

5.137
1.690
1.716
1.435
2.149

3.511 4.823
2.053 1.694
1.331 1.505
1.594 1.664
1.836 1.182

6.064 3.706
1.651 1.906
1.483 1.525
1.555 1.767
1.097 1.315

0.399
1.943

0.616
3.015
0.327 0.507
0.742 1.147
0.483 0.766

App reviews

IMDB (x10%)
Space (M) JIRA issues

Stack overflow

1.052
5.160
0.866
1.958
1.290

1.249
6.131
1.029
2.326
1.560

1.467
7.203
1.209
2.731
1.822

1.903
9.348
1.569
3.542
2.382

1.100
5.394
0.906
2.047
1.407

1.317
6.466
1.086
2.453
1.660

1.753
8.610
1.446
3.264
2.191

0.616
1.943
0.507
1.147
6.933

3.015

1.052

0.866
1.958
1.124

Yelp (x10%)

1.923
5.160
1.586
3.580
2.000

1.467
6.131
1.209
2.731
1.515

1.903
7.203
1.569
3.542
1.931

2.774
9.348
2.289
5.165
2.787

1.317
5.394
1.086
2.453
1.339

1.753
6.466
1.446
3.264
1.756

2.624
8.610
2.165
4.886
2.592

0.399
1.943
0.327
0.742
4.561

0.616
3.015
0.507 0.866
1.147 1.958
6.879 1.154

1.052
5.160

1.249
6.131
1.029
2.326
1319

1.467
7.203
1.209
2.731
1.521

1.903 1.100
9.348 5.394
1.569 0.906
3.542 2.047
1.955 1.118

1317 1.753
6.466 8.610
1.086 1.446
2.453 3.264
1319 1.730

Table 4: Fitting scores of oracle traces and buggy traces generated for each model.

Vanilla RNN

LSTM GRU

Dataset Trace GloVe Word2vec Adversarial GloVe

Word2vec Adversarial GloVe Word2vec Adversarial

64 128 256 64 128 256 64 128 256 64 128

256

64

128 256 64 128 256 64 128 256 64 128 256 64 128 256

0.974
0.995

0.971
0.970

0.679
0.466

0.971
0.991

0.955
0.988

0.967
0.993

0.980
0.978

0.983
1.000

0.989
1.000

0.992
0.994

0.981
1.000

Oracle

App Reviews
P Buggy

0.999
1.000

0.997
1.000

0.984
1.000

0.989
1.000

0.989
1.000

0.990
1.000

0.994
1.000

0.983
0.998

0.975 0.987
1.000 1.000

0.993
1.000

0.998
1.000

0.986
0.996

0.993
1.000

1.000
1.000

0.978
1.000

0.933
0.932

0.965
0.968

0.966
0.983

0.986
0.985

0.985
0.986

0.985
0.986

0.884
0.868

0.858
0.851

0.830
0.816

0.975
0.949

0.984
0.967

Oracle

IMDB
Buggy

0.964
0.932

0.990
0.985

0.993
0.982

0.992
0.980

0.996
0.991

0.995
0.988

0.996
0.990

0.992
0.981

0.991 0.985
0.979 0.965

0.989
0.980

0.985
0.977

0.912
0.852

0.917
0.853

0.963
0.932

0.992
0.978

0.943
1.000

0.949
1.000

0.828
1.000

0.977
1.000

0.987
1.000

0.993
1.000

0.973
1.000

0.974
1.000

0.989
1.000

0.986
1.000

0.984
1.000

Oracle

IRA issues
! Buggy

0.994
1.000

0.999
1.000

0.941
1.000

0.950
1.000

0.993
1.000

0.996
1.000

0.998
1.000

0.974
1.000

0.986 0.995
1.000 1.000

0.999
1.000

0.999
1.000

0.987
1.000

0.991
1.000

0.999
1.000

0.960
1.000

0.862
0.875

0.858
0.882

0.899
0.970

0.868
0.944

0.865
0.944

0.973
0.988

0.904
0.944

0.817
0.934

0.916
1.000

0.994
0.997

0.902
0.950

Stack overflow Oracle
Buggy

0.891
0.893

0.994
0.999

0.948
0.969

0.944
0.977

0.967
0.991

0.987
0.993

0.881
0.987

0.880
0.966

0.908 0.953
0.990 0.999

0.954
0.998

0.975
0.997

0.950
0.993

0.917
0.998

0.933
0.997

0.948
0.967

0.946
0.947

0.958
0.962

0.970
0.978

0.986
0.987

0.990
0.989

0.919
0.950

0.925
0.930

0.915
0.913

0.915
0.918

0.987
0.967

0.988
0.970

Oracle

Yelp Buggy

0.988
0.969

0.991
0.978

0.990
0.976

0.989
0.975

0.993
0.983

0.993
0.981

0.994
0.984

0.990
0.974

0.990 0.990
0.971 0.971

0.992
0.979

0.991
0.981

0.979
0.948

0.969
0.925

0.971
0.928

0.990
0.978

one hidden state (see Section 2.1). LSTM has a complicated model
structure with three different types of control gates as discussed
in Section 2.1. GRU is a more advanced RNN model introduced by
Cho et al. [14]. It has been shown to be one of the state-of-the-arts.
A batch size of 24 samples is used for each training iteration, except
for Yelp (which has the size of 512, its default setting). We use the
Adam optimizer [40] with the learning rate of 0.001. Note that we
train these models by ourselves, which is consistent with existing
works on RNN [19, 77]. The accuracy of the trained models align
well with the literature [49].

Hyper-parameters. Three hyper-parameters (i.e., 6, €, 1) are used
for embedding regulation. Parameter 0 is used for selecting faulty
dimensions. The value of 6 can vary from the minimum value to
the maximum of the divergence vector. Parameter € and A are used
to perturb embedding vectors and internal states, with € ranging
from (0, 1) and A = 107 The values of # and € are chosen using the
validation set. Specifically, we uniformly sample ten values from
their range and select the one that produces the best result on the
validation set. In most cases, 0 is close to the mean and € is in (0.1,
0.3) depending on the model. Concrete settings can be found in [84].
Note that such parameter tuning is typical in deep learning.
Baseline. We compare our technique with a state-of-the-art RNN
hardening technique [63] that does not use debugging feedback, but
rather standard model hardening strategies, including penalizing
weights/embeddings which adds lz-norm of weights/embeddings
to the cost function (e.g., Lnew = Lo1q + [IW||2 where W is the
model weights), re-embedding words which minimizes difference
between pre-trained embeddings and the embeddings fine-tuned
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during supervised training, and dropout which sets each neuron to
0 with a probability p during training. Since it is a general technique
likes ours (without requiring any model structure enhancement)
and reports state-of-the-art results, we use it as the baseline. Note
that we cannot use GANs as a baseline like in MODE [52] because
high quality GANs for RNN models are still an open challenge, as
pointed out in [89].

To reduce the uncertainty introduced by random perturbation.
We ran each experiment 10 times and report the average, except
Yelp, which we can only afford running it 3 times due to its ex-
tremely large size.

4.2 Evaluation of Trace Divergence Analysis

We leverage traces acquired from the validation set to learn the
distributions of model behaviors. We first collect the time and space
cost of the trace divergence analysis. We then study the effective-
ness of the linear regression approaches in approximating distribu-
tions of the oracle traces and the buggy traces.

Table 3 presents the overhead introduced by the trace divergence
analysis. From the table, it can be observed that for SE datasets,
the analysis time is less than 7 seconds and the space overhead is
mostly around a few MBs. Thus, it is negligible compared to the
millions of weights and hours of training. For the large datasets
IMDB and Yelp, the analysis time is around a few minutes and the
space overhead is around thousands of MBs. Note that their results
have different scales from the others (indicated by the parentheses
in column 2). We argue the analysis cost is still reasonable.
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Vanilla RNN LSTM GRU

Embedding Dataset Original RS TRADER Original RS TRADER Original RS TRADER
64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256
App reviews  67.65 67.65 58.82 67.65 67.65 58.82 79.41 73.53 73.53 73.53 70.59 70.59 67.65 70.59 70.59 79.41 82.35 82.35 76.47 76.47 76.47 76.47 76.47 76.47 79.41 79.41 82.35
IMDB 64.81 63.42 60.32 61.91 66.52 65.70 71.47 69.40 72.17 84.67 84.51 84.28 84.48 84.82 84.74 87.13 86.80 85.72 85.63 85.82 85.50 85.11 85.05 84.82 87.44 87.41 86.98
GloVe JIRA issues 88.04 91.30 84.78 89.13 89.13 81.52 96.74 96.74 97.83 94.57 94.57 93.48 93.48 92.39 91.30 97.83 97.83 97.83 91.30 92.39 94.57 94.57 93.48 93.48 97.83 96.74 96.74
Stack overflow 86.00 86.00 86.00 86.00 86.00 86.00 88.00 88.00 88.00 86.00 86.00 86.00 86.67 86.67 86.00 89.33 89.33 89.33 86.67 86.67 86.00 86.67 86.67 86.67 88.67 89.33 89.33
Yelp 79.56 78.51 77.70 79.33 80.67 77.67 83.11 83.17 89.90 92.02 92.45 92.09 92.79 92.94 92.93 94.07 94.67 94.81 91.45 91.34 90.89 92.14 92.06 91.90 94.19 94.36 94.50
App reviews  61.76 55.88 67.65 67.65 58.82 58.82 79.41 85.29 79.41 79.41 73.53 67.65 82.35 79.41 76.47 88.24 88.24 88.24 79.41 76.47 76.47 82.35 79.41 79.41 82.35 88.24 85.29
IMDB 68.86 63.62 70.62 72.09 73.34 71.01 77.27 78.73 77.32 87.42 87.88 87.33 87.18 87.28 87.18 88.26 88.23 87.75 88.02 88.45 88.38 87.75 87.56 87.41 88.67 88.60 88.34
Word2vec JIRA issues 92.39 91.30 88.04 93.48 94.57 88.04 98.91 97.83 97.83 93.48 94.57 91.30 94.57 96.74 95.65 96.74 96.74 97.83 93.48 96.74 96.74 94.57 96.74 96.74 97.83 97.83 97.83
Stack overflow 86.67 86.67 86.00 86.67 86.67 86.00 88.00 88.00 88.00 86.67 86.00 86.00 86.67 86.00 86.67 89.33 89.33 89.33 86.67 86.67 86.67 87.33 86.00 86.00 88.00 88.67 88.00
Yelp 82.91 82.10 88.86 84.02 89.76 86.64 87.00 90.85 89.93 92.50 93.10 93.32 93.40 93.57 93.49 94.62 95.02 95.16 92.82 92.70 92.80 92.90 92.84 92.76 94.62 94.73 94.87
App reviews  55.88 58.82 52.94 61.76 61.76 58.82 76.47 79.41 82.35 76.47 61.76 64.71 67.65 61.76 67.65 85.29 82.35 82.35 73.53 70.59 73.53 76.47 76.47 76.47 82.35 85.29 85.29
IMDB 76.22 74.20 67.75 76.62 73.09 70.35 78.78 79.33 79.68 87.94 88.39 88.51 87.13 88.44 89.07 88.62 89.07 89.20 88.96 88.52 88.65 88.94 89.12 88.79 89.25 89.42 89.70
Adversarial JIRA issues 89.13 90.22 89.13 91.30 89.13 91.30 96.74 96.74 97.83 93.48 93.48 94.57 94.57 93.48 96.74 96.74 96.74 97.83 95.65 96.74 96.74 96.74 96.74 95.65 98.91 98.91 98.91
Stack overflow 86.00 84.67 86.67 82.67 85.33 84.00 88.00 88.00 88.00 86.67 85.33 86.67 86.67 86.00 86.00 88.67 88.67 90.00 86.67 86.67 86.00 86.67 86.67 86.67 88.00 89.33 89.33
Yelp 85.19 86.30 85.27 85.33 86.29 79.35 87.92 88.54 91.67 93.11 93.49 93.14 94.04 94.26 94.38 94.52 94.97 95.10 93.69 93.84 93.80 94.07 94.15 94.12 94.60 94.77 94.96

Table 5: Results of regulating all dimensions of embeddings.

Vanilla RNN LSTM GRU
Embedding Dataset
64 128 256 64 128 256 64 128 256
App reviews 55.88 50.00 55.88 70.59 64.71 64.71 76.47 73.53 73.53
IMDB 58.52 66.33 59.25 86.78 85.29 84.61 85.11 86.16 85.96
GloVe JIRA issues 93.48 90.22 86.96 95.65 96.74 93.48 95.65 95.65 95.65
Stack overflow 8533 79.33 84.00 85.33 86.67 87.33 87.33 86.00 86.00
Yelp 77.58 77.15 77.32 93.79 94.51 94.54 93.83 94.19 94.25
App reviews 61.76 58.82 70.59 79.41 70.59 58.82 79.41 8235 82.35
IMDB 55.77 56.70 61.01 87.44 87.60 85.03 87.45 88.04 87.51
Word2vec  JIRA issues 94.57 94.57 90.22 92.39 93.48 91.30 95.65 96.74 95.65
Stack overflow 86.00 84.00 86.00 86.67 87.33 86.67 86.00 86.67 86.67
Yelp 75.56 77.74 84.86 94.00 94.82 94.87 94.48 94.52 94.59
App reviews 5294 64.71 67.65 76.47 70.59 76.47 76.47 70.59 70.59
IMDB 68.23 70.98 63.65 87.84 88.37 88.74 88.61 89.09 88.52
Adversarial JIRA issues 90.22 9348 90.22 92.39 92.39 9239 95.65 94.57 95.65
Stack overflow 84.67 82.00 83.33 84.67 88.00 87.33 88.00 83.33 86.00
Yelp 86.26 85.85 81.85 94.49 94.69 95.00 9445 94.76 94.91

Linear regression is utilized to approximate the distributions of
oracle traces and buggy traces to construct the oracle machine and
the buggy machine. To evaluate the performance of the approach,
we demonstrate the results in Table 4. The first column denotes the
datasets. The second column denotes the trace types. The following
columns denote different models (Vanilla RNN, LSTM and GRU),
word embeddings (GloVe, Word2vec, Adversarial), and model set-
tings (64, 128, 256) that are used for training the original application
models. The fitting score in Table 4 denotes the coefficient of de-
termination R?, which is used to measure the fitting performance.
It ranges from 0 (worst) to 1 (best). Almost all the scores are over
0.9, which indicates that our oracle (buggy) machine effectively
approximates the distribution of oracle (buggy) traces.

4.3 Evaluation of Fixing Model Bugs

The results of bug fixing are presented in Table ??. The first column
denotes the three word embeddings. The second column denotes the
five applications. The following columns denote the test accuracy
for different models and settings. Column “original” denotes the
results for original models. Column RS detotes the baseline, a state-
of-the-art embedding regulation technique [63]. The original and RS
models are trained on both the training and the validation sets. We
chose to do that as TRADER essentially makes use of the validation
set in its debugging procedure. We also evaluate the effectiveness
of defective dimension identification in Table 5. Particularly, we
use our proposed embedding regulation technique to regulate all
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the dimensions of embeddings and retrain models based on those
embeddings.

We have the following observations. For various applications
using different word embeddings and model structures, TRADER
can consistently improve the test accuracy, compared to the original
models trained on both the training set and the validation set. The
baseline RS [63] can improve a subset of models, some with substan-
tial improvement (e.g., 8.82% for App reviews dataset using LSTM
with 256 neurons and word2vec embeddings). However, it leads
to degradation in a number of models as well (e.g., -5.93% for Yelp
dataset using vanilla RNN with 256 neurons and Adversarial embed-
dings). The average improvement is 0.6%. In comparison, TRADER
achieves 5.37% improvement on average (over the original models),
which is substantially larger than RS, and in fact also much larger
than the improvement reported in the literature for RNN types
of models, which is typically 0.05%-3.76% [17, 38, 39, 51, 64, 94]
with a median of 0.7%. The improvement on the largest dataset
Yelp is relatively smaller than the others, especially for the set-
ting (GRU structure + Adversarial embedding). This is because
the original model already achieves very high accuracy. When all
the dimensions are considered during embedding regulation, the
improvement on the test accuracy is inconsistent, comparing to
TRADER. Especially, in some cases (e.g., App reviews dataset using
vanilla RNN and GloVe embedding), the result even drops lower
than original models. This observation supports the importance of
identifying faulty dimensions when regulating embeddings.

4.4 Case Study

In this section, we study individual cases to show why the buggy
model mis-predicts input samples and how the fixed model per-
forms. Figure 11 shows four text samples from the app reviews
dataset and the stack overflow dataset. For each sentence, we
present a pair of results, with the first predicted by the buggy
model and the second predicted by the fixed model. The color from
red to green and then to blue denotes the sentiment from negative
to neutral and then to positive. The brightness of colors represents
the degree of sentiment values. Brighter the color, larger the degree
towards the corresponding sentiment. For the first case, the ground
truth label is positive but the buggy model predicts neutral. It can
be observed that the sentiment output stays neutral at the step with
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Figure 11: Prediction by the buggy model and the fixed
model. Each pair shows the prediction results by the buggy model
(top) and the fixed model (bottom). The color from red to green and
then to blue denotes the sentiment from negative to neutral and
then to positive. The brightness of colors represents the degree of
sentiment values. Brighter the color, larger the degree towards the
corresponding sentiment.

word “worked”. In this context, word “worked” has positive senti-
ment and should significantly contribute to the final prediction. The
fixed model acts as expected. In the second case, the buggy model
treats word “working” non-negatively. However, in this context, it
comes after word “not”, which should be considered jointly. The
third case shows that in long sentences, the buggy model may focus
locally without considering the whole context (“lower energy
settings”), which produces wrong prediction. In the fourth case,
the buggy model focuses too much on the previous context with-
out considering the local information (“fine”). We think that after
regulating the embeddings, the model substructures (e.g., forget
gates) have more appropriate behaviors (e.g., remembering the right
context and forgetting the undesirable ones) as their behaviors are
not perturbed by words that have different meanings but similar
embeddings.

5 THREAT TO VALIDITY

Since we use random perturbation during training, which is typ-
ical in model hardening [66], the results may have uncertainty.
To reduce the threat, we run our experiments multiple times and
report the average. The results are achieved on specific settings,
such as batch size, optimizer, learning rate, and hyper-parameter
values. To achieve fair comparison, we follow the same setting in
existing works as much as possible (e.g., regarding how to partition
datasets). We also release our settings in [84] for reproduction. Note
that although cross-validation is often used to reduce uncertainty in
machine learning results, due to the large scale of data, most exist-
ing works on RNN, especially those considering datasets like IMDB
and Yelp, cannot afford cross-validation [17, 51, 58, 94]. The original
models may have bugs other than problematic embeddings (e.g.,
data bias). The good results we achieve could be partially attributed
to that the hardening alleviates some of those bugs. However, the
fact that we only perform guided hardening on embedding (instead
of on weights like in [52]) indicates that the other bugs, if they exist,
have substantial confounding with embeddings. The evaluations
are conducted on sentiment analysis task. The proposed TRADER,
however, is not application specific. For instance, in sequence-to-
sequence tasks (e.g., neural machine translation), two RNN models
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are usually used: one (Encoder) for encoding input sequences to
hidden states and the other one (Decoder) for decoding target se-
quences from hidden states together with the output of the previous
step. The Decoder is similar to RNN models used in sentiment anal-
ysis, where hidden states and an input element are fed to the model
to obtain an output. We can use TRADER to identify the divergence
steps of Decoder and locate faulty dimensions in hidden states and
input elements. The embedding regulation can be conducted on
both source language and target language embeddings.

6 RELATED WORK

Our technique is inspired by software debugging (e.g., [10, 18, 22,
23, 44, 67, 71, 97, 99]). Many techniques use trace analysis and
differential analysis. They locate bugs by tracing program execution
and comparing buggy runs with correct runs. Similarly, we trace
RNN executions and locate divergence. Unlike traditional software,
RNN uses high dimension embeddings and has much more complex
data dependences between the embeddings and neuron activation
values, so we use embedding regulation and retraining to repair
RNN models.

There are many works [2, 7, 13, 20, 28, 50, 62, 85] that employ
general machine learning methods and some works [9, 29, 35, 36,
47, 49, 88] specifically use RNN models in software engineering
tasks. TRADER can help software engineering researchers debug
their RNN models. Researchers have also proposed different meth-
ods to debug the machine learning models [11, 12, 52]. However,
these works focused on specific machine learning models or feed-
forward Neural Networks and are not applicable to RNN models. In
the article [70], researchers aim at debugging NLP models by gen-
erating adversarial examples as training data. In articles [37, 101],
researchers propose methods to debug models by cleaning up the
wrongly labeled training data. These approaches debug RNN mod-
els by providing better training data and do not analyze model
internals. TRADER is orthogonal to these works. There are also
works [42, 69] that explain NLP models and use model explanations
to help data engineers debug models. These approaches require
human efforts while TRADER is fully automated.

7 CONCLUSION

We develop a novel technique to automatically diagnose how prob-
lematic word embeddings influence model accuracy, by collecting
and comparing model execution traces for correctly and incorrectly
classified samples. A new embedding regulation/tuning algorithm
is proposed to leverage the diagnosis results to harden the embed-
dings. Our experiments show that our technique can consistently
and effectively improve accuracy for real world models and datasets
by 5.37% on average.
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