Correlations between Deep Neural Network Model Coverage
Criteria and Model Quality

Shenao Yan Guanhong Tao Xuwei Liu
shenao.yan@rutgers.edu taog@purdue.edu liu2598@purdue.edu
Rutgers University Purdue University Purdue University
USA USA USA
Juan Zhai Shiqing Ma Lei Xu

juan.zhai@rutgers.edu
Rutgers University
USA

shiqing.ma@rutgers.edu
Rutgers University
USA

xlei@nju.edu.cn
Nanjing University
China

Xiangyu Zhang
xyzhang@cs.purdue.edu
Purdue University

ABSTRACT

Inspired by the great success of using code coverage as guidance in
software testing, a lot of neural network coverage criteria have been
proposed to guide testing of neural network models (e.g., model
accuracy under adversarial attacks). However, while the monotonic
relation between code coverage and software quality has been sup-
ported by many seminal studies in software engineering, it remains
largely unclear whether similar monotonicity exists between neural
network model coverage and model quality. This paper sets out to
answer this question. Specifically, this paper studies the correla-
tion between DNN model quality and coverage criteria, effects of
coverage guided adversarial example generation compared with
gradient decent based methods, effectiveness of coverage based
retraining compared with existing adversarial training, and the
internal relationships among coverage criteria.

CCS CONCEPTS

+ Software and its engineering — Software testing and de-
bugging; - Computing methodologies — Neural networks.

KEYWORDS
Software Testing, Deep Neural Networks

ACM Reference Format:

Shenao Yan, Guanhong Tao, Xuwei Liu, Juan Zhai, Shiging Ma, Lei Xu,
and Xiangyu Zhang. 2020. Correlations between Deep Neural Network
Model Coverage Criteria and Model Quality. In Proceedings of the 28th
ACM JFoint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE "20), November 8~13, 2020,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °20, November 8—13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7043-1/20/11...$15.00

https://doi.org/10.1145/3368089.3409671

USA

775

Virtual Event, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3368089.3409671

1 INTRODUCTION

Deep Neural Network (DNN) is becoming an integral part of the
new generation of software systems, such as self-driving vehicle
systems, computer vision systems, and various kinds of bot systems.
Just like software testing is a key step in traditional software devel-
opment life-cycle, many researchers and practitioners believe that
DNN model testing is critical to model quality and hence the whole
system quality [39, 47, 59, 71]. Software testing can be classified as
black-box testing and white-box testing, with the former generating
test cases from the specification without looking into the imple-
mentation whereas the later generating test cases based on the
implementation. Specifically, white-box testing aims to generate
test cases to improve code coverage. High code coverage provides
more confidence about the subject software’s quality. It is widely
used in practice because progress can be easily quantified and test
generation is more amenable to automation (compared to black-box
testing). The upper half of Figure 1 shows a typical life-cycle of
software testing. Given a subject software, various test generation
engines, such as random input generation, fuzzing, symbolic exe-
cution, search based test generation, can be used to generate test
cases. The generated test suite is executed and the code coverage is
measured and provided as feed-back to the test generation engine,
whose goal is hence to generate more test cases that can improve
coverage. The failing test cases are reported to the developers who
fix the corresponding faults/bugs/defects, leading to a new version
of the subject software.

Inspired by the great success of white-box software testing, re-
searchers have proposed white-box DNN testing to improve model
quality [15, 39, 47, 59, 71, 79]. The life-cycle of DNN model testing
closely resembles that of software testing, as shown in the lower
half of Figure 1. Specifically, the subject becomes a DNN model
instead of a program. Model input generation techniques are used
to generate inputs. The generation is guided by some coverage cri-
terion just like in software test generation. A failing input example

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409671
https://doi.org/10.1145/3368089.3409671
https://doi.org/10.1145/3368089.3409671

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

y
* ' I |
- -4~

Test Generation
Engine

Software Test Case Code Coverage Bug Fixing

Model Input
Generation

DNN model Test Case Neuron Coverage Retraining

Figure 1: Software Development VS. DNN Development

is the one that causes model mis-classification and can be used to
retrain the model. The retraining procedure is analogous to the bug
fixing procedure in the software testing life-cycle. It yields a new
version of the model.

Code coverage criteria play a critical role in software (white-box)
testing. A large number of coverage criteria have been proposed and
used. For example, statement coverage measures the percentage of
statements that are executed by a test suite; edge coverage measures
the percentage of exercised control flow edges; and path coverage
measures the percentage of program paths that get executed. Differ-
ent criteria have different levels of strength (in disclosing bugs) and
entail various amount of efforts. Specifically, statement coverage is
the simplest and also the weakest, whereas path coverage is one
of the most expensive and most powerful. These criteria provide a
spectrum of options for developers when they are balancing devel-
opment cost and product quality. Inspired by these code coverage
criteria, researchers have proposed a large set of DNN model cov-
erage criteria [32, 39, 47, 71]. Specifically, a DNN model consists of
an input layer, an output layer, and a number of inner layers, each
containing a set of neurons. During model inference/prediction,
neuron activation values at a layer are computed based on those
from the previous layer. During the activation value computation
for a neuron, if the value is smaller than 0, it is set to 0 and hence
has 0 contribution to the later layer(s). We say the neuron is not
activated. Researchers observe the analogy between activating a
neuron and covering a software artifact (e.g., statement). There-
fore, they propose a number of coverage criteria based on how
neurons are activated. For example, neuron coverage [47] measures
the percentage of neurons that are activated, analogous to state-
ment coverage; and neuron pattern coverage [39, 71] measures the
activation path, analogous to path coverage.

Despite the inspiring correspondence between software testing
and DNN model testing, there are a few open questions that need
to be answered. Specifically, the effectiveness of white-box soft-
ware testing is built on a basic assumption for the relation between
code coverage and software quality. Specifically, while the devel-
opers generate more test cases to achieve higher code coverage,
more bugs are disclosed and fixed and hence the software quality
is monotonically improved (without considering regression). As
such, coverage driven test generation is one of the most popular
test generation strategies. While such monotonicity assumption is
largely proved (empirically) in software testing, its counter-part

776

S.Yan, G. Tao, X. Liu, J. Zhai, S. Ma, L. Xu, X. Zhang

in model testing is unclear (as far as we know). In fact, the seman-
tics of DNN models is substantially different from the semantics
of programs. The syntactic analogy between software statements
and neurons may not directly translate to their semantic analogy.
Intuitively, program behaviors are largely discrete whereas model
behaviors are continuous. A statement being covered suggests that
new functionality is exercised, which is a discrete and modular
event. However, a neuron being activated may not have similar
implication. It may well be that the semantics of a model lies in the
distribution of the entire activation vector instead of a set of discrete
events of whether individual neurons are activated.

Therefore, this paper aims to study the following research ques-
tions that we believe are important for white-box DNN model
testing. First, we want to study if there is monotonic relation be-
tween model coverage improvement and model quality: is it true
that training sets with increasing model coverage lead to increasing
model quality. Second, we want to study if coverage driven test
generation is effective in model testing, when compared to existing
test generation techniques that are solely based on optimization
and leverage continuity and differentiability of model behaviors.
Third, we want to study if test cases generated using model cov-
erage criteria have unique advantage in improving model quality
(analogous to bug fixing). Last, we aim to understand if there is
correlation in the various model coverage criteria.

In our study, we make use of 8 models and 3 datasets. We lever-
age model coverage based test generation techniques in DeepX-
plore [47], DeepGauge [39], DeepHunter [71] and SADL [32], and
the state-of-the-art optimization based adversarial example gener-
ation techniques C&W [11] and PGD [41], to generate test cases
that lead to different levels of coverage. These test cases are used to
retrain models. Then we measure the quality improvement using a
set of well-established metrics and study the aforementioned four
research questions. Through our study, we find:

o DNN coverage criteria do not have monotonic relations with
model quality (measured by model accuracy in the presence
of adversarial examples).

e Although DNN coverage criteria can be used as guidance
to find adversarial examples, effective adversarial examples
may not lead to higher coverage.

e Existing methods used to generate adversarial examples
based on coverage criteria usually add larger (i.e., measured
by ¢, distance) and human visible (i.e., measured by vi-
sual similarity) perturbations, compared to existing gradient
based methods. Using such inputs in model testing is analo-
gous to having program inputs that may violate the software
input preconditions.

o Adversarial examples generated by DNN coverage guided
methods can be used to retrain a model to improve model
robustness against the adversarial method used to generate
the training inputs (e.g., performing semantic preserving
operations like changing blurriness to maximize coverage).
However, such models are not robust against gradient based
attacks (e.g., PGD). On the other hand, PGD based adversarial
training can improve the model robustness against PGD
attacks but not attacks by using coverage as guidance.

Correlations between Deep Neural Network Model Coverage Criteria and Model Quality

e Most existing DNN coverage criteria correlate with each
other, some having strong correlations. This helps explain
their similar behaviors in all experiments. However, it is
unclear whether there exists partial order among them like
code coverage criteria.

2 BACKGROUND
2.1 Deep Neural Network

A deep neural network(DNN) is a parameterized function F that
maps an n—dimensional input x € R" to one of the k output classes.
The output of the DNN P € RF is a probability distribution over the
k classes. In particular, P(x); is the probability of the input belong-
ing to class j. An input x is deemed as class j with the highest proba-
bility such that the output class label y has y = argmax ;¢ x| P(x);.

During training, with the assistance of a training dataset of
inputs with known ground-truth labels, the parameters including
weights and bias of the DNN model are determined. Specifically,
given a learning task, suppose the training dataset is a set, Dyrqin =
{xi,y,-}f\:]l, of N input samples x = {x1,x3,...,xNy} € R" and the
corresponding ground-truth labels y = {y1,y2, ...yn} € [1,k]. Fis
the deep learning model that predicts the corresponding outcomes
y’ based on the given input x, i.e., y’ = F(x). Within the course of
model training, there is a loss function £ = ¥ <;<p ly] - yi||?. So
the process of model training can be formalized as:

min > |ly; - yill?
1<i<n

For a neuron o, if it is activated (i.e., activation value is larger
than some threshold value) by some input examples (in a set), it
becomes an activated neuron for the set. When we provide the
training dataset to the model, the range of the observed neuron
activation values is represented as [low,, high,].

When we provide the test dataset T, the neuron activation values
may not be limited in [low,, high,]. Instead, the values can also fall
in (—oo0, low,) or (highy, +00). We refer to (—oo, low,) U (high,, +00)
as the corner case regions (of the neuron). Let ¢(x, 0) be the output
value of neuron o for input x, then UpperCorner Neuron (UCN) and
LowerCornerNeuron (LCN), which represent the set of neurons
that ever fall into the corner case regions, respectively, given some
test inputs. Formally,

UCN={o € O|3xeT : ¢(x,0) € (highy,+0)}
ICN={0o € O|3xeT : ¢(x,0) € (—oo,lowy)}

The symbols we use in this paper are shown as follows:

LIST OF SYMBOLS

F A DL classifier on k classes, where F(x;) = y;

AN Activated neuron

LCN Set of activated neurons that fall in the corner-case regions
N The number of samples in input dataset

0] Universal set of neurons of a DNN

0 Neuron

P SoftMax layer output of F, where F(x) = argmax P(x);
J
P(x); The j-th probability of P(x), where j € {1,..., k}
UCN Setof activated neurons that fall in the corner-case regions

777

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

x An adversarial examples of x;
Xi Input samples, i € (1, N)
Yi The corresponding ground-truth label of x;, where y; =

1.k

2.2 Adversarial Examples and DNN Robustness

DNN models are vulnerable to adversarial examples. That is, given
an original input x; and a small adversarial perturbation §, a DNN
model F has:

F(x{) =F(x; +8) = yr # yi = F(x;)

Here, we use xlfl to represent x; +8, which is usually referred to as
an adversarial example. The perturbation § added to the input is ma-
liciously manipulated by an adversary and it is commonly bounded
by £,-norm, i.e., ||8||p < €. Symbol y; denotes the predicted label
of adversarial example x{, different from the original prediction
y;. There exists a large body of different adversarial attacks. We
discuss two widely used attacks in this paper and employ them in
our experiment evaluation.

CW attack is a set of powerful attacks based on different norm
measurements on the magnitude of perturbations introduced by
Carlini and Wagner [11]. In particular, CW is formalized as an
optimization problem to search for high confidence adversarial
examples with small magnitude of perturbations. They leverage
the logits Z(-) (i.e., outputs right before the softmax layer) instead
of the final prediction F(-) for generating perturbation. The objec-
tive function for optimization is the combination of target label
(IF(x{) - y¢|) and small perturbation (||d]y), which is achieved
using optimizer such as Adam.

PGD attack is a first-order universal adversary attack based on
Fast Gradient Sign Method (FGSM) [57]. FGSM performs a single
step update on the original sample x along the direction of the
gradient of a loss function. The loss function is usually defined as
the cross-entropy between the output of a network and the true
label y. PGD [41] is an iterative variant of FGSM, which applies
the projected gradient descent algorithm with random starts to
FGSM. That is, for each attack iteration, given an input x;, it first
adds a small random perturbation within given bound [|r[|, < €
to the input, i.e., xl.’ = x; + r. It then performs one step of FGSM
and applies the gradient dx to the input, i.e.,, x;" = x| + dx. The
updated sample is subsequently projected to the original bound,
ie, xf = clip(x]’,xi — € x; + €). The clip(-) function sets small
out-of-bound values to x; — € and large ones to x; + €. The process
continues until an adversarial example is generated or time-out.

2.3 Adversarial Training

Adversarial training, introduced by Goodfellow et al. [21] is one of
the most effective ways to improve DNN model robustness. The
overarching idea of adversarial training is to incorporate adversarial
examples for model training. That is, during each training iteration,
adversarial examples are first generated against the current state
of the model, and then used as training data for optimizing model
parameters. Madry et al. [41] leverage the PGD attack with multiple
steps for adversarial training. Adversarial training has been shown
effective for large scale dataset such as ImageNet [34].

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

3 COVERAGE BASED DNN TESTING

In this section, we first introduce a number of popular neuron
coverage criteria and discuss their intended usage.

3.1 DeepXplore
Pei et al. [47] introduced the neuron coverage (NC):

NC= |AN]
[¢]

where |[AN| denotes the number of activated neurons and |O| means
the total number of neurons. Basically, NC measures the percentage
of activated neurons (i.e., whose activation value is larger than 0) for
a given test suite and DNN model. DeepXplore views NC as the first
white-box testing metric for DL systems that can estimate the amount
of DL logic explored by a set of test inputs. And then, DeepXplore
tries to generate new test inputs that can maximize NC as well as
triggering differential behaviors in multiple DL systems that are
designed to have similar functionality. These different DNN models
are used as cross-reference to avoid manually labeling datasets. The
generation process applies three pre-defined image transformations:
adding a single black rectangle, changing all pixel values by a certain
degree and adding multiple small black rectangles, with the goal
of covering more neurons. After that, DeepXplore mixes these
generated examples with benign inputs to re-train the model to
improve model accuracy.

3.2 DeepGauge and DeepHunter

Ma et al. extended the coverage concept to different levels (i.e.,
neuron level, layer level) and proposed many new DNN coverage
based testing criteria in DeepGauge [39], and demonstrated that (a
test suite with) a higher coverage of these criteria potentially indicates
a higher chance to detect the DNN’s defects. Here, a defect is defined
as model mispredictions. DeepHunter [71] leverages such coverage
metrics as the feedback to fuzz DNN models to produce adversarial
samples. These new metrics include:

e k—multisection Neuron Coverage (KMNC). Given a neuron
o € O, the k—multisection neuron coverage measures how thor-
oughly the given set of test inputs T covers the range [low,, high,].
To quantify KMNC, the range [low,, high,] is divided into k equal
sections (i.e., k—multisections), with k > 0. Also S9, denotes the
m—th section with 1 < m < k. Then ¢(x, 0) € S9, means the m—th
section is covered by at least one input x € T.

2oco {Sm | 3x €T : ¢(x,0) € Sy}

KMNC =
k x|O|
e Neuron Boundary Coverage (NBC).
L
v - [UCNI + LCN|
2x 0|

From the definition, it’s easy to see that NBC shows how thor-
oughly the given set of test inputs T covers the corner-case regions.

o Strong Neuron Activation Coverage (SNAC).
|[UCN|
[¢]
Similar to NBC, SNAC measures the percentage of upper corner-
case regions that are covered by the set of test inputs T.

SNAC =

778

S.Yan, G. Tao, X. Liu, J. Zhai, S. Ma, L. Xu, X. Zhang

e Top—k Neuron Coverage (TKNC).

| Uxer (Ui<i<r topi(x, D)
0]

Here, L denotes layers of a DNN and [€ (1, L) is the [-th layer
of a DNN. Function topy (x,) denotes the neurons that have the
largest k outputs on layer / given x. TK NC measures the percentage
of neurons that have ever been the top k neurons within its layer
for a given input set T.

e Top—k Neuron Patterns (TKNP). Given a test input x, the
sequence of the top—k neurons on each layer also forms a pattern.
A pattern is an element of 211‘ X 2'2‘ X oo X 2}‘, where 2;‘ is the set of

TKNC =

subsets of the neurons on the [-th layer, for 1 < I < L. Given a test
input set T, the number of top—k neuron patterns for T is defined
as follows.

TKNP = [{(topg(x,1)), ..., (topg(x,L)) | x € T|}|

Intuitively, TK NP measures the number of different activation
patterns for the most active k neurons on each layer. It is not a ratio
but rather a number.

DeepHunter is a fuzz testing framework for finding potential
DNN defects. It mostly leverages the above coverage criteria as feed-
back to guide the test generation, and to generate new samples. It
performs pixel value transformations (i.e., changing image contrast,
brightness, blur and noise) and affine transformations (i.e., image
translation, scaling, shearing and rotation). To generate images that
preserve its original semantics, a £ based threshold is set. If the
difference between the original and the generated image is larger
than the threshold, the generated image is discarded.

3.3 SADL

Kim et al. introduced surprise adequacy to measure the coverage of
discredited input surprise range for DL systems [32]. These terms are
explained in the following. A test example is “good” if it is sufficiently
but not overly surprising comparing with the training data, that is,
sufficiently but not overly deviant from the training distribution.
Two measurements of surprise were introduced: one is based on
Keneral Density Estimation (KDE) to approximate the likelihood
of the system having seen a similar input during training, and the
other is based on the distance between the vectors representing the
neuron activation traces of the given input and the training data
(e.g., Euclidean distance). The proposed metrics were also compared
with other metrics in DeepGauge and DeepXplore. The results show
that they are correlated. Moreover, they were used to guide the
retraining of DNN models to improve robustness.

¢ Likelihood-based Surprise Adequacy (LSA). Let o, (x) denote
the activation value of a single neuron o with respect to an input
x. For a set of neurons in a layer of the DNN, denoted as O’ C O,
aor(x) denotes a vector of activation values that represents the
Activation Trace (AT) of x over neurons in O’. For a set of inputs
X, Ao (X) = {ap(x)|x € X} denotes the set of activation traces
observed for neurons in O’. Given a training set T, a bandwidth
matrix H and a Gaussian kernal function K, the activation trace of
a new input x, KDE produces a density function f as follows.

f) = oy 0, Ko () = aor(x)

x; €T

Correlations between Deep Neural Network Model Coverage Criteria and Model Quality

Intuitively, the function measures a normalized distance between
the activation values of x and those of individual inputs in T (re-
garding O”). Then LSA is defined as follows.

LSA(x) = —log(f(x))

e Distance-based Surprise Adequacy (DSA). Assume a DL sys-
tem F, which consists of a set of neurons O, is trained for a classifi-
cation task with a set of classes Y, using a training dataset T. Given
the set of activation traces Ap(T), a new input x, and a predicted
class of the new input C € Y. The closest neighbor of x that shares
the same output class, denoted as x,, and their distance, are defined
as follows.

xq = argmin |lao (x) — ao (xi)l|

F(xi)=y
distq = |lao(x) — ao(xa)ll
The closest neighbor in a class other than y, denoted by x3, and

their distance disty, are defined as follows.

xp = argmin ||ao(x) — ao(xi)l|
F(xi)eY\{y}

distp = |lao(x) — ao (xp)||
Then the DSA is defined in the following. Intuitively, it measures

if x is closer to the target class or a different class.

dist,
distb

DSA(x) =

3.4 Research Questions

Testing is a critical step in software development life-cycle to eval-
uate software quality, find bugs and help developers to improve the
software. In traditional Software Engineering, test coverage criteria
(including path coverage, basic block coverage etc.) are a set of
metrics used to describe the degree to which the subject software
is tested, given a test suite. These criteria are usually computed
as the number of some software artifacts (e.g., statements) that
are executed by at least one test case, divided by the total num-
ber of artifacts. An important hypothesis, which has been proven
by numerous seminal studies [6, 16, 17, 30, 33, 35, 42, 43, 45, 67],
is that higher test coverage suggests better software quality, given
the same subject software. This is because a test suite achieving
higher coverage is believed to have a better chance of disclosing
defects in the subject software. Different software coverage criteria
denote the various trade-offs between the difficulty (to achieve
high coverage) and the capability of disclosing defects. For example,
statement coverage is the least difficult to achieve with the weakest
effectiveness in finding bugs, whereas path coverage is much more
difficult to achieve but has stronger bug-finding capabilities. DNN
coverage metrics were introduced with the goal of serving deep
learning model engineering in a way similar to how software cover-
age criteria have been serving software engineering. For example,
in DeepXplore, the authors believe that “neuron coverage is a good
metric for DNN testing comprehensiveness”. In DeepGauge [39], the
paper states that the proposed criteria can “effectively capture the
difference between the original test data and adversarial examples,
where DNNs could and could not correctly recognize, respectively,
demonstrating that a higher coverage of our criteria potentially in-
dicate a higher chance to detect the DNN s defects”. And in SADL,

779

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

the paper concludes that “SA can provide guidance for more effective
retraining against adversarial examples based on our interpretation
of the observed trend”. In software testing, the correlations between
coverage and software quality are well established, which have
been driving decades of practice and research. In this paper, we aim
to study if the correlations between DNN coverage metrics and the
intended objectives can be established.

Based on the above quoted usage of DNN coverage criteria, we
propose the following research questions.

3.4.1 RQ: Are DNN coverage metrics correlated with DNN model
robustness? In software testing, the correlation between test cover-
age and software quality is intuitively established as follows. Given
a subject program and an initial test suite, developers generate new
test cases to cover software artifacts that have not been covered
before (e.g., new statements). These new test cases may disclose
defects in the newly covered components. Fixing these defects leads
to the improvement of software quality. To validate the correlations
between DNN model robustness and coverage criteria, we draw
the following analogies: subject model (in DNN testing) vs. subject
program (in software testing); training set vs. initial software test
suite; adversarial example generation or GAN based example gen-
eration vs. software test generation; misclassifications (caused by
adversarial examples) vs. software bugs; and adversarial training
vs. software bug fixing. With such analogies, we have the following
experiment design.

Experiment Design: Assume the subject model is Fy. We use
adversarial example generation techniques to generate a large set of
adversarial examples. Given a DNN coverage criterion, we perform
input selection to select the examples that can lead to the most
substantial coverage improvement, and add them to the training
suite Ty and acquire T;. The process repeats to acquire T3, T3, ..., and
T, until the coverage is full or cannot improve any more. Here, T,
is a superset of T1, T3 is a superset of T», and so on. This process is
analogous to how the developers enhance their test suite overtime
to improve coverage. We then perform adversarial training using
Ti, To, ... and Ty, yielding Fy, Fo, ... and F,, respectively, just like
fixing software bugs disclosed by new test inputs. Then we use
existing methods [37] to measure model robustness and study the
correlations between robustness and coverage. Ideally, we would
expect to see these models have increasing levels of robustness.

3.4.2 RQ: Is coverage driven test generation effective in disclosing
DNN defects? How does it compare to the other commonly used
adversarial example generation techniques? In software testing, an
important functionality of code coverage is to guide test generation.
A large body of existing software test generation techniques, such
as symbolic/concolic execution [9, 13], fuzzing [7, 73], and search
based testing [5, 26], make use of code coverage as the guidance.
Analogously, researchers of DeepXplore tries to “generate inputs
that maximizing neuron coverage” and believe that “neuron coverage
helps in increasing the diversity of generated inputs” [47].
DeepHunter [71] “leverages multiple plugable coverage criteria
as feedback to guide the test generation from different perspectives”.
However, while software behaviors are largely discrete, DNN model
behaviors are continuous. As such, there exist highly effective input
generation techniques built on optimizations (e.g., based on gra-
dients). While these techniques do not explicitly utilize coverage,

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

optimization algorithms have the implicit capabilities of exploring
different activation patterns by following the direction of gradients.
As such, we are interested in studying if coverage guided testing
has advantages over the popular gradient descent based methods, in
disclosing defects (i.e., generating adversarial examples). More over,
gradient based test generation often makes use of £,-norm to bound
the scale of perturbation such that adversarial examples do not look
substantially different from the original input (in humans’ eyes). In
contrast, existing coverage guided test generation uses predefined
image transformations such as adding black rectangles, changing
image pixels by a certain degree [47], changing image blurriness
and rotating images [71]. See details in subsection 3.1 and subsec-
tion 3.2. Notice DeepHunter also uses a £ based threshold value
to limit the change of the image. However, because the pre-defined
operations usually change the image significantly, this threshold
value is larger than what is used in gradient based methods. Also,
gradient based methods will try to minimize the change (e.g., £
distance) while DeepHunter only checks if the value is smaller
than the threshold. Therefore, we also want to study the quality of
generated examples, in comparison with existing gradient descent
based techniques.

Experiment Design. To answer RQ 2, we utilize the test genera-
tion techniques in DeepHunter [71] (coverage criteria based) and
PDG [41] (gradient based) to generate test cases, Dy and Dp, re-
spectively, against the same DNN model. Then, we compare Dy
and Dp from a few aspects. First, we compare the effectiveness
of these methods. Namely, we calculate the percentage of samples
in Dy and Dp that can lead to discovery of DNN defects (i.e.,
mis-prediction). Second, we compare the quality of generated sam-
ples by calculating their similarity with the original benign image.
Third, we calculate the coverage metrics for Dp and try to see if
new adversarial examples lead to the growth of coverage.

3.4.3 RQ: Are the adversarial examples generated by DNN coverage
based testing effective in improving model robustness? How are they
compared to those generated by popular gradient descent based tech-
niques? In software testing, one aspect to measure effectiveness
of test generation techniques is the effectiveness of the generated
counter-examples (failing test cases) in bug fixing. Similar objec-
tives are explored in DNN testing. Particularly, DeepXplore and
SADL use the generated adversarial examples as part of the new
training dataset to retrain the model so that it can achieve better
accuracy against adversarial examples (i.e., more robust). For ex-
ample, the DeepXplore paper states that “test inputs generated by
DeepXplore can also be used to retrain the corresponding DL model
to improve the model’s accuracy by up to 3%”, and the SADL paper
states that (SADL) “can improve classification accuracy of DL systems
against adversarial examples by up to 77.5% via retraining”. There-
fore in this research question, we want to study the effectiveness
of DNN coverage based test generation in comparison with the
existing popular alternatives.

Experiment Design. To answer RQ 3, we conduct the following
experiment. First, we use DeepXplore and SADL to generate adver-
sarial examples, and mix them with original training data to retrain
the model. We reuse the parameters (e.g., ratio of new adversarial
examples) from the original papers. Second, we train the models
with adversarial training. More specifically, we use the PGD based

780

S.Yan, G. Tao, X. Liu, J. Zhai, S. Ma, L. Xu, X. Zhang

adversarial training. The parameters used in our retraining are
adopted from the original paper [41]. Then, we compare the model
effectiveness of the two sets of hardened models.

3.4.4 RQ: How are the different DNN coverage criteria correlated?
In software testing, there is a semi-lattice for the strength of the
different code coverage criteria. For example, statement coverage <
edge coverage < path coverage; and condition coverage that aims
to cover the true/false values of each comparative expression in a
predicate is stronger than statement coverage, weaker than path
coverage, and not comparable with edge coverage. We say criterion
C1 is stronger than C2 if 100% C1 coverage must imply 100% C2
coverage. Such relations are important for choosing the appropriate
techniques in software testing. For example, path coverage may be
desired for safety critical code despite its high cost. In this research
question, we aim to look for correlation or even partial order among
the various DNN coverage criteria.

Experiment Design. To answer RQ 4, for a given model F, we
keep adding new input samples to test the model, and gather the
coverage information to get a sequence of values for each test
criteria. For example, for NC, we can get a sequence of values
NCr = (NCF, NCf, Ncg, NCE) where n is the total number of
added input sample sets. Similarly, we can get KMNCF, NBCF etc.
Then, we perform correlation analysis on these collected data N cF ,
KMNCF, NBCF and so on to see if they have strong correlations
or partial order.

4 DNN MODEL QUALITY METRICS

In software testing, quality of software is often measured by the
number of bugs found within a certain period of time. The qual-
ity metrics of DNN models are more diverse. Most DNN testing
techniques draw analogy between bugs/defects in software code
and adversarial examples in DNN model. An adversarial example
is considered manifestation of some undesirable behavior of the
model, as it causes misclassification. Just like software quality met-
rics are based on bugs, model quality metrics are also centered
around adversarial examples. They fall into three categories: model
accuracy in the presence of adversarial examples, adversarial exam-
ple impreceptiblity that measures if an adversarial example looks
natural, and adversarial example robustness. These are the metrics
commonly used by adversarial machine learning [37, 39]. Details
are explained in the subsections.

4.1

State-of-the-art adversarial example generation techniques, such as
C&W and PGD, optimize logits in order to generate inputs. Since
logits still have to go through a soft-max layer to produce the final
classification outputs, the generated adversarial examples may not
yield the intended mis-classification even though the optimizer can
successfully reach its objective. Model accuracy in the presence of
adversarial examples measures how often the generated adversarial
examples lead to correct classification results. High accuracy means
that the model is robust. The analogy in software testing is to
measure how often the subject software fails when it is stress tested.
Specifically, we consider the following metrics that are related to
model accuracy.

Model Accuracy for Adversarial Examples

Correlations between Deep Neural Network Model Coverage Criteria and Model Quality

e Misclassification Ratio (MR).
1 N
MR = N Z count(F(x}) # y;)
i=1
Here, N is the number of generated samples and count() is a
function used to count the number of misclassified samples. Basi-
cally, MR calculates the percentage of misclassified input samples
in the whole input set. A high quality model has a low MR.

o Average Confidence of Adversarial Class (ACAC).
1 n
ACAC= ~ D PG (xa)
i=1

where n (n < N) is the total number of adversarial examples
that cause misclassification. And P(x{)p(xa) 1s the prediction confi-
dence towards the incorrect class F(x{). In general, ACAC measures
the average prediction confidence towards the incorrect class for
adversarial examples.

e Average Confidence of True Class (ACTC).
1 n
ACTC = = 3" P(xf)y,
n
i=1

Here n (n < N) is the total number of adversarial examples that
cause misclassification. P(x{")y, is the prediction confidence of true
classes for adversarial examples. Just like ACAC, ACTC measures
the prediction confidence of true classes for adversarial examples.

4.2 Adversarial Example Imperceptibility

This metric measures how realistic an adversarial example is in
human eyes. It is usually computed by using the original example
as a reference. A high quality adversarial example is one that has
imperceptible perturbation. We should not say a model is of low
quality is it is susceptible to low quality adversarial examples. The
analogy in software testing is that the subject software may fail
when it is provided with an input that substantially violates the
(implicit) input pre-conditions. In such cases, the induced failures
cannot be used as evidence of low software quality. Specifically, we
use the following metrics.

o Average L, Distortion (ALDp).

n

ALD, = %Z

i=1

llxf = xillp
lIxillp

Here, |||, is the £, norm distance, which is adopted as distortion
metrics for evaluation. Specifically, £ calculates the number of
pixels changed by the perturbation; £, computes the Euclidean
distance between original examples and adversarial examples; £
measures the maximum change in all dimensions of adversarial
examples. ALD,, measures the average normalized £, distortion for
all adversarial examples that cause misclassification. The smaller
the ALD,, the more imperceptibility the adversarial example has.

o Average Structural Similarity (ASS).
1 n
ASS = - Z SSIM(x%, x;)
n
i=1

Here, SSIM is the metric used to quantify the similarity between
two images [29]. ASS can measure the average SSIM between all

781

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

adversarial examples that cause misclassification and their corre-
sponding original examples. The larger the SSIM, the more imper-
ceptibility the adversarial examples has.

e Perturbation Sensitivity Distance (PSD).

1 n m
PSD = Z 8;jSen(R(x;)
i=1 j=1

Here m is the total number of pixels for an example, J; ; denotes
the j-th pixel of the i-th example, R(x; j) represents the surround-
ing square region of x; j, and Sen(R(x;;)) = 1/std(R(x;,j)), with
std(R(x;,j)) denoting the standard deviation function. PSD evalu-
ates human perception of perturbations. The smaller the PSD, the
more imperceptibility the adversarial example has.

4.3 Adversarial Example Robustness

In adversarial machine learning, adversarial example robustness
is often measured [34, 41, 61]. It measures the level of resilience a
successful adversarial example (i.e., a example that causes misclas-
sification) has in the presence of (input) perturbation. Intuitively,
an adversarial example that is not robust should not be used as
evidence of low model quality. The analogy in software testing is
that a transient failure (e.g., caused by non-deterministic factors)
may not indicate low software quality. In particular, we measure
the following.

e Noise Tolerance Estimation (NTE).

n

NTE = = 3 [PGxfe(ep) — max{(P(e)}]

i=1

Here, P(x?)l:(xlq) is the probability of misclassified class, and
max{P(x{);} is the max probability of all other classes, j € {1, ..., k},
Jj # F(x{). NTE measures the amount of noise adversarial exam-
ples can tolerate while keeping their misclassified label unchanged.
Intuitively, larger NTE indicates more robust adversarial examples.

e Robustness to Gaussian Blur (RGB).

_ count(F(GB(x{)) # yi)
count(F(xl‘.’) # ;)

Where GB denotes the Gaussian blur function, an algorithm that
can reduce noises in images and count () is used to count the number
of specific samples. RGB counts how many adversarial examples
can maintain their misclassification function after Gaussian blur.
The greater the RGB is, the more robust adversarial examples are.

¢ Robustness to Image Compression (RIC).

count(F(IC(xia)) * Ui
count(F(x{) # y;

Here, IC is a specific image compression function. Like RGB,
RIC counts how many adversarial examples can maintain their
misclassification function after the image compression function.
The greater the RIC, the more robust the adversarial examples.

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

1.2

118 | [FNC(0:5) —NC(0.7)
w NC(0.9) —TKNC
Q116 || kNP —KMINC
= 114 ||_NBC —SNAC
gL
O 11
S 108
= 1.06
-

o 1.04
o
1.02
1
To ' T, T3 T Ts Te T, Tz Ts Too

Figure 2: Coverage VS. Training Datasets

15
514 —MR ACAC —ACTC —NTE
]
<13 —ALP_L, —ALP_Li —ASS —RGB
812 —RIC —ALP_L, —PSD
E11
w
S 1
§ 0.9
<
Eo8
0.7

TO T‘\ TZ T3 T4 TS Té T7 TS TB T‘\O

Figure 3: Robustness VS. Training Datasets

5 EXPERIMENTS AND RESULTS

5.1 Setup

Datasets and Models. We use MNIST [32], CIFAR-10[48] and
SVHN[1] as our datasets. These are popular datasets used in the lit-
erature of model coverage [32, 39, 47, 71]. MNIST is a handwritten
digit recognition dataset, a popular dataset for image classifica-
tion. The CIFAR-10 dataset is widely used for easy image classi-
fication task/benchmark in the research community. It contains
60,000 32 X 32 color images in 10 different classes. The Street View
House Numbers (SVHN) dataset is obtained from house numbers in
Google Street View images. It consists of 73,257 training sasmples
and 26,032 testing samples. For MNIST, we use three pre-trained
LeNet family models, i.e., LeNet-1, LeNet-4, and LeNet-5 as the
baseline model. For CIFAR-10, we use VGG-16 [52] and ResNet-20
[27] models. For SVHN, we also use three CNN model, and their
model architectures are adopted from previous work [32]. We di-
rectly use pre-trained models if possible. Our trained models are
also available online [1].

Configurations. The configurations for coverage criteria is shown
in Table 1. For all research questions, we set the threshold for NC to
be 0.1, 0.3, 0.5, 0.7 and 0.9. For KMNC, the k value (i.e., number of
multisections) we use is 10. For TKNP and TKNC, the k value (i.e.,
the top-k neuron coverage) is 2. For LSC and DSC, the layers we
analyze are shown in column 6 in Table 1, the numbers of buckets
for LSC and DSC are shown in columns 7 and 9, respectively, and the
upper bounds of SA are shown in columns 8 and 10, respectively.
These are the same settings published in the original papers or
published in their open source repository. For C&W attacks, we
use the implementation from CleverHans and use their default

782

S.Yan, G. Tao, X. Liu, J. Zhai, S. Ma, L. Xu, X. Zhang

I-lo

-0.5

-0.2 0.2 -03 -0.1 0.2 -0.2 -0.2 0.2 0.3 0.3 0.2

7z
%
%

40528 0.1 EG!28 011 0 EGR28 0 0-1 02802 gGes:

7
(o
£

-0.2 04 -04 01 0 -0.2 01 01 04 03 0.1

iz
(o
%

-0 -0.2 0.2 -01 -0.2 -0.1 0.1 -0.2 -0.2 0 -0.2

1.
%
i

--02 0 02 -01 0 01 01 -02 0 -0.1-0.3

0

--02 02 0 0 01 03 0 -01 01 -0.1-0.1
-0.0
10:2850:23 -0.1 0.1 -0.1 EEil-0.1 0.1 -0.1 §os=y 0

-01-02 01 0 -04-04 0.1 -0.2-0.2 0.2 -0.3

¢ -01 -02 0.1 -0.4 -0.4 -0.2 -0.2 0.2 -0.3

¢ 10:1 EiES) 0.1 -0.2 -0.2 0.1 -0.3

02 0 O 02 0 0 0 -02

101 0 - 0.2 0.1 0.1 0.2

‘ O & & L
& S & & S

Figure 4: Correlation of Coverage Criteria and Robustness

parameters. For PDG attack and PDG based adversarial training, we
also use the default parameters used in their paper and repository.

5.2 Results and Analysis

5.2.1 RQ: Are DNN coverage metrics correlated with DNN model
robustness? As mentioned in subsection 3.4, to answer RQ1, we
obtain a set of new training suites, T3, ..., T,. Each one has more
training data that can enlarge the coverage metrics. In our experi-
ment, we obtain 11 training datasets in total for each model (i.e.,
n = 10) including the original one (i.e., Tp). In each step, we add 250
new images to the dataset, thus in total we add 2,500 new training
images to the training dataset. Compared with DeepXplore and
SADL, it introduces more new training samples.

Figure 2 shows the coverage metric value changes w.r.t. different
training datasets. In this graph, the y-axis is the relative coverage
value and the base value we use is the one obtained on Ty. This is
because the results are in wide value ranges. For example, TKNP
is an absolute number whose value is larger than a few thousand,
and many others are ratios whose value range is [0, 1]. For NC,
we only show lines with threshold values being 0.5, 0.7 and 0.9.
This is because for 0.1 and 0.3, the original dataset Ty can achieve
100% coverage. For some metrics, the original coverage values are
already very high (over 98%), and hence in the graph, it does not
show significant growth. Overall, we can see that with new training
samples, all coverage metrics are growing.

Figure 3 shows the changes of attack metrics (i.e., model robust-
ness) w.r.t. different training datasets. Similarly, the values are also
normalized based on the values obtained in T5 (for better visualiza-
tion). For MR, ACAC, ALD, and PSD, larger y values indicate less
robust. While for ACTC, ASS, NTE, RGB and RIC, a larger y value
always indicates a more robust model. From the graph, we observe
that none of them is monotonous. It means from the attack’s
point of view, adding new samples to improve coverage does not
always lead to the improvement of model robustness.

Due to the space limit, Figure 2 and Figure 3 show the results for
the MNIST dataset on the LeNet-1 model. Other models and datasets

Correlations between Deep Neural Network Model Coverage Criteria and Model Quality

Table 1: Configurations for RQs

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

Table 2: Comparison of Attack Images

NC KMNC TKNC/TKNP LsC DSC MR b
Dataset Model (threshold) ® @ Dataset Model
Layer n ub n ub Dy Dp Dy Dp
LeNet-1 0.1,0.3,0.5,0.7, 0.9 10 2 conv_2 1000 2000 1000 5 LeNet-1 92.5% 100% 0.986 0.3
MNIST LeNet-4 0.1,0.3,0.5,0.7, 0.9 10 2 conv_2 1000 2000 1000 5 MNIST LeNet-4 90.0% 100% 0.983 0.3
LeNet5 0.1,0.3,0.5,0.7, 0.9 10 2 conv_2 1000 2000 1000 5 LeNet-5 84.3% 100% 0.963 0.3
CIFAR VGG-16 0.1,0.3,0.5,0.7, 0.9 10 2 conv_2 1000 2000 1000 5 CIFAR VGG-16 94.4% 88.7% 3.114 0.031
ResNet-20 0.1, 0.3, 0.5, 0.7, 0.9 10 2 block2_convl 1000 2000 1000 5 ResNet-20 94.4% 99.8% 3.242 0.031
SADL-1 0.1,0.3,0.5,0.7, 0.9 10 2 pool_1 1000 2000 1000 5 SADL-1 61.7% 100% 0.689 0.031
SVHN SALD-2 0.1,0.3,0.5,0.7, 0.9 10 2 pool_1 1000 2000 1000 5 SVHN SADL-2 92.4% 99.9% 0.714 0.031
SALD-3 0.1,0.3,0.5,0.7, 0.9 10 2 pool_1 1000 2000 1000 5 SADL-3 64.4% 100% 0.675 0.031
do have a similar pattern. Our generated datasets, trained models, m -
and original results are available in GitHub [1]. To have a better
understanding of whether coverage criteria are correlated with (a) Original Images (b) DeepHunter (c) PGD
robustness, we also perform a correlation analysis on all trained
models apd.datasets using the Kendall’s 7 met.hod, which is a‘stan— Figure 5: Generated Adversarial Examples
dard statistical method used to measure the linear and non-linear
relationships between two different variables. The result is shown
in Figure 4. In this figure, each label in x-axis represents one attack 1 8000
criterion and each label in y-axis represents one coverage criterion. 9 €000
Each cell represents the correlation between criteria. We use blue 208 —NC KMNC 4
. < =
color to represent negative correlation (i.e., variables change in > 06 NBC —SNAC =
ite directi label iti lati] —TKNC —TKNP 4000 ©
opposite directions) and red labels to represent positive correlation 2 o4 s
(i.e., both variables change in the same direction). According to the Frrj 2000 c
o LS . ; o > m
definition of correlation in Guildford scale [24], if the correlation is 8 0.2
less than 0.4, the positive or negative correlation is low; values in 0 0
[0.4,0.7] indicate that the correlation is moderate; and high corre- O oo
: : ; SEERESEEREE82RE2
lation values (i.e., 0.7~0.9 or above 0.9) represent strong correlation. TOERNRILILIRIRREIZS
NEW SAMPLES

As we can see, most cells are in light colors and have low correlation
values, indicating neutral correlations. In other words, there is no
clear relationship between these variables.

5.2.2 RQ: Is coverage driven test generation effective in disclosing
DNN defects? How does it compare to the other commonly used adver-
sarial example generation techniques? We utilize DeepHunter [71]
and PDG [41] to generate test cases, Dy and Dp, respectively,
against the same DNN model. For Dy and Dp, we first compare
the attack success rate using MR. For each method and each model,
we generate 1,000 images and then test MR. For both methods, we
limit the £ by using the default value provided by DeepHunter [71]
(i.e., 0.2 % 255). The results are shown in columns 3 and 4 in Ta-
ble 2. As we can see, PGD achieves almost 100% success rate on
all models and datasets, while DeepHunter achieves lower success
rate (i.e., lower MR value, about 60% for SADL-1 and SADL-3 model
and about 90% for other models). We also compare the quality of
the generated adversarial examples by calculating the average f
distances of benign inputs and adversarial examples. The results
are shown in columns 5 to 6 in Table 2. The average £ distances
for PGD (Dp) is 3 to 100 times smaller than that of DeepHunter
(Dpg), indicating that the adversarial image quality generated by
PGD is better than DeepHunter. In Figure 5, we show the original
images (Figure 5a), attack images by DeepHunter (Figure 5b) and
PGD (Figure 5c), respectively. The reason why DeepHunter has
larger £ perturbation is because of the affine transformations it
uses, which results in larger £ values but maintains the semantics.
In this sense, £ distance is not an ideal metric to use, and how to

783

Figure 6: Coverage VS. # Adversarial Examples

choose a better metric is out of the scope. Here, we use it because it
is used by both PGD and DeepHunter to determine if the generated
example is a valid input.

To understand how PGD generated adversarial examples corre-
late with coverage criteria, we also calculate the coverage metric
value change by adding 10 images in each single step. The result is
shown in Figure 6. The primary y-axis shows the percentage for
ratio values (i.e., NC, KMNC, NBC, SNAC, TKNC) and the second
y-axis shows the value for TKNP. From the graph we can see that
the lines for NC, NBC, KMNC, SNAC and TKNC show a similar
pattern: they grow rapidly at the beginning and then plateau af-
terwards. This tells us that new adversarial examples do increase
the coverage. However, adversarial examples may not necessarily
increase coverage. To future demonstrate this, we use adaptive
gradient based attacks to limit the coverage change during opti-
mization while generating the adversarial examples. The results
show that it can still generate adversarial examples with almost
100% success rate on all models and datasets.

On the other hand, TKNP shows a almost linear relationship
with the number of new samples. To further study this, we design
another experiment, which is to calculate the growth of these cov-
erage metrics when we add benign samples instead of adversarial
sample. In our case, we fix the setting (i.e., k = 2), and then we

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

8000 ||—adv_TKNP
w
26000 —benign_TKNP
>
< 4000
~
[
2000
0

R T e T e T T T e R T e e T e T e T O e T R T e O |
OO0 000000000000 OO0
O NXTFTOOANDXDTOLOANIT OO

AH N OO TN OONNNDD
NEW SAMPLES

Figure 7: TKNP VS. # New Inputs

Table 3: Model Accuracy under Different Scenarios

Dataset Model Benign Dy PGD
LeNet-1 98.7%(+0.09%) 90.3%(+2.37%) 0%(+0%)
LeNet-4 98.7%(+0.07%) 90.1%(+2.3%) 0%(+0%)
MNIST LeNet-5 98.71%(-0.26%) 91%(+1.1%) 0%(+0%)
LeNet-1 Adv. 97.6%(-1.07%) 913%(+34%) 19.2%(+19.2%)
LeNet-4 Adv. 96.9%(-1.72%) 88.9%(+1.1%) 9.6%(+9.6%)
LeNet-5 Adv. 97%(-1.97%) 90.1%(+0.2%) 30.5%(30.3%)
VGG-16 10%(-82.8%) 9.89%(-47.41%) 9.99%(+8.8%)
CIFAR ResNet-20 75.4%(-16.4%) 60.5%(+1.4%) 0.13%(+0.13%)
VGG-16 Adv. 87.8%(-5%) 55.9%(-1.4%) 40.9%(+39.7%)
ResNet-20 Adv. 86.7%(-5.04%) 57.5%(-1.7%) 36.6%(+36.6%)
SADL-1 93.97%(+4.27%) 82.95%(+6.9%) 0%(+0%)
SADL-2 91.55%(+3.83%) 77.65%(+5.9%) 0.1%(+0.1%)
SVEN SADL-3 94.28%(+1.71%) 84.47%(+5.1%) 1.1%(+1.1%)
SADL-1 Adv. 85.8%(-3.9%) 71.25%(-4.8%) 46.6%(+46.6%)
SADL-2 Adv. 817%(-6.12%) 66.73%(-4.8%) 44.6%(+44.6%)
SADL-3 Adv. 87.7%(-4.87%) 74.13%(-5.23%) 50.6%(+50.6%)

add the corresponding seed input as the new sample. The results
is shown in Figure 7. As we can see, adding benign samples and
adding adversarial samples have almost the same effects, indicat-
ing that this criteria cannot really distinguish the differences of
benign samples and adversarial samples. In other words, it is almost
equivalent to the count of samples.

5.2.3 RQ: Are the adversarial examples generated by DNN coverage
based testing effective in improving model robustness? How are they
compared to those generated by popular gradient descent based tech-
niques? To answer RQ3, we retrain the models using two different
approaches: for one set, we use the adversarial examples gener-
ated by coverage guided testing, and for the other set, we use PGD
based adversarial training. The results are shown in Table 3. The
first column shows the datasets. The second column presents the
models including those retrained with coverage guided adversarial
examples (rows 2-4, 8-9, 12-14) and those retrained by PGD (rows
5-7,10-11, 15-17). For each model, we show the accuracy on benign
samples, adversarial examples generated by coverage guidance and
under PGD attack. In each cell, we show the model accuracy as
well as the difference compared with the original model (without
retraining). Numbers with + means that the accuracy is higher than
the original model and numbers with — means that the model accu-
racy is lower than the original one. From the table, we can see that
most models with the same architecture have similar accuracy on
benign testing datasets (which is also similar to the original model
accuracy). In some cases, PGD based adversarial training gets lower

784

S.Yan, G. Tao, X. Liu, J. Zhai, S. Ma, L. Xu, X. Zhang

S - 1.0
>-

&
Ay -

&
S 5 -0.29 0.42
RS

A -0.22 0.32 0.05

S & -0.26-0.35-0.03 0.27
¢ ~0.13-0.160.0690.19 0.4
-0.11 0.1 0.01-0.16-0.46-0.46
-0.15 0.1 0.0930.18-0.12-0.28 0.44
O

o 014 0.25 0.16 0.21-0.16-0.28 0.44 ()

X

(& "0-11 0.2 0.14 0.21-0.14-0.27 0.43 [T
N
&

& -0.09-0.08 0.04 0.02 0.250.057-0.01 0.08 0.04 0.04

IIO

Figure 8: Correlation between Coverage Criteria

B -0.26 0.38 0.12-0.24 -0.390.43 0.17 0.25 0.2 -0.21

SR R & L
P S S

(O
& F S (E R i

accuracy on benign testing datasets. This is mainly because adver-
sarial training is hard to converge [66]. We trained several versions
and got similar results. A similar issue happened for VGG-16 model
on the CIFAR dataset. We found that images generated by Deep-
Hunter have significantly large perturbations, and the re-training
process is difficult to converge.

Most models also have a higher accuracy (compared with the
original models) on the adversarial examples generated by cover-
age guided testing. VGG-16 on CIFAR-10 does not converge and
that is why the model accuracy is low. We find that adversarial
training does not necessarily improve the model accuracy against
such images. For example, all three models on SVHN end up with
a lower accuracy on this dataset. One more finding is that models
retrained with coverage guided testing has nearly 0% accuracy un-
der PGD attack, while PGD based adversarial training increases the
model accuracy by 30% for most cases. This indicates that coverage
criteria guided retraining can improve model robustness under at-
tacks that use the same image perturbation strategy, but does not
increase the model robustness under gradient based attacks. Simi-
larly, PGD based retraining can improve model accuracy against
PGD attacks but cannot improve its accuracy against adversarial
inputs generated by coverage guided methods.

5.24 RQ: How are the different DNN coverage criteria correlated? If
the coverage criteria have partial order relationship, they ought to
be correlated. Thus, we first analyze the correlation among all the
coverage criteria. The results are shown in Figure 8. The meaning
of the graph is the same as Figure 4. From the graph, we can see that
NBC and SNAC are correlated with each other with high strength,
whereas they have weak or no correlation with the other metrics.
NC, KNC, TKNC, LSA and DSA are also correlated with each other
to a certain degree, but they do not show very strong correlations.
Such results are also consistent with existing work [14, 32, 39].

6 THREAT TO VALIDITY AND DISCUSSION

Threat to Validity. First, most existing coverage criteria focuses
on DNN based image classifications, and so is this work. Second,
the results are acquired with a limited set of models, data sets and

Correlations between Deep Neural Network Model Coverage Criteria and Model Quality

specific training hyper parameter settings. They may not be repre-
sentative for other models or settings. To mitigate the threat, we
publish all the setup details, implementation, data (e.g., the gener-
ated tests) at [1] for reproduction. Third, our study is largely based
on existing model coverage criteria and test generation techniques.
A possible threat is that we may not faithfully reproduce these
existing works. To mitigate the threat, we use the models, datasets
and implementations (when available) from the original papers.
We also validate our results by cross-checking with those in the
original papers.

Discussion and suggestions. According to results from RQ2 and
RQ3, we know that it is relatively easy to generate adversarial even
when the model has achieve over 100% coverage. This is different
from traditional software testing where software are generally less
vulnerable after achieving high coverage. This brings the doubt
about the usefulness of existing coverage criteria in DNN testing.
However, we are uncertain if there will be other coverage criteria
that shows a very positive correlation with DNN robustness.

One important message from this study is that our community
shall establish a set of standards for evaluating future proposals.
They shall include testing various model properties (e.g., robustness,
accuracy and fairness), and cover various model architectures and
tasks so that the results can be comparable. As an initial step, we
have create a GitHub reposotiry [2] for this purpose, and strongly
encourage our readers to contribute.

7 RELATED WORK

DNN Testing and Validation. The relationship between cover-
age and DNN testing has been studied by others as well. Dong et
al. [14] show that there is limited correlation between coverage and
robustness for DNNs. Li et al. [36] argues that previously reported
fault-detection “capabilities” conjectured from high coverage test-
ing are more likely due to the adversary-oriented search but not
the real “high” coverage itself.

Besides coverage criteria, A large body of testing methods was
proposed for testing machine learning models, such as fuzzing [18,
25, 44, 62, 63, 68, 71, 80], symbolic execution [3, 23, 51, 55], runtime
validation [54, 64], fairness testing [3, 62, 77], etc. DeepTest [59]
utilizes nine types of realistic image transformations for generating
test images, which discovered more than 1,000 erroneous behav-
iors of DNNs used in autonomous driving systems. DeepRoad [76]
leverages generative adversarial networks (GANSs) to generate test
cases simulating different weather conditions. DeepBillboard [79]
manipulates contents on billboards to cause wrong steering an-
gles of autonomous driving systems. DeepImportance [20] selects
important neurons from pre-trained models and clusters those neu-
rons with respect to their value regions. The coverage of those
important neurons is then used for testing model behaviors. Model
testing has also been applied on other domains such as automatic
speech recognition [15], text classification [62], image classifica-
tion [55, 60], machine translation [28, 56]. More related works can
be found in this survey [75].

To validate safety of DNN models, researchers leverage verifi-
cation techniques to provide formal guarantees [19, 22, 31, 46, 48,
49, 65, 68]. Reluplex [31] transforms DNN models to numerical
constraints and utilizes SMT-solver to verify robustness of DNNs.

785

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

Models evaluated in Reluplex were small with 8 layers and 300 ReLU
nodes. DeepSafe [22] was built on Reluplex and cannot scale to
large models. ReluVal [65] leverages interval arithmetic to verify ro-
bustness of DNNs, which is 200 times faster than Reluplex. AI? [49]
uses abstract interpretation to approximate the data region after
ReLU activation function. Due to its over-approximation nature,
AT? may fail to verify an input which has certain property. Deep-
Poly [53] combines floating point polyhedron with intervals, which
can scale to large models. DISSECTOR [64] generates sub-models
for intermediate layers of original models and validates given inputs
by measuring prediction probabilities from sub-models.

Adversarial Machine Learning. The vulnerability of machine
learning models has been an extensively discussed topic [8, 10, 12,
21, 38, 40, 57, 58, 69, 78]. As we elaborate in subsection 2.2 that
an attacker can use gradient to perturb original inputs to induce
misclassification of DNNs. There also exist other types of adver-
saries such as black-box attacks [8], back-door attacks [38], etc. A
lot of defense mechanisms were proposed to mitigate the threat
of adversarial examples such as input transformations [70, 72], dif-
ferential certificate [50], adversarial training [34, 41, 61], model
internal checking [40, 58], etc. More details regarding attacks and
defenses can be found in these papers [4, 74].

DNN testing techniques have also been applied on generating
counterexamples. The proposed neuron coverage based metrics
were utilized to guide the search [32, 39, 47]. In this paper, we
study the relationship between those coverage based metrics and
adversarial examples in RQ2. We also leverage adversarial training
approach to study the robustness of DNN models trained with
coverage based examples and gradient based ones, respectively (see
details in RQ3).

8 CONCLUSION

In this paper, we study existing neural network coverage criteria,
and find that they are not correlated with model robustness. Al-
though they can be used for adversarial example generation and
improve model robustness in limited scenarios (i.e., attackers use
the same perturbation strategy), they tend to generate adversarial
examples that have substantial perturbations and hence perceptible
by humans. In contrast, existing optimization based adversarial
example generation techniques can generate less perceptible ex-
amples. There are correlations between existing coverage criteria.
However, it remains unclear if they have partial order relations as
code coverage criteria. Our experiments and data are public for
reproduction and validation.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for their constructive
comments, feedbacks and suggestions. We also thank the authors
of tools used in this paper for their open source efforts, without
which this research is impossible. This research was supported, in
part by NSF China No.61802166, DARPA FA8650-15-C-7562, NSF
1748764, NSF 1901242, NSF 1910300, ONR N000141410468, ONR
N000141712947, and Sandia National Lab under award 1701331.
Any opinions, findings, and conclusions made in this paper are
those of the authors only and do not necessarily reflect the views
of our sponsors.

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

REFERENCES

(1]

[2

—

3

[9

=

[10]

[11

[12]

[13]

[14

=
i)

[16]

[17]

[18]

[19

[20]

[21]

[22

[23

[24]

2020. DNNTesting/CovTesting. https://github.com/RU-System-Software-and-
Security/CovTesting. (Accessed on 09/10/2020).

2020. SE4DL Benchmark. https://github.com/RU-System-Software-and-Security/
Benchmark.

Aniya Aggarwal, Pranay Lohia, Seema Nagar, Kuntal Dey, and Diptikalyan Saha.
2019. Black box fairness testing of machine learning models. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 625-635.

Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obfuscated Gradients
Give a False Sense of Security: Circumventing Defenses to Adversarial Examples.
In International Conference on Machine Learning. 274-283.

Arthur Baars, Mark Harman, Youssef Hassoun, Kiran Lakhotia, Phil McMinn,
Paolo Tonella, and Tanja Vos. 2011. Symbolic search-based testing. In 2011 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE 2011).
IEEE, 53-62.

Antonia Bertolino. 2007. Software testing research: Achievements, challenges,
dreams. In Future of Software Engineering (FOSE’07). IEEE, 85-103.

Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury. 2017. Coverage-
based greybox fuzzing as markov chain. IEEE Transactions on Software Engineering
45,5 (2017), 489-506.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. 2018. Decision-based
adversarial attacks: Reliable attacks against black-box machine learning models.
In International Conference on Learning Representations (ICLR).

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted
and automatic generation of high-coverage tests for complex systems programs.
In Proceedings of the 8th USENIX conference on Operating systems design and
implementation. USENIX Association, 209-224.

Nicholas Carlini and David Wagner. 2017. Adversarial examples are not eas-
ily detected: Bypassing ten detection methods. In Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security. 3-14.

Nicholas Carlini and David Wagner. 2017. Towards Evaluating the Robustness of
Neural Networks. In IEEE Symposium on Security and Privacy (S&P). 39-57.

Sen Chen, Minhui Xue, Lingling Fan, Shuang Hao, Lihua Xu, Haojin Zhu, and
Bo Li. 2018. Automated poisoning attacks and defenses in malware detection
systems: An adversarial machine learning approach. computers & security 73
(2018), 326-344.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A
platform for in-vivo multi-path analysis of software systems. ACM Sigplan
Notices 46, 3 (2011), 265-278.

Yizhen Dong, Peixin Zhang, Jingyi Wang, Shuang Liu, Jun Sun, Jianye Hao, Xinyu
Wang, Li Wang, Jin Song Dong, and Dai Ting. 2019. There is Limited Correlation
between Coverage and Robustness for Deep Neural Networks. arXiv preprint
arXiv:1911.05904 (2019).

Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. Deep-
stellar: model-based quantitative analysis of stateful deep learning systems. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 477-487.
Irwin S Dunietz, Willa K Ehrlich, BD Szablak, Colin L Mallows, and Anthony
Tannino. 1997. Applying design of experiments to software testing: experience
report. In Proceedings of the 19th international conference on Software engineering.
205-215.

Gordon Fraser and Andrea Arcuri. 2012. Sound empirical evidence in software
testing. In 2012 34th International Conference on Software Engineering (ICSE). IEEE,
178-188.

Xiang Gao, Ripon Saha, Mukul Prasad, and Roychoudhury Abhik. 2020. Fuzz
Testing based Data Augmentation to Improve Robustness of Deep Neural Net-
works. In 2020 IEEE/ACM 42nd International Conference on Software Engineering
(ICSE). IEEE.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin Vechev. 2018. Ai2: Safety and robustness certification of
neural networks with abstract interpretation. In 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, 3-18.

Simos Gerasimou, Hasan Ferit Eniser, Alper Sen, and Alper Cakan. 2020.
Importance-Driven Deep Learning System Testing. In 2020 IEEE/ACM 42nd Inter-
national Conference on Software Engineering (ICSE). IEEE.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining
and Harnessing Adversarial Examples. In International Conference on Learning
Representations (ICLR).

Divya Gopinath, Guy Katz, Corina S Pasareanu, and Clark Barrett. 2017. Deepsafe:
A data-driven approach for checking adversarial robustness in neural networks.
arXiv preprint arXiv:1710.00486 (2017).

Divya Gopinath, Corina S Pasareanu, Kaiyuan Wang, Mengshi Zhang, and Sarfraz
Khurshid. 2019. Symbolic execution for attribution and attack synthesis in neural
networks. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). IEEE, 282-283.

Joy Paul Guilford. 1950. Fundamental statistics in psychology and education.
(1950).

786

[25]

[29

[30

(31

(32]

@
&

[34

[35

[36

[37

'@
&

[39

[40

[41

[42]

[43

[44

[45]

[46

[47

(48

[49

S.Yan, G. Tao, X. Liu, J. Zhai, S. Ma, L. Xu, X. Zhang

Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. Dlfuzz: Dif-
ferential fuzzing testing of deep learning systems. In Proceedings of the 2018 26th
ACM 3Foint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 739-743.

Mark Harman and Phil McMinn. 2009. A theoretical and empirical study of
search-based testing: Local, global, and hybrid search. IEEE Transactions on
Software Engineering 36, 2 (2009), 226-247.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Pinjia He, Clara Meister, and Zhendong Su. 2020. Structure-Invariant Testing
for Machine Translation. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). IEEE.

Alain Hore and Djemel Ziou. 2010. Image quality metrics: PSNR vs. SSIM. In
2010 20th International Conference on Pattern Recognition. IEEE, 2366-2369.
René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 654—665.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.
2017. Reluplex: An efficient SMT solver for verifying deep neural networks. In
International Conference on Computer Aided Verification. Springer, 97-117.
Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system
testing using surprise adequacy. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 1039-1049.

D Richard Kuhn, Dolores R Wallace, and Albert M Gallo. 2004. Software fault
interactions and implications for software testing. IEEE transactions on software
engineering 30, 6 (2004), 418-421.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2017. Adversarial Machine
Learning at Scale. In International Conference on Learning Representations (ICLR).
Hareton KN Leung and Lee White. 1989. Insights into regression testing (software
testing). In Proceedings. Conference on Software Maintenance-1989. IEEE, 60-69.
Zenan Li, Xiaoxing Ma, Chang Xu, and Chun Cao. 2019. Structural coverage
criteria for neural networks could be misleading. In 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER). IEEE, 89-92.

Xiang Ling, Shouling Ji, Jiaxu Zou, Jiannan Wang, Chunming Wu, Bo Li, and Ting
Wang. 2019. Deepsec: A uniform platform for security analysis of deep learning
model. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 673-690.
Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang,
and Xiangyu Zhang. 2018. Trojaning Attack on Neural Networks. In Proceedings
of the 25nd Annual Network and Distributed System Security Symposium (NDSS).
Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chun-
yang Chen, Ting Su, Li Li, Yang Liu, et al. 2018. Deepgauge: Multi-granularity
testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 120-131.

Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee, and Xiangyu Zhang.
2019. NIC: Detecting Adversarial Samples with Neural Network Invariant Check-
ing.. In Proceedings of the 25nd Annual Network and Distributed System Security
Symposium (NDSS).

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards deep learning models resistant to adversarial attacks.
In International Conference on Learning Representations (ICLR).

David Martin, John Rooksby, Mark Rouncefield, and Ian Sommerville. 2007.
’Good’organisational reasons for'Bad’software testing: An ethnographic study of
testing in a small software company. In 29th international conference on software
engineering (ICSE’07). IEEE, 602-611.

Glenford] Myers, Corey Sandler, and Tom Badgett. 2011. The art of software
testing. John Wiley & Sons.

Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. 2019.
TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing. In
International Conference on Machine Learning. 4901-4911.

A Jefferson Offutt. 1992. Investigations of the software testing coupling effect.
ACM Transactions on Software Engineering and Methodology (TOSEM) 1, 1 (1992),
5-20.

Brandon Paulsen, Jingbo Wang, and Chao Wang. 2020. ReluDiff: Differential
Verification of Deep Neural Networks. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). IEEE.

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Au-
tomated whitebox testing of deep learning systems. In proceedings of the 26th
Symposium on Operating Systems Principles. 1-18.

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Towards practical
verification of machine learning: The case of computer vision systems. arXiv
preprint arXiv:1712.01785 (2017).

Luca Pulina and Armando Tacchella. 2010. An abstraction-refinement approach to
verification of artificial neural networks. In International Conference on Computer
Aided Verification. Springer, 243-257.

https://github.com/RU-System-Software-and-Security/CovTesting
https://github.com/RU-System-Software-and-Security/CovTesting
https://github.com/RU-System-Software-and-Security/Benchmark
https://github.com/RU-System-Software-and-Security/Benchmark

Correlations between Deep Neural Network Model Coverage Criteria and Model Quality

[50

[51]

[52

[53]

[54

[55]

[56]

[57

[58]

[59]

[60

[61]

(62

[63]

[64]

[65]

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. 2018. Certified defenses
against adversarial examples. In International Conference on Learning Representa-
tions.

Arvind Ramanathan, Laura L Pullum, Faraz Hussain, Dwaipayan Chakrabarty,
and Sumit Kumar Jha. 2016. Integrating symbolic and statistical methods for
testing intelligent systems: Applications to machine learning and computer vision.
In 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
786-791.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
Gagandeep Singh, Timon Gehr, Markus Pischel, and Martin Vechev. 2019. An
abstract domain for certifying neural networks. Proceedings of the ACM on
Programming Languages 3, POPL (2019), 1-30.

Andrea Stocco, Michael Weiss, Marco Calzana, and Paolo Tonella. 2020. Misbe-
haviour Prediction for Autonomous Driving Systems. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE). IEEE.

Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. 2018. Concolic testing for deep neural networks. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering.
109-119.

Zeyu Sun, Jie M Zhang, Mark Harman, Mike Papadakis, and Lu Zhang. 2020.
Automatic Testing and Improvement of Machine Translation. In 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE). IEEE.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Tan Goodfellow, and Rob Fergus. 2014. Intriguing Properties of Neural Networks.
In International Conference on Learning Representations (ICLR).

Guanhong Tao, Shiging Ma, Yingqi Liu, and Xiangyu Zhang. 2018. Attacks meet
interpretability: Attribute-steered detection of adversarial samples. In Advances
in Neural Information Processing Systems. 7717-7728.

Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th international conference on software engineering. 303-314.

Yuchi Tian, Ziyuan Zhong, Vicente Ordonez, Gail Kaiser, and Baishakhi Ray. 2020.
Testing DNN Image Classifier for Confusion & Bias Errors. In 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE). IEEE.

Florian Tramer, Alexey Kurakin, Nicolas Papernot, lan Goodfellow, Dan Boneh,
and Patrick McDaniel. 2018. Ensemble adversarial training: Attacks and defenses.
In International Conference on Learning Representations.

Sakshi Udeshi, Pryanshu Arora, and Sudipta Chattopadhyay. 2018. Automated
directed fairness testing. In Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering. 98-108.

Jonathan Uesato, Ananya Kumar, Csaba Szepesvari, Tom Erez, Avraham Rud-
erman, Keith Anderson, Nicolas Heess, Pushmeet Kohli, et al. 2018. Rigorous
agent evaluation: An adversarial approach to uncover catastrophic failures. arXiv
preprint arXiv:1812.01647 (2018).

Huiyan Wang, Jingwei Xu, Chang Xu, Xiaoxing Ma, and Jian Lu. 2020. DIS-
SECTOR: Input Validation for Deep Learning Applications by Crossing-layer
Dissection. In 2020 IEEE/ACM 42nd International Conference on Software Engi-
neering (ICSE). IEEE.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Formal security analysis of neural networks using symbolic intervals. In 27th

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

{USENIX} Security Symposium ({USENIX} Security 18). 1599-1614.

[66] Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quan-

quan Gu. 2019. On the convergence and robustness of adversarial training. In
International Conference on Machine Learning. 6586—6595.

James A Whittaker and Michael G Thomason. 1994. A Markov chain model
for statistical software testing. IEEE Transactions on Software engineering 20, 10
(1994), 812-824.

Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska. 2018. Feature-guided
black-box safety testing of deep neural networks. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
408-426.

Chaowei Xiao, Jun Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song.
2018. Spatially transformed adversarial examples. In 6th International Conference
on Learning Representations, ICLR 2018.

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. 2018. Mit-
igating Adversarial Effects Through Randomization. In International Conference
on Learning Representations.

Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. DeepHunter: a coverage-guided
fuzz testing framework for deep neural networks. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 146-157.
Weilin Xu, David Evans, and Yanjun Qi. 2018. Feature Squeezing: Detecting
Adversarial Examples in Deep Neural Networks. In Proceedings of the 25nd Annual
Network and Distributed System Security Symposium (NDSS).

Wei You, Xuwei Liu, Shiging Ma, David Perry, Xiangyu Zhang, and Bin Liang.
2019. SLF: fuzzing without valid seed inputs. In 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE). IEEE, 712-723.
Xiaoyong Yuan, Pan He, 5ile Zhu, and Xiaolin Li. 2019. Adversarial examples:

Attacks and defenses for deep learning. IEEE transactions on neural networks and
learning systems 30, 9 (2019), 2805-2824.

Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. 2020. Machine learning testing:
Survey, landscapes and horizons. IEEE Transactions on Software Engineering
(2020).

Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-
shid. 2018. DeepRoad: GAN-based metamorphic testing and input validation
framework for autonomous driving systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 132-142.

Peixin ZHANG, Jingyi WANG, Jun SUN, Guoliang DONG, Xinyu WANG, Xingen
WANG, Jin Song DONG, and Dai TING. 2020. White-box fairness testing through
adversarial sampling. (2020).

Xiyue Zhang, Xiaofei Xie, Lei Ma, Xiaoning Du, Qiang Hu, Yang Liu, Jianjun
Zhao, and Meng Sun. 2020. Towards Characterizing Adversarial Defects of
Deep Learning Software from the Lens of Uncertainty. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE). IEEE.

Husheng Zhou, Wei Li, Zelun Kong, Junfeng Guo, Yuqun Zhang, Lingming Zhang,
Bei Yu, and Cong Liu. 2020. DeepBillboard: Systematic Physical-World Testing
of Autonomous Driving Systems. In 2020 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE.

Zhi Quan Zhou and Liqun Sun. 2019. Metamorphic testing of driverless cars.
Commun. ACM 62, 3 (2019), 61-67.

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Neural Network
	2.2 Adversarial Examples and DNN Robustness
	2.3 Adversarial Training

	3 Coverage Based DNN Testing
	3.1 DeepXplore
	3.2 DeepGauge and DeepHunter
	3.3 SADL
	3.4 Research Questions

	4 DNN Model Quality Metrics
	4.1 Model Accuracy for Adversarial Examples
	4.2 Adversarial Example Imperceptibility
	4.3 Adversarial Example Robustness

	5 Experiments and Results
	5.1 Setup
	5.2 Results and Analysis

	6 Threat to Validity and Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

