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Topological resonance in Weyl semimetals in a circularly polarized optical pulse
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We study theoretically the ultrafast electron dynamics of three-dimensional Weyl semimetals in the field of
a laser pulse. For a circularly polarized pulse, such dynamics is governed by topological resonance, which
manifests itself as a specific conduction band population distribution in the vicinity of the Weyl points. The
topological resonance is determined by the competition between the topological phase and the dynamic phase
and depends on the handedness of a circularly polarized pulse. Also, we show that the conduction band
population induced by a circularly polarized pulse that consists of two oscillations with opposite handedness
is highly chiral, which represents the intrinsic chirality of the Weyl points.
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I. INTRODUCTION

The interaction of ultrafast laser pulses with solids was
a subject of intensive theoretical and experimental research
over the last two decades. Such interaction is characterized by
highly nonlinear electron dynamics and strong perturbation
of electron systems and can be used to probe and control
the transport and optical properties of solids within a fem-
tosecond timescale [1–6]. The ultrafast electron dynamics in
the field of the pulse is determined by electron energy dis-
persion and interband dipole matrix elements. Such matrix
elements strongly depend on the topology of the system and
have singularities in the reciprocal space for topologically
nontrivial solids. Such singularities strongly modify ultrafast
electron dynamics and result in unique features in both elec-
tron population of the conduction band and generated electric
currents. One of the materials with nontrivial topology is a
two-dimensional (2D) graphene monolayer, which belongs to
the class of Dirac semimetals that have linear energy disper-
sion near special points called the Dirac points [7].

Graphene is a unique material, which has amazing electri-
cal, optical, and mechanical properties as well as numerous
potential applications [8,9]. Graphene is a single layer of
carbon atoms with a honeycomb crystal structure that has two
inequivalent Dirac points (K and K′) in the first Brillouin
zone. These two Dirac points have nonzero Berry flux of
opposite signs, which makes graphene a locally topologically
nontrivial material, while the total Berry flux through the
whole Brillouin zone is zero. While in graphene, the rela-
tivistic energy dispersion and nonzero Berry flux at the Dirac
points are realized in 2D, the corresponding Dirac points can
be also realized in three-dimensional (3D) solids, i.e., in Dirac
semimetals. In 3D, the Dirac points are double degenerate.
Such degeneracy is protected by time-reversal and inversion
symmetries of the solid. To lift the degeneracy, either time-
reversal symmetry T [10] or inversion symmetry P [11]
should be broken. In this case the Dirac point is transformed
into a set of separated Weyl points, which are monopoles of

Berry curvature. Such materials are called Weyl semimetals.
Due to the fermion doubling theorem [12], the Weyl points
appear in pairs with opposite chiralities, i.e., the Weyl points
in a pair are sink or source of the Berry curvature.

Recent studies have revealed that Weyl semimetals show
strong nonlinear optical response such as the second harmonic
generation (SHG) [13] and nonlinear Hall effect [14]. These
nonlinear effects are of topological origin and are due to large
Berry curvature localized near the Weyl points. Furthermore,
a circularly polarized pulse can excite electrons near the Weyl
points selectively [15,16]. Such selectivity can open new op-
portunities for device applications.

The response of the Weyl semimetals to a linearly polarized
ultrafast pulse has been studied theoretically in Ref. [17].
The results show that the electron dynamics in such mate-
rials is coherent and highly anisotropic. At the same time,
in Refs. [5,18] it was shown that the response of a solid to
a circularly polarized ultrashort pulse can have some extra
features. Namely, for gapped graphenelike materials, such
as transition metal dichalcogenides, the electrons experience
topological resonance in the field of circularly polarized pulse,
while there is no such resonance for linearly polarized pulse.
The topological resonance occurs due to competition between
the topological phase and the dynamic phase and results in
predominant population of one of the valleys of graphenelike
materials. The topological resonance occurs only for gapped
graphene materials but not for pristine graphene and strongly
depends on the magnitude of the band gap. In this rela-
tion the Weyl semimetal becomes an interesting system to
study the topological resonance since near each Weyl point,
in the reciprocal space, the 2D cross sections are equivalent to
gapped graphene systems with the band gap that depends on
the distance of the 2D cross section to the Weyl point. Thus,
by studying the interaction of Weyl semimetals with circularly
polarized pulse we can study the ultrafast electron dynamics
for both pristine graphene and gapped graphene with differ-
ent band gaps. In this paper, we consider the interaction of
Weyl semimetals with ultrafast circularly polarized pulses of
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different handedness. We identify the features of topological
resonance in the conduction band population distribution in
the reciprocal space of Weyl semimetal.

II. MODEL AND EQUATIONS

In the presence of an external electric field, the full Hamil-
tonian of the system becomes

H (t ) = H0 + eF(t )r, (1)

where e is the electron charge and H0 is the field-free Hamil-
tonian of the system. For the field-free Hamiltonian we use
the two-band model of Weyl semimetals. Such Hamiltonian
H0 describes the low-energy excitations near two Weyl points
located at k±

w = (±k0, 0, 0) in the reciprocal space. Below we
will mainly consider type I Weyl semimetals, for which there
is a well-pronounced topological resonance. The Hamiltonian
of the type I Weyl semimetals has the following form [19]:

H0(k) = A(k)σx + B(k)σy + C(k)σz, (2)

where k = (kx, ky, kz ) is a vector of the reciprocal space, σx,
σy, σz are Pauli matrices, and A(k), B(k), C(k) are given by
the expressions

A(k) = tx[cos(kxa) − cos(k0a)]

+ ty[cos(kyb) − 1] + tz[cos(kzc) − 1],

B(k) = ty sin(kyb), C(k) = tz sin(kzc). (3)

Here, a, b, and c are lattice constants along x, y, and z direc-
tions, respectively, and tx, ty, tz are hopping integrals which are
related to the Fermi velocities vx, vy, and vz at the Weyl points
through the following expressions:

vx = −(a/h̄)tx sin(±k0a), vy = (b/h̄)ty, vz = (c/h̄)tz.
(4)

First, we apply our analysis to TaAs (Weyl semimetal
type I), which has a body-centered tetragonal lattice
system, with lattice constants a = b = 3.437 Å along x
and y directions, respectively, and c = 11.646 Å along z
direction. The space group in TaAs is I41md (No. 109,
C4v) [20]. The important symmetries are the time-reversal
symmetry (T ), the fourfold-rotational symmetry around
the ẑ axis (C4z), and two mirror reflections about x = 0
and y = 0. TaAs has 24 Weyl points: 8 Weyl points
are located at (±0.0072π/a, 0.4827π/b, 1.000π/c)
and are called W1 and 16 Weyl points are located at
(±0.0185π/a, 0.2831π/b, 0.6000π/c) and are called
W2 [21,22]. The two-band Hamiltonian (2) is used to describe
the electron dynamics near one pair of Weyl points. Below
we consider the Weyl points that are located at (±0.1, 0, 0).
The hopping integrals are tx = 1.8801 eV, ty = 0.4917 eV,
and tz = 0.1646 eV. The energy dispersion of TaAs near the
Weyl points as a function of kx and ky and at kz = 0 is shown
in Fig. 1.

We assume that during the pulse the electron dynamics is
coherent and is described by the time-dependent Schrödinger
equation (TDSE)

ih̄
d�

dt
= Ĥ (t )�. (5)

FIG. 1. Energy dispersion of TaAs as a function of kx and ky at
kz = 0.

The electric field of the pulse generates both interband and
intraband electron dynamics. The intraband dynamics is de-
termined by the Bloch acceleration theorem [23]

h̄
dk
dt

= eF(t ), (6)

solution of which has the form

k(q, t ) = q + e

h̄

∫ t

−∞
F(t ′)dt ′, (7)

where q is the initial electron wave vector.
The corresponding wave functions, which are solutions

of the time-dependent Schrödinger equation within a single
band, are Houston functions [24] and are given by the expres-
sion

�(H )
αq (r, t ) = �

(α)
k(q,t )(r) exp

(
iφ(D)

α (q, t ) + iφ(B)
α (q, t )

)
, (8)

where �
(α)
k (r) are Bloch wave functions with wave vector

k at band α, α = v for the valence band, and α = c for the
conduction band. The dynamic phase φ(D)

α and the geometric
(Berry) phase φ(B)

α are defined by the following expressions:

φ(D)
α (q, t ) = −1

h̄

∫ t

−∞
dt ′Eα[k(q, t ′)], (9)

φ(B)
α (q, t ) = e

h̄

∫ t

−∞
dt ′F(t ′)Aαα[k(q, t ′)], (10)

where Aαα = 〈� (α)
q |i ∂

∂q |� (α)
q 〉 is the intraband Berry connec-

tion for band α.
It is convenient to express the solution of TDSE (5) in the

basis of Houston functions as

�
(α)
k(q,t )(r) =

∑
α=v,c

βαq(t )�(H )
αq (r, t ), (11)

where βαq(t ) are expansion coefficients. These coefficients
satisfy the following system of equations:

ih̄
∂Bq(t )

∂t
= H ′(q, t )Bq(t ), (12)
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where Bq(t ) and Hamiltonian H ′(q, t ) are defined as

Bq(t ) =
(

βv,q(t )
βc,q(t )

)
(13)

and

H ′(q, t ) = eF(t )Â(q, t ), (14)

where

Â(q, t ) =
[

0 Dcv (q, t )
Dvc(q, t ) 0

]
, (15)

Dcv (q, t ) = Acv[k(q, t )] exp
(
i
[
φ(B)

cv (q, t ) + φ(D)
cv (q, t )

])
,

(16)

φ(D)
cv (q, t ) = φ(D)

v (q, t ) − φ(D)
c (q, t ), (17)

φ(B)
cv (q, t ) = φ(B)

v (q, t ) − φ(B)
c (q, t ). (18)

Here, φ(D)
cv (q, t ) is a dynamic phase, φ(B)

cv (t ) is a topological
phase, and matrix Acv (k) is the non-Abelian k-space gauge
potential called Berry connection and expressed as [25,26]

Acv (q) = 〈
� (c)

q

∣∣i ∂

∂q

∣∣� (v)
q

〉
, (19)

which can be found analytically in the case of type I Weyl
semimetals as

Avc
x = (

Acv
x

)∗ = txa

2i(A2(k) + B2(k) + C2(k))

× sin(kxa)√
A2(k) + B2(k)

× [A(k)C(k) − iB(k)
√

A2(k) + B2(k) + C2(k)],

(20)

Avc
y = (

Acv
y

)∗ = tya

2i(A2(k) + B2(k) + C2(k))

× 1√
A2(k) + B2(k)

[C(k)(A(k) sin(kya)

− B(k) cos(kya)) − i
√

A2(k) + B2(k) + C2(k)

× (A(k) cos(kya) + B(k) sin(kya))], (21)

Avc
z = (Acv

z )∗ = tzc
√

A2(k) + B2(k)

2i(A2(k) + B2(k) + C2(k))

×
[

cos(kzc) + sin(kzc)

A2(k) + B2(k)

× (A(k)C(k) − iB(k)
√

A2(k) + B2(k) + C2(k))

]
.

(22)

We numerically solve differential equation (12) with initial
conditions (βvq, βcq) = (1, 0). A general solution can be ex-
pressed in terms of the evolution operator Û (q, t ) as

Bq(t ) = Û (q, t )Bq(−∞), (23)

FIG. 2. Residual CB population distribution as a function of
(kx, ky ) for different values of kz after a single-oscillation left-handed
circularly polarized pulse. The pulse with the field amplitude of
F0 = 3 mV/Å propagates along the z direction.

Û (q, t ) = T̂ exp

[
i
∫ t

t ′=−∞
Â(q, t ′)dk(q, t ′)

]
, (24)

where T̂ denotes the time-ordering operator and the integral
is affected along the Bloch trajectory k(q, t ). We characterize
the electron dynamics in terms of the conduction band popula-
tion distribution NCB(q, t ) = |βcq(t )|2 in the reciprocal space.

III. RESULTS AND DISCUSSION

The rest of the paper is organized as follows: In the
Sec. III A we consider a circularly polarized pulse propagating
along the z direction. We characterize the electron dynamics
in the field of the pulse by the residual conduction band (CB)
population distribution in the reciprocal space. The data show
that a circularly polarized single oscillation pulse induces the
topological resonance in the system. In Sec. III B we apply
a circularly polarized pulse that consists of two cycles. The
optical pulse propagates in the z direction and induces a CB
population distribution in the reciprocal space, which is highly
chiral and shows the chirality of the Weyl points.

A. A single-oscillation circularly polarized pulse

1. Type I Weyl semimetals

We study the response of Weyl semimetals type I to a
single-oscillation circularly polarized pulse in terms of resid-
ual CB population in the reciprocal space. We assume that
the left-handed circularly polarized optical pulse propagates
along the z direction and its components are defined as

Fx(t ) = −F0e−u2
(1 − 2u2), quadFy(t ) = 2uF0e−u2

, (25)

where the field amplitude F0 = 3 mV/Å, u = t/τ , and τ =
10 fs is the pulse duration. We numerically solve TDSE [see
Eq. (12)], with initial condition (βvq, βcq) = (1, 0). Applied
optical field causes redistribution of electrons between the
valence and conduction bands, which results in finite CB pop-
ulation. The residual CB population, i.e., the CB population at
the end of the pulse, t = 25 fs, is shown in Fig. 2.
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FIG. 3. Residual CB population distribution in the reciprocal
space as a function of (kx, ky ) for kz = ±0.2 (1/Å) after a single-
oscillation left-handed circularly polarized pulse. The pulse with the
field amplitude F0 = 3 mV/Å propagates along the z direction. The
separatrix is shown by a solid blue line.

At kz = 0, the electron system in the (kx, ky) plane is equiv-
alent to pristine graphene and the responses at both Weyl
points to an external electric field are similar. The correspond-
ing CB population distribution is symmetric with respect to y
axes. The large CB population is located near the Weyl points
(see Fig. 2), which correlates with the profile of the interband
dipole coupling that is the strongest near the Weyl points.
This property is similar to what we have in graphene [27]
and is due to singularity of the dipole coupling exactly at the
Weyl points or Dirac points for graphene. Since the interband
dipole matrix elements are highly localized near the Weyl
points, the conduction band population distribution has sharp
maxima along the separatrix (solid blue line in Fig. 3). Here,
the separatrix is defined as a set of points in the reciprocal
space, for which the electron trajectory during the pulse goes
directly through the Weyl point.

For a nonzero value of kz, the electron system in the
kx-ky plane, near each Weyl point, becomes similar to gapped
graphene [18] with the band gap that is proportional to |kz|.
The corresponding CB population distribution as a function
of kx and ky and for different kz is shown in Fig. 2. The
data show that for nonzero kz, the W , (−0.1, 0, 0), and W ′,
(0.1,0,0), points are populated differently. For kz > 0, the CB
is highly populated in the vicinity of W ′ point, while it is less
populated for kz < 0. This is different from the CB population
distribution for kz = 0 and is due to the fact that for kz �= 0,
the effective 2D system (in kx-ky plane) becomes similar to
gapped graphene, for which there is the effect of topological
resonance. The origin of the topological resonance can be un-
derstood by looking at the expression for the CB population in
the first order of the perturbation theory. Namely, within this
approximation, the CB population is given by the expression

nCB =
∣∣∣∣
∮

|Acv[k(q, t )]n(t )| exp
(
iφ(tot)

cv (q, t )
)
dk(q, t )

∣∣∣∣
2

,

(26)
where n(t ) = F(t )/F (t ) is the unit vector tangential to the
Bloch trajectory and the total phase φ(tot) is

φ(tot)
cv = φ(B)

cv (q, t ) + φ(A)
cv (q, t ) + φ(D)

cv (q, t ), (27)

where the dipole matrix element phase φ(A)
cv (q, t ) is defined as

φ(A)
cv (q, t ) = arg(Acv (k(q, t )n(t )). (28)

FIG. 4. Phases φ (tot )
cv (q, t ), φ (B)

cv (q, t ), φ (A)
cv (q, t ), and φ (D)

cv (q, t )
for different initial wave vectors in the vicinity of the separatrix.
The initial wave vectors (qx, qy, qz ) are (a) (−0.07, −0.06,

−0.02), (b) (−0.07, −0.06, 0.02), (c) (0.07, −0.06, −0.02),
(d) (0.07, −0.06, 0.02). The amplitude of the pulse is F0 = 3 mV/Å
and it is left-hand circularly polarized.

Since |Acv[k(q, t )]n(t )| is a smooth function of time, the
residual CB population [Eq. (26)] is determined by oscillating
phase factor exp[iφ(tot )

cv (q, t )] and the topological resonance
occurs when the total phase is stationary, i.e., the topological
phase, which is the combination of the geometric phase and
the phase of the dipole matrix element, and the dynamic phase
cancel each other.

Figure 3 shows the residual CB population distribution at
kz = ±0.02 1/Å induced by a circularly polarized pulse. The
topological resonance, which manifests itself as a large CB
population, can be explained by Fig. 4, where the correspond-
ing phases φ(A)

cv (q, t ), φ(B)
cv (q, t ), φ(D)

cv (q, t ), and φ(tot)
cv (q, t ) are

shown.
Since the magnitude of the interband coupling is the

strongest near the Weyl points, which corresponds to t = 0
in Fig. 4, then we need to study the behavior of the total
phase at t close to zero. For a given Weyl point, the phases
φ(A)

cv (q, t ) and φ(B)
cv (q, t ) have opposite signs. Figures 4(a)

and 4(b) show the different phases for a point near the W point
for kz = −0.02 1/Å and kz = 0.02 1/Å, respectively. The
topological resonance is determined by behavior of the total
phase φ(tot)

cv (q, t ), around t = 0 fs. The total phase is almost
constant for kz = −0.02 1/Å, and has strong time dependence
for kz = 0.02 1/Å. Thus, the topological resonance results in
large CB population for the W point at kz = −0.02 1/Å while
the CB population is relatively small for the W point at kz =
0.02 1/Å plane. Opposite, for the W ′ point, the total phase
is almost constant around t = 0 fs for kz = 0.02 1/Å, which
results in corresponding large CB population [see Figs. 4(c)
and 4(d)].

In Fig. 5, we show the CB population of four different Weyl
semimetals type I as a function of kx and ky for kz = −0.02
(1/Å) after a single-oscillation left-handed circularly polar-
ized pulse. The field amplitude of the pulse is F0 = 3 mV/Å,
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FIG. 5. Residual CB population distribution in the reciprocal
space as a function of (kx, ky ) for kz = −0.02 (1/Å) for TaAs, TaP,
NbAs, NbP after a single-oscillation left-handed circularly polarized
pulse. The pulse with the field amplitude F0 = 3 mV/Å propagates
along the z direction.

and the pulse propagates along the z direction. TaAs, TaP,
NbAs, and NbP have the same body-centered tetragonal
structure with different lattice parameters and different mean
velocities at Weyl points [22]. The results show that the effect
of topological resonance is present in all cases, regardless
of their different parameters, and this is due to the fact that
such effect mainly depends on the large Berry curvature at
Weyl points at Weyl semimetals and it does not depend on the
parameters of the Hamiltonian.

In addition, the total CB population as a function of time
for TaAs, TaP, NbAs, and NbP is illustrated in Fig. 6. The
results show that the total conduction band population of TaAs

FIG. 6. Total conduction band population as a function of time
for TaAs, TaP, NbAs, NbP for a single-oscillation left-handed circu-
larly polarized pulse. The field amplitude is F0 = 3 mV/Å.

and TaP is almost the same, which is due to the fact that the
parameters of Hamiltonian (2) for TaAs and TaP are similar,
and it is smaller than the conduction band population of NbAs
and NbP.

The response of Weyl semimetals to an ultrafast circularly
polarized optical pulse is the same as what was predicted for
gapped graphene. In the case of gapped graphene, the right-
hand circularly polarized pulse mostly populates the K valley
while the CB population at the K ′ valley is small [18].

2. Type II Weyl semimetals

The type II Weyl semimetals are characterized by strong
tilting of its energy dispersion near the Weyl points. As a
result of such tilting, there are regions near the Weyl points
where there are only VB states or only CB states. In terms of
application to ultrafast electron dynamics in these regions, the
interband coupling becomes effectively intraband coupling,
i.e., at the same reciprocal vector two VB states (or two CB
states) at different energies but with the same wave vector are
coupled by the optical pulse. Such regions do not contribute
to the topological resonance. As a result, for the type II Weyl
semimetals we should expect suppression of effects related to
the topological resonance.

To illustrate the ultrafast electron dynamics in type II Weyl
semimetals, we consider a simple model of type II Weyl
materials, which is described by the following Hamiltonian:

H0(k) = A(k)σ0 + B(k)σz + C(k)σx + D(k)σz, (29)

where k = (kx, ky, kz ) is a vector of the reciprocal space, σx,
σy, σz are Pauli matrices, and A(k), B(k), C(k), and D(k) are
given by the expressions

A(k) = t1 sin(kya) + t2 sin(2kya), B(k) = sin(kya),

C(k) = 1 − cos(kxa) − cos(kza), D(k) = sin(kza), (30)

where t1 = −0.8, t2 = −0.6, a = 7 Å, and σ0 is the 2 × 2 unit
matrix [28]. The corresponding energy dispersion is given by
the expression

Ec(k) = A(k) +
√

B2(k) + C2(k) + D2(k),

Ev (k) = A(k) −
√

B2(k) + C2(k) + D2(k), (31)

where c and v stand for the CB and VB, respectively. The
energy dispersion is shown in Fig. 7.

We apply a circularly polarized optical pulse [see Eq. (25)],
which has the same profile as for the type I Weyl semimetals.
The residual CB population is shown in Figs. 8 and 9. For kz =
0, the CB population distribution is symmetric with respect to
the ky axis and has maxima near the Weyl points, which is
similar to what we see in the type I Weyl semimetals. At the
same time, while for type I Weyl semimetals the CB popula-
tion distribution has a single maximum without any internal
structure near each Weyl point, for type II Weyl semimetals
the CB population distribution shows interference pattern with
local maxima and minima (see Fig. 8). This is due to the fact
that near each Weyl point of type II Weyl semimetals, there
are regions with pure intraband dynamics.

For kz �= 0 (see Fig. 9), we can clearly see that CB popu-
lation distribution is different around two Weyl points, which,
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FIG. 7. Energy dispersion of type II Weyl semimetals as a func-
tion of kx and ky for kz = 0.

similar to type I Weyl semimetals, is due to topological res-
onance. For type II Weyl semimetals, this difference is less
pronounced than for type I materials. The reason for this is
that the topological resonance occurs due to accumulation
of the topological phase, which comes from the interband
dynamics. For type II Weyl semimetals, in part of the region
around the Weyl points the interband dynamics transforms
into intraband dynamics, which finally results in suppression
of the topological resonance.

B. Two-cycle circularly polarized pulse

We consider the response of the Weyl semimetal to a cir-
cularly polarized pulse consisting of two cycles. The pulse is
incident normally on the system along the z direction and has

FIG. 8. Residual CB population distribution in the reciprocal
space as a function of (kx, ky ) for kz = 0 for type II Weyl semimetals.
The left-handed circularly polarized pulse propagates along the z
direction and the field amplitude is F0 = 3 mV/Å.

FIG. 9. Residual CB population distribution in the reciprocal
space as a function of (kx, ky ) for nonzero kz for type II Weyl
semimetals. The left-handed circularly polarized pulse propagates
along the z direction and the field amplitude is F0 = 3 mV/Å.

the following profile:

Fx(t ) = F0
[ − e−u2

(1 − 2u2) ∓ αe−(u−u0 )2
[1 − 2(u − u0)2]

]
,

Fy(t ) = 2F0
[
ue−u2 + α(u − u0)e−(u−u0 )2]

. (32)

Here, ∓ sign determines the handedness of the second cycle
of the pulse relative to the handedness of the first cycle. Here
the minus sign corresponds to the same handedness of two
cycles, while the plus sign corresponds to the opposite hand-
edness of two cycles. The amplitude of the first pulse cycle
is F0 = 3 mV/Å, while the amplitude of the second cycle is
αF0, where α = 0.75 in Figs. 10 and 11 and α = 1 in Figs. 12
and 13. The duration of a single cycle of the pulse is τ = 10 fs
and the time interval between the cycles is t0 = 50 fs, where
u0 = t0/τ .

The CB population distribution in the kx-ky plane is shown
in Fig. (10) for kz = 0 and for two optical cycles of opposite
handedness. The results clearly show that the distribution is
highly chiral at both Weyl points and is also characterized
by interference fringes. The origin of such interference is a
double passage by an electron of the region close to the Weyl
points. Namely, at the end of the first cycle of the pulse,
t ≈ 25 (fs), the CB population distribution has maximum
along the corresponding separatrix (see Figs. 2 and 3), but
does not produce any interference fringes. Then, during the
second cycle of the pulse, whose circularity is opposite of the
circularity of the first cycle, electron passes through the Weyl
point the second time resulting in the interference pattern.
Such interference occurs because of highly localized nature
of the interband dipole coupling, which has sharp maximum
at the Weyl points, and because for a two-cycle pulse there
are two amplitudes that determine the transfer of an electron
from the valence band to the conduction band. Here, the first
amplitude corresponds to the electron transfer from VB to CB
during the first cycle, while the second amplitude corresponds
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FIG. 10. Residual CB population distribution in the reciprocal
space as a function of (kx, ky ) at kz = 0, after a two-cycle optical
pulse. Here, the first cycle of the pulse is right-handed circularly
polarized with the amplitude of F0 = 3 mV/Å, and the second cycle
is left-handed circularly polarized with the amplitude of 0.75F0. The
separatrix corresponding to two cycles of pulses is shown by a solid
blue line.

to the electron transfer from VB to CB during the second
cycle. The phase, both the dynamic and topological, accumu-
lated between these two transfers determines the interference
pattern in the CB population distribution. This interferometer
does not need an external reference source and, therefore, is
self-referenced.

The results for two-cycle pulse, illustrated in Fig. 10, show
that the CB population distributions are different for two Weyl
points, while they are the same for one-cycle pulse. Such
difference is due to intrinsic chirality of electron states at the
Weyl points.

The results shown in Fig. 10 correspond to kz = 0 when
the interband dipole matrix element is highly localized at the
Weyl points and there is no topological resonance during the

FIG. 11. Residual CB population as a function of (kx, ky ) for two
nonzero values of kz. The profile of the pulse is the same as the one
in Fig. 10.

FIG. 12. Residual CB population as a function of (kx, ky ) at
kz = 0 after a two-cycle optical pulse. The two cycles have the same
circular polarization. The amplitude of the electric field for both
cycles is F0 = 3 mV/Å. The separatrix is shown as a blue line. The
inset shows the profile of two-cycle optical pulse.

pulse. For the cross sections with kz �= 0, the electron sys-
tem behaves similar to gapped graphene with well-developed
topological resonance and broaden interband coupling. The
corresponding results for a two-cycle pulse is shown in
Fig. 11. The results clearly show that with increasing kz the
interference fringes become smeared. This is mainly related
to the fact that for two-cycle pulse, which consists of two
cycles with opposite handedness, the topological resonance,
for a given Weyl point, occurs only for one of the cycles. As a

FIG. 13. The same as Fig. 12, but for kz = 0.02 (1/Å).
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result, one of the amplitudes that determines CB-VB mixing
during the two-cycle pulse becomes small compared to the
other one, which finally smears the interference pattern. For
example, in Fig. 11, the first cycle of the pulse has counter-
clockwise polarization and it populates the W point, while
the second cycle of the pulse has clockwise polarization and
populates mainly the W ′ point.

The CB population distribution for two-cycle pulse with
the same circular polarization and the same amplitude (α = 1)
for two cycles is shown in Figs. 12 and 13. For kz = 0 (see
Fig. 12), when the system is similar to pristine graphene,
the CB population distributions at two Weyl points are
the mirror image of each other (with respect to the ky-kz

plane). The interference fringes in this case are mostly par-
allel to the separatrix, which is shown by blue line in the
figure. This is due to the fact that the time between the
first and the second passages by an electron of the Weyl
points is large and is almost the same for all points on a
given line parallel to the separatrix. This results in strong
dephasing and the same interference conditions along such
lines.

For nonzero kz, the system is equivalent to gapped
graphene with well-pronounced topological resonance. For
two-cycle optical pulse with the same handedness for both
cycles, the topological resonance is realized only for one of
the Weyl points for both cycles. In this case, the whole CB
population distribution becomes strongly suppressed for one
of the Weyl points. This behavior is clearly illustrated in
Fig. 13, where the whole CB population of Weyl point W ′
is suppressed.

IV. CONCLUSION

The ultrafast interband electron dynamics in Weyl
semimetals is controlled by competition between the dynamic
phase and the topological phase, which occurs in the field of
a circularly polarized femtosecond long optical pulse. When
these two phases cancel each other, the system exhibits the
topological resonance, which results in large residual con-
duction band population. For Weyl semimetals, for the pulse

propagating along, for example, the z direction, the topolog-
ical resonance results in predominant CB population of the
region in the reciprocal space near one of the Weyl points, say
W , for kz < 0 and the region near the other Weyl point, W ′,
for kz > 0. Exactly at kz = 0 conduction bands at both Weyl
points are equally populated. The reason for such behavior is
that for each cross section kz = const, the Weyl semimetals
behave as a 2D gapped graphene system with the gap that
is proportional to kz. Since the strength of the topological
resonance in gapped graphene system increases with the mag-
nitude of the band gap and manifests itself in predominant
population of one of the valleys, then similar features of
topological resonance are visible in 3D Weyl semimetals. At
the same time, the dynamics of Weyl semimetals in circularly
polarized pulse can be used to study the properties of topo-
logical resonance, i.e., its dependence on the band gap and
energy dispersion of the material, and profile and intensity of
the optical pulse.

Furthermore, employing a two-cycle circularly polarized
pulse causes the formation of interferogram in the conduction
band population distribution in the reciprocal space. Such
distribution is also highly chiral for the two Weyl nodes and
illustrates the intrinsic chirality of the Weyl points. The in-
terferogram also depends on the strength of the topological
resonance and can be used to study the properties of the
topological resonance in topological materials.
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