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Abstract—The boundary of the entropy region has been shown
to determine fundamental inequalities and limits in key problems
in network coding, streaming, distributed storage, and coded
caching. The unknown part of this boundary requires nonlinear
constructions, which can, in turn, be parameterized by the
support of their underlying probability distributions. Recognizing
that the terms in entropy are submodular enables the design of
such supports to maximally push out towards this boundary.

Index Terms—entropy region; Ingleton violation

I. INTRODUCTION
From an abstract mathematical perspective, as each of the

key quantities in information theory, entropy, mutual informa-
tion, and conditional mutual information, can be expressed as
linear combinations of subset entropies, every linear informa-
tion inequality, or inequality among different instances of these
quantities, specifies a half-space in which the entropy region
7’]"\, [L], [2] must live, and vice-versa. This in turn implies that
characterizing the boundary of I'%; is equivalent to determining
all fundamental inequalities in information theory[l], [3l],
[2]. Other abstract equivalences have shown that determining
it amounts to determining all inequalities in the sizes of
N subgroups and their intersections[4], and all inequalities
among Kolmogorov complexities[S]], and that the faces of
%, encode information about implications among conditional
independences [6] which are key to the language of graphical
models in machine learning. From a more applied perspective,
it has been shown the determining the boundary of '} is
equivalent to determining the capacity regions of all networks
under network coding|[[7], [8], which in turn have been shown
to be key ingredients in building optimal coding protocols for
streaming information with low delay over multipath routed
networks[9], [10], limits for secret sharing systems|[/11]], as well
as fundamental tradeoffs between the amount of information
a large distributed information storage system can store and
the amount of network traffic it must consume to repair failed
disks[12], [13], [14].

The entropy region can be broadly broken into two parts,
the part that can be achieved by time-sharing linear codes, and
the part that cannot. Here, linear codes construct the discrete
random variables (r.v.s) as vectors created by multiplying vec-
tors of r.v.s uniformly distributed over a finite field by matrices
with elements drawn from the same field. For collections of
exclusively N < 3 r.v.s, all entropy vectors are achievable
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by time-sharing linear codes [2]. For N = 4 and N = 5
r.v.s, the region of entropic vectors (e.v.s) reachable by time-
sharing linear codes has been fully determined ([5] and [15]],
[L6], respectively), and is furthermore polyhedral, while the
full region of entropic vectors remains unknown for all N > 4.
As such, for N > 4, and especially for the case of N = 4
and N = 5 r.v.s, determining f}‘v amounts to determining
those e.v.s exclusively reachable with non-linear codes. Of
the highest interest in such an endeavor is determining those
extreme rays generating points on the boundary of T'% re-
quiring such non-linear code based constructions. Once these
extremal e.v.s from non-linear codes have been determined,
all of the points in [}, can be generated through time-sharing
their constructions and the extremal linear code constructions.

For N = 4 rv.s, determining whether a entropic vector
can be achieved with the time-sharing of linear codes is
equivalent to checking whether it obeys Ingleton’s inequality
[L7], [S], and for N > 5 violation of Ingleton’s inequality is a
sufficient condition for an entropic point to require nonlinear
constructions. These sorts of conditions identify the e.v.s of in-
terest directly through conditions expressed in their entropies,
but a method for clearly working these conditions back to
structure in the joint probability mass function is yet unknown.
Connections with inequalities for the sizes of subgroups of a
common finite group [4] has provided one direction for con-
structions probably sufficient in the limit [18]], but the groups
must grow arbitrary large in proofs for these constructions
to suffice, and extremality of scores in various directions is
difficult to couple with group properties other than being non-
abelian. On the other hand, in practice numerical optimization
[19], [20] to map ['% consistently exhibits limited support of
a non-quasi-uniform nature, motivating a study of arbitrary
supports for non-uniform distributions [21]. A particularly
simple way of encoding nonlinear dependence between r.v.s
in a joint probability mass function is through its probabilistic
support, or the collection of N-dimensional outcomes for the
N discrete r.v.s which have strictly positive probabilities. Main
Contribution: This paper advances a nascent structural theory
identifying and organizing which probabilistic supports can
yield e.v.s in the part of ['}, reachable exclusively with non-
linear codes. Additionally, in order to push the constructions as
close to the boundary of I'%; as possible, structural theory and
methods for ranking supports relative to one another in terms
of Ingleton score and other measures of code nonlinearity



are investigated. The new theorems provide guidance and
explanation for observations that were made exclusively with
numerical experiments in [21]].
II. ENCODING SUPPORTS WITH SETS OF SET PARTITIONS
A collection of N discrete random variables X :=
(X1,...,Xy) taking values in the set X := X} x - -- X Xy, is
often specified by defining the joint probability mass function
(PMF) px : X — [0,1], which assigns to each vector
x = (z1,...,2xn) € X its probability px (z) := P[X = z].
Perhaps the most familiar representation of a probabilistic
support is the set of outcomes mapped to strictly positive
probabilities under the PMF

Xoo={xecX|px(x)>0}. (1)

A k-atom probabilistic support, or k-atom support for short,
is one with | X 5| = k.

The key object under study is the closure of the set of
entropy vectors reachable with a given k-atom support

Zmexw px(w) =1,

px(x) >0V e X, , (2
px(x) =0V ¢ X+

with the explicit goal of providing a structural characterization
of those k-atom supports which can generate e.v.s in the un-
known part of Iy requiring non-linear codes. In this respect,
because [} is invariant to the identification of the labels of the
N-r.v.s, but identification of a particular k-atom support can
break this symmetry, we consider the set of entropy vectors
to be reachable from X'~ to be not only HS (X ~¢) but

Hn(Xso) ={m(h)|h € H} (&), m €Sn'} 3)

where 7 € Sy, a permutation in the symmetric group of order
N, acts on the entropy vector h by permuting the subsets of
{1,..., N} that index its dimensions. From the viewpoint of
the goal of mapping I'%, those supports X'~ generating the
same sets Hy (X~o) are functionally equivalent. It is thus of
interest to group probabilistic supports into equivalence classes
based on those entropy vectors H y (X ~¢) that they can reach.

In this regard, an important observation is that a k-atom
support induces a collection of N set partitions which directly
determine the entropy vectors it can reach. Indeed, labeling
XooviaXso={x1,...,x} withx; = [2;1,...,2; N], We
can associate each random variable X,, with a set partition &,,
whose blocks are the indices ¢ of those outcomes x; € X~
with z; , equal to some particular outcome from X,,,

En={{ie{l,...;k}|min=2n}|xn € X0 }. )

The meet of these N set partitions &, ...
singletons, i.e.

HY (X s0) = h(px)

,En 1s the set of

N &={{i}lie{l... k}}. 5)

Together with the vector of non-zero probabilities p =
[P1,-. - Dr]s Pi = Px,y,... xx (@i), & determines

H(X,) = H(éw;p)i=— ) <Zpi) log (Zm) , (6)

Beg, icB icB

where we have defined H(&; p), and,

H(XA)—H</\ 5n;p>7 )

neA
so we can formally express the entropic vector as a function

H(/\ gn;p) |Ag{1,...,N}], (8)

neA

h(¢:p) =

and the set of entropy vectors reachable with a given equiva-
lence class of probabilistic supports as

HN(Xs0) = Hn(E) = {m(h(&Sk)) T €Sn}, )

where S = {p ’p >0, Zle D = 1}. Two different sup-
ports X~ can generate identical collections of N set par-
titions &, and thus via (9) exactly the same set of entropy
vectors. For this reason, we choose to represent a [V-variable
k-atom probabilistic support not as a set of vectors of out-
comes X'~ but instead as the collection of N set partitions
&. Additionally, as we are adding all permutations of the N
random variable labels back in (9), which also form the index
ordering &, we can take £ to be a multi-set, as two different
orderings of the indexing of this multiset will yield identical
Hn(€)s. We further restrict consideration to £ being a set
of set partitions, as repetition of the same partition is more
properly thought of as an N’ variable k-atom support with
N’ < N together with a repetition of identical r.v.s. Finally,
since the entropies will be independent of the ordering of the
labels {1, ..., k} of the elements in (1), from the orbit of the
set of permutations of these labels S (the symmetric group of
order k), we select the & which is minimum under the natural
lexicographic ordering.

Definition 1 (Canonical Minimal k-atom support): A canon-
ical minimal k-atom support is a set of N set partitions &
of the set {1, ..., k} whose meet is the singletons

N G={{iie{L, ... k}}

ne{l,...,N}

(10)

and whom is minimal under lexicographic ordering in its
orbit under the action of the group Sy.

In addition to grouping together different supports that are
equivalent for the purposes of mapping entropy, one of the
benefits or representing supports with set partitions is the
ordering among entropies can be determined via refinement.

Lemma 1 (Entropy is ordered under refinement.): Let ¢ and
& be two set partitions of the set {1, ..., k}, and suppose
the partition &; refines the partition &5, denoted by &; < &.

Then, for all probability vectors p = [p1,...,px]T, pi >
0ie{l,...,k}, Y p=1,
H(&i;5p) > H(&;p) (11)

Proof: Let X; be a random variable generating the set
partition &; and X, be a random variable generating the set



partition &;. Since & refines &, their meet & A & = &;.
Thus, H(X1, X2) = H(& A &osp) = H(Sp) = H(X).
Substituting H(Xl,Xg) = H(&l,p) and H(Xg) = H(fg,p)
into the basic entropy inequality H (X7, X2) > H(X3) then
shows (TI). |

An even more powerful type of inequality linking the
entropies achievable with set partitions invokes entropy sub-
modularity via the meet and join operators as shown in the
following lemma.

Lemma 2 (Partition Based Entropy Submodularity): Let &
and & be two set partitions of the set {1,...,k}. For all
probability vectors p = [p1,...,pr] T, pi > 0,5 € {1,...,k},
Zf:l pi =1,

H(&;p) + H(S2;p) > H(§1 Aé23p) + H(& V &2sp) (12)

Proof: This can in fact be viewed as another instance of the
submodularity of entropy as a set function of a collection
of r.v.s via a clever identification of r.v.s. Indeed, let X;
be a random variable inducing the set partition &, X5 be
a random variable inducing the set partition &, and Z be
a random variable inducing the set partition & V &. Be-
cause & A (&1 V&) = &, we can think of H(&;;p) as
H(X1,Z), and similarly because & A (&1 V&) = & we
can think of H(&;p) as H(Xs,Z), substituting these and
H(X1,X2,Z) = H(& A &o;p) into (12) we transform it
into I{()(l7 Z) + H(X27 Z) Z H(Z) + ]{()(1,)(27 Z) This
shows that, once we have identified the random variable
Z, this inequality can be recognized as a form of entropy
submodularity. ]

An interesting interpretation of this theorem is as stating
that the entropy of the common information between two
r.v.s is upper bounded by their mutual information, since the
join partition can be interpreted as the common information
computable individually from either the RVs with partitions
& and & in a manner that is agreed upon.

In fact, a key property of linear codes, which generate the
r.v.s X,, as vectors with elements drawn from some finite field
GF(q), that resulting from multiplying a vector of independent
r.v.s uniformly distributed over GF'(q) by some matrix, is that
equality is obtained in the inequality (I2). It was this fact that
enabled Ingleton to prove Ingleton’s inequality, and Dougherty
Freiling and Zeger derived the region of e.v.s reachable with
linear codes for 5 r.v.s also by exploiting this fact.

Not only does entropy expressed in a terms of set partitions
obey a submodular relationship, but also the terms within a
partition’s entropy are submodular, as shown next.

Lemma 3 (Submodularity of entropy terms): For any prob-
ability vector p € Sy, the set function

fp(A) =~ (Zm) log (Zm) (13)

ic A ic A
is submodular, so that forany A, B C {1,...,k}

fp(A) + fp(B) = fo(ANB) — fp(AUB) 2 0. (14)

Proof: Define a ternary random variable X; whose set par-
tition representation is & = {A,B\ A, (A U B)°} and
a second ternary random variable X, whose set partition
representation is &, = {B, A\ B, (AU B)°}. The join partition
is & V& = {AUB,(AUB)°} and the meet partition
is &1 A& = {ANB,A\ B,B\ A, (AU B)“}. Plugging
these partitions into (I2)), the partition-based submodularity
of entropy, and canceling repeated identical terms f((A U
B)°), f(A\B), f(B\.A) between positive and negative terms,
one obtains the inequality (14). ]

This submodularity of these block components of entropy
provide a very powerful tool for determining whether the col-
lection of entropy vectors reachable with a given probabilistic
support live in a particular half-space.

Theorem 1: The entropy vectors reached by the
probabilistic support ¢ will all live in the halfspace
{h|c"h >0}, so that " Hn (&) > 0, if for all 7 € Sy,

>

BC{1,....k}

dBJTH(YB) >0 (15)

is a balanced Shannon type information inequality in &-

variables Y7, ..., Y}, where
> ca BeF(E
dB,Tr = AcF(&;B,m) (16)
0 otherwise
with F(§) := UAQ{L...,N} Nneaén and
F(&Bm) = AC{l,....N}|Be A & (17)

nemn(A)

Proof: Grouping together terms by common blocks, we can
rewrite for any entropy vector 7(h(&;p)) in Hy(€)

Y caHX )= Y, caH| N &up
AC{1,...,N} AC{1,...,N} nen(A)
= D> e Y fpu(B)
AC{1,...,k} Be/\nEW(A) &n
= > dxfp(B) (18)
BEF(£)

Lemma [3| establishes that f,(-) is a submodular function for
every p € Si. A balanced Shannon-type inequality is one
which can be expressed as a sum of submodularity inequalities.
As such, if is a balanced Shannon-type inequality, (18]
will be > 0 for all p € Sy. [ |

Checking whether or not an information expression is a
balanced Shannon type information inequality, in turn, can be
completed by running a linear program. Thus, Thm. [I] enables
us to determine and prove whether or not a given support
gives only entropy vectors restricted to a certain halfspace,
for instance obeying Ingleton’s inequality, by running a linear
program. Additionally, Thm. |I| also enables us to provide a



firm mathematical proof of this fact after running the linear
program, removing the possibility for numerical errors leading
to incorrect conclusions.

For the purposes of mapping I'%;, Thm. s primary use is as
a tool to weed out supports that can not be helpful in growing
the inner bound, for instance initially for 4-variables, by
determining that they can never violate Ingleton’s inequality.
Any support that survives this weeding out process will have
some m € Sy such that H7(§) = w(H(€)) can not be
proven, via fp(-) submodularity alone, to live in the half
space {h|cTh > O} associated with one of the inner bounding
inequalities. We say that the pair (&, 7) then form a c-violation
candidate. Attention then turns to comparing the amount that
these violation candidates push out in the direction ¢, and
submodularity proves to be useful in this regard as well. The
following definition makes the notion of “pushing further out
in the direction ¢” precise as the definition of c-domination.

Definition 2 (Domination of Violation Candidates): The c-
violation candidate (&, ) dominates the c-violation candi-
date (¢',7') if

Th Th/
sup et > sup —,Ci (19)
heHT () hii,...ny h'EHT/ (&) h{l,..,N}

Submodularity is also a powerful tool for proving c-
domination as pointed out in the following theorem.

Theorem 2: The c-violation candidate (&,7) dominates
the c-violation candidate (¢', 7’) if for some o € S;,

D

BC{1,....k}

aB..H(Y5) 20 (20)

is a balanced Shannon-type information inequality in k-
variables, where

48,0 = dp 1 5 — dB.x (21
with d . defined according to applied to £ and
, Y. ca o(B)eF(E)
B ,o = AEF(&0(B),n) (22)

0 otherwise

Proof: Follows from evaluating ¢’ h(&;p) — cTn(h(¢';p'))
and identifying p’ = o(p), yielding identical joint entropies
hi,...ny- u

III. THEORETICAL CONDITIONS FOR INGLETON

VIOLATING SUPPORTS
One of the most important applications of Thm. [1|is to rule

out those supports which always obey Ingleton’s inequality,
Ingletonij = hij + hip + hie + hjk —+ hjg — hy — hj — hpe —
hijr — hije. The following example shows how.

Example 1 (Support Incapable of Violating Ingleton):
Consider the support & = {&,&,83,64) with & =
{{1}5{2}7{3}7{4}}’ 52 = {{1}a{2}7{374}}’ 53 =
{{1},{2,3},{4}}, and & = {{1},{2,3,4}}. Theorem

can be used to prove that this support is incapable of
violating Ingleton’s inequality, and is thus restricted to the
part of '}, reachable with linear codes. Careful evaluation
shows

Ingleton,,(§) = fp({2}) + fp({3}) — fp({2,3}) (23)
Ingleton5(§) = fp({3}) + fp({4}) — fp({3,4}) (24
Ingleton, (&) = fp({2,3}) + fp({3,4}) — fp({3})
—fp({2,3,4}) (25)
Ingleton,;(£) =0 (26)

Ingleton,, (§) = fp({2,3}) + fo({4}) — fp({2,3,4})(27)
Ingletong, (§) = fp({2}) + fp({3,4}) — fp({2,3,4})(28)

Each of these are a form of simple submodular inequality,
or equivalently, a balanced Shannon-type inequality, and
thus are > 0 no matter what p € Sy, is selected.

Using exact linear programs (e.g. [22]) to provide the
submodular constructions, and checking every equivalence
class of k-atom supports (see [21] for how to apply [23], [24]]
to construct these) enables one to obtain Table[I] col. O - 6.

4175 31 73 29 2 2 1
5 | 2665 349 2558 313 107 36 2
6 | 105726 6442 99769 5627 5957 815 14
7 | 5107735 160365| 4763013 136776| 344722 23589 53

TABLE I
IN TERMS OF THE NUMBER OF ATOMS IN THE SUPPORT (COL. 0): THE
NUMBER (HENCEFORTH #) OF NON-ISOMORPHIC SUPPORTS (COL. 1),
AND # OF NEW EQUIVALENCE CLASSES (FORMS HENCEFORTH) OF
INGLETON EXPRESSIONS (EQUATION ), NOT REACHABLE WITH k/ < k
ATOMS, THAT k-ATOMS SUPPORTS MAP TO (COL. 2), # OF SUPPORTS
THAT SUBMODULARITY PROVES CAN NEVER VIOLATE ANY INGLETON’S
INEQUALITY (COL. 3), # OF FORMS SUBMODULARITY SHOWS ARE NEVER
NEGATIVE (COL. 4), REMAINING # OF SUPPORTS THAT CAN POSSIBLY
VIOLATE INGLETON’S INEQUALITY (COL. 5), # OF POSSIBLY NEGATIVE
FORMS (COL. 6), AND # OF INGLETON-DOMINANT FORMS (COL. 7).

IV. MAXIMIZING INGLETON VIOLATION
With those supports that can violate Ingleton (cf. Table [I),
and thus live in the non-linear part of T*,, in-hand, one shifts
attention to comparing how far their scores can push out in
various directions. Thm. [2| was built for this, as the following
two examples, and Table |I} col. 7 demonstrate.

Example 2: Thm. can be used to prove that
5 = {51)52753754} Wlth 61 = {{1}7{27?)’4}}’ 52 =

{{1’2}’{374}}1 &3 = {{1’253}5{4}}! §4 = {{173}7{274}}
Ingleton-dominates ¢’ with ¢ = {{1},{2,3,4}}, & =

{{17 2, 3}7 {4}}1 fé = {{la 2, 4}7 {3}}: 54/1 = {{15 3, 4}a {2}}

For all i, j Ingleton,;(¢") is some permutation of
—fp({1}) = fp({1,2,3}) — fp({1,2,4}) — fp({2})
—fp({3}1) = fp({4}) + fp({1,2}) + fp({1,3}) + fp({1,4})
+/p({2,3}) + fp({2,4})

Meanwhile & can be proven to obey all forms of Ingletons
inequality except Ingleton, ;(£) which takes the form, up to
atom permutation,

—fp({1}) = fp({1,2,3}) — fp({1,2,4}) — fo({2})
—fp({3,4}) + fp({1,2}) + fp({1,3}) + fp({1,4})
+/p({2,3}) + fo({2,4})



Selecting an appropriate o we see the difference between
the Ingleton value of ¢ and that of £ is of the form
p({3}) + fp({4}) — fp({3,4}) which is positive due to
the submodularity of f,(-). Since the Ingleton values of
¢ are < the Ingleton values of ¢’ while they will both have,
owing to the joint entropy being associated with the meet
partition, identical joint entropies hi234, the Ingleton score
reached by & is provably lower than the Ingleton score
reached by &'

In fact Thm. 2] can even be used, with appropriate selection,
to prove Ingleton-dominance of a k-atom support over a k’-
atom support for &’ > k, as shown in the following example.

Example 3: Thm. [2] implies that the support & identi-
fied in Example [2] also Ingleton-dominates over the 5-
atom support ¢” with ¢/ = {{1},{2,3},{4,5}}, & =
{{1,2,3,4}, {5} }, 51,3/ = {{1,2,4,5},{3}}, and & =
{{1,3,5},{2,4}}. To see this, first split the atom 2 by
replacing it 2 — {2,5} in £ to get the non-minimal £° with
Ingleton value

—fp({1}) — fp({1,2,3,5}) — fp({1,3,4}) — fp({2,5})
—fp({3}) = fp({4}) + fp({1,2,5}) + fp({1,3})
+fp({1,4}) + fp({2,3,5}) + fp({3,4})

Next, evaluating Ingleton,;(¢”) we have

—fp({1}) = fp({1,2,3,4}) — fp({1,2,3,5}) — fp({2})
—fp({3}) — fo({4}) — fo({5}) + fo({1,2}) + fp({1,2,3})
+p({1,4}) + fp({2,4}) + fp({3,4}) + fp({3,5})

So, we see that Ingleton,, (¢”) — Ingleton(£°) is of the form

—fp({1,2,3,4}) — fp({1,2,5}) — fp({1,3}) — fp({2})
—fp({2,3,5}) = fo({5}) + fp({1,2}) + fp({1,2,3})
+/p({1,3,4}) + fp({3,5}) + 2/p({2,5}) 29)

which can be expressed as the sum of the fol-
lowing three submodularity inequalities f,({1,2}) +
FU2,5)) — f({1,2,5) — f(12) > 0, fp({2,5)) +
fp({3,5}) — fp({2,3,5}) — fp({5}) = 0, and fp({1,2,3})+
fp({1’374}) - fp({172’374}) - fp({la?’}) > 0. Thus,
Ingletony; (¢”) — Ingleton(¢°) > 0 for all values of p.
Next, we observe that Ingleton(£°) = Ingleton(£) and
h1234(&) = h1234(£°), while the refinement inequality
shows that hi934(£°) < hi234(¢”). Thus, we see that the
Ingleton score reachable with & provably outpowers those
reachable with ¢”.

In order to map r*, extremizing other cost functions while
violating Ingleton is also required. Observe that Thm. [2] is
equally suited to this purpose, and is equally amenable to

proofs constructed via linear programs.
V. CONCLUSIONS

By recognizing submodularity of the components of entropy
when restricted to a certain probabilistic support, two theorems
were constructed that help determine which supports are best
for mapping the boundary of the entropy region.
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