

Blind Dynamic Resource Allocation in Closed Networks via Mirror Backpressure

YASH KANORIA, Columbia University
PENGYU QIAN, Columbia University

We study the problem of maximizing payoff generated over a period of time in a general class of closed queueing networks with finite, fixed number of supply units which circulate in the system. Demand arrives stochastically, and serving a demand unit (customer) causes a supply unit to relocate from the “origin” to the “destination” of the customer. We consider general controls including entry control, pricing, and assignment. Motivating applications include shared transportation platforms and scrip systems.

Inspired by the mirror descent algorithm for optimization and the backpressure policy for network control, we introduce a novel family of *Mirror Backpressure* (MBP) control policies. The MBP policies are simple and practical, and crucially do not need any statistical knowledge of the demand (customer) arrival rates.

Under mild conditions, we show that MBP policies lose at most $O(\frac{K}{T} + \frac{1}{K})$ payoff per customer relative to the optimal policy that knows the demand arrival rates, where K is the number of supply units and T is the total number of customers over the time horizon. The key technical challenge we overcome is that the number of supply units at any node can never be negative. Simulation results in a realistic ridehailing environment support our theoretical findings.^{1,2}

CCS Concepts: • Theory of computation → Stochastic control and optimization; Computational pricing and auctions; • Mathematics of computing → Network optimization.

Additional Key Words and Phrases: backpressure; mirror descent; dynamic pricing; shared transportation platforms; scrip systems; queueing

ACM Reference Format:

Yash Kanoria and Pengyu Qian. 2020. Blind Dynamic Resource Allocation in Closed Networks via Mirror Backpressure. In *Proceedings of the 21st ACM Conference on Economics and Computation (EC '20), July 13–17, 2020, Virtual Event, Hungary*. ACM, New York, NY, USA, 1 page. <https://doi.org/10.1145/3391403.3399498>

¹A full version of this paper is available at <https://arxiv.org/abs/1903.02764>.

²This research was supported by the National Science Foundation grant CMMI-1201045.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

EC '20, July 13–17, 2020, Virtual Event, Hungary

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7975-5/20/07.

<https://doi.org/10.1145/3391403.3399498>