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Abstract

Experimental studies show that human pain sensitivity varies across the 24-hour day,
with the lowest sensitivity usually occurring during the afternoon. Patients suffering
from neuropathic pain, or nerve damage, experience an inversion in the daily
modulation of pain sensitivity, with the highest sensitivity usually occurring during the
early afternoon. Processing of painful stimulation occurs in the dorsal horn (DH), an
area of the spinal cord that receives input from peripheral tissues via several types of
primary afferent nerve fibers. The DH circuit is composed of different populations of
neurons, including excitatory and inhibitory interneurons, and projection neurons,
which constitute the majority of the output from the DH to the brain. In this work, we
develop a mathematical model of the dorsal horn neural circuit to investigate
mechanisms for the daily modulation of pain sensitivity. The model describes average
firing rates of excitatory and inhibitory interneuron populations and projection neurons,
whose activity is directly correlated with experienced pain. Response in afferent fibers
to peripheral stimulation is simulated by a Poisson process generating nerve fiber spike
trains at variable firing rates. Model parameters for fiber response to stimulation and
the excitability properties of neuronal populations are constrained by experimental
results found in the literature, leading to qualitative agreement between modeled
responses to pain and experimental observations. We validate our model by reproducing
the wind-up of pain response to repeated stimulation. We apply the model to
investigate daily modulatory effects on pain inhibition, in which response to painful
stimuli is reduced by subsequent non-painful stimuli. Finally, we use the model to
propose a mechanism for the observed inversion of the daily rhythmicity of pain
sensation under neuropathic pain conditions. Underlying mechanisms for the shift in
rhythmicity have not been identified experimentally, but our model results predict that
experimentally-observed dysregulation of inhibition within the DH neural circuit may
be responsible. The model provides an accessible, biophysical framework that will be
valuable for experimental and clinical investigations of diverse physiological processes
modulating pain processing in humans.
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Author summary

Human pain sensitivity follows a daily (~24 hour) rhythm. In particular, humans
experience the highest sensitivity to pain in the middle of night and lowest in the
afternoon. Patients suffering from neuropathy, a disease resulting from nerve damage
leading to an increase in pain sensitivity, experience an approximately 12-hour shift in
their rhythmicity such that the highest sensitivity occurs in the afternoon. Neuropathy
is a difficult condition to treat since it is often unfeasible to locate the damaged nerve
and it is also unclear how this damage causes a shift in rhythmicity and an increase in
pain. Understanding the mechanism underlying the shift in rhythmicity may lead to
improvements in the knowledge of the transmission of pain from the damaged nerve to
the pain-processing center in the spinal cord, and thus better treatment protocols. We
have built a population-based model to describe this transmission with a particular
focus on daily rhythms. We show that our model reproduces experimentally-observed
rhythmicity of both normal pain responses, as well as neuropathic pain. Our model
predicts that a potential mechanism underlying the shift in rhythmicity for neuropathic
pain is a change in the interaction of the nerve fibers from inhibition to excitation.

Introduction

The processing of pain engages a wide variety of neural circuits across the nervous
system including those in the spinal cord, brainstem, thalamus, and cortex. More
specifically, it is thought that the dorsal horn (DH), an area of the spinal cord, serves as
the initial processing center for incoming nociceptive, or painful signals, with the
midbrain and cortex providing top-down modulation to that circuitry [1]. As a result,
there is a tradition of modeling pain processing by focusing exclusively on spinal cord
circuitry. This circuitry receives information about stimulation of peripheral tissues
from several types of primary afferent nerve fibers. These afferents have their cell bodies
in the dorsal root ganglia (DRG), a cluster of nerve cell bodies located exterior to the
spinal cord, and their axons (or fibers) target the DH [2]. Responses to innocuous
stimulation are carried by rapidly conducting AS-fibers [3], whereas nociceptors (i.e.,
nerve fibers that detect painful stimuli) are only activated when a stimulus exceeds a
specific threshold. There are two major classes of nociceptive fibers: fast conducting
Ao-fibers that mediate localized, fast pain and small-diameter C-fibers that mediate
diffused, slow pain. Among the neuronal populations in the DH, the projection neurons
(PNs) receive input from all fibers and constitute the majority of the output from the
dorsal horn circuit up to the brain.

In this article, we introduce a biophysically-based, mathematical model of the
nociception-processing neural circuit in the DH, which expands on our earlier work [4].
We are particularly interested in using the model to investigate mechanisms for daily
(i.e., diurnal) modulation of pain sensitivity. In many clinical conditions, pain sensitivity
follows a daily cycle [5], that is, it exhibits a trough in the late afternoon and a peak
sometime after midnight for humans [6], but it is currently unclear how much of that
rhythmicity is derived from daily fluctuation in the underlying causes of the pain versus
rhythmicity in the neural processing of pain. Within the experimental pain literature,
rhythmic influences on pain sensation occur regardless of whether pain responses are
measured subjectively or objectively [7—10], suggesting that the rhythmic modulation of
pain responses occurs at the level of basic nociceptive processing. This rhythmic
modulation of pain sensitivity also increases with pain intensity [9,11,12]. Furthermore,
rhythmic influences on pain sensitivity are detectable in experiments involving a variety
of different kinds of nociceptive stimuli, including cold, heat, electric current, pressure,
and ischemia (see Tables 1-2 in [6]). Interestingly, experimental studies have also shown
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daily rhythmicity in tactile discrimination in nearly opposite phase to pain sensitivity,
namely highest tactile sensitivity occurring in the late afternoon and lowest in the
morning [13].

There are several hypotheses for the source of the daily rhythm in pain sensitivity,
including central nervous system, spinal, and peripheral mechanisms [5,14-18]. Recent
studies show that cells in the DRG rhythmically express the primary genes responsible
for generating an intrinsic 24-hour, or circadian, rhythmicity of other physiological
processes, including Bmall, Clock, Per! and Per2 [15,16]. In addition, the rhythm in
behavioral nociception followed the gene expression rhythm [15] and disruption of their
expression affected behavioral pain responses [16]. These findings motivate our use of a
spinal cord model to test questions regarding daily influences on pain processing. As
such, the model assumes that the daily modulation occurs at the level of primary
afferent input to the spinal cord circuitry. Additionally, we specifically model the
portion of experienced pain that arises from nociceptive input to the spinal cord and
ignore any potential sources of top-down modulation.

As concerns the connections between neuron populations in the DH, there are several

proposed circuitries for the processing of touch, nociception, and itch (see, e.g., [19,20]).

In this work, we take an approach similar to previous models of spinal cord nociception
processing (e.g., [21]) and employ the network architecture in the DH proposed by the
gate control theory of pain [22]. In doing so (and when we introduce daily modulation),
we note that the aim of our work here is focused on the processing of painful, noxious
stimulation, not mechanical, non-noxious stimulation, which we acknowledge may have
a different circuitry (for a review of circuitries for mechanical pain and itch, see [23]).
The gate control theory of pain [22,24] posits that the neural circuitry in the DH

exhibits a gating mechanism that is modulated by activity in the AjS- and C-fibers [25].

Specifically, nociceptive C-fiber-facilitated activity in the DH circuit is inhibited by
Ap-fiber activity. When the amount of painful stimuli (i.e., activity in the C-fibers)
outweighs the inhibition from the Apg-fibers, the “gate opens” and activates the PNs
(and the experience of pain). Although the gate control theory of pain [22] is a
simplification and not a complete representation of the physiological underpinnings of
pain processing [25], it has been a productive starting point for several mathematical
and computational models of pain [21,26-28].

For our model of the DH circuit, we implement a neuronal population firing-rate
model formalism [29,30] to describe the population activity of projection, inhibitory,
and excitatory neurons in the DH. Our choice of this commonly-used model formalism is
based on the large number of afferent fibers and neurons in the DH, and the assumption
that the majority of information flow in the DH circuit is through firing rates of neural
populations rather than in specific spike timing within the populations [30,31]. An
advantage of this formalism is its biophysical basis and relative simplicity, thus making
our model an accessible theoretical framework for experimental and clinical

investigations of diverse physiological processes modulating pain processing in humans.

The rest of the paper is organized as follows. In the Methods section, we formulate
the equation system of the neural circuit for pain processing in the DH, describing the
time evolution of the average firing rates of the excitatory and inhibitory interneuron,
and PN populations in response to input on the afferent nerve fibers. The model
includes NMDA-mediated synaptic input from the C-fibers to the PNs that depends on
postsynaptic activity. We also describe the use of a Poisson process to simulate neural
spikes on the afferent fibers that represent the input from the DRG to the DH and the
interactions between the afferent fibers incorporated in our model, respectively. In the
Results section, we present validation studies for our model including reproduction of
the wind-up phenomenon.

With our principal aim to investigate the daily rhythmicity of pain sensation, we
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apply the model to predict the daily modulation of the pain inhibition phenomena. As a
novel application of the model, we investigate effects of experimentally-observed
dysregulation of inhibition within the DH circuit under neuropathic pain conditions (i.e.,
a chronic condition with persistent pain experience associated, e.g., with peripheral
nerve damage) on the daily modulation of pain sensitivity. We find that dysregulation
of AS-fiber dependent presynaptic inhibition of C-fiber signaling can account for it.
Finally, we discuss limitations and future modifications, as well as importance and
application, of our model in the Discussion.

Methods

Model Equations

We construct a model describing the spinal processing of nociceptive stimuli in humans
by considering the average firing rate of three populations of neurons in the DH: the
PNs (P), inhibitory (I) interneurons, and excitatory (E) interneurons, in response to the
average firing rate of the AS-, Ad-, and C-afferent fibers (see Fig 1). In this work, we
expand on a model developed in [4], which follows the modeling approach similar to [26]
with the exception that our model predictions are in terms of average firing rates of
neuron populations [29] instead of average membrane potentials. In contrast to our
previous model in [4], the new elements of the model introduced in this work consist of
including i) Poisson processes to generate spiking activity on the input nerve fibers, ii)
NMDA receptor-mediated synaptic interactions and iii) an additional inhibitory
interneuron population Iy, and iv) removal of the connection to the midbrain. These
four modifications allow us to i) represent a biologically realistic fiber input to which the
model is robust, ii) reproduce experimentally observed frequency effects during wind-up,
iii) expand the model parameter range that replicates patterns seen in experiments on

neuropathy, and vi) focus solely on modeling spinal-cord processing of pain, respectively.

As concerns the general structure of connections between the neuronal populations
in the circuit (dashed rectangle in Fig 1), we follow previous models of pain and use the
circuitry presented, e.g., in [21]. Briefly, PNs receive direct synaptic input from the
three afferent fiber types, ApS-fibers excite inhibitory interneurons and C-fibers excite
excitatory interneurons. Both interneuron populations synapse onto the PNs and the
inhibitory interneurons inhibit the excitatory interneurons. We also include
A B-dependent presynaptic inhibition of C-fiber activity mediated through an additional
inhibitory interneuron population (Iz) that is modeled indirectly [see Eq (5)]. We
assume that the input to our model circuit is a stimulation of the afferent fibers that
has been pre-processed in the DRG. Based on fiber input and the connections between
the neuron populations in the DH, our model computes the activity of the PNs, (P in
Fig 1), whose output directly corresponds to the amount of pain experienced [32]. We
note that there are many nuances in the perception of pain, including those originating
in the cortex; however, we model the portion of pain that stems from nociceptive input
to the spinal cord since it has been shown that pain perception correlates strongly with
the firing rate of the PNs in the spinal cord [32,33].

According to the formalism of firing-rate models, e.g., [29], we assume that the rate
of change of the average firing rate in spikes per second (Hz) of the projection,
inhibitory, and excitatory neuron populations, fp, f1, and fg, respectively, is
determined by a nonlinear response function (see Fig 2A). These response functions
determine the average firing rate response of a neuron population to a combination of
external inputs (i.e., stimulations of the afferent fibers pre-processed in the DRG) and
the firing rates of the presynaptic neuron populations (see Fig 1). In the absence of
input from other neuron populations and afferent fibers, the average firing rate of the
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AS mmmmmmm e dorsal horn

periphery => AB

—> brain

Fig 1. Diagram of our model of the dorsal horn (DH) circuit (within the dashed
rectangle) including connections between the neuron populations I, E, and P, the
afferent fibers A5, Ad, and C, and the dorsal root ganglion (DRG). We denote
inhibitory connections with bars (in red) and excitatory connections with arrows (in
blue). The dash-dotted line represents an inhibitory interneuron population (I2) that is
modeled indirectly.

neuron population decays exponentially. These assumptions yield the following set of
equations for the average firing rate of each population:

dfe _ Poo(gappfas(t) + gaspfas(t) + (gcp + gnmpa) fe(t) + gepfe — gip fi) — fp

dt P~ :
dfe _ Es(gcefc(t) —giefi) — fe

= (1)

dt TE ’
dfi _ lsslgapifap(t)] — fi

dt Tr

b

where t is time in seconds, 7p = 0.001 s, 75 = 0.01 s, and 71 = 0.02 s are the intrinsic
time scales of the projection, excitatory, and inhibitory neuron populations, respectively.
Weights g;; denote the strength of the external input or connections from presynaptic
neuron populations i (i = AS, Ad, C, P, E, I) to neuron population j (j = P, E, I). We
indicate inhibitory synaptic input with a negative sign and excitatory synaptic input
with a positive sign. We define the functions (of time ¢) for the external inputs, fag(t),
fas(t), and fc(t) in the next section.

The model includes N-methyl-D-aspartate (NMDA) type synapses from the C-fibers
to the P population in the following way: to represent postsynaptic voltage-dependent
removal of the magnesium (Mg™) block on NMDA receptors, we assume that the
synaptic weight, gnypa, depends on the average firing rate of the P population (fp),
and thus, we consider gnvpa as a variable that changes as a function of time (see Fig
2B), similar to [34]:

dgnvpa Moo (fp) — gnmpa @)

dt TNMDA ’

where Tnvpa = 1 s is the intrinsic time scale of the synaptic weight, gnmDA -
We assume a sigmoidal shape for the monotonically increasing firing rate response
functions of the neuronal populations P, Ew, I, and the synaptic weight response
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function M., and use hyperbolic tangent functions to represent them as follows:
1 1
Po(z) =maxp= |1+ tanh [ — (x — Bp) | | ,
2 ap
1 1
Eoo(z) = maxg— [1 + tanh ( (x — BE)H , (3)
2 QR

I“(x):rnmq;[l+tmﬂ1(1 @%—ﬁﬂ)]7

ar
My (z) = maXM% {1 + tanh (alM (x — 5M)>} )

where maxp, maxg, maxy, and maxy; are the maximum firing rates of the projection,
excitatory, and inhibitory populations, and the maximum synaptic strength of the
NMDA-mediated input, respectively. In Eq (3), the shape of the response functions is
determined by the input x at which the average firing rate of the projection, excitatory,
and inhibitory neuron population reaches half of its maximum value, x = Bp, = = O,
and x = [, respectively (see Fig 2A). The slope of the transition from non-firing to
firing in the projection, excitatory, and inhibitory neuron population is given by 1/ap,
1/ag, and 1/aq, respectively. The activation of the NMDA synapse, Mo, (fp), is
modeled as an increasing function of the firing rate of the projection neurons,
representing the resulting increase in synaptic strength as postsynaptic membrane
potentials depolarize and the magnesium block of the NMDA receptors is released [34].
We choose parameter values for the response functions in such a way that the
input-output curve of the projection, excitatory, and inhibitory neuron populations
agrees qualitatively with experimental observations. Hence, we assume the inhibitory
interneuron population has a nonzero resting firing rate, as has been reported in [1,2],
and a higher maximum firing rate than that of the projection and excitatory
interneuron populations, as has been assumed in a biophysically detailed model of the
DH circuit [21]. In our model assumptions for the response functions, we mimic the
model predictions of [21] that agree with data from experimental observations in [35,36].
As concerns the NMDA activation, we assume a similar sigmoidal shape but with a
very slow rise time modeling the slow removal of magnesium ions from blocking the
NMDA receptors with increase in cell activity. As the magnesium blockage is removed,
the NMDA channels are clear to be activated and further depolarize the cell, resulting
in an increase in the firing rate of the PNs. The function M (fp) models this
activation of the NMDA channels resulting from the removal of the magnesium ions (see
Fig 2B). All values of the parameters discussed above that we use in the numerical
simulations of our model are listed in S1 Table in the Supporting Information.

Model input from the DRG

To model input from the DRG, we simulate 1000 afferent fibers of three types that
project to the DH. We note that our choice of 1000 fibers is based on the number of
afferent fibers experimentally observed in one nerve bundle that projects to a skeletal
muscle in the rat [37], which is on the order of 1000 [37,38]. These three afferent fiber
types differ not only in diameter sizes but also in the level of myelination. As a result,
impulses are transmitted at different speeds in the three fiber types. The majority
(82%) of these fibers are slow C-fibers (with an average conduction velocity of 0.5-2
m/s), 9% are Ad-fibers (with an average conduction velocity of 5-30 m/s), and 9% are
ApB-fibers (with an average conduction velocity of 30-70 m/s) [3,38]. We assume that
the times of initiation of activity in each of these fibers in response to nociceptive
stimulation are roughly equivalent, resulting in the distribution of arrival times to the
DH that has been experimentally observed, e.g., in Fig 1 of [39].
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Fig 2. Response curve and NMDA activation plots [see Eq (3)]. A: Response functions
of the projection (blue), excitatory (green), and inhibitory (red) neural populations for
varying average input firing rates (on the x-axis). Parameters for these curves were
chosen to match experiments presented in [21]. B: Activation curve for the
NMDA-mediated synaptic input (M), shown as a fraction of the maximum synaptic

weight gnmpa-

We aim to model nerve fiber activity from a brief nociceptive stimulus at the
periphery (see Fig 1a in [39]). To do this, we use a Poisson process to simulate spike
trains in the afferent fibers at a given firing rate. The activity of the afferent fibers in
response to a brief nociceptive stimulus at t=0.5 s can be seen in the raster plots in Fig
3A, where each small bar represents one spike/action potential and each row represents
the activity in one afferent fiber over the course of 1 second. We consider the activity in
90 AS-, 90 Ad- and 820 C-fibers with baseline frequency of 1 Hz and stimulus response
frequency of 40, 20, and 20 Hz, respectively. Each fiber has an increased firing rate for a
set amount of time (10 ms for both AS- and Ad-fibers and 210 ms for C-fibers) chosen
to replicate the response in the PNs as measured experimentally in [39]. We choose
these increased firing rates for the afferent fibers to simulate a response to a nociceptive
stimulus (see [33] and [40] for spiking dynamics of afferent fibers in response to varying
levels of nociceptive stimuli) and a low background drive to simulate spontaneous
activity of the fibers [41].

To compute the average firing rate in each of the three fiber groups, we compute an
instantaneous firing rate by counting the number of spikes in a one-millisecond window
of time, and then use a moving average with a time window of 10 ms to create a smooth
firing rate function. As a result, our simulated input to the spinal cord on fibers with
different conductance speeds reproduces the observed pattern [39] of fast, brief A3- and
Aé-fiber activity (i.e., first pain) followed by delayed, longer lasting C-fiber activity (i.e.,
second pain). When simulating our model, we use these smoothed average firing rates
(see Fig 3B) representing the response in the three fiber groups to a brief nociceptive
stimulus as input to the DH circuit model.

Daily modulation of input

Pain sensitivity follows a daily cycle in many clinical conditions [5]. There is strong
evidence supporting rhythmicity in response to acute nociceptive stimuli [8,11-13,42].
In experiments where a rhythm in pain sensitivity was detected, its pattern is
remarkably consistent, with pain sensitivity peaking during the hours when there is no
daylight (and when humans are typically asleep), that is, from midnight to 5 AM [5].In
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Fig 3. Simulated response of the populations of afferent nerve fibers to a brief
nociceptive stimulus at ¢ = 0.5 s (red arrow). A: Raster plots of spiking activity of (top)
90 AS-, (middle) 90 Aé-, and (bottom) 820 C-fibers with differing conductance speeds.
B: The smoothed instantaneous firing rate (i.e., fag(t), fas(t), and fc(t)) for each fiber
population.

previous work, we analyzed experimental data reporting on the daily rhythm in human
pain sensitivity from four studies investigating: 1) the threshold for forearm pain in
response to heat (n=39, [40]), 2) the threshold for tooth pain in response to cold (n=79,
[13]), 3) the threshold for tooth pain in response to electrical stimulation (n=56, [13]),
and 4) the threshold for nociceptive pain in response to electrical current (n=5, 8]). The
data points from these studies are shown in Figure 4A and details on the derivation of
these data points can be found in [6]. We note here that we aligned the data to the
subject’s typical or scheduled wake time (i.e., 0 hours after wake) and thus, clearly, this
data represents a daily rhythm in pain sensitivity that includes sleep-wake-cycle effects
that cannot be uncoupled from an endogenous circadian rhythm. The result is that, in
this work, we discuss pain sensitivity as a function of hours since morning wake time to
align our results with these data sources .

The data strongly suggest a sinusoidal profile, and thus we fit a sinusoidal function
to the data using MATLAB’s [43] curve fitting scheme (cftool) (see solid curve in Fig
4A). We hypothesize that this best-fit sinusoid (R? = 0.73 and root mean-square error
of 4.69) represents a prototypical daily rhythm in pain sensitivity for humans, with a
sharp peak in pain sensitivity occurring close to midnight (following 18 hours of
waking), and that then decreases during the night to reach a minimum in pain
sensitivity in the afternoon (following 9 hours of wake, or approximately 4pm).

Experimental work also suggests a daily rhythm in the sensitivity of touch (see Figs
1 and 2 in [13]) with the highest sensitivity for tactile discrimination occurring in the
late afternoon and the lowest sensitivity in the late morning [13]. Since cells in the DRG
(that contains the cell bodies of the afferent fibers) rhythmically express clock genes
responsible for generating rhythmicity of other physiological processes [15], we assume
in our model that daily modulation occurs at the level of primary afferent input to the
spinal cord. Furthermore, these experimental observations motivate us to introduce
rhythmicity in the model input from Ag-fibers that exhibits nearly a 12-hr shift from
the rhythm of the C-fiber-model inputs. We note here that although we consider
rhythmicity in the AS-fibers [13], our modeling work focuses on describing processing of
nociceptive stimuli. Thus, our model does not simulate processing of strictly mechanical
stimuli which may use different circuitry from that of nociceptive stimuli.
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Fig 4. Daily rhythm in the modulation of pain sensitivity: experiments and model. A:
Prototypical human “daily pain sensitivity” (i.e., daily changes in pain sensitivity
relative to mean pain sensitivity) function (f(z) = 11sin(0.252 + 2.8), where z € [0, 24]
hours) fitted to (symbols) data (R? = 0.73 and RMSE = 4.69) from four experimental
studies of pain responses. For more details and sources of these data, see [6]. B: Daily
modulation of the stimulus-induced firing rate of the afferent fibers modeled by Eqs
(4)—(5). Top(bottom) panel displays the daily modulation of the peak stimulus-induced
firing rate of the AB- (C-) fibers. In the bottom panel, the blue curve represents the
effective modulation of the C-fibers including AS-dependent presynaptic inhibition. The
x-axis refers to hours since the typical or scheduled morning wake time.

We use the sinusoidal curve obtained from fitting the experimental data in Fig 4A,
with the slight modification of making the period exactly 24 hours, to modulate the A j-
and C-fiber activity as a function of the time of day in hours since typical morning wake
time. We implement daily rhythmicity in the firing rates of the A3- and C-fibers by
varying their stimulation response frequencies, R () and R (%), respectively, with
approximately opposite phases. The average firing rates of the fibers (40 Hz for A/-
fibers and 21 Hz for C-fibers) were estimated from experiments of receptor activity in
the human hand [40]. This yields equations for the firing rates of the fibers over the day
as follows:

Rap(f) = 6sin (%f) +40,

N 1 . T A
Ro() = 5 sin (157 +2.8) +21, (4)
where # denotes time, in hours since morning wake time (see blue and green curves in
Fig 4B). The amplitudes of the daily modulation of response frequencies (46 Hz for
Ap-fibers and +0.5 Hz for C-fibers) were chosen to fit the model’s simulated pain signal,
namely the firing rate of the projection neuron population, to the experimental
measurements of pain sensitivity, as described below.

To model the effects of the AS-dependent presynaptic inhibition of C-fiber activity
mediated through an additional inhibitory interneuron population (I3), we assume that
the Iy population is only activated by high, stimulus-induced activity of the A S-fibers
and that its activity tracks the daily modulation of Rag(f) but at a lower firing rate. As
a result, presynaptic inhibition lowers the stimulus response frequency of C-fiber
activity, Re(t), as follows:
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standard deviation (shaded region) over 30 realizations of the Poisson input. The fitted
curve from Fig 4A is plotted in black open circles. B: Firing rate of the P population in
response to the C-fiber input as a function of the time of day. The x-axis refers to hours
since the typical or scheduled morning wake time.

R (f) = Ro(f) — gagc(Rag(t) — 30), (5)

where gagc scales the effects of the presumed I activity (see black dashed curve in Fig
4B), and the -30 mimics the lower I5 firing rate. This presumed level of I3 activity
maintains effective C-fiber activity on the same scale as the original C-fiber activity, see
blue solid and black dashed lines in Fig 4B.

We note that while the daily modulation of the stimulus response frequencies
governing spikes on the afferent fibers is on the order of hours, our model output
changes on the order of fractions of seconds (e.g., 7p = 0.001 s). Because of such a
difference in time scales, there is only a small change in the stimulus frequencies R Ag(f)
and R¢ (f) during the response to a brief nociceptive stimulus. Hence, we consider
specific time points at a constant  in a 24-hour period (see Fig 4B) when generating
the (daily modulated) response of afferent fibers to stimulation. We compare the
24-hour rhythm in pain sensitivity computed by our model with the sinusoidal curve
representing the human daily pain sensitivity fitted to experimental data in Fig 4A.
Introducing the rhythmicity of fiber responses described above, we simulate our model
equations at 7 time points over the 24-hour day, recording our model output (firing rate
of the projection (P) neuron population) for each time point. To compare with the
experimental curve, we compute variation as a percent of the mean by calculating the
mean of the average response firing rates of the P population to stimuli given over the
whole day, and comparing the firing rate at each time point during the day to that mean
firing rate. Fig 5A shows the model pain sensitivity as a percent of the average over the
day (blue curve) as compared to the experimental pain sensitivity (black dashed curve).
Notice that the average firing rate of the P population, as shown in Fig 5B, is above 25
Hz which can be considered as a threshold for pain (see [44]). Furthermore, for the daily
rhythmicity of pain sensitivity, the model output represented in terms of percent of
mean (firing rate of the P population) closely follows experimental results (see Fig 5A).

July 12, 2019

10/21

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310



Results

Model output

To simulate response to a brief painful stimulus at the periphery, we construct average
firing rate functions for activity of the AS-, Aj- and C-fibers based on the time of day
as input to the DH, and calculate the resulting behavior of the PNs as described by the
equations in (1). Fig 6 displays the average firing rate of the P population in response
to nociceptive stimuli at two time points during the 24-hr day. Our model reproduces
the average firing-rate pattern of the populations of neurons in the DH when the three
afferent fibers differ in their conductance speeds, as noted by three distinct activations
of the PNs in Fig 6. We follow [44], and interpret the painful response as the firing rate
of the PNs crossing a threshold of 25 Hz. The average firing rate of the P population is
qualitatively similar to that seen experimentally (e.g., see Fig 1a in [39]) and agrees
with the daily variation in pain as reported in [13] (lower sensitivity in the afternoon
and higher sensitivity at night).

8 hours after wake 20 hours after wake
50 : 50

~N
z
o 25
©
(o)}
£
=
0
0 0.5 1 0 0.5 1
Time (s) Time (s)

Fig 6. An example output of the PNs at two time points averaged over 30 realizations.

The average firing rate of the P (projection neuron) population during (left) afternoon
(lowest pain sensitivity) and (right) early morning (highest pain sensitivity) in response
to a brief nociceptive stimulus and modulation in sensitivity of the afferent fibers over
the day. The thick curve denotes the mean, the shaded region the standard deviation, of
30 realizations of the Poisson spiking activity on the afferent fibers (for one realization,
see Fig 3). We interpret P firing rate frequencies higher than 25 Hz (dashed line) as
painful.

Note here that we are only considering nociceptive stimulation of the afferent fibers
as mechanical stimulation may follow a different circuit within the DH or more
complicated activation of the different afferent fibers. To quantify the amount of pain
experienced from the stimulation of the afferent fibers, we take the average firing rate of
the PNs over the period of time when the C-fibers’ response has reached the DH (see
blue rectangle in Fig 6). Note that the amount of time that the C-fiber response is
activated is constant across the day and we consider the average firing rate above 25 Hz
as painful [44].

The parameters for this model were chosen to give painful responses (i.e., firing rate
of the P population above 25 Hz), but also to allow the neuron populations to reach
their maximal firing rates during times of day with highest pain sensitivity. We note
that the input from the spinal cord is only one component to the overall experience of
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pain. The P population reaching a maximum represents the maximum possible
nociceptive response from this portion of the spinal cord. Thus, (and as concerns all of
the simulations of our model) a maximal firing rate of the P population does not
necessarily correspond to the maximal pain experience. Additionally, the chosen
parameter set allows our model to sufficiently capture experimentally-observed
phenomena such as wind-up and pain inhibition, but we recognize that this is not the
only set of parameters that would yield these results. For a complete description of the
parameter value choices, see S1 Table in the Supporting Information.

Model validation: Wind-up

In addition to the example model output in Fig 6, we further validate our DH circuit
model by showing that it reproduces wind-up —that is, increased (and
frequency-dependent) excitability of the neurons in the spinal cord due to repetitive
stimulation of afferent C-fibers [45]. Wind-up serves as an important tool for studying
the role of the spinal cord in nociception and has often been used as an example
phenomenon to validate single neuron models of the DH (see [21,27,28], for example).
However, both the physiological meaning and the generation of wind-up remain unclear
(see [46] for a review).

There are several possible molecular mechanisms proposed for the generation of
wind-up [46]. Earlier work on single neuron models suggests that wind-up is generated
by a combination of long-lasting responses to NMDA-receptor-mediated synaptic
currents and membrane calcium currents providing for cumulative depolarization of the
PNs [27]. Indeed, calcium conductances and NMDA receptors of the projection/deep
dorsal horn neurons are included in all previous models of the DH circuit [21,27,28]. In
addition, the study done in [28] emphasizes the effect (direct or via influencing the
dependence of the deep dorsal horn neurons on their intrinsic calcium currents) NMDA
and inhibitory synaptic conductances have on the extent of wind-up in the deep DH
neurons [28].

As noted in the Methods section, we incorporate NMDA synapses into our model for
the DH circuit by taking into account that the dynamics of the synaptic weight of the
connection from the C-fibers to the PNs, gnvpa, depends on the average firing rate of
the P neuron population [see Eq (2)]. We assume that the dynamics of gnypa are much
slower than those of the neuron populations (Tnmpa = 1 s while, e.g., 7p = 0.001 s ).
As a result, in response to a repeated stimulus (i.e., when the model input as shown in
Fig 3 is presented to the DH circuit at a frequency of 2 Hz), the average firing rate of
the P population during the C-response increases (see top panel in Fig 7A) and the
synaptic weight gnvpa exhibits slowly increasing dynamics in response to the increased
activity in the P population (see bottom panel in Fig 7A). For a repeated stimulus at 2
Hz, the latency, which we consider as the time from the start of the stimulus (¢ = 0.5 s)
to the time when the average firing rate of P exceeds 25 Hz (i.e., considered as painful),
decreases with the stimulus index (i.e., index 1 denotes the first stimulus in the repeated
sequence), see Fig 7B, as seen in experiments [47].

However, the increase in the average firing rate of the P population depends on the
frequency of the repeated stimulation, with optimal effects seen experimentally at
stimulation frequencies between 1-3 Hz [46]. Our model captures the phenomenon of
wind-up, as well as the frequency dependency. For example, when the model input is
repeated at a frequency of 2 Hz, the mean of the average firing rate of the P population
during the C-response (see blue box on bottom of Fig 6) increases from about 25 Hz
during the first stimulus to about 50 Hz during the fifth stimulus similar to previous
modeling results [21], while in the case of a stimulus repeated at 0.5 Hz, the mean P
firing rate during the C-response does not change as a function of the stimulus index
(Fig 8A, yellow curve vs blue curve). We note that we simulate frequencies up to 3.22
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Fig 7. Modeling the wind-up phenomenon. A: Simulated average firing rate of the P
population (top) and NMDA synaptic weight, gnupa (bottom), in response to a
repeated brief nociceptive stimulus (at 2 Hz). In the top panel, the blue curve denotes
the mean and the shaded region denotes the standard deviation in response to 20
realizations of the stimulus induced activity of afferent fibers. B: Pain latency computed
for a repeated stimulus at 2 Hz. Latency is defined here as the first time when the
average firing rate of P exceeds the threshold of 25 Hz (interpreted as painful) and
decreases as a function of the stimulus index (solid lines indicate times when average
firing rate of P exceeds painful threshold). The latency dynamics match those found in
experiments [47].

Hz as this is the highest frequency we can model without an overlap in the P neuron 388
responses (see Figure TA, top). We include it here to show the general trend of wind-up  ss
in response to an increase in frequency. It’s clear to see that as the frequency increases, 3%
and the responses are allowed to interact, the result would be a yet faster rise in the 301
firing rate to its maximum due to the additive nature of the NMDA weight (see Figure s
TA, bottom). We also show that the latency time decreases with increasing frequency, s

(see Fig 8B), with maximal effects seen for stimulation frequencies of 2-3 Hz and 3904
minimal effects seen for 0.5 Hz, as observed experimentally. 30
Model application: Daily rhythm in the modulation of pain 306
inhibition 307
It has been experimentally observed that stimulation of A-fiber afferents can lead to 398

inhibition of the activity of the PNs that typically follows from stimulation of C-fiber 399
afferents [21]. This is related to the idea that when you stub your toe, you immediately 40
apply pressure on the toe and feel some lessening of pain. To capture this phenomenon sn
in our model, we simulate a brief painful stimulus at the periphery that activates all 402
three fibers (stubbing of the toe) and then deliver a second brief stimulation to the 403
Ap-fibers a short time thereafter (pressure applied to toe), shown in Fig 9 by the red 404
arrows. The arrival time of the second pulse to the AS-fibers is increased by 50 ms in 405
each simulation, and the response in the projection neurons is shown in blue. For 406
comparison with experimental data in [47] and model simulations in [21], we visualize o
the average firing rates of P predicted by our model (Fig 9A) with a spike raster plot in a0

Fig 9B. That is, we derive firing times from the numerically computed average firing 409
rates of the P population, as explained in [48]. As the timing of the second pulse gets w0
closer to the arrival of the C-fiber stimulation at the DH, there is a brief period of an
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Fig 8. Characterizing how wind-up phenomenon changes with frequency. A: The mean
of the average firing rate of P neurons during the C-response (which we define as the

time interval 90-300 ms after the start of the stimulus, see blue box on bottom of Fig 6)

for each stimulus index increases as a function of the stimulus frequency. B: Latency,

defined here as the first time when the average firing rate of P exceeds the threshold of

25 Hz (interpreted as painful), decreases with the change in the frequency of the
repeated stimulus.

excitation followed by a longer period of inhibition, as seen in experiments [47].
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Fig 9. Inhibition of painful response by subsequent activation of AS-fiber activity. A:

Firing rate of the projection neurons in response to secondary AS stimulation following

brief nociceptive stimulus activating all three fibers. B: Spike raster plot generated from
the model output shown in A for 1000 PNs constructed to resemble to Fig 5 in [21],
which replicates experiments from [47]. We denote the arrival of the second A S-pulse

with a red arrow (asterisk) in A (B).

While only qualitative descriptions of pain inhibition are reported in [47], we

quantify the amount the painful response is suppressed by the second activation of the

A(-fibers by comparing the average firing rate of the P population during the

C-response in each panel of Fig 9A (thick curves) to that in the top panel in Fig 9A
where the secondary A8 activation has no effect on the C-fiber response (defining a
baseline firing rate). The percent of this baseline firing rate is plotted in Fig 10A as a
function of the delay time of the second AS pulse (relative to the time of the original
nociceptive stimulus). Note that the pain response decreases as the delay of the second

A pulse increases and its arrival time coincides with the C-response, as reported in [47].

We use our model of pain sensitivity to investigate the daily rhythmic effects on the
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phenomenon of pain inhibition. Fig 10B demonstrates changes in the percent of baseline
firing rate of the P population during the C-response as a function of the delay in the
second AS pulse, for each time of day (i.e., in hours since morning wake time). Our
model predicts that pain inhibition is most effective during early afternoon (4-8 hours
after wake), when the Af-fibers are the most sensitive to external stimulus (i.e., their
stimulation frequency is at its highest daily value) and the C-fibers are the least
sensitive to external stimulation. This can be seen in the color plot in Fig 10B by the
dark horizontal band around 4-8 hours after wake (middle of the afternoon) for all
delays. Notice that for 16-20 hours after wake (middle of the night), the pain percentage
is very high and there is little change in the percent of pain as a function of delay time,
indicating that pain inhibition is not very effective at these times.

In addition to predicting the time of day that pain inhibition is most effective
(mid-afternoon), our model also predicts that a delay from 0.1 to 0.2 seconds after the
original painful stimulus is ideal for the optimal lessening of pain experienced, as can be
seen in both plots of Fig 10 by these particular delay times showing the lowest percent
of pain response for all times of day.
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Fig 10. Quantifying effectiveness of pain inhibition across the day. A: Percentage of
the baseline firing rate of the PNs as a function of the delay time of the second AfS
pulse at 8 hours following the typical morning wake time. B: Percentage of the painful
response as a function of both time of day and delay time of the second A pulse. Color
scale indicates the percent of the baseline of pain, with darker colors representing larger
decreases in pain as a result of the pain inhibition.

Model prediction: Neuropathy

Neuropathic pain occurs due to various conditions involving the brain, spinal cord, and
nerve fibers. It is distinguished from inflammatory conditions like arthritis in that it
often appears in body parts that are otherwise normal under inspection and imaging,
and is also characterized by pain being evoked by a light touch. Experiments on pain
sensitivity in neuropathic patients suggest that neuropathic pain has a daily rhythm as
well [15,49-52], having its peak in the afternoon [53]. An afternoon peak in pain
sensitivity is the reverse of the daily rhythm in pain sensitivity under normal
conditions [6]. Nerve injury can cause a dysregulation of chloride ion transporters that
control intracellular chloride concentration in DH neurons (reviewed in [54]).
Maintenance of a low intracellular chloride concentration is important for the
functioning of inhibitory neurotransmission. Under typical conditions, the binding of
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the neurotransmitter GABA on postsynaptic receptors produces an inhibition of
postsynaptic activity by allowing negatively-charged chloride ions to flow into the
postsynaptic neuron, thus producing hyperpolarization (or decrease in membrane
voltage). If intracellular chloride concentrations stay semi-permanently elevated,
chloride ions may flow out of the cell in response to GABA receptor activity producing
excitatory rather than inhibitory effects. Several authors have hypothesized that
dysregulation of inhibition in spinal pain processing circuits could explain the
development of pain sensation in response to non-noxious stimuli under neuropathic
conditions [54,55]. Specifically, several authors [54,56,57] implicated a switch in
presynaptic inhibition to presynaptic excitation in the DH as one culprit for eliciting
neuropathic pain phenomena.

As a result, we set out to determine if a switch from presynaptic inhibition to
presynaptic excitation in our model is sufficient to replicate the experimentally-observed
8-12 hour change in the phasing of daily rhythms in pain sensitivity under neuropathic
conditions. We show that our model can capture such an inversion of the rhythmicity of
the firing rate of the PNs with a change from inhibition (normal conditions) to
excitation (neuropathic conditions) in the presynaptic influence of the A j3-fibers on
C-fiber synaptic signaling. The location where the change from inhibition to excitation
occurs is denoted in our model diagram by the two asterisks in Fig 1. Thus, we assume
that under neuropathic conditions, the connection from I, to the synaptic terminals of
E and P is excitatory instead of inhibitory.

Recall from the Methods section that we model presynaptic inhibition as an
Ap-dependent decrease in the stimulus response firing rate of the C-fibers [see Eq (5)].
The assumption that presynaptic inhibition turns to excitation results instead in an
AS-dependent increase in the C-fiber stimulus response firing rate represented by the
following equation

Resgeo(f) = Re(f) + ghse? (Ras(f) — 30), (6)

where ga3¢° is the strength of the effect of AS-fiber activity on C-fiber activity
under neuropathic conditions (see red curve in lower panel of Fig 11A). This daily
variation in the stimulus response frequency of C-fiber activity results in the desired
inversion of projection neuron population firing rate response to a brief nociceptive
stimulus (Fig 11C), and thus pain sensitivity (Fig 11B), across the day. Thus, under
normal conditions, the pain sensitivity rhythm follows the daily rhythm of the C-fibers
(compare blue curves in all panels) but mimics the rhythm in the AS-fibers under
neuropathic conditions [compare red curves in B and C with green curve in A].

In our model, we obtain this inversion of rhythm in pain sensitivity by assuming that
A -dependent presynaptic excitation under neuropathic conditions has a larger
magnitude than presynaptic inhibition under normal conditions. Specifically, the
effective stimulus response firing rate of the C-fibers does not depend on a reduction of
the AS-fiber stimulus response firing rate (compare Egs 6 and 5) and the weighting
factor gase” = 0.25 is larger than gage = 0.05. This can be interpreted as an increase
in firing rates of the AS-fibers under neuropathic conditions that results in increased
excitation of the I inhibitory population, and thus larger magnitude of presynaptic
excitation compared to presynaptic inhibition under normal conditions. There are
several proposed mechanisms for the many types of neuropathic pain, some of which
show increased activity of the AS-fibers [41].

To investigate the dependence of the magnitude of AB-dependent presynaptic
excitation on the inverted daily rhythm, we simulate the model response to brief
nociceptive stimuli across the day for different values of the weighting parameter g}%¢’
(see Fig 12). Results show that weak presynaptic excitation (black and blue curves)
reduces the amplitude of daily variation in P population firing rates and does not induce
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Fig 11. A change in the daily rhythms of pain sensitivity in neuropathic pain
conditions compared to normal conditions. A: Daily variation of the stimulus response
firing rates of the AS- (top panel) and C-fibers (lower panel, dashed curve), and
effective C-fiber stimulus response firing rate including effects of A 5-dependent
presynaptic inhibition under normal conditions (lower panel, blue curve, same as in Fig

4B) and Af-dependent presynaptic excitation under neuropathic (red curve) conditions.

B, C: Daily variation in the response of the PNs to a brief nociceptive stimulus
quantified by the percent of its mean (B) and average firing rate of the C-fiber response
(C) for normal (blue, same as in Fig 5) and neuropathic (red) conditions. The x-axis
refers to hours since the typical or scheduled morning wake time.

an inverted rhythm. For larger values of g}%¢”, the correct rhythmicity is obtained and
amplitude increases but eventually saturates. Larger magnitudes of presynaptic
excitation only serve to increase the firing rate over the entire day, thus increasing the
average over the entire day and not affecting the variation in percent of the mean.
Note that the amplitude of the rhythmicity of pain sensitivity under neuropathic

conditions is small, about 5% as compared to 15% under normal conditions. There are
few experimental studies that measure the amplitude of modulation of pain sensitivity
under neuropathic conditions; however, one study shows neuropathic pain sensitivity to
have a similar amplitude to, if not slightly larger than, acute pain [51]. Our model
proposes that the rhythm is intrinsic to the afferent fibers, however many believe that
there may also be daily rhythms within the top-down inhibitory modulation of many of
the neuronal populations in the pain-processing circuit [58]. With this initial hypothesis
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Fig 12. Investigating the weighting parameter, g5’ A: Percent of the mean and B:
average firing rate of the PNs in response to changes in the strength of excitation,
during neuropathy, from the AfS- fibers to the C-fibers, g)\7%¢” (denoted by gapc in the
figure). The x-axis refers to hours since the typical or scheduled morning wake time.

of rhythmicity in the fiber input, our model replicates the overall increase in pain
sensitivity under neuropathic conditions, reflected by increased firing rates of the PNs.
Indeed, our model simulations suggest that inhibition turned excitation at the level of
the fibers is a possible mechanistic explanation for the inversion of pain sensitivity
rhythms seen under neuropathic conditions. Modulation by daily rhythms could also be
explored in alternative parts of the pain processing circuit, including the output of the
projection neurons and its propagation along the spinal cord. These additional
mechanisms in combination with disinhibition may enhance the modulation of the daily
rhythm of pain sensitivity under neuropathic conditions.

Discussion

We have developed a firing-rate model for the processing of nociceptive stimuli in the
DH of the spinal cord, with a particular interest in investigating the daily rhythmicity
of pain sensitivity. Our model follows the formalism of many neuron firing-rate-based
models, but to our knowledge, it is novel for pain processing in the spinal cord. In
addition to accounting for typical pain phenomena such as wind-up and pain inhibition,
our model captures the rhythmicity in pain sensitivity over the 24-hour day mediated by
intrinsic rhythmicity of afferent fiber activity. We include experimentally-justified
presynaptic inhibition from the AS-fibers to the C-fibers, and show how disinhibition of
this pathway under neuropathic conditions is sufficient to induce the
experimentally-observed inversion of the rhythmicity of pain sensitivity. Our
minimalistic model is based on physiology and thus provides an accessible theoretical
framework for experimental and clinical investigations of diverse physiological processes
modulating pain processing in humans.

In contrast to a detailed biophysical model of a single neuron [21,27,28] or a
large-scale network of individual neurons [44], we construct equations to describe the
population activity of projection, inhibitory, and excitatory neurons in the DH. As a
result, we work with average firing rates for each of the three neuron populations
according to the formalism developed in [29]. Therefore, our modeling approach is
similar to [26] but our model predictions are in terms of average firing rates of neuron
populations instead of potentials of individual cells. In our choice of model formalism,
we assume that the neurons in each population behave similarly, i.e., they receive
similar inputs and respond similarly to those inputs, such that we can consider the
average behavior over all neurons in each population as the primary mode of
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information transfer in the circuit. This is a limitation in the sense that often
interesting phenomena in neuroscience arises from the nonlinear interactions between
neuron spike timings and their differences in interpreting incoming stimuli. However,
results from other modeling approaches that replicate spiking behavior [21,44] have not
indicated that discrimination of spike timings contributes substantially to spinal pain
processing. Additionally, some parameters in this model formalism cannot be easily
obtained from experiments. For example, the weights with which one population
influences another [see gprepost in Eq (1)], represent an average synaptic strength from
all neurons in one population to all neurons in another, which cannot be measured
experimentally. We choose parameter values for these weights in order to replicate
experimental data on the response of the PNs under different conditions. Finally,
although there is experimental evidence to show that an increase in the activity of the
PNs correlates with an increase in pain sensation [32], the choice of instituting a
threshold of 25 Hz on the PNs above which the model output is considered painful is
somewhat arbitrary. However, we follow this convention used in [44] because to our

knowledge a more physiologically accurate approximation has not yet been determined.

The circuitry of our DH model is based on the gate control theory of pain [22,24],
similar to previous mathematical models for spinal nociception processing [21,26-28].
While using different model formalisms, circuit activity in these models centers around
inhibition of PN responses to C-fiber input by AfS-fiber activity. In this way, AS-fiber
activity gates responses to nociceptive stimuli. More recent results have called into
question gate control theory [25]. In particular, a large-scale network model of spinal
cord neural circuitry has been constructed [44] that includes numerous known cell types,
their laminar distribution, and their modes of connectivity. This model has been used
to investigate the mechanisms of pain relief through dorsal column stimulation (DCS), a
procedure to treat neuropathic pain. The results shown in [44] identify limitations of
the gate control theory and propose alternate circuitry that more accurately accounts
for the effects of DCS on nociceptive and neuropathic pain.

As concerns our model predictions for neuropathy, the low amplitude of the
neuropathic pain rhythm in the model output may suggest that a simple spinal cord
model is not sufficient to completely describe the phenomenon of an inversion in the
rhythm of pain modulation under neuropathic vs normal conditions. Indeed, the daily
rhythm that we use in the model is likely to reflect both the influences of circadian
rhythms and sleep homeostasis, of which the sleep homeostatic component presumably
increases throughout the evening, and therefore, would potentially amplify the peak in
the neuropathic pain rhythm that occurs during that time. Furthermore, our current
model does not include top-down modulation of spinal pain processing from the brain
for which there is experimental evidence in support of circadian regulation of top-down
inhibition [5,59].

In this study, we do not consider the neuropathic property in which patients
experience pain in response to a non-noxious, mechanical stimuli. Instead, we restrict
our attention to the response to nociceptive stimuli since mechanical stimulation may be
processed by different pathways. Nonetheless, our model predicts that neuropathic
conditions can, in part, be explained by ApS-dependent presynaptic excitation of C-fiber
synaptic signaling that is of a larger magnitude than the presynaptic inhibition that
occurs under normal conditions. Specifically, to obtain the experimentally-observed
inversion in the rhythmicity of pain sensitivity experienced by neuropathic patients, our
model predicted an increase in the AfS-dependence on C-fiber stimulus response
[compare ga%¢° in Eq (6) to gasc in Eq (5)]. This increase could potentially be due to
increased response firing rates of A3-fibers, as well as by increased efficacy of the
excitatory effects of the secondary inhibitory population Is. These effects cause an
increase in firing rates of PNs in response to brief nociceptive stimuli, but could also
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contribute to increases in PN responses in mechanical stimuli processing pathways.
Additional studies on the interaction of the pathways processing non-noxious and
nociceptive stimuli, and their properties under neuropathic conditions are needed to
fully understand this phenomenon.

Often it is difficult, if not impossible, to experimentally measure properties of
individual neurons in vivo, and in response to all possible nociceptive (and mechanical)
stimuli. Due to this lack of knowledge, it is often impractical to build detailed models of
DH neurons in which many parameters would need to be determined from biological
data. In this respect, simpler population firing-rate models, like the one presented here,
have an advantage in that there are significantly fewer parameters and they are
constrained by measurements of more accessible macroscopic properties of the circuit.
We have developed a novel firing-rate model for the neural circuit in the DH that
processes nociceptive stimuli and we have shown that it can capture the same
experimentally-observed phenomena as more detailed models. Additionally, we were
able to clearly propose and test a mechanism for the daily rhythm in pain sensitivity
and modulations of that rhythmicity under neuropathic conditions. Given its
accessibility compared to more detailed or larger biophysically-based models, our model
is suitable for including experimental results, e.g., on the activity of the afferent fibers,
and appropriate for experimental and clinical investigations of diverse physiological
influences on pain processing, such as the effects of sleep deprivation on pain
sensitivity [60] or the mechanisms underlying the efficacy of spinal cord stimulation for
treatment of chronic pain conditions.
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