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ABSTRACT

Millimeter-wave (mmWave) technologies represent a cornerstone

for emerging wireless network infrastructure, and for RF sensing

systems in security, health, and automotive domains. Through a

MIMO array of phased arrays with hundreds of antenna elements,

mmWave can boost wireless bit-rates to 100+ Gbps, and potentially

achieve near-vision sensing resolution. However, the lack of an

experimental platform has been impeding research in this field. This

paper fills the gap withM
3 (M-Cube), the first mmWave massive

MIMO software radio.M3 features a fully reconfigurable array of

phased arrays, with up to 8 RF chains and 256 antenna elements.

Despite the orders of magnitude larger antenna arrays, its cost

is orders of magnitude lower, even when compared with state-of-

the-art single RF chain mmWave software radios. The key design

principle behind M
3 is to hijack a low-cost commodity 802.11ad

radio, separate the control path and data path inside, regenerate the

phased array control signals, and recreate the data signals using a

programmable baseband. Extensive experiments have demonstrated

the effectiveness of theM3 design, and its usefulness for research

in mmWave massive MIMO communication and sensing.
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1 INTRODUCTION

Millimeter-wave (mmWave) networking technologies are widely

recognized as the most promising solution to confront the mobile

data explosion. However, commercially viable use cases, e.g., 60 GHz

802.11ad and 70 GHz backhaul, have been limited to short-range,

static, point-to-point settings. The fundamental reason lies in the

use of highly directional beams as the communication medium,

which can be easily disturbed by obstacle blockage and device

movement. These challenges become most severe when a large

phased array is used, with a massive number of antenna elements

(and hence a large number of directional beams to manage).

In addition, mmWave devices can serve as RF sensors to achieve

high spatial resolution, owing to their intrinsically shorter wave-

length, wider bandwidth, and larger antenna aperture [32]. Besides

conventional use cases such as vehicular radar ranging and se-

curity/medical imaging, mmWave sensing is becoming available

on pervasive mobile devices. For example, the 5G NR standard

has incorporated mmWave location sensing [59]. Meanwhile, the

emerging 802.11ay standard also introduces a WLAN radar mode

which repurposes the mmWave radio as a MIMO radar [1].

To fully explore the challenges and opportunities in mmWave

technologies, it is critical to have a programmable experimental

platform with the following capabilities: (i) Equipped with low-cost

and large-scale phased arrays which allow real-time beam switch-

ing, to accommodate high mobility vehicular networking/sensing

scenarios; (ii) Supporting the mmWave MIMO architectures to be

used in 5G NR and 802.11ay radios [22, 37]; (iii) Allowing reconfig-

uration of beam patterns, communication/sensing algorithms and

network stack. Existing mmWave experimental platforms are either

too costly (around $200K per link [33, 39]), or lack a reconfigurable

phased array antenna with reasonable size [39, 48, 65]. Moreover,

such devices are often bulky and can barely support mobile exper-

iments. None of the existing platforms include support for both

multiple RF chains and reconfigurable phased arrays, which are

critical for research into mmWave MIMO.

In this paper, we describe the design and implementation of

M
3, the first mmWave massive MIMO experimental platform to

meet the aforementioned requirements.M3 is a low-cost software-

defined radio/radar comprised of up to 256 antenna elements and

up to 8 RF chains. The key research thrust in M
3 is to repurpose

a commodity 802.11ad phased array as a programmable phased

array, and to interface it with an existing baseband processing unit

(BPU), such as an FPGA with data converters, or a low-frequency

software radio. M3’s software radio/radar design cuts the per-node

cost significantly, e.g., down to $3.8K for a narrowband (56 MHz)
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