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Abstract

Experimental studies show that human pain sensitivity varies across the 24-hour day,
with the lowest sensitivity usually occurring during the afternoon. Patients suffering
from neuropathic pain, or nerve damage, experience an inversion in the daily
modulation of pain sensitivity, with the highest sensitivity usually occurring during the
early afternoon. Processing of painful stimulation occurs in the dorsal horn (DH), an
area of the spinal cord that receives input from peripheral tissues via several types of
primary afferent nerve fibers. The DH circuit is composed of different populations of
neurons, including excitatory and inhibitory interneurons, and projection neurons,
which constitute the majority of the output from the DH to the brain. In this work, we
develop a mathematical model of the dorsal horn neural circuit to investigate
mechanisms for the daily modulation of pain sensitivity. The model describes average
firing rates of excitatory and inhibitory interneuron populations and projection neurons,
whose activity is directly correlated with experienced pain. Response in afferent fibers
to peripheral stimulation is simulated by a Poisson process generating nerve fiber spike
trains at variable firing rates. Model parameters for fiber response to stimulation and
the excitability properties of neuronal populations are constrained by experimental
results found in the literature, leading to qualitative agreement between modeled
responses to pain and experimental observations. We validate our model by reproducing
the wind-up of pain response to repeated stimulation. We apply the model to
investigate daily modulatory effects on pain inhibition, in which response to painful
stimuli is reduced by subsequent non-painful stimuli. Finally, we use the model to
propose a mechanism for the observed inversion of the daily rhythmicity of pain
sensation under neuropathic pain conditions. Underlying mechanisms for the shift in
rhythmicity have not been identified experimentally, but our model results predict that
experimentally-observed dysregulation of inhibition within the DH neural circuit may
be responsible. The model provides an accessible, biophysical framework that will be
valuable for experimental and clinical investigations of diverse physiological processes
modulating pain processing in humans.
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Author summary

Human pain sensitivity follows a daily (∼24 hour) rhythm. In particular, humans 1

experience the highest sensitivity to pain in the middle of night and lowest in the 2

afternoon. Patients suffering from neuropathy, a disease resulting from nerve damage 3

leading to an increase in pain sensitivity, experience an approximately 12-hour shift in 4

their rhythmicity such that the highest sensitivity occurs in the afternoon. Neuropathy 5

is a difficult condition to treat since it is often unfeasible to locate the damaged nerve 6

and it is also unclear how this damage causes a shift in rhythmicity and an increase in 7

pain. Understanding the mechanism underlying the shift in rhythmicity may lead to 8

improvements in the knowledge of the transmission of pain from the damaged nerve to 9

the pain-processing center in the spinal cord, and thus better treatment protocols. We 10

have built a population-based model to describe this transmission with a particular 11

focus on daily rhythms. We show that our model reproduces experimentally-observed 12

rhythmicity of both normal pain responses, as well as neuropathic pain. Our model 13

predicts that a potential mechanism underlying the shift in rhythmicity for neuropathic 14

pain is a change in the interaction of the nerve fibers from inhibition to excitation. 15

Introduction 16

The processing of pain engages a wide variety of neural circuits across the nervous 17

system including those in the spinal cord, brainstem, thalamus, and cortex. More 18

specifically, it is thought that the dorsal horn (DH), an area of the spinal cord, serves as 19

the initial processing center for incoming nociceptive, or painful signals, with the 20

midbrain and cortex providing top-down modulation to that circuitry [1]. As a result, 21

there is a tradition of modeling pain processing by focusing exclusively on spinal cord 22

circuitry. This circuitry receives information about stimulation of peripheral tissues 23

from several types of primary afferent nerve fibers. These afferents have their cell bodies 24

in the dorsal root ganglia (DRG), a cluster of nerve cell bodies located exterior to the 25

spinal cord, and their axons (or fibers) target the DH [2]. Responses to innocuous 26

stimulation are carried by rapidly conducting Aβ-fibers [3], whereas nociceptors (i.e., 27

nerve fibers that detect painful stimuli) are only activated when a stimulus exceeds a 28

specific threshold. There are two major classes of nociceptive fibers: fast conducting 29

Aδ-fibers that mediate localized, fast pain and small-diameter C-fibers that mediate 30

diffused, slow pain. Among the neuronal populations in the DH, the projection neurons 31

(PNs) receive input from all fibers and constitute the majority of the output from the 32

dorsal horn circuit up to the brain. 33

In this article, we introduce a biophysically-based, mathematical model of the 34

nociception-processing neural circuit in the DH, which expands on our earlier work [4]. 35

We are particularly interested in using the model to investigate mechanisms for daily 36

(i.e., diurnal) modulation of pain sensitivity. In many clinical conditions, pain sensitivity 37

follows a daily cycle [5], that is, it exhibits a trough in the late afternoon and a peak 38

sometime after midnight for humans [6], but it is currently unclear how much of that 39

rhythmicity is derived from daily fluctuation in the underlying causes of the pain versus 40

rhythmicity in the neural processing of pain. Within the experimental pain literature, 41

rhythmic influences on pain sensation occur regardless of whether pain responses are 42

measured subjectively or objectively [7–10], suggesting that the rhythmic modulation of 43

pain responses occurs at the level of basic nociceptive processing. This rhythmic 44

modulation of pain sensitivity also increases with pain intensity [9, 11, 12]. Furthermore, 45

rhythmic influences on pain sensitivity are detectable in experiments involving a variety 46

of different kinds of nociceptive stimuli, including cold, heat, electric current, pressure, 47

and ischemia (see Tables 1–2 in [6]). Interestingly, experimental studies have also shown 48
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daily rhythmicity in tactile discrimination in nearly opposite phase to pain sensitivity, 49

namely highest tactile sensitivity occurring in the late afternoon and lowest in the 50

morning [13]. 51

There are several hypotheses for the source of the daily rhythm in pain sensitivity, 52

including central nervous system, spinal, and peripheral mechanisms [5, 14–18]. Recent 53

studies show that cells in the DRG rhythmically express the primary genes responsible 54

for generating an intrinsic 24-hour, or circadian, rhythmicity of other physiological 55

processes, including Bmal1, Clock, Per1 and Per2 [15, 16]. In addition, the rhythm in 56

behavioral nociception followed the gene expression rhythm [15] and disruption of their 57

expression affected behavioral pain responses [16]. These findings motivate our use of a 58

spinal cord model to test questions regarding daily influences on pain processing. As 59

such, the model assumes that the daily modulation occurs at the level of primary 60

afferent input to the spinal cord circuitry. Additionally, we specifically model the 61

portion of experienced pain that arises from nociceptive input to the spinal cord and 62

ignore any potential sources of top-down modulation. 63

As concerns the connections between neuron populations in the DH, there are several 64

proposed circuitries for the processing of touch, nociception, and itch (see, e.g., [19, 20]). 65

In this work, we take an approach similar to previous models of spinal cord nociception 66

processing (e.g., [21]) and employ the network architecture in the DH proposed by the 67

gate control theory of pain [22]. In doing so (and when we introduce daily modulation), 68

we note that the aim of our work here is focused on the processing of painful, noxious 69

stimulation, not mechanical, non-noxious stimulation, which we acknowledge may have 70

a different circuitry (for a review of circuitries for mechanical pain and itch, see [23]). 71

The gate control theory of pain [22,24] posits that the neural circuitry in the DH 72

exhibits a gating mechanism that is modulated by activity in the Aβ- and C-fibers [25]. 73

Specifically, nociceptive C-fiber-facilitated activity in the DH circuit is inhibited by 74

Aβ-fiber activity. When the amount of painful stimuli (i.e., activity in the C-fibers) 75

outweighs the inhibition from the Aβ-fibers, the “gate opens” and activates the PNs 76

(and the experience of pain). Although the gate control theory of pain [22] is a 77

simplification and not a complete representation of the physiological underpinnings of 78

pain processing [25], it has been a productive starting point for several mathematical 79

and computational models of pain [21,26–28]. 80

For our model of the DH circuit, we implement a neuronal population firing-rate 81

model formalism [29,30] to describe the population activity of projection, inhibitory, 82

and excitatory neurons in the DH. Our choice of this commonly-used model formalism is 83

based on the large number of afferent fibers and neurons in the DH, and the assumption 84

that the majority of information flow in the DH circuit is through firing rates of neural 85

populations rather than in specific spike timing within the populations [30,31]. An 86

advantage of this formalism is its biophysical basis and relative simplicity, thus making 87

our model an accessible theoretical framework for experimental and clinical 88

investigations of diverse physiological processes modulating pain processing in humans. 89

The rest of the paper is organized as follows. In the Methods section, we formulate 90

the equation system of the neural circuit for pain processing in the DH, describing the 91

time evolution of the average firing rates of the excitatory and inhibitory interneuron, 92

and PN populations in response to input on the afferent nerve fibers. The model 93

includes NMDA-mediated synaptic input from the C-fibers to the PNs that depends on 94

postsynaptic activity. We also describe the use of a Poisson process to simulate neural 95

spikes on the afferent fibers that represent the input from the DRG to the DH and the 96

interactions between the afferent fibers incorporated in our model, respectively. In the 97

Results section, we present validation studies for our model including reproduction of 98

the wind-up phenomenon. 99

With our principal aim to investigate the daily rhythmicity of pain sensation, we 100
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apply the model to predict the daily modulation of the pain inhibition phenomena. As a 101

novel application of the model, we investigate effects of experimentally-observed 102

dysregulation of inhibition within the DH circuit under neuropathic pain conditions (i.e., 103

a chronic condition with persistent pain experience associated, e.g., with peripheral 104

nerve damage) on the daily modulation of pain sensitivity. We find that dysregulation 105

of Aβ-fiber dependent presynaptic inhibition of C-fiber signaling can account for it. 106

Finally, we discuss limitations and future modifications, as well as importance and 107

application, of our model in the Discussion. 108

Methods 109

Model Equations 110

We construct a model describing the spinal processing of nociceptive stimuli in humans 111

by considering the average firing rate of three populations of neurons in the DH: the 112

PNs (P), inhibitory (I) interneurons, and excitatory (E) interneurons, in response to the 113

average firing rate of the Aβ-, Aδ-, and C-afferent fibers (see Fig 1). In this work, we 114

expand on a model developed in [4], which follows the modeling approach similar to [26] 115

with the exception that our model predictions are in terms of average firing rates of 116

neuron populations [29] instead of average membrane potentials. In contrast to our 117

previous model in [4], the new elements of the model introduced in this work consist of 118

including i) Poisson processes to generate spiking activity on the input nerve fibers, ii) 119

NMDA receptor-mediated synaptic interactions and iii) an additional inhibitory 120

interneuron population I2, and iv) removal of the connection to the midbrain. These 121

four modifications allow us to i) represent a biologically realistic fiber input to which the 122

model is robust, ii) reproduce experimentally observed frequency effects during wind-up, 123

iii) expand the model parameter range that replicates patterns seen in experiments on 124

neuropathy, and vi) focus solely on modeling spinal-cord processing of pain, respectively. 125

As concerns the general structure of connections between the neuronal populations 126

in the circuit (dashed rectangle in Fig 1), we follow previous models of pain and use the 127

circuitry presented, e.g., in [21]. Briefly, PNs receive direct synaptic input from the 128

three afferent fiber types, Aβ-fibers excite inhibitory interneurons and C-fibers excite 129

excitatory interneurons. Both interneuron populations synapse onto the PNs and the 130

inhibitory interneurons inhibit the excitatory interneurons. We also include 131

Aβ-dependent presynaptic inhibition of C-fiber activity mediated through an additional 132

inhibitory interneuron population (I2) that is modeled indirectly [see Eq (5)]. We 133

assume that the input to our model circuit is a stimulation of the afferent fibers that 134

has been pre-processed in the DRG. Based on fiber input and the connections between 135

the neuron populations in the DH, our model computes the activity of the PNs, (P in 136

Fig 1), whose output directly corresponds to the amount of pain experienced [32]. We 137

note that there are many nuances in the perception of pain, including those originating 138

in the cortex; however, we model the portion of pain that stems from nociceptive input 139

to the spinal cord since it has been shown that pain perception correlates strongly with 140

the firing rate of the PNs in the spinal cord [32,33]. 141

According to the formalism of firing-rate models, e.g., [29], we assume that the rate 142

of change of the average firing rate in spikes per second (Hz) of the projection, 143

inhibitory, and excitatory neuron populations, fP, fI, and fE, respectively, is 144

determined by a nonlinear response function (see Fig 2A). These response functions 145

determine the average firing rate response of a neuron population to a combination of 146

external inputs (i.e., stimulations of the afferent fibers pre-processed in the DRG) and 147

the firing rates of the presynaptic neuron populations (see Fig 1). In the absence of 148

input from other neuron populations and afferent fibers, the average firing rate of the 149
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Fig 1. Diagram of our model of the dorsal horn (DH) circuit (within the dashed
rectangle) including connections between the neuron populations I, E, and P, the
afferent fibers Aβ, Aδ, and C, and the dorsal root ganglion (DRG). We denote
inhibitory connections with bars (in red) and excitatory connections with arrows (in
blue). The dash-dotted line represents an inhibitory interneuron population (I2) that is
modeled indirectly.

neuron population decays exponentially. These assumptions yield the following set of 150

equations for the average firing rate of each population: 151

dfP
dt

=
P∞(gAβPfAβ(t) + gAδPfAδ(t) + (gCP + gNMDA)fC(t) + gEPfE − gIPfI)− fP

τP
,

dfE
dt

=
E∞(gCEfC(t)− gIEfI)− fE

τE
, (1)

dfI
dt

=
I∞[gAβIfAβ(t)]− fI

τI
,

where t is time in seconds, τP = 0.001 s, τE = 0.01 s, and τI = 0.02 s are the intrinsic 152

time scales of the projection, excitatory, and inhibitory neuron populations, respectively. 153

Weights gij denote the strength of the external input or connections from presynaptic 154

neuron populations i (i = Aβ, Aδ, C, P, E, I) to neuron population j (j = P, E, I). We 155

indicate inhibitory synaptic input with a negative sign and excitatory synaptic input 156

with a positive sign. We define the functions (of time t) for the external inputs, fAβ(t), 157

fAδ(t), and fC(t) in the next section. 158

The model includes N-methyl-D-aspartate (NMDA) type synapses from the C-fibers 159

to the P population in the following way: to represent postsynaptic voltage-dependent 160

removal of the magnesium (Mg+) block on NMDA receptors, we assume that the 161

synaptic weight, gNMDA, depends on the average firing rate of the P population (fP), 162

and thus, we consider gNMDA as a variable that changes as a function of time (see Fig 163

2B), similar to [34]: 164

dgNMDA

dt
=

M∞(fP)− gNMDA

τNMDA
, (2)

where τNMDA = 1 s is the intrinsic time scale of the synaptic weight, gNMDA. 165

We assume a sigmoidal shape for the monotonically increasing firing rate response
functions of the neuronal populations P∞, E∞, I∞, and the synaptic weight response
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function M∞, and use hyperbolic tangent functions to represent them as follows:

P∞(x) = maxP
1

2

[
1 + tanh

(
1

αP
(x− βP)

)]
,

E∞(x) = maxE
1

2

[
1 + tanh

(
1

αE
(x− βE)

)]
, (3)

I∞(x) = maxI
1

2

[
1 + tanh

(
1

αI
(x− βI)

)]
,

M∞(x) = maxM
1

2

[
1 + tanh

(
1

αM
(x− βM)

)]
,

where maxP, maxE, maxI, and maxM are the maximum firing rates of the projection, 166

excitatory, and inhibitory populations, and the maximum synaptic strength of the 167

NMDA-mediated input, respectively. In Eq (3), the shape of the response functions is 168

determined by the input x at which the average firing rate of the projection, excitatory, 169

and inhibitory neuron population reaches half of its maximum value, x = βP, x = βE, 170

and x = βI, respectively (see Fig 2A). The slope of the transition from non-firing to 171

firing in the projection, excitatory, and inhibitory neuron population is given by 1/αP, 172

1/αE, and 1/αI, respectively. The activation of the NMDA synapse, M∞(fP), is 173

modeled as an increasing function of the firing rate of the projection neurons, 174

representing the resulting increase in synaptic strength as postsynaptic membrane 175

potentials depolarize and the magnesium block of the NMDA receptors is released [34]. 176

We choose parameter values for the response functions in such a way that the 177

input-output curve of the projection, excitatory, and inhibitory neuron populations 178

agrees qualitatively with experimental observations. Hence, we assume the inhibitory 179

interneuron population has a nonzero resting firing rate, as has been reported in [1, 2], 180

and a higher maximum firing rate than that of the projection and excitatory 181

interneuron populations, as has been assumed in a biophysically detailed model of the 182

DH circuit [21]. In our model assumptions for the response functions, we mimic the 183

model predictions of [21] that agree with data from experimental observations in [35,36]. 184

As concerns the NMDA activation, we assume a similar sigmoidal shape but with a 185

very slow rise time modeling the slow removal of magnesium ions from blocking the 186

NMDA receptors with increase in cell activity. As the magnesium blockage is removed, 187

the NMDA channels are clear to be activated and further depolarize the cell, resulting 188

in an increase in the firing rate of the PNs. The function M∞(fP) models this 189

activation of the NMDA channels resulting from the removal of the magnesium ions (see 190

Fig 2B). All values of the parameters discussed above that we use in the numerical 191

simulations of our model are listed in S1 Table in the Supporting Information. 192

Model input from the DRG 193

To model input from the DRG, we simulate 1000 afferent fibers of three types that 194

project to the DH. We note that our choice of 1000 fibers is based on the number of 195

afferent fibers experimentally observed in one nerve bundle that projects to a skeletal 196

muscle in the rat [37], which is on the order of 1000 [37,38]. These three afferent fiber 197

types differ not only in diameter sizes but also in the level of myelination. As a result, 198

impulses are transmitted at different speeds in the three fiber types. The majority 199

(82%) of these fibers are slow C-fibers (with an average conduction velocity of 0.5-2 200

m/s), 9% are Aδ-fibers (with an average conduction velocity of 5-30 m/s), and 9% are 201

Aβ-fibers (with an average conduction velocity of 30-70 m/s) [3, 38]. We assume that 202

the times of initiation of activity in each of these fibers in response to nociceptive 203

stimulation are roughly equivalent, resulting in the distribution of arrival times to the 204

DH that has been experimentally observed, e.g., in Fig 1 of [39]. 205
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90 Aβ-, (middle) 90 Aδ-, and (bottom) 820 C-fibers with differing conductance speeds.
B: The smoothed instantaneous firing rate (i.e., fAβ(t), fAδ(t), and fC(t)) for each fiber
population.

previous work, we analyzed experimental data reporting on the daily rhythm in human 235

pain sensitivity from four studies investigating: 1) the threshold for forearm pain in 236

response to heat (n=39, [40]), 2) the threshold for tooth pain in response to cold (n=79, 237

[13]), 3) the threshold for tooth pain in response to electrical stimulation (n=56, [13]), 238

and 4) the threshold for nociceptive pain in response to electrical current (n=5, 8]). The 239

data points from these studies are shown in Figure 4A and details on the derivation of 240

these data points can be found in [6]. We note here that we aligned the data to the 241

subject’s typical or scheduled wake time (i.e., 0 hours after wake) and thus, clearly, this 242

data represents a daily rhythm in pain sensitivity that includes sleep-wake-cycle effects 243

that cannot be uncoupled from an endogenous circadian rhythm. The result is that, in 244

this work, we discuss pain sensitivity as a function of hours since morning wake time to 245

align our results with these data sources . 246

The data strongly suggest a sinusoidal profile, and thus we fit a sinusoidal function 247

to the data using Matlab’s [43] curve fitting scheme (cftool) (see solid curve in Fig 248

4A). We hypothesize that this best-fit sinusoid (R2 = 0.73 and root mean-square error 249

of 4.69) represents a prototypical daily rhythm in pain sensitivity for humans, with a 250

sharp peak in pain sensitivity occurring close to midnight (following 18 hours of 251

waking), and that then decreases during the night to reach a minimum in pain 252

sensitivity in the afternoon (following 9 hours of wake, or approximately 4pm). 253

Experimental work also suggests a daily rhythm in the sensitivity of touch (see Figs 254

1 and 2 in [13]) with the highest sensitivity for tactile discrimination occurring in the 255

late afternoon and the lowest sensitivity in the late morning [13]. Since cells in the DRG 256

(that contains the cell bodies of the afferent fibers) rhythmically express clock genes 257

responsible for generating rhythmicity of other physiological processes [15], we assume 258

in our model that daily modulation occurs at the level of primary afferent input to the 259

spinal cord. Furthermore, these experimental observations motivate us to introduce 260

rhythmicity in the model input from Aβ-fibers that exhibits nearly a 12-hr shift from 261

the rhythm of the C-fiber-model inputs. We note here that although we consider 262

rhythmicity in the Aβ-fibers [13], our modeling work focuses on describing processing of 263

nociceptive stimuli. Thus, our model does not simulate processing of strictly mechanical 264

stimuli which may use different circuitry from that of nociceptive stimuli. 265
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Fig 4. Daily rhythm in the modulation of pain sensitivity: experiments and model. A:
Prototypical human “daily pain sensitivity” (i.e., daily changes in pain sensitivity
relative to mean pain sensitivity) function (f(x) = 11sin(0.25x+ 2.8), where x ∈ [0, 24]
hours) fitted to (symbols) data (R2 = 0.73 and RMSE = 4.69) from four experimental
studies of pain responses. For more details and sources of these data, see [6]. B: Daily
modulation of the stimulus-induced firing rate of the afferent fibers modeled by Eqs
(4)–(5). Top(bottom) panel displays the daily modulation of the peak stimulus-induced
firing rate of the Aβ- (C-) fibers. In the bottom panel, the blue curve represents the
effective modulation of the C-fibers including Aβ-dependent presynaptic inhibition. The
x-axis refers to hours since the typical or scheduled morning wake time.

We use the sinusoidal curve obtained from fitting the experimental data in Fig 4A, 266

with the slight modification of making the period exactly 24 hours, to modulate the Aβ- 267

and C-fiber activity as a function of the time of day in hours since typical morning wake 268

time. We implement daily rhythmicity in the firing rates of the Aβ- and C-fibers by 269

varying their stimulation response frequencies, RAβ(t̂) and RC(t̂), respectively, with 270

approximately opposite phases. The average firing rates of the fibers (40 Hz for Aβ- 271

fibers and 21 Hz for C-fibers) were estimated from experiments of receptor activity in 272

the human hand [40]. This yields equations for the firing rates of the fibers over the day 273

as follows: 274

RAβ(t̂) = 6 sin
( π
12
t̂
)
+ 40 ,

RC(t̂) =
1

2
sin

( π
12
t̂+ 2.8

)
+ 21 , (4)

where t̂ denotes time, in hours since morning wake time (see blue and green curves in 275

Fig 4B). The amplitudes of the daily modulation of response frequencies (±6 Hz for 276

Aβ-fibers and ±0.5 Hz for C-fibers) were chosen to fit the model’s simulated pain signal, 277

namely the firing rate of the projection neuron population, to the experimental 278

measurements of pain sensitivity, as described below. 279

To model the effects of the Aβ-dependent presynaptic inhibition of C-fiber activity 280

mediated through an additional inhibitory interneuron population (I2), we assume that 281

the I2 population is only activated by high, stimulus-induced activity of the Aβ-fibers 282

and that its activity tracks the daily modulation of RAβ(t̂) but at a lower firing rate. As 283

a result, presynaptic inhibition lowers the stimulus response frequency of C-fiber 284

activity, RC(t̂), as follows: 285
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Fig 5. Daily rhythmicity of pain sensitivity: comparing model to experiments. A:
Percent of the mean response of the model output (blue) plotted as mean (curve) and
standard deviation (shaded region) over 30 realizations of the Poisson input. The fitted
curve from Fig 4A is plotted in black open circles. B: Firing rate of the P population in
response to the C-fiber input as a function of the time of day. The x-axis refers to hours
since the typical or scheduled morning wake time.

RCeff
(t̂) = RC(t̂)− gAβC(RAβ(t̂)− 30) , (5)

where gAβC scales the effects of the presumed I2 activity (see black dashed curve in Fig 286

4B), and the -30 mimics the lower I2 firing rate. This presumed level of I2 activity 287

maintains effective C-fiber activity on the same scale as the original C-fiber activity, see 288

blue solid and black dashed lines in Fig 4B. 289

We note that while the daily modulation of the stimulus response frequencies 290

governing spikes on the afferent fibers is on the order of hours, our model output 291

changes on the order of fractions of seconds (e.g., τP = 0.001 s). Because of such a 292

difference in time scales, there is only a small change in the stimulus frequencies RAβ(t̂) 293

and RC(t̂) during the response to a brief nociceptive stimulus. Hence, we consider 294

specific time points at a constant t̂ in a 24-hour period (see Fig 4B) when generating 295

the (daily modulated) response of afferent fibers to stimulation. We compare the 296

24-hour rhythm in pain sensitivity computed by our model with the sinusoidal curve 297

representing the human daily pain sensitivity fitted to experimental data in Fig 4A. 298

Introducing the rhythmicity of fiber responses described above, we simulate our model 299

equations at 7 time points over the 24-hour day, recording our model output (firing rate 300

of the projection (P) neuron population) for each time point. To compare with the 301

experimental curve, we compute variation as a percent of the mean by calculating the 302

mean of the average response firing rates of the P population to stimuli given over the 303

whole day, and comparing the firing rate at each time point during the day to that mean 304

firing rate. Fig 5A shows the model pain sensitivity as a percent of the average over the 305

day (blue curve) as compared to the experimental pain sensitivity (black dashed curve). 306

Notice that the average firing rate of the P population, as shown in Fig 5B, is above 25 307

Hz which can be considered as a threshold for pain (see [44]). Furthermore, for the daily 308

rhythmicity of pain sensitivity, the model output represented in terms of percent of 309

mean (firing rate of the P population) closely follows experimental results (see Fig 5A). 310
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Results 311

Model output 312

To simulate response to a brief painful stimulus at the periphery, we construct average 313

firing rate functions for activity of the Aβ-, Aδ- and C-fibers based on the time of day 314

as input to the DH, and calculate the resulting behavior of the PNs as described by the 315

equations in (1). Fig 6 displays the average firing rate of the P population in response 316

to nociceptive stimuli at two time points during the 24-hr day. Our model reproduces 317

the average firing-rate pattern of the populations of neurons in the DH when the three 318

afferent fibers differ in their conductance speeds, as noted by three distinct activations 319

of the PNs in Fig 6. We follow [44], and interpret the painful response as the firing rate 320

of the PNs crossing a threshold of 25 Hz. The average firing rate of the P population is 321

qualitatively similar to that seen experimentally (e.g., see Fig 1a in [39]) and agrees 322

with the daily variation in pain as reported in [13] (lower sensitivity in the afternoon 323

and higher sensitivity at night). 324
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8 hours after wake 20 hours after wake

Time (s)

Fig 6. An example output of the PNs at two time points averaged over 30 realizations.
The average firing rate of the P (projection neuron) population during (left) afternoon
(lowest pain sensitivity) and (right) early morning (highest pain sensitivity) in response
to a brief nociceptive stimulus and modulation in sensitivity of the afferent fibers over
the day. The thick curve denotes the mean, the shaded region the standard deviation, of
30 realizations of the Poisson spiking activity on the afferent fibers (for one realization,
see Fig 3). We interpret P firing rate frequencies higher than 25 Hz (dashed line) as
painful.

Note here that we are only considering nociceptive stimulation of the afferent fibers 325

as mechanical stimulation may follow a different circuit within the DH or more 326

complicated activation of the different afferent fibers. To quantify the amount of pain 327

experienced from the stimulation of the afferent fibers, we take the average firing rate of 328

the PNs over the period of time when the C-fibers’ response has reached the DH (see 329

blue rectangle in Fig 6). Note that the amount of time that the C-fiber response is 330

activated is constant across the day and we consider the average firing rate above 25 Hz 331

as painful [44]. 332

The parameters for this model were chosen to give painful responses (i.e., firing rate 333

of the P population above 25 Hz), but also to allow the neuron populations to reach 334

their maximal firing rates during times of day with highest pain sensitivity. We note 335

that the input from the spinal cord is only one component to the overall experience of 336
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pain. The P population reaching a maximum represents the maximum possible 337

nociceptive response from this portion of the spinal cord. Thus, (and as concerns all of 338

the simulations of our model) a maximal firing rate of the P population does not 339

necessarily correspond to the maximal pain experience. Additionally, the chosen 340

parameter set allows our model to sufficiently capture experimentally-observed 341

phenomena such as wind-up and pain inhibition, but we recognize that this is not the 342

only set of parameters that would yield these results. For a complete description of the 343

parameter value choices, see S1 Table in the Supporting Information. 344

Model validation: Wind-up 345

In addition to the example model output in Fig 6, we further validate our DH circuit 346

model by showing that it reproduces wind-up —that is, increased (and 347

frequency-dependent) excitability of the neurons in the spinal cord due to repetitive 348

stimulation of afferent C-fibers [45]. Wind-up serves as an important tool for studying 349

the role of the spinal cord in nociception and has often been used as an example 350

phenomenon to validate single neuron models of the DH (see [21,27,28], for example). 351

However, both the physiological meaning and the generation of wind-up remain unclear 352

(see [46] for a review). 353

There are several possible molecular mechanisms proposed for the generation of 354

wind-up [46]. Earlier work on single neuron models suggests that wind-up is generated 355

by a combination of long-lasting responses to NMDA-receptor-mediated synaptic 356

currents and membrane calcium currents providing for cumulative depolarization of the 357

PNs [27]. Indeed, calcium conductances and NMDA receptors of the projection/deep 358

dorsal horn neurons are included in all previous models of the DH circuit [21, 27, 28]. In 359

addition, the study done in [28] emphasizes the effect (direct or via influencing the 360

dependence of the deep dorsal horn neurons on their intrinsic calcium currents) NMDA 361

and inhibitory synaptic conductances have on the extent of wind-up in the deep DH 362

neurons [28]. 363

As noted in the Methods section, we incorporate NMDA synapses into our model for 364

the DH circuit by taking into account that the dynamics of the synaptic weight of the 365

connection from the C-fibers to the PNs, gNMDA, depends on the average firing rate of 366

the P neuron population [see Eq (2)]. We assume that the dynamics of gNMDA are much 367

slower than those of the neuron populations (τNMDA = 1 s while, e.g., τP = 0.001 s ). 368

As a result, in response to a repeated stimulus (i.e., when the model input as shown in 369

Fig 3 is presented to the DH circuit at a frequency of 2 Hz), the average firing rate of 370

the P population during the C-response increases (see top panel in Fig 7A) and the 371

synaptic weight gNMDA exhibits slowly increasing dynamics in response to the increased 372

activity in the P population (see bottom panel in Fig 7A). For a repeated stimulus at 2 373

Hz, the latency, which we consider as the time from the start of the stimulus (t = 0.5 s) 374

to the time when the average firing rate of P exceeds 25 Hz (i.e., considered as painful), 375

decreases with the stimulus index (i.e., index 1 denotes the first stimulus in the repeated 376

sequence), see Fig 7B, as seen in experiments [47]. 377

However, the increase in the average firing rate of the P population depends on the 378

frequency of the repeated stimulation, with optimal effects seen experimentally at 379

stimulation frequencies between 1-3 Hz [46]. Our model captures the phenomenon of 380

wind-up, as well as the frequency dependency. For example, when the model input is 381

repeated at a frequency of 2 Hz, the mean of the average firing rate of the P population 382

during the C-response (see blue box on bottom of Fig 6) increases from about 25 Hz 383

during the first stimulus to about 50 Hz during the fifth stimulus similar to previous 384

modeling results [21], while in the case of a stimulus repeated at 0.5 Hz, the mean P 385

firing rate during the C-response does not change as a function of the stimulus index 386

(Fig 8A, yellow curve vs blue curve). We note that we simulate frequencies up to 3.22 387
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Fig 7. Modeling the wind-up phenomenon. A: Simulated average firing rate of the P
population (top) and NMDA synaptic weight, gNMDA (bottom), in response to a
repeated brief nociceptive stimulus (at 2 Hz). In the top panel, the blue curve denotes
the mean and the shaded region denotes the standard deviation in response to 20
realizations of the stimulus induced activity of afferent fibers. B: Pain latency computed
for a repeated stimulus at 2 Hz. Latency is defined here as the first time when the
average firing rate of P exceeds the threshold of 25 Hz (interpreted as painful) and
decreases as a function of the stimulus index (solid lines indicate times when average
firing rate of P exceeds painful threshold). The latency dynamics match those found in
experiments [47].

Hz as this is the highest frequency we can model without an overlap in the P neuron 388

responses (see Figure 7A, top). We include it here to show the general trend of wind-up 389

in response to an increase in frequency. It’s clear to see that as the frequency increases, 390

and the responses are allowed to interact, the result would be a yet faster rise in the 391

firing rate to its maximum due to the additive nature of the NMDA weight (see Figure 392

7A, bottom). We also show that the latency time decreases with increasing frequency, 393

(see Fig 8B), with maximal effects seen for stimulation frequencies of 2-3 Hz and 394

minimal effects seen for 0.5 Hz, as observed experimentally. 395

Model application: Daily rhythm in the modulation of pain 396

inhibition 397

It has been experimentally observed that stimulation of A-fiber afferents can lead to 398

inhibition of the activity of the PNs that typically follows from stimulation of C-fiber 399

afferents [21]. This is related to the idea that when you stub your toe, you immediately 400

apply pressure on the toe and feel some lessening of pain. To capture this phenomenon 401

in our model, we simulate a brief painful stimulus at the periphery that activates all 402

three fibers (stubbing of the toe) and then deliver a second brief stimulation to the 403

Aβ-fibers a short time thereafter (pressure applied to toe), shown in Fig 9 by the red 404

arrows. The arrival time of the second pulse to the Aβ-fibers is increased by 50 ms in 405

each simulation, and the response in the projection neurons is shown in blue. For 406

comparison with experimental data in [47] and model simulations in [21], we visualize 407

the average firing rates of P predicted by our model (Fig 9A) with a spike raster plot in 408

Fig 9B. That is, we derive firing times from the numerically computed average firing 409

rates of the P population, as explained in [48]. As the timing of the second pulse gets 410

closer to the arrival of the C-fiber stimulation at the DH, there is a brief period of 411
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Fig 8. Characterizing how wind-up phenomenon changes with frequency. A: The mean
of the average firing rate of P neurons during the C-response (which we define as the
time interval 90-300 ms after the start of the stimulus, see blue box on bottom of Fig 6)
for each stimulus index increases as a function of the stimulus frequency. B: Latency,
defined here as the first time when the average firing rate of P exceeds the threshold of
25 Hz (interpreted as painful), decreases with the change in the frequency of the
repeated stimulus.

excitation followed by a longer period of inhibition, as seen in experiments [47]. 412
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Fig 9. Inhibition of painful response by subsequent activation of Aβ-fiber activity. A:
Firing rate of the projection neurons in response to secondary Aβ stimulation following
brief nociceptive stimulus activating all three fibers. B: Spike raster plot generated from
the model output shown in A for 1000 PNs constructed to resemble to Fig 5 in [21],
which replicates experiments from [47]. We denote the arrival of the second Aβ-pulse
with a red arrow (asterisk) in A (B).

While only qualitative descriptions of pain inhibition are reported in [47], we 413

quantify the amount the painful response is suppressed by the second activation of the 414

Aβ-fibers by comparing the average firing rate of the P population during the 415

C-response in each panel of Fig 9A (thick curves) to that in the top panel in Fig 9A 416

where the secondary Aβ activation has no effect on the C-fiber response (defining a 417

baseline firing rate). The percent of this baseline firing rate is plotted in Fig 10A as a 418

function of the delay time of the second Aβ pulse (relative to the time of the original 419

nociceptive stimulus). Note that the pain response decreases as the delay of the second 420

Aβ pulse increases and its arrival time coincides with the C-response, as reported in [47]. 421

We use our model of pain sensitivity to investigate the daily rhythmic effects on the 422
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phenomenon of pain inhibition. Fig 10B demonstrates changes in the percent of baseline 423

firing rate of the P population during the C-response as a function of the delay in the 424

second Aβ pulse, for each time of day (i.e., in hours since morning wake time). Our 425

model predicts that pain inhibition is most effective during early afternoon (4-8 hours 426

after wake), when the Aβ-fibers are the most sensitive to external stimulus (i.e., their 427

stimulation frequency is at its highest daily value) and the C-fibers are the least 428

sensitive to external stimulation. This can be seen in the color plot in Fig 10B by the 429

dark horizontal band around 4-8 hours after wake (middle of the afternoon) for all 430

delays. Notice that for 16-20 hours after wake (middle of the night), the pain percentage 431

is very high and there is little change in the percent of pain as a function of delay time, 432

indicating that pain inhibition is not very effective at these times. 433

In addition to predicting the time of day that pain inhibition is most effective 434

(mid-afternoon), our model also predicts that a delay from 0.1 to 0.2 seconds after the 435

original painful stimulus is ideal for the optimal lessening of pain experienced, as can be 436

seen in both plots of Fig 10 by these particular delay times showing the lowest percent 437

of pain response for all times of day. 438
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Fig 10. Quantifying effectiveness of pain inhibition across the day. A: Percentage of
the baseline firing rate of the PNs as a function of the delay time of the second Aβ
pulse at 8 hours following the typical morning wake time. B: Percentage of the painful
response as a function of both time of day and delay time of the second Aβ pulse. Color
scale indicates the percent of the baseline of pain, with darker colors representing larger
decreases in pain as a result of the pain inhibition.

Model prediction: Neuropathy 439

Neuropathic pain occurs due to various conditions involving the brain, spinal cord, and 440

nerve fibers. It is distinguished from inflammatory conditions like arthritis in that it 441

often appears in body parts that are otherwise normal under inspection and imaging, 442

and is also characterized by pain being evoked by a light touch. Experiments on pain 443

sensitivity in neuropathic patients suggest that neuropathic pain has a daily rhythm as 444

well [15, 49–52], having its peak in the afternoon [53]. An afternoon peak in pain 445

sensitivity is the reverse of the daily rhythm in pain sensitivity under normal 446

conditions [6]. Nerve injury can cause a dysregulation of chloride ion transporters that 447

control intracellular chloride concentration in DH neurons (reviewed in [54]). 448

Maintenance of a low intracellular chloride concentration is important for the 449

functioning of inhibitory neurotransmission. Under typical conditions, the binding of 450
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the neurotransmitter GABA on postsynaptic receptors produces an inhibition of 451

postsynaptic activity by allowing negatively-charged chloride ions to flow into the 452

postsynaptic neuron, thus producing hyperpolarization (or decrease in membrane 453

voltage). If intracellular chloride concentrations stay semi-permanently elevated, 454

chloride ions may flow out of the cell in response to GABA receptor activity producing 455

excitatory rather than inhibitory effects. Several authors have hypothesized that 456

dysregulation of inhibition in spinal pain processing circuits could explain the 457

development of pain sensation in response to non-noxious stimuli under neuropathic 458

conditions [54,55]. Specifically, several authors [54,56,57] implicated a switch in 459

presynaptic inhibition to presynaptic excitation in the DH as one culprit for eliciting 460

neuropathic pain phenomena. 461

As a result, we set out to determine if a switch from presynaptic inhibition to 462

presynaptic excitation in our model is sufficient to replicate the experimentally-observed 463

8-12 hour change in the phasing of daily rhythms in pain sensitivity under neuropathic 464

conditions. We show that our model can capture such an inversion of the rhythmicity of 465

the firing rate of the PNs with a change from inhibition (normal conditions) to 466

excitation (neuropathic conditions) in the presynaptic influence of the Aβ-fibers on 467

C-fiber synaptic signaling. The location where the change from inhibition to excitation 468

occurs is denoted in our model diagram by the two asterisks in Fig 1. Thus, we assume 469

that under neuropathic conditions, the connection from I2 to the synaptic terminals of 470

E and P is excitatory instead of inhibitory. 471

Recall from the Methods section that we model presynaptic inhibition as an 472

Aβ-dependent decrease in the stimulus response firing rate of the C-fibers [see Eq (5)]. 473

The assumption that presynaptic inhibition turns to excitation results instead in an 474

Aβ-dependent increase in the C-fiber stimulus response firing rate represented by the 475

following equation 476

RCneuro
eff

(t̂) = RC(t̂) + gneuroAβC (RAβ(t̂)− 30), (6)

where gneuroAβC is the strength of the effect of Aβ-fiber activity on C-fiber activity 477

under neuropathic conditions (see red curve in lower panel of Fig 11A). This daily 478

variation in the stimulus response frequency of C-fiber activity results in the desired 479

inversion of projection neuron population firing rate response to a brief nociceptive 480

stimulus (Fig 11C), and thus pain sensitivity (Fig 11B), across the day. Thus, under 481

normal conditions, the pain sensitivity rhythm follows the daily rhythm of the C-fibers 482

(compare blue curves in all panels) but mimics the rhythm in the Aβ-fibers under 483

neuropathic conditions [compare red curves in B and C with green curve in A]. 484

In our model, we obtain this inversion of rhythm in pain sensitivity by assuming that 485

Aβ-dependent presynaptic excitation under neuropathic conditions has a larger 486

magnitude than presynaptic inhibition under normal conditions. Specifically, the 487

effective stimulus response firing rate of the C-fibers does not depend on a reduction of 488

the Aβ-fiber stimulus response firing rate (compare Eqs 6 and 5) and the weighting 489

factor gneuroAβC = 0.25 is larger than gAβC = 0.05. This can be interpreted as an increase 490

in firing rates of the Aβ-fibers under neuropathic conditions that results in increased 491

excitation of the I2 inhibitory population, and thus larger magnitude of presynaptic 492

excitation compared to presynaptic inhibition under normal conditions. There are 493

several proposed mechanisms for the many types of neuropathic pain, some of which 494

show increased activity of the Aβ-fibers [41]. 495

To investigate the dependence of the magnitude of Aβ-dependent presynaptic 496

excitation on the inverted daily rhythm, we simulate the model response to brief 497

nociceptive stimuli across the day for different values of the weighting parameter gneuroAβC 498

(see Fig 12). Results show that weak presynaptic excitation (black and blue curves) 499

reduces the amplitude of daily variation in P population firing rates and does not induce 500
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Fig 11. A change in the daily rhythms of pain sensitivity in neuropathic pain
conditions compared to normal conditions. A: Daily variation of the stimulus response
firing rates of the Aβ- (top panel) and C-fibers (lower panel, dashed curve), and
effective C-fiber stimulus response firing rate including effects of Aβ-dependent
presynaptic inhibition under normal conditions (lower panel, blue curve, same as in Fig
4B) and Aβ-dependent presynaptic excitation under neuropathic (red curve) conditions.
B, C: Daily variation in the response of the PNs to a brief nociceptive stimulus
quantified by the percent of its mean (B) and average firing rate of the C-fiber response
(C) for normal (blue, same as in Fig 5) and neuropathic (red) conditions. The x-axis
refers to hours since the typical or scheduled morning wake time.

an inverted rhythm. For larger values of gneuroAβC , the correct rhythmicity is obtained and 501

amplitude increases but eventually saturates. Larger magnitudes of presynaptic 502

excitation only serve to increase the firing rate over the entire day, thus increasing the 503

average over the entire day and not affecting the variation in percent of the mean. 504

Note that the amplitude of the rhythmicity of pain sensitivity under neuropathic 505

conditions is small, about 5% as compared to 15% under normal conditions. There are 506

few experimental studies that measure the amplitude of modulation of pain sensitivity 507

under neuropathic conditions; however, one study shows neuropathic pain sensitivity to 508

have a similar amplitude to, if not slightly larger than, acute pain [51]. Our model 509

proposes that the rhythm is intrinsic to the afferent fibers, however many believe that 510

there may also be daily rhythms within the top-down inhibitory modulation of many of 511

the neuronal populations in the pain-processing circuit [58]. With this initial hypothesis 512
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Fig 12. Investigating the weighting parameter, gneuroAβC . A: Percent of the mean and B:
average firing rate of the PNs in response to changes in the strength of excitation,
during neuropathy, from the Aβ- fibers to the C-fibers, gneuroAβC (denoted by gAβC in the
figure). The x-axis refers to hours since the typical or scheduled morning wake time.

of rhythmicity in the fiber input, our model replicates the overall increase in pain 513

sensitivity under neuropathic conditions, reflected by increased firing rates of the PNs. 514

Indeed, our model simulations suggest that inhibition turned excitation at the level of 515

the fibers is a possible mechanistic explanation for the inversion of pain sensitivity 516

rhythms seen under neuropathic conditions. Modulation by daily rhythms could also be 517

explored in alternative parts of the pain processing circuit, including the output of the 518

projection neurons and its propagation along the spinal cord. These additional 519

mechanisms in combination with disinhibition may enhance the modulation of the daily 520

rhythm of pain sensitivity under neuropathic conditions. 521

Discussion 522

We have developed a firing-rate model for the processing of nociceptive stimuli in the 523

DH of the spinal cord, with a particular interest in investigating the daily rhythmicity 524

of pain sensitivity. Our model follows the formalism of many neuron firing-rate-based 525

models, but to our knowledge, it is novel for pain processing in the spinal cord. In 526

addition to accounting for typical pain phenomena such as wind-up and pain inhibition, 527

our model captures the rhythmicity in pain sensitivity over the 24-hour day mediated by 528

intrinsic rhythmicity of afferent fiber activity. We include experimentally-justified 529

presynaptic inhibition from the Aβ-fibers to the C-fibers, and show how disinhibition of 530

this pathway under neuropathic conditions is sufficient to induce the 531

experimentally-observed inversion of the rhythmicity of pain sensitivity. Our 532

minimalistic model is based on physiology and thus provides an accessible theoretical 533

framework for experimental and clinical investigations of diverse physiological processes 534

modulating pain processing in humans. 535

In contrast to a detailed biophysical model of a single neuron [21,27,28] or a 536

large-scale network of individual neurons [44], we construct equations to describe the 537

population activity of projection, inhibitory, and excitatory neurons in the DH. As a 538

result, we work with average firing rates for each of the three neuron populations 539

according to the formalism developed in [29]. Therefore, our modeling approach is 540

similar to [26] but our model predictions are in terms of average firing rates of neuron 541

populations instead of potentials of individual cells. In our choice of model formalism, 542

we assume that the neurons in each population behave similarly, i.e., they receive 543

similar inputs and respond similarly to those inputs, such that we can consider the 544

average behavior over all neurons in each population as the primary mode of 545
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information transfer in the circuit. This is a limitation in the sense that often 546

interesting phenomena in neuroscience arises from the nonlinear interactions between 547

neuron spike timings and their differences in interpreting incoming stimuli. However, 548

results from other modeling approaches that replicate spiking behavior [21, 44] have not 549

indicated that discrimination of spike timings contributes substantially to spinal pain 550

processing. Additionally, some parameters in this model formalism cannot be easily 551

obtained from experiments. For example, the weights with which one population 552

influences another [see gPrePost in Eq (1)], represent an average synaptic strength from 553

all neurons in one population to all neurons in another, which cannot be measured 554

experimentally. We choose parameter values for these weights in order to replicate 555

experimental data on the response of the PNs under different conditions. Finally, 556

although there is experimental evidence to show that an increase in the activity of the 557

PNs correlates with an increase in pain sensation [32], the choice of instituting a 558

threshold of 25 Hz on the PNs above which the model output is considered painful is 559

somewhat arbitrary. However, we follow this convention used in [44] because to our 560

knowledge a more physiologically accurate approximation has not yet been determined. 561

The circuitry of our DH model is based on the gate control theory of pain [22,24], 562

similar to previous mathematical models for spinal nociception processing [21,26–28]. 563

While using different model formalisms, circuit activity in these models centers around 564

inhibition of PN responses to C-fiber input by Aβ-fiber activity. In this way, Aβ-fiber 565

activity gates responses to nociceptive stimuli. More recent results have called into 566

question gate control theory [25]. In particular, a large-scale network model of spinal 567

cord neural circuitry has been constructed [44] that includes numerous known cell types, 568

their laminar distribution, and their modes of connectivity. This model has been used 569

to investigate the mechanisms of pain relief through dorsal column stimulation (DCS), a 570

procedure to treat neuropathic pain. The results shown in [44] identify limitations of 571

the gate control theory and propose alternate circuitry that more accurately accounts 572

for the effects of DCS on nociceptive and neuropathic pain. 573

As concerns our model predictions for neuropathy, the low amplitude of the 574

neuropathic pain rhythm in the model output may suggest that a simple spinal cord 575

model is not sufficient to completely describe the phenomenon of an inversion in the 576

rhythm of pain modulation under neuropathic vs normal conditions. Indeed, the daily 577

rhythm that we use in the model is likely to reflect both the influences of circadian 578

rhythms and sleep homeostasis, of which the sleep homeostatic component presumably 579

increases throughout the evening, and therefore, would potentially amplify the peak in 580

the neuropathic pain rhythm that occurs during that time. Furthermore, our current 581

model does not include top-down modulation of spinal pain processing from the brain 582

for which there is experimental evidence in support of circadian regulation of top-down 583

inhibition [5, 59]. 584

In this study, we do not consider the neuropathic property in which patients 585

experience pain in response to a non-noxious, mechanical stimuli. Instead, we restrict 586

our attention to the response to nociceptive stimuli since mechanical stimulation may be 587

processed by different pathways. Nonetheless, our model predicts that neuropathic 588

conditions can, in part, be explained by Aβ-dependent presynaptic excitation of C-fiber 589

synaptic signaling that is of a larger magnitude than the presynaptic inhibition that 590

occurs under normal conditions. Specifically, to obtain the experimentally-observed 591

inversion in the rhythmicity of pain sensitivity experienced by neuropathic patients, our 592

model predicted an increase in the Aβ-dependence on C-fiber stimulus response 593

[compare gneuroAβC in Eq (6) to gAβC in Eq (5)]. This increase could potentially be due to 594

increased response firing rates of Aβ-fibers, as well as by increased efficacy of the 595

excitatory effects of the secondary inhibitory population I2. These effects cause an 596

increase in firing rates of PNs in response to brief nociceptive stimuli, but could also 597
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contribute to increases in PN responses in mechanical stimuli processing pathways. 598

Additional studies on the interaction of the pathways processing non-noxious and 599

nociceptive stimuli, and their properties under neuropathic conditions are needed to 600

fully understand this phenomenon. 601

Often it is difficult, if not impossible, to experimentally measure properties of 602

individual neurons in vivo, and in response to all possible nociceptive (and mechanical) 603

stimuli. Due to this lack of knowledge, it is often impractical to build detailed models of 604

DH neurons in which many parameters would need to be determined from biological 605

data. In this respect, simpler population firing-rate models, like the one presented here, 606

have an advantage in that there are significantly fewer parameters and they are 607

constrained by measurements of more accessible macroscopic properties of the circuit. 608

We have developed a novel firing-rate model for the neural circuit in the DH that 609

processes nociceptive stimuli and we have shown that it can capture the same 610

experimentally-observed phenomena as more detailed models. Additionally, we were 611

able to clearly propose and test a mechanism for the daily rhythm in pain sensitivity 612

and modulations of that rhythmicity under neuropathic conditions. Given its 613

accessibility compared to more detailed or larger biophysically-based models, our model 614

is suitable for including experimental results, e.g., on the activity of the afferent fibers, 615

and appropriate for experimental and clinical investigations of diverse physiological 616

influences on pain processing, such as the effects of sleep deprivation on pain 617

sensitivity [60] or the mechanisms underlying the efficacy of spinal cord stimulation for 618

treatment of chronic pain conditions. 619
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