
1Towards moderate overparameterization:

global convergence guarantees for training

shallow neural networks

Samet Oymak and Mahdi Soltanolkotabi

Abstract

Many modern neural network architectures are trained in an overparameterized regime where the

parameters of the model exceed the size of the training dataset. Sufficiently overparameterized neural

network architectures in principle have the capacity to fit any set of labels including random noise.

However, given the highly nonconvex nature of the training landscape it is not clear what level and

kind of overparameterization is required for first order methods to converge to a global optima that

perfectly interpolate any labels. A number of recent theoretical works have shown that for very wide

neural networks where the number of hidden units is polynomially large in the size of the training data

gradient descent starting from a random initialization does indeed converge to a global optima. However,

in practice much more moderate levels of overparameterization seems to be sufficient and in many

cases overparameterized models seem to perfectly interpolate the training data as soon as the number of

parameters exceed the size of the training data by a constant factor. Thus there is a huge gap between

the existing theoretical literature and practical experiments. In this paper we take a step towards closing

this gap. Focusing on shallow neural nets and smooth activations, we show that (stochastic) gradient

descent when initialized at random converges at a geometric rate to a nearby global optima as soon as

the square-root of the number of network parameters exceeds the size of the training data. Our results

also benefit from a fast convergence rate and continue to hold for non-differentiable activations such as

Rectified Linear Units (ReLUs).

Department of Electrical and Computer Engineering, University of California, Riverside, CA

Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA

I. INTRODUCTION

A. Motivation

Modern neural networks typically have more parameters than the number of data points used

to train them. This property allows neural nets to fit to any labels even those that are randomly

generated [1]. Despite many empirical evidence of this capability the conditions under which

this occurs is far from clear. In particular, due to this overparameterization, it is natural to expect

the training loss to have numerous global optima that perfectly interpolate the training data.

However, given the highly nonconvex nature of the training landscape it is far less clear why

(stochastic) gradient descent can converge to such a globally optimal model without getting stock

in subpar local optima or stationary points. Furthermore, what is the exact amount and kind of

overpametrization that enables such global convergence? Yet another challenge is that due to

overparameterization, the training loss may have infinitely many global minima and it is critical

to understand the properties of the solutions found by first-order optimization schemes such as

(stochastic) gradient descent starting from different initializations.

Recently there has been interesting progress aimed at demystifying the global convergence

of gradient descent for overparameterized networks. However, most existing results focus on

either quadratric activations [2], [3] or apply to very specialized forms of overparameterization

[4]–[9] involving unrealistically wide neural networks where the number of hidden nodes are

polynomially large in the size of the dataset. In contrast to this theoretical literature popular

neural networks require much more modest amounts of overparameterization and do not typically

involve extremely wide architectures. In particular (stochastic) gradient descent starting from a

random initialization seems to find globally optimal network parameters that perfectly interpolate

the training data as soon as the number of parameters exceed the size of the training data by a

constant factor. See Section IV for some numerical experiments corroborating this claim. Also in

such overparameterized regimes gradient descent seems to converge much faster than existing

results suggest.

In this paper we take a step towards closing the significant gap between the theory and practice

of overparameterized neural network training. We show that for training neural networks with

one hidden layer, (stochastic) gradient descent starting from a random initialization finds globally

2

B. Model

We shall focus on neural networks with only one hidden layer with d inputs, k hidden neurons

and a single output as depicted in Figure 1. The overall input-output relationship of the neural

network in this case is a function f(⋅;W) ∶ Rd
→ R that maps the input vector x ∈ Rd into a

scalar output via the following equation

x↦ f(x;W) = k

∑̀
=1

v`φ (⟨w`,x⟩) .
In the above the vectors w` ∈ R

d contains the weights of the edges connecting the input to the `th

hidden node and v` ∈ R is the weight of the edge connecting the `th hidden node to the output.

Finally, φ ∶ R→ R denotes the activation function applied to each hidden node. For more compact

notation we gather the weights w`/v` into larger matrices W ∈ Rk×d and v ∈ Rk of the form

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wT
1

wT
2

⋮

wT
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and v =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

⋮

vk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We can now rewrite our input-output model in the more succinct form

x↦ f(x;W) ∶= vTφ(Wx). (I.1)

Here, we have used the convention that when φ is applied to a vector it corresponds to applying

φ to each entry of that vector.

C. Notations

Before we begin discussing our main results we discuss some notation used throughout the

paper. For a matrix X ∈ Rn×d we use σmin(X) and σmax(X) = ∥X∥ to denote the minimum and

maximum singular value of X . For two matrices

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1

A2

⋮

Ap

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

p×m and B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1

B2

⋮

Bp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

p×n,

4

we define their Khatri-Rao product as A∗B = [A1⊗B1, . . . ,Ap⊗Bp] ∈ Rp×mn, where ⊗ denotes

the Kronecher product. For two matrices A and B, we denote their Hadamard (entrywise) product

by A⊙B. For a matrix A ∈ Rn×n, A⊙r ∈ Rn×n is defined inductively via A⊙r =A⊙ (A⊙(r−1))
with A⊙0 = 11T . Similarly, for a matrix X ∈ Rn×d with rows given by xi ∈ Rd we define the

r-way Khatrio-Rao matrix X∗r
∈ Rn×dr as a matrix with rows given by

[X∗r]
i
=

⎛⎜⎜⎝xi ⊗xi ⊗ . . .⊗xi´¹¹¸¹¹¹¶
r

⎞⎟⎟⎠
T

.

For a matrix W ∈ Rk×d we use vect(W) ∈ Rkd to denote a column vector obtained by concatenating

the rows w1,w2, . . . ,wk ∈ Rd of W . That is, vect(W) = [wT
1

wT
2

. . . wT
k
]T . Similarly, we

use mat (w) ∈ Rk×d to denote a k × d matrix obtained by reshaping the vector w ∈ Rkd across its

rows. Throughout, for a differentiable function φ ∶ R↦ R we use φ′ and φ′′ to denote the first and

second derivative. If the function is not differentiable but only has isolated non-differentiable points

we use φ′ to denote a generalized derivative [11]. For instance, for φ(z) = ReLU(z) =max(0, z)
we have φ′(z) = 1{z≥0} with 1 denoting the indicator mapping. We use c and C to denote

numerical constants whose values may change from line to line. We also use the notation cz to

denote a numerical constant only depending on the variable or function z.

II. MAIN RESULTS

When training a neural network, one typically has access to a data set consisting of n

feature/label pairs (xi, yi) with xi ∈ Rd representing the features and yi the associated labels.

We wish to infer the best weights v,W such that the mapping f(x;W) ∶= vTφ(Wx) best fits

the training data. In this paper we assume v ∈ Rk is fixed and we train for the input-to-hidden

weights W via a quadratic loss. The training optimization problem then takes the form

min
W ∈Rk×d

L(W) ∶= 1

2

n

∑
i=1

(vTφ (Wxi) − yi)2 . (II.1)

To optimize this loss we run (stochastic) gradient descent starting from a random initialization

W0. We wish to understand: (1) when such iterative updates lead to a globally optimal solution

that perfectly interpolates the training data, (2) what are the properties of the solutions these

algorithms converge to, and (3) what is the required amount of overparameterization necessary

5

for such events to occur. We begin by stating results for training via gradient descent for smooth

activations in Section II-A followed by ReLU activations in Section II-B. Finally, we discuss

results for training via Stochastic Gradient Descent (SGD) in Section II-C.

A. Training networks with smooth activations via gradient descent

In our first result we consider a one-hidden layer neural network with smooth activations and

study the behavior of gradient descent in an over-parameterized regime where the number of

parameters is sufficiently large.

Theorem 2.1: Consider a data set of input/label pairs xi ∈ Rd and yi ∈ R for i = 1,2, . . . , n

aggregated as rows/entries of a data matrix X ∈ Rn×d and a label vector y ∈ Rn. Without loss of

generality we assume the dataset is normalized so that ∥xi∥`2 = 1. Also consider a one-hidden

layer neural network with k hidden units and one output of the form x ↦ vTφ (Wx) with

W ∈ Rk×d and v ∈ Rk the input-to-hidden and hidden-to-output weights. We assume the activation

φ has bounded derivatives i.e. ∣φ′(z)∣ ≤ B and ∣φ′′(z)∣ ≤ B for all z and set µφ = Eg∼N (0,1)[gφ′(g)].
Furthermore, we set half of the entries of v to

∥y∥`2√
kn

and the other half to −
∥y∥`2√

kn
1 and train only

over W . Starting from an initial weight matrix W0 selected at random with i.i.d. N (0,1) entries

we run Gradient Descent (GD) updates of the form Wτ+1 =Wτ − η∇L(Wτ) on the loss (II.1)

with step size η = nη̄

2B2∥y∥2
`2
∥X∥2 where η̄ ≤ 1. Then, as long as

√
kd ≥ c

B2

µ2

φ

(1 + δ)κ(X)n holds with κ(X) ∶=
√

d
n
∥X∥

σ2

min
(X ∗X) , (II.2)

and c is a fixed numerical constant, then with probability at least 1− 1

n
− e
−δ2 n

2∥X∥2 all GD iterates

obey

∥f(Wτ) − y∥`2 ≤ (1 − η̄

32

µ2

φ

B2

σ2

min
(X ∗X)
∥X∥2)τ ∥f(W0) − y∥`2 ,

µφ√
32

∥y∥`2√
n

σmin(X ∗X) ∥Wτ −W0∥F + ∥f(Wτ) − y∥`2 ≤ ∥f(W0) − y∥`2 .

1If k is odd we set one entry to zero ⌊k−1
2
⌋ to

∥y∥
`2√

kn
and ⌊k−1

2
⌋ entries to −

∥y∥
`2√

kn
.

6

Furthermore, the total gradient path obeys

∞

∑
τ=0

∥Wτ+1 −Wτ∥F ≤
√
32

µφ

√
n∥y∥`2
∥f(W0) − y∥`2
σmin(X ∗X) .

We would like to note that we have chosen to state our results based on easy to calculate quantities

such as σ2

min
(X ∗X) and µφ. As it becomes clear in the proofs a more general result holds

where the theorem above and its conclusions can be stated with µφσmin (X ∗X) replaced with a

quantity that only depends on the expected minimum singular value of the Jacobian of the neural

network mapping at the random initialization (See Theorem 6.2 in the proofs for details). Using

this more general result combined with well known calculations involving Hermite polynomials

one can develop other interpretable results. For instant we can show that σmin(X ∗X) can be

replaced with higher order Khatrio-Rao products (i.e. σmin(X∗r)).
Before we start discussing the conclusions of this theorem let us briefly discuss the scaling

of various quantities. When n ≳ d, in many cases we expect ∥X∥ to grow with
√
n/d and

σmin(X ∗X) to be roughly a constant so that κ(X) is typically a constant (see Corollary 2.2

below for a precise statement). Thus based on (II.2) the typical scaling required in our results

is kd ≳ n2. That is, the conclusions of Theorem 2.1 holds with high probability as soon as the

square-root of the number of parameters of the model exceed the number of training data by a

fixed numerical constant. To the extent of our knowledge this result is the first of its kind only

requiring the number of parameters to be sufficiently large w.r.t. the training data rather than the

number of hidden units w.r.t. the size of the training data. That said, as we demonstrate in Section

IV neural networks seem to work with even more modest amounts of overparameterization and

when the number of parameters exceed the size of the training data by a numerical constant

i.e. kd ≳ n. We hope to close this remaining gap in future work. We also note that based on this

typical scaling the convergence rate is on the order of (1 − c d
n
).

We briefly pause to also discuss the case where one assumes n ≲ d (although this is not a

typical regime of operation in neural networks). In this case both ∥X∥ and σmin(X ∗X) are of

the order of one and thus κ scales as
√
d/n. Thus, the overparmeterization requirement (II.2)

reduces to k ≳ n. Thus, in this regime we can perfectly fit any labels as soon as the number of

hidden units exceeds the size of the training data. We also note that in this regime the convergence

rate is a fixed numerical constant independent of any of the dimensions.

7

Before we start discussing the conclusions of this theorem let us state a simple corollary that

clearly illustrates the scaling discussed above for randomly generated input data. The proof of

this simple corollary is deferred to Appendix E.

Corollary 2.2: Consider the setting of Theorem 2.1 above with η = n

2B2∥y∥2
`2
∥X∥2 . Furthermore,

assume the we use the softplus activation φ(z) = log(1+ez) and the input data points x1,x2, . . . ,xn

are generated i.i.d. uniformly at random from the unit sphere of Rd where d ≤ n ≤ cd2. Then, as

long as √
kd ≥ Cn, (II.3)

with probability at least 1 − 2

n
− e−

d
4 − ne−γ1

√
n − (2n + 1)e−γ2d all GD iterates obey

∥f(Wτ) − y∥`2 ≤ 3(1 − c1 dn)
τ ∥y∥`2 , (II.4)

∥Wτ −W0∥F + c2
√
n∥y∥`2 ∥f(Wτ) − y∥`2 ≤ c3√n. (II.5)

Here, γ1, γ2, c,C, c1, c2, and c3 are fixed numerical constants.

We would like to note that while for simplicity this corollary is stated for data points that are

uniform on the unit sphere, as it becomes clear in the proof, this result continues to hold for a

variety of other generic2 data models with the same scaling. The corollary above clarifies that

the typical scaling required in our results is indeed kd ≳ n2. That is, the conclusions of Theorem

2.1 holds with high probability as soon as the square-root of the number of parameters of the

model exceed the number of training data by a fixed numerical constant.

The theorem and corollary above show that under kd ≳ n2 overparameterization Gradient

Descent (GD) iterates have a few interesting properties properties:

Zero traning error: The first property demonstrated by Theorem 2.1 above is that the iterates

converge to a global optima. This holds despite the fact that the fitting problem may be highly

nonconvex in general. Indeed, based on (II.4) the fitting/training error ∥f(Wτ) − y∥`2 achieved

by Gradient Descent (GD) iterates converges to zero. Therefore, GD can perfectly interpolate

the data and achieve zero training error. Furthermore, the algorithm enjoys a fast geometric

rate of convergence to this global optima. In particular to achieve a relative accuracy of ε

2Informally, we call a set of points generic as long as no subset of them belong to an algebraic manifold.

8

(i.e. ∥f(Wτ) − y∥`2 / ∥y∥`2 ≤ ε) the required number of iterations τ is of the order of τ ≳

n
d
log(1/ε).

Gradient descent iterates remain close to the initialization: The second interesting aspect of

our result is that we guarantee the GD iterates never leave a neighborhood of radius of the order

of
√
n around the initial point. That is the GD iterates remain rather close to the initialization.3

Furthermore, (II.5) shows that for all iterates the weighted sum of the distance to the initialization

and the misfit error remains bounded so that as the loss decreases the distance to the initialization

only moderately increases.

Gradient descent follows a short path: Another interesting aspect of the above results is that

the total length of the path taken by gradient descent remains bounded and is of the order of
√
n.

B. Training ReLU networks via gradient descent

The results in the previous section focused on smooth activations and therefore does not apply

to non-differentiable activations and in particular the widely popular ReLU activations. In the

next theorem we show that a similar result continues to hold when ReLU activations are used.

Theorem 2.3: Consider the setting of Theorem 2.1 with the activations equal to φ(z) =
ReLU(z) ∶=max(0, z) and the step size η = n

3∥y∥2
`2
∥X∥2 η̄ with η̄ ≤ 1. Then, as long as

√
kd ≥ C(1 + δ)n2

d
κ3 (X)σ2

min
(X ∗X) holds with κ(X) ∶=

√
d
n
∥X∥

σ2

min
(X ∗X) , (II.6)

and γ and c fixed numerical constants, then with probability at least 1 − 1

n
− e
−δ2 n

∥X∥2 − ne−n all

GD iterates obey

∥f(Wτ) − y∥`2 ≤ (1 − η̄

48π

σ2

min
(X ∗X)
∥X∥2)τ ∥f(W0) − y∥`2 ,

1

12
√
π

∥y∥`2√
n

σmin(X ∗X) ∥Wτ −W0∥F + ∥f(Wτ) − y∥`2 ≤ ∥f(W0) − y∥`2 .
Also similar to Corollary 2.2 we can state the following simple corollary to better understand

the requirement in typical instances.

3Note that ∥W0∥F ≈
√
kd >>

√
n so that this radius is indeed small.

9

Corollary 2.4: Consider the setting of Theorem 2.3 above with η = n
∥y∥2

`2
∥X∥2 . Furthermore,

assume the input data points x1,x2, . . . ,xn are generated i.i.d. uniformly at random from the

unit sphere of Rd where d ≤ n ≤ cd2. Then, as long as√
kd ≥ C

n2

d
, (II.7)

with probability at least 1 − 2

n
− e−d − ne−γ1

√
n − (2n + 1)e−γ2d all GD iterates obey

∥f(Wτ) − y∥`2 ≤ 3(1 − c1 dn)
τ ∥y∥`2 ,

∥Wτ −W0∥F + c2
√
n∥y∥`2 ∥f(Wτ) − y∥`2 ≤ c3√n.

Here, γ1, γ2, c,C, c1, c2, and c3 are fixed numerical constants.

The theorem and corollary above show that all the nice properties of GD with smooth activations

continue to hold for ReLU activations. The only difference is that the required overparameterization

is now of the form
√
kd ≥ C n2

d
which is suboptimal compared to the smooth case by a factor of

n/d (factor of n2/d2 in terms of number of parameters kd).

Our discussion so far focused on results based on the minimum singular value of the second

order Khatrio-Rao product X ∗X or higher order products X∗r. The reason we require these

minimum singular values to be positive is to ensure diversity in the data set. Indeed, if two data

points are the same but have different output labels there is no way of achieving zero training

error. However, assuming these minimum singular values are positive is not the only way to

ensure diversity and our results apply more generally (see Theorem 6.3 in the proofs). Another

related and intuitive criteria for ensuring diversity is assuming the input samples are sufficiently

separated as defined below.

Assumption 1 (δ-separable data): Let δ > 0 be a scalar. Consider a data set consisting of n

samples x1,x2, . . . ,xn ∈ R
d all with unit Euclidian norm. We assume that any pair of points xi

and xj obey

min(∥xi −xj∥`2 , ∥xi +xj∥`2) ≥ δ.
We now state a result based on this minimum separation assumption. This result is a corollary of

our meta theorem (Theorem 6.3) discussed in the proofs.

10

Theorem 2.5: Consider the setting of Theorem 2.1 with the activations equal to φ(z) =
ReLU(z) ∶=max(0, z) and the step size η = n

3∥y∥2
`2
∥X∥2 η̄ with η̄ ≤ 1. Suppose Assumption 1 holds

for some δ > 0 and let c,C > 0 be two numerical constants. Suppose number of hidden nodes

satisfy

k ≥ C(1 + ν)2n9∥X∥6
δ4

, (II.8)

Then with probability at least 1 − 2

n
− e
−ν2 n

∥X∥2 all GD iterates obey

∥f(Wτ) − y∥`2 ≤ (1 − c η̄δ

n2 ∥X∥2)
τ ∥f(W0) − y∥`2 ,

We would like to note that related works [4], [6], [8] consider slight variations of this assumption

for training ReLU networks to give overparameterized learning guarantees where the number of

hidden nodes grow polynomially in n. Our results seem to have much better dependencies on n

compared to these works. Furthermore, we do not require the number of hidden nodes to scale

with the desired training accuracy (L(W) ≤ ε) as required by [4]. Finally, we would like to note

that after the first version of this paper appeared on arxiv, the paper [12] improves the dependence

of the width to k ≳ n8. However, we note that the main results of our paper is based on minimum

eigenvalue of Khatri-Rao product (or alternatively minimum eigenvalue of neural tangent kernels

(λ(X)) per Definition 6.1 in the proofs). The theorem above is obtained by replacing these

quantities with a crude lower bound in terms of the separation assumption (specifically λ(X) ≳ δ
n2).

Thus the main results of the two papers are not directly comparable (excluding theorem above

of course). In fact, we believe a more accurate lower bound connects minimum eigenvalue of

neural tangent kernels to the separation assumption (specifically λ(X) ≳ δ
n

) which in turn would

further improve our result above to k ≳ n5 ∥X∥6.
C. Training using SGD

The most widely used algorithm for training neural networks is Stochastic Gradient Descent

(SGD) and its variants. A natural implementation of SGD is to sample a data point at random

11

and use that data point for the gradient updates. Specifically, let {γτ}∞τ=0 be an i.i.d. sequence of

integers chosen uniformly from {1,2, . . . , n}, the SGD iterates take the form

Wτ+1 =Wτ + ηG(θτ ;γτ) where G(θτ ;γτ) ∶= (yγτ − f(xγτ ;Wτ))∇f(xγτ ;Wτ). (II.9)

Here, G(θτ ;γτ) is the gradient on the γτ th training sample. We are interested in understanding

the trajectory of SGD for neural network training e.g. the required overparameterization and the

associated rate of convergence. We state our result for smooth activations. An analogous result

also holds for ReLU activations but we omit the statement to avoid repetition.

Theorem 2.6: Fix scalars η̄ ≤ 1 and ν ≥ 4 and consider the setting and assumptions of Theorem

2.1. Suppose the number of network parameters obey
√
kd ≥ cνB

2

µ2

φ

(1 + δ)κ(X)n and we use the

SGD updates (II.9) in lieu of GD updates with a step size η =
µ2(φ)
9νB4

n

∥y∥2`2

σ2

min
(X∗X)
∥X∥2 η̄ with c a

fixed numerical constant. Set initial weights W0 with i.i.d. N (0,1) entries. Then, with probability

at least 1 − 1

n
− e
−δ2 n

2∥X∥2 over W0, there exists an event E4 which holds with probability at

least P(E) ≥ 1 − 4

ν
(3B∥X∥
µφσmin(X∗X))

1

kd
such that, starting from W0 and running stochastic gradient

descent updates of the form (II.9), all iterates obey

E [∥f(Wτ) − y∥2`2 1E] ≤(1 − η̄

144n

µ4(φ)
νB4

σ4

min
(X ∗X)
∥X∥2)τ ∥f(W0) − y∥2`2 , (II.10)

Here, E is the event that the infinite SGD sequence never leads the neural network parameters

outside of a certain neighborhood of the initialization W0. We prove that this event has high

probability and all SGD iterations stay close despite the random nature of the iterates. Recall

that the distance to initialization is critical for our gradient descent analysis (also see Sec. II-D).

Thus, the event E naturally arises in the SGD analysis because outside of a nearby neighborhood

of the initialization we have essentially no control over the optimization process and the SGD

sequences in the complement of E might diverge.

This result shows that SGD converges to a global optima that is close to the initialization.

Furthermore, SGD always remains in close proximity to the initialization with high probability. To

assess the rate of convergence, let us assume generic data and n ≥ d, so that we have ∥X∥ ∼√n/d
and σmin(X ∗X) scales as a constant. Then, the result above shows that to achieve a relative

4This event is over the randomness introduced by the infinite sequence of random SGD updates given fixed W0.

12

accuracy of ε the number of SGD iterates required is of the order of τ ≳ n2

d
log(1

ε
). This is

essentially on par with our earlier result on gradient descent by noting that n SGD iterations

require similar computational effort to one full gradient with both approaches requiring n
d
log(1/ε)

passes through the data.

D. Key proof ideas

In this section, we briefly discuss the critical ingredients of our proof strategy. At a high level,

our proof relies on two facts surrounding the Jacobian map of a neural network.

Importance of minimum singular value: The first observation is that, despite non-convexity,

gradient descent iterations can decrease the loss function substantally. Specifically, the amount of

decrease is tied to the minimum singular value of the Jacobian map of the neural network. Thus,

as long as the Jacobian map remains well-conditioned, the loss function will keep decreasing

(exponentially fast). Our core technical novelties along this direction are two-fold. First, in Section

VI-D, we develop new and tighter bounds for the minimum singular value via intricate eigenvalue

bounds for the Hadamard product of two matrices and random matrix theory. Second, in Section

H, we further relate the Jacobian of neural networks to high-order Khatri-Rao products associated

to the input matrix X to obtain more interpretable bounds.

Utilizing Lipschitzness and conditioning of the Jacobian via a Lyapunov analysis: The

second critical ingredient of the proof is ensuring that the Jacobian map does not degrade over

time i.e. it has a reasonable condition number throughout the optimization process. One way to

achieve this is making the neural network extremely wide as it can be shown that (this work

as well as others [7], [8]) the wider the neural network gets, the less the Jacobian deviates

throughout the iterative updates. In our case, we argue that small width is sufficient which

requires a tighter control on the deviation of the Jacobian from its initial state in a rather large

neighborhood. We accomplish this by first bounding the Lipschitzness of the Jacobian map with

respect to the parameters (Section C) and then showing that the condition number of the Jacobian

is maintained in a relatively large neighborhood. Our tighter bounds on the Lipschitzness arise

from eigenvalue inequalities of Section VI-D as well as ReLU specific analysis in Section C2.

We also show that the minimum eigenvalue of the Jacobian is bounded away from zero in a

13

much larger neighborhood of the initialization compared to other related works [6]–[8]. This is

based on a novel Lypunov analysis developed in our previous work [10].

To summarize, we achieve smaller over-parameterization by tightly controlling the critical

properties of the neural network Jacobian (both for smooth and ReLU activations) which in turn

allow us to accurately assess optimization dynamics and show global convergence.

III. THE NEED FOR OVERPARAMETERIZATION BEYOND WIDTH

In this section we would like to further clarify why understanding overparameterization beyond

width is particularly important. To see this, we shall set the input-to-hidden weights at random

(as used for initialization) and consider the optimization over the output layer weights v ∈ Rk.

This optimization problem has the form

L(v) ∶= 1

2

n

∑
i=1

(vTφ (Wxi) − yi)2 = 1

2
∥φ (XW T)v − y∥2

`2
, (III.1)

which is a simple least-squares problem with a globally optimal solution given by

v̂ ∶=ΦT (ΦΦ
T)−1 y where Φ ∶= φ (XW T) .

This simple observation shows that the simple least-squares optimization over the output

weights achieves zero training as soon as Φ has full column rank. Thus, in such a setting

a simple kernel regression using the random features φ(Wx1), φ(Wx2), . . . , φ(Wxn) suffices

to perfectly interpolate the data. In this section we wish to understand the amount and kind

of overparameterization where such a simple strategy suffices. We thus need to understand the

conditions under which the matrix φ (XW T) has full row rank. To make things quantitative we

need the following definition.

Definition 3.1 (Output feature covariance and eigenvalue): We define the output feature

covariance matrix as

Σ̃(X) = Ew [φ (Xw)φ (Xw)T],
where w ∈ Rd has a N (0,Id) distribution. We use λ̃(X) to denote the corresponding minimum

eigenvalue i.e. λ̃(X) = λmin (Σ̃(X)).
With this definition in place we are now ready to state the main result of this section.

14

Theorem 3.2: Consider a data set of input/label pairs xi ∈ Rd and yi ∈ R for i = 1,2, . . . , n

aggregated as rows/entries of a data matrix X ∈ Rn×d and a label vector y ∈ Rn. Without loss of

generality we assume the dataset is normalized so that ∥xi∥`2 = 1. Also consider a one-hidden

layer neural network with k hidden units and one output of the form x ↦ vTφ (Wx) with

W ∈ Rk×d and v ∈ Rk the input-to-hidden and hidden-to-output weights. We assume the activation

φ is bounded at zero i.e. ∣φ(0)∣ ≤ B and has a bounded derivative i.e. ∣φ′(z)∣ ≤ B for all z. We

set W to be a random matrix with i.i.d. N (0,1) entires. Also assume

k ≥ C log2(n) n

λ̃(X) .
Then, the matrix Φ ∶= φ (XW T) has full row rank with the minimum eigenvalue obeying

λmin (ΦΦ
T) ≥ 1

2
k (λ̃(X) − 6B

n100
) .

Thus, the global optima of (III.1) achieves zero training error as long as λ̃(X) ≥ 6B
n100 .

We note that one can develop interpretable lower bounds for λ̃ (see Appendix H). For instance,

in Appendix H we show that

λ̃(X) ≥ γ2

φσ
2

min
(X ∗X) with γφ =

1√
2

E[φ(g)(g2 − 1)].
As we discussed in the previous sections for generic or random data σ2

min
(X ∗X) often scales

like a constant. In turn, based on the above inequality λ̃(X) also scales like a constant. Thus,

the above theorem shows that as long as the neural network is wide enough in the sense that

k ≳ n, with high probability on can achieve perfect interpolation and the global optima by simply

fitting the last layer with the input-to-hidden weights set randomly. Of course the optimization

problem over W is significantly more challenging to analyze (the setting in this paper and other

publications [4], [6], [8], [9], [13]). However, this simple baseline result suggests that there is no

fundamental barrier to understanding perfect interpolation for k ≳ n wide networks. In particular,

as discussed earlier the result above can be thought of as kernel learning with random features.

Indeed, in this settings one can also show the solutions found by (stochastic) gradient descent

converges to the least-norm solution and does indeed generalize. Furthermore, neural networks

are often trained with the number of hidden nodes at each intermediate layer significantly smaller

than the size of the training dataset. Thus to truly understand the behavior of neural network

15

training and demystify their success beyond kernel learning it is crucially important to focus

on moderately overparameterized networks where the number of data points is only moderately

larger than the number of parameters used for training. We hope the discussion above can help

focus future theoretical investigations to this moderately overparameterized regime.

IV. NUMERICAL EXPERIMENTS

In this section, we provide numerical evidence that neural networks trained with first order

methods can fit to random data as long as the number of parameters exceed the size of the

training dataset. In particular, we explore the fitting ability of a shallow neural network by fixing

a dataset size n and scanning over the different values of hidden nodes k and input dimension

d. The input samples are drawn i.i.d. from the unit sphere, the labels i.i.d. standard normal

variables and the input/output weights of the network are initialized according to our theorems.

We consider two activations softplus (φ(z) = softplus(z) = log (1 + ez)) and Rectified Linear

Units (φ(z) = ReLU(z) =max(0, z)). We pick a constant learning rate of η = 0.15 for softplus

and η = 0.1 for ReLU activations. We run the updates for 15000 iterations or when the relative

Euclidean error (∥f(Wτ) − y∥`2 / ∥y∥`2) falls below 2.5× 10−3. Success is declared if the relative

loss is less than 2.5 × 10−3. To obtain an empirical probability, we average 10 independent

realizations for each (k, d) pair.

Figure 2a plots the success probability where n = 100 and k and d are varied between 0 to 25.

The solid white line represents the n = kd. There is a visible phase transition from failure to

success as k and d grows. Perhaps more surprisingly, the success region is tightly surrounded

by the n = kd curve indicating that neural nets can overfit as soon as the problem is slightly

overparameterized. Figure 2b repeats the same experiment with a larger dataset (n = 200). Phase

transitions are more visible in higher dimensions due to concentration of measure phenomena.

Indeed, n = kd curve matches the success region even tighter indicating that kd > (1+ε)n amount

of overparametrization may suffice for fitting random data.

A related set of experiments are based on assigning random labels in classification problems

[1]. These experiments shuffle the labels of real datasets (e.g. CIFAR10) and demonstrate that

standard deep architectures can still fit them (even if the training takes a bit longer). While these

experiments provide very interesting and useful insights the do not address the fundamental

16

0 5 10 15 20 25 30

0

10

20

30

k

d

0

0.2

0.4

0.6

0.8

1

k
d
=
1
0
0

(a) softplus activation with n = 100

0 10 20 30 40 50 60

0

20

40

60

k

d

0

0.2

0.4

0.6

0.8

1

k
d
=
2
0
0

(b) softplus activation with n = 200

0 5 10 15 20 25 30

0

10

20

30

k

d

0

0.2

0.4

0.6

0.8

1

k
d
=
1
0
0

(c) ReLU activation with n = 100

0 10 20 30 40 50 60

0

20

40

60

k

d

0

0.2

0.4

0.6

0.8

1

k
d
=
2
0
0

(d) ReLU activation with n = 200

Fig. 2: Phase transitions for overparameterization. These diagrams show the

empirical probability that gradient descent from a random initialization successfully

fits n random labels y ∈ Rn when a one-hidden layer neural network is used. Here, d

is the input dimension, k the number of hidden units, and n the size of the training

data. The colormap tapers between red and blue where red represents certain success,

while blue represents certain failure. The solid white line highlights n = kd i.e. when

the size of the training data is equal to the number of parameters.

17

tradeoffs surrounding problem parameters such as n, k, and d. Finally, we emphasize that the

dataset in our experiment is randomly generated. It is possible that worst case datasets exhibit

different phase transitions. For instance, if two identical inputs receive different outputs a

significantly higher amounts of overparameterization may be required.

V. PRIOR ART

Optimization of neural networks is a challenging problem and it has been the topic of many

recent works [1]. A large body of work focuses on understanding the optimization landscape of

the simple nonlinearities or neural networks [14]–[22] when the labels are created according to a

planted model. These works establish local convergence guarantees and use techniques such as

tensor methods to initialize the network in the proper local neighborhood. Ideally, one would

not need specialized initialization if loss surface has no spurious local minima. However, a few

publications [23], [24] demonstrate that the loss surface of nonlinear networks do indeed contains

spurious local minima even when the input data are random and the labels are created according

to a planted model.

Over-parameterization seems to provide a way to bypass the challenging optimization landscape

by relaxing the problem. Several works [1]–[3], [10], [25]–[35] study the benefits of overparam-

eterization for training neural networks and related optimization problems. Very recent works

[4], [6], [8], [9], [13] show that overparameterized neural networks can fit the data with random

initialization if the number of hidden nodes are polynomially large in the size of the dataset.

While these results are based on assuming the networks are sufficiently wide with respect to

the size of the data set we only require the total number of parameters to be sufficiently large.

Since our conclusions and assumptions are more closely related to [9], [13] we focus precise

comparisons to these two publications. In particular, for smooth activations we show that neural

networks can fit the data as soon as kd ≳ n2 where as [9] requires k ≳ n4. Thus, in terms of

the hidden units our results are sharper by a factor on the order of n2d.5 Focusing on ReLU

networks we require k ≳ n4

d3
compared to k ≳ n6 assumed in [13] so that our results are sharper

5Our results are also sharper in terms of dependence on the quantity λ defined in the proofs. In more detail, we require kd ≳ n2

λ2

where as [9] requires k ≳ n4

λ4 .

18

by a factor n2d3. Our convergence rate for gradient descent also seems to be faster by a factor

on the order of n compared to these results. In addition our results extend to SGD. We would

like to note however that our results focus on one-hidden layer networks where as some of the

publications above such as [6], [9] apply to deep architectures. That said, our results and proof

strategy can be extended to deeper architectures and we hope to study such networks in our

future work. Finally, these recent papers as well as our work is inherently based on connecting

neural networks to kernel methods. We would like to note that the relationship between kernel

methods and deep learning has been emphasized by a few interesting publications [36]–[39].

We would also like to note that a few interesting recent papers [31], [40]–[42] relate the

empirical distribution of the network parameters to Wasserstein gradient flows using ideas from

mean field analysis. However, this literature is focused on asymptotic characterizations rather

than finite-size networks.

An equally important question to understanding the convergence behavior of optimization

algorithms for overparameterized models is understanding their generalization capabilities. This

is the subject of a few interesting recent papers [5], [38], [43]–[49]. While this work do not

directly address generalization, techniques developed here (e.g. characterizing how far the global

minima is) may help demystify the generalization capabilities of overparametrized networks

trained via first order methods. Rigorous understanding of the relationship between optimization

and generalization is an interesting and important subject for future research.

VI. PROOFS

A. Preliminaries

We begin by noting that for a one-hidden layer neural network of the form x↦ vTφ (Wx),
the Jacobian matrix with respect to vect(W) ∈ Rkd takes the form

J (W) = [J (w1) . . . J (wk)] ∈ Rn×kd with J (w`) ∶= v`diag(φ′(Xw`))X.

Alternatively this can be rewritten in the form

J T (W) = (diag(v)φ′ (WXT)) ∗XT (VI.1)

19

An alternative characterization of the Jacobian is

mat (J T (W)u) = diag(v)φ′ (WXT)diag(u)X
In particular, given a residual misfit r ∶= r(W) ∶= φ (WXT)T v − y ∈ Rn the gradient can be

rewritten in the form

∇L(W) = mat (J T (W)r) = diag(v)φ′ (WXT)diag(r)X
We also note that

J (W)J T (W) = k

∑̀
=1

v2

`diag (φ′ (Xw`))XXTdiag (φ′ (Xw`)) .
The latter can also be rewritten in the more compact form

J (W)J T (W) = (φ′ (XW T)diag (v)diag (v)φ′ (WXT))⊙ (XXT) .
B. Meta-theorems

In this section we will state two meta-theorems and discuss how the two main theorems stated

in the main text follow from these results. Our results require defining the notion of a covariance

matrix associated to a neural network.

Definition 6.1 (Neural network covariance matrix and eigenvalue): Let w ∈ Rd be a random

vector with a N (0,Id) distribution. Also consider a set of n input data points x1,x2, . . . ,xn ∈ R
d

aggregated into the rows of a data matrix X ∈ Rn×d. Associated to a network x↦ vTφ (Wx)
and the input data matrix X we define the neural net covariance matrix as

Σ(X) ∶= E [(φ′ (Xw)φ′ (Xw)T)⊙ (XXT)].
We also define the eigenvalue λ(X) based on Σ(X) as

λ(X) ∶= λmin (Σ(X)) .
We note that the neural network covariance matrix is intimately related to the expected value of

the Jacobian mapping of the neural network at the random initialization. In particular when the

output weights have unit absolute value (i.e. ∣v`∣ = 1), then

Σ(X) = 1

k
EW0
[J (W0)J T (W0)],

20

where W0 ∈ R
k×d is a matrix with i.i.d. N (0,1) entires.

As mentioned earlier we prove a more general version of Theorem 2.1 which we now state.

The proof is deferred to Section 6.2.

Theorem 6.2 (Meta-theorem for smooth activations): Consider a data set of input/label pairs

xi ∈ Rd and yi ∈ R for i = 1,2, . . . , n aggregated as rows/entries of a data matrix X ∈ Rn×d and

a label vector y ∈ Rn. Without loss of generality we assume the dataset is normalized so that

∥xi∥`2 = 1. Also consider a one-hidden layer neural network with k hidden units and one output

of the form x↦ vTφ (Wx) with W ∈ Rk×d and v ∈ Rk the input-to-hidden and hidden-to-output

weights. We assume the activation φ has bounded derivatives i.e. ∣φ′(z)∣ ≤ B and ∣φ′′(z)∣ ≤ B
for all z. Let λ(X) be the minimum neural net eigenvalue per Definition 6.1. Furthermore, we

set half of the entries of v to
∥y∥`2√

kn
and the other half to −

∥y∥`2√
kn

and train only over W . Starting

from an initial weight matrix W0 selected at random with i.i.d. N (0,1) entries we run Gradient

Descent (GD) updates of the form Wτ+1 =Wτ − η∇L(Wτ) on the loss (II.1) with step size

η = nη̄

2B2∥y∥2
`2
∥X∥2 where η̄ ≤ 1. Then, as long as

√
kd ≥ cB2(1 + δ)κ̃(X)n holds with κ̃(X) ∶=

√
d
n
∥X∥

λ (X) , (VI.2)

and c a fixed numerical constant, then with probability at least 1 − 1

n
− e
−δ2 n

2∥X∥2 all GD iterates

obey

∥f(Wτ) − y∥`2 ≤ (1 − η̄

32

1

B2

λ (X)∥X∥2)
τ ∥f(W0) − y∥`2 ,√

λ(X)√
32

∥y∥`2√
n
∥Wτ −W0∥F + ∥f(Wτ) − y∥`2 ≤ ∥f(W0) − y∥`2 .

Furthermore, the total gradient path obeys

∞

∑
τ=0

∥Wτ+1 −Wτ∥F ≤√32
√
n∥y∥`2
∥f(W0) − y∥`2√

λ(X) .

Next we state our meta-theorem for ReLU activations. The proof is deferred to Section 6.2.

21

Theorem 6.3 (Meta-theorem for ReLU activations): Consider the setting of Theorem 6.2 with

the activations equal to φ(z) = ReLU(z) ∶=max(0, z) and the η = n
3∥y∥2

`2
∥X∥2 η̄ with η̄ ≤ 1. Then,

as long as

k ≥ C(1 + δ)2n ∥X∥6
λ4(X) , (VI.3)

holds with C a fixed numerical constant, then with probability at least 1 − 2

n
− e
−δ2 n

∥X∥2 all GD

iterates obey

∥f(Wτ) − y∥`2 ≤ (1 − η̄

24

λ(X)∥X∥2)
τ ∥f(W0) − y∥`2 ,

1

6
√
2

∥y∥`2√
n

√
λ(X) ∥Wτ −W0∥F + ∥f(Wτ) − y∥`2 ≤ ∥f(W0) − y∥`2 .

Our main theorems in Section II can be obtained by substituting the appropriate value of λ(X)
into the two meta theorems above.

C. Reduction to quadratic activations and proofs for Theorems 2.1 and 2.3

Theorems 2.1 and 2.3 are corollaries of the meta-Theorems 6.2 and 6.3. To see this connection

we will focus on lower bounding the the quantity λ(X) which is not very interpretable and also

not easily computable based on data. In the next lemma we provide a lower bound on λ(X)
based on the minimum eigenvalue of the Khatri-Rao product of X with itself. This key lemma

relates the neural network covariance (from Definition 6.1) for any activation φ to the case of

where the activation is a quadratic of the form φ(z) = 1

2
z2. We defer the proof of this lemma to

Appendix B. We also note that this lemma is a special case of a more general result containing

higher order interactions between the data points. Please see Appendix H for more details.

Lemma 6.4 (Reduction to quadratic activations): For an activation φ ∶ R ↦ R define the

quantities

µ̃φ = Eg∼N (0,1)[φ′(g)] and µφ = Eg∼N (0,1)[gφ′(g)].
Then, the neural network covariance matrix and eigenvalue obey

Σ (X) ⪰ (µ̃2

φ11
T + µ2

φXXT)⊙ (XXT) ⪰ µ2

φ (XXT)⊙ (XXT) , (VI.4)

λ (X) ≥µ2

φσ
2

min
(X ∗X) . (VI.5)

22

To see the relationship with the quadratic activation note that for this activation

Σ(X) ∶=E [(φ′ (Xw)φ′ (Xw)T)⊙ (XXT)]
=E [(XwwTW T)⊙ (XXT)]
= (E[XwwTW T])⊙ (XXT)
=(XXT)⊙ (XXT)
=(X ∗X)(X ∗X)T .

Thus the right-hand side of (VI.4) is µ2

φ multiplied by the covariance matrix of a neural network

with a quadratic activation φ(z) = 1

2
z2.

With this lemma in place we can now prove Theorem 2.1 as simple corollaries of Theorem

6.2 by noting that λ(X) ≥ µ2

φσ
2

min
(X ∗X) per (VI.5) from Lemma 6.4. Similarly, to prove

Theorem 2.3 from Theorem 6.3 we again use the fact that λ(X) ≥ µ2

φσ
2

min
(X ∗X) where for

the ReLU activation µ2

φ =
1

2π
.

D. Lower and upper bounds on the eigenvalues of the Jacobian

In this section we will state a few key lemmas that provide lower and upper bounds on the

eigenvalues of Jacobian matrices. The results in this section apply to any one-hidden neural

network with activations that have bounded generalized derivative. In particular, our results here

do not require the activation to be differentiable or smooth and thus apply to both the softplus

(φ(z) = log (ez + 1)) and ReLU (φ(z) =max (0, z)) activations.

We begin this section by stating a key lemma regarding the spectrum of the Hadamard product

of matrices due to Schur [50] which plays a crucial role in both the upper and lower bounds on

the eigenvalues of the Jacobian discussed in this section as well as our results on the perturbation

of eigenvalues of the Jacobian discussed in the next section.

Lemma 6.5 ([50]): Let A,B ∈ Rn×n be two Positive Semi-Definite (PSD) matrices. Then,

λmin (A⊙B) ≥(min
i

Bii)λmin (A) ,
λmax (A⊙B) ≤(max

i
Bii)λmax (A) .

23

The next lemma focuses on upper bounding the spectral norm of the Jacobian. The proof is

deferred to Appendix A1.

Lemma 6.6 (Spectral norm of the Jacobian): Consider a one-hidden layer neural network

model of the form x ↦ vTφ (Wx) where the activation φ has bounded derivatives obeying

∣φ′(z)∣ ≤ B. Also assume we have n data points x1,x2, . . . ,xn ∈ R
d aggregated as the rows of a

matrix X ∈ Rn×d. Then the Jacobian matrix with respect to the input-to-hidden weights obeys

∥J (W)∥ ≤√kB ∥v∥`∞ ∥X∥ .
Next we focus on lower bounding the minimum eigenvalue of the Jacobian matrix at initialization.

The proof is deferred to Appendix A2.

Lemma 6.7 (Minimum eigenvalue of the Jacobian at initialization): Consider a one-hidden

layer neural network model of the form x ↦ vTφ (Wx) where the activation φ has bounded

derivatives obeying ∣φ′(z)∣ ≤ B. Also assume we have n data points x1,x2, . . . ,xn ∈ Rd with

unit euclidean norm (∥xi∥`2 = 1) aggregated as the rows of a matrix X ∈ Rn×d. Then, as long as

∥v∥`2∥v∥`∞ ≥
√
20 logn

∥X∥√
λ(X)B,

the Jacobian matrix at a random point W0 ∈ R
k×d with i.i.d. N (0,1) entries obeys

σmin (J (W0)) ≥ 1√
2
∥v∥`2√λ(X),

with probability at least 1 − 1/n.

E. Jacobian perturbation

In this section we discuss results regarding the perturbation of the Jacobian matrix.

Our first result focuses on smooth activations. In particular, we show the Lipschitz property of

the Jacobian with smooth activations. The proof is deferred to Appendix C1.

Lemma 6.8 (Jacobian Lipschitzness): Consider a one-hidden layer neural network model of

the form x↦ vTφ (Wx) where the activation φ has bounded second order derivatives obeying

∣φ′′(z)∣ ≤M . Also assume we have n data points x1,x2, . . . ,xn ∈ R
d with unit euclidean norm

(∥xi∥`2 = 1) aggregated as the rows of a matrix X ∈ Rn×d. Then the Jacobian mapping with

respect to the input-to-hidden weights obeys

∥J (W̃) −J (W)∥ ≤M ∥v∥`∞ ∥X∥ ∥W̃ −W ∥
F

for all W̃ ,W ∈ R
k×d.

24

Our second result focuses on perturbation of the Jacobian from the random initialization with

ReLU activations. This requires an intricate perturbation bound stated below and proven in

Appendix C2.

Lemma 6.9 (Jacobian perturbation): Consider a one-hidden layer neural network model of

the form x↦ vTφ (Wx) wwith the activation φ(z) = ReLU(z) ∶=max(0, z). Also assume we

have n data points x1,x2, . . . ,xn ∈ R
d with unit euclidean norm (∥xi∥`2 = 1) aggregated as the

rows of a matrix X ∈ Rn×d. Also let W0 ∈ Rk×d be a matrix with i.i.d. N (0,1) entries and set

m0 =
∥v∥`2√

200∥v∥`∞

√
λ(X)
∥X∥ . Then, for all W obeying

∥W −W0∥ ≤ m3

0

2k
,

with probability at least 1 − ne−
m2

0

6n the Jacobian matrix J associated with the neural network

obeys

∥J (W) −J (W0)∥ ≤ 1

6
√
2
∥v∥`2√λ(X). (VI.6)

F. Proofs for meta-theorem with smooth activations (Proof of Theorem 6.2)

To prove this theorem we will utilize a result from [10] stated below.

Theorem 6.10: Consider a nonlinear least-squares optimization problem of the form

min
θ∈Rp
L(θ) ∶= 1

2
∥f(θ) − y∥2`2 ,

with f ∶ Rp
↦ Rn and y ∈ Rn. Suppose the Jacobian mapping associated with f obeys

α ≤ σmin (J (θ)) ≤ ∥J (θ)∥ ≤ β (VI.7)

over a ball D of radius R ∶=
4∥f(θ0)−y∥`2

α
around a point θ0 ∈ R

p.6 Furthermore, suppose

∥J (θ2) −J (θ1)∥ ≤ L ∥θ2 − θ1∥`2 , (VI.8)

6That is, D = B (θ0,
4∥f(θ0)−y∥`2

α
) with B(c, r) = {θ ∈ R

p
∶ ∥θ − c∥`2 ≤ r}

25

holds for any θ1,θ2 ∈ D and set η ≤ 1

2β2 ⋅min(1, α2

L∥f(θ0)−y∥`2
). Then, running gradient descent

updates of the form θτ+1 = θτ − η∇L(θτ) starting from θ0, all iterates obey

∥f(θτ) − y∥2`2 ≤(1 − ηα2

2
)τ ∥f(θ0) − y∥2`2 , (VI.9)

1

4
α ∥θτ − θ0∥`2 + ∥f(θτ) − y∥`2 ≤ ∥f(θ0) − y∥`2 . (VI.10)

Furthermore, the total gradient path is bounded. That is,

∞

∑
τ=0

∥θτ+1 − θτ∥`2 ≤ 4 ∥f(θ0) − y∥`2
α

. (VI.11)

It is more convenient to work with a simpler variation of this theorem that only requires assumption

(VI.7) to hold at the initialization point. We state this corollary below and defer its proof to

Appendix D.

Corollary 6.11: Consider the setting and assumptions of Theorem 6.10 where

σmin (J (θ0)) ≥ 2α, (VI.12)

holds only at the initialization point θ0 in lieu of the left-hand side of (VI.7). Furthermore,

assume

α2

4L
≥ ∥f(θ0) − y∥`2 , (VI.13)

holds. Then, the conclusions of Theorem 6.10 continue to hold.

To be able to use this corollary it thus suffices to prove the conditions (VI.8), ∥J (θ)∥ ≤ β,

(VI.12), and (VI.13) hold for proper choices of α,β, and L. First, by Lemma 6.8 and our choice

of v we can use

L = B ∥v∥`∞ ∥X∥ = B√
kn
∥y∥`2 ∥X∥ . (VI.14)

Second, by Lemma 6.6 and our choice of v we can use

β =
√
kB ∥v∥`∞ ∥X∥ = B√

n
∥y∥`2 ∥X∥ . (VI.15)

Next note that

λ(X) = λmin (Σ(X)) ≤ eT
1Σ(X)e1 = Eg∼N (0,1)[(φ′(g))2] ≤ B2

⇒

√
λ(X) ≤ B. (VI.16)

26

Thus, as long as (VI.2) holds then√
k ≥c
√
nB2

∥X∥
λ(X)

(a)
≥

√
20 lognB2

∥X∥
λ(X)

(b)
≥

√
20 logn

∥X∥√
λ(X)B.

Here, (a) follows from the fact that n ≥ logn for n ≥ 1 and (b) from (VI.16). Thus by our choice

of v we have

∥v∥`2∥v∥`∞ =
√
k ≥
√
20 lognB

∥X∥√
λ(X) ,

so that Lemma 6.7 applies and we can use

α =
1

2
√
2
∥v∥`2√λ(X) = 1

2
√
2

∥y∥`2√
n

√
λ(X). (VI.17)

All that remains is to prove the theorem using Corollary (6.11) is to check that (VI.13) holds. To

this aim we upper bound the initial misfit in the next lemma. The proof is deferred to Section

VI-F1.

Lemma 6.12 (Upper bound on initial misfit): Consider a one-hidden layer neural network

model of the form x ↦ vTφ (Wx) where the activation φ has bounded derivatives obeying

∣φ′(z)∣ ≤ B. Also assume we have n data points x1,x2, . . . ,xn ∈ Rd with unit euclidean norm

(∥xi∥`2 = 1) aggregated as rows of a matrix X ∈ Rn×d and the corresponding labels given by

y ∈ Rn. Furthermore, assume we set half of the entries of v ∈ Rk to
∥y∥`2√

kn
and the other half to

−
∥y∥`2√

kn
. Then for W ∈ Rk×d with i.i.d. N (0,1) entries

∥φ (XW T)v − y∥
`2
≤ ∥y∥`2 (1 + (1 + δ)B) ,

holds with probability at least 1 − e
−δ2 n

2∥X∥2 .

To do this we will use Lemma 6.12 to conclude that

∥f(θ0) − y∥`2 ∶= ∥φ (XW T)v − y∥
`2

≤ ∥y∥`2 (1 + (1 + δ)B) (VI.18)

27

holds with probability at least 1 − e
−δ2 n

2∥X∥2 . Thus, as long as

√
kd ≥32nB (1 + (1 + δ)B)

√
d
n
∥X∥

λ(X)
∶=32B (1 + (1 + δ)B) κ̃(X)n (VI.19)

then

α2

4L
=

1

8

∥y∥2`2
n

λ(X)
4 B√

kn
∥y∥`2 ∥X∥

=
1

32B

√
k√
n
∥y∥`2 λ(X)∥X∥

=
1

32B

√
kd

κ̃(X)n ∥y∥`2
≥ ∥y∥`2 (1 + (1 + δ)B) .

Thus, as long as (VI.2) (equivalent to (VI.19)) holds, then also (VI.13) holds and hence

α2

L∥f(θ0)−y∥`2
≥ 4. Therefore, using a step size

η ≤
1

2kB2 ∥v∥2`∞ ∥X∥2 =
1

2β2
=

1

2β2
⋅min(1,4) ≤ 1

2β2
⋅min(1, α2

L ∥f(θ0) − y∥`2) ,
all the assumptions of Corollary 6.11 hold and so do its conclusions, completing the proof of

Theorem 6.2.

1) Upper bounding the initial misfit (Proof of Lemma 6.12)

To begin first note that for any two matrices W̃ ,W ∈ Rk×d we have

∣∥φ (XW̃ T)v∥
`2
− ∥φ (XW T)v∥

`2
∣ ≤ ∥φ (XW̃ T)v − φ (XW T)v∥

`2

≤ ∥φ (XW̃ T) − φ (XW T)∥ ∥v∥`2
≤ ∥φ (XW̃ T) − φ (XW T)∥

F
∥v∥`2

(a)
= ∥(φ′ (S ⊙XW̃ T + (1k×n −S)⊙XW T))⊙ (X(W̃ −W)T)∥

F
∥v∥`2

≤B ∥X(W̃ −W)T ∥
F
∥v∥`2

≤B ∥X∥ ∥v∥`2 ∥W̃ −W ∥
F
,

28

where in (a) we used the mean value theorem with S a matrix with entries obeying 0 ≤ Si,j ≤ 1

and 1n×n the matrix of all ones. Thus, ∥φ (XW T)v∥`2 is a B ∥X∥ ∥v∥`2-Lipschitz function of

W . Thus for a matrix W with i.i.d. Gaussian entries

∥φ (XW T)v∥
`2
≤ E [∥φ (XW T)v∥

`2
] + t, (VI.20)

holds with probability at least 1 − e
−

t2

2B2∥v∥2
`2
∥X∥2

. We now upper bound the expectation via

E [∥φ (XW T)v∥
`2
] (a)≤√E [∥φ (XW T)v∥2`2]
=

¿ÁÁÀ n

∑
i=1

E [(vTφ(Wxi))2]
(b)
=

√
n
√

Eg∼N (0,Ik) [(vTφ(g))2]
(c)
=

√
n
√∥v∥2`2 Eg∼N (0,1) [(φ(g) − E[φ(g)])2] + (1Tv)2(Eg∼N (0,1)[φ(g)])2

(d)
=

√
n ∥v∥`2√Eg∼N (0,1) [(φ(g) − E[φ(g)])2]

(e)
≤

√
nB ∥v∥`2 .

Here, (a) follows from Jensen’s inequality, (b) from linearity of expectation and the fact that for

xi with unit Euclidean norm Wxi ∼ N (0,Ik), (c) from simple algebraic manipulations, (d) from

the fact that 1Tv = 0, (e) from ∣φ′(z)∣ ≤ B a long with the fact that for a B-Lipschitz function φ

and normal random variable we have Var(φ(g)) ≤ B2 based on the Poincare inequality (e.g. see

[51, p. 49]). Thus using t = δB
√
n ∥v∥`2 in (VI.20) we conclude that

∥φ (XW T)v∥
`2
≤ ∥v∥`2√n (1 + δ)B,

= ∥y∥`2 (1 + δ)B,

holds with probability at least 1 − e
−δ2 n

2∥X∥2 . Thus,

∥φ (XW T)v − y∥
`2
≤ ∥φ (XW T)v∥

`2
+ ∥y∥`2 ≤ ∥y∥`2 (1 + (1 + δ)B) ,

holds with probability at least 1 − e
−δ2 n

2∥X∥2 concluding the proof.

29

G. Proofs for meta-theorem with ReLU activations (Proof of Theorem 6.3)

To prove Theorem 6.3 we start by stating a general overparameterized fitting of non-smooth

functions. This can be thought of a counter part to Theorem 6.10 for non-smooth mappings. We

note that we do not require the mapping f to be differentiable rather here the Jacobian is defined

based on a generalized derivative. Consider a nonlinear least-squares optimization problem of

the form

min
θ∈Rp
L(θ) ∶= 1

2
∥f(θ) − y∥2`2 ,

with f ∶ Rp
↦ Rn and y ∈ Rn. Suppose the Jacobian mapping associated with f obeys the

following three assumptions.

Assumption 2: We assume σmin(J (θ0)) ≥ 2α for a point θ0 ∈ R
p.

Assumption 3: We assume that for all θ ∈ Rd we have ∥J (θ)∥ ≤ β.

Assumption 4: Let ∥ ⋅ ∥ denote a norm that is dominated by the Euclidean norm i.e. ∥θ∥ ≤ ∥θ∥`2
holds for all θ ∈ Rp. Fix a point θ0 and a number R > 0. For any θ satisfying ∥θ − θ0∥ ≤ R, we

have that ∥J (θ0) −J (θ)∥ ≤ α/3.

Under these assumptions we can state the following theorem. We defer the proof of this Theorem

to Appendix G.

Theorem 6.13 (Non-smooth Overparameterized Optimization): Given θ0 ∈ Rp, suppose As-

sumptions 2, 3, and 4 hold with

R =
3∥y − f(θ0)∥`2

α
.

Then, using a learning rate η ≤ 1

3β2 , all gradient iterations obey

∥y − f(θτ)∥`2 ≤ (1 − ηα2)τ ∥y − f(θ0)∥`2 , (VI.21)

α

3
∥θτ − θ0∥ + ∥y − f(θτ)∥`2 ≤ ∥y − f(θ0)∥`2 . (VI.22)

We shall apply this theorem to the case where the parameter is W , the nonlinear mapping is

given by f(W) = vTφ (WXT) with φ = ReLU , and the norm ∥ ⋅ ∥ is the spectral norm of a

matrix.

Completing the proof of Theorem 6.3. With this result in place we are now ready to complete

the proof of Theorem 6.3. As in the smooth case (VI.3) guarantees the condition of Lemma 6.7

30

(i.e. k ≥ 20 logn
∥X∥2
λ(X)) holds. Thus, using Lemma 6.7 with probability at least 1−1/n, Assumption

2 holds with

α =
1

2
√
2n
∥y∥`2√λ(X).

Furthermore, Lemma 6.6 allows us to conclude that Assumption 3 holds with

β =
1√
n
∥y∥`2∥X∥.

To be able to apply Theorem 6.13, all that remains is to prove Assumption 4 holds. To this aim

note that using Lemma 6.12 with B = 1 and δ ← 2δ, to conclude that the initial misfit obeys

∥f(W0) − y∥`2 ≤ 2(1 + δ)∥y∥`2 ,
with probability at least 1 − e

−δ2 n

∥X∥2 . Therefore, with high probability

R ∶=
3∥y − f(W0)∥`2

α
≤ 12(1 + δ)√2n 1√

λ(X) .
Thus, when (VI.3) holds using the perturbation Lemma 6.9 with m0 =

√
k

200

√
λ(X)
∥X∥ , with probability

at least 1 − ne
−

k
1200

λ(X)
∥X∥2 − e

−δ2 n

∥X∥2 , for all W obeying

∥W −W0∥ ≤R
≤12(1 + δ)√2n 1√

λ(X)
(VI.3)

≤

√
kλ

3

2 (X)
2(200) 32 ∥X∥3
=
m3

0

2k

we have

∥J (W) −J (W0)∥ ≤ 1

6
√
2n
∥y∥`2√λ(X) = α

3
.

This guarantees Assumption 4 also holds concluding the proof of Theorem 6.3 via Theorem 6.13.

31

ACKNOWLEDGEMENTS

M. Soltanolkotabi is supported by the Packard Fellowship in Science and Engineering, a

Sloan Research Fellowship in Mathematics, an NSF-CAREER under award #1846369, the Air

Force Office of Scientific Research Young Investigator Program (AFOSR-YIP) under award

#FA9550−18−1−0078, DARPA Learning with Less Labels (LwLL) and Fast Network Interface

Cards (FastNICs) programs, an NSF-CIF award #1813877, and a Google faculty research award.

S. Oymak is supported by the NSF award CNS-1932254.

REFERENCES

[1] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning requires

rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

[2] Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into the optimization landscape of over-

parameterized shallow neural networks. IEEE Transactions on Information Theory, 2018.

[3] L. Venturi, A. Bandeira, and J. Bruna. Spurious valleys in two-layer neural network optimization landscapes. arXiv preprint

arXiv:1802.06384, 2018.

[4] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient descent on structured

data. NeurIPS, 2018.

[5] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized neural networks,

going beyond two layers. arXiv preprint arXiv:1811.04918, 2018.

[6] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-parameterization. arXiv

preprint arXiv:1811.03962, 2018.

[7] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes over-parameterized

neural networks. In International Conference on Learning Representations, 2019.

[8] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes over-parameterized deep

relu networks. arXiv preprint arXiv:1811.08888, 2018.

[9] Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global minima of deep neural

networks. arXiv preprint arXiv:1811.03804, 2018.

[10] Samet Oymak and Mahdi Soltanolkotabi. Overparameterized nonlinear learning: Gradient descent takes the shortest path?

arXiv preprint arXiv:1812.10004, 2018.

[11] Frank H. Clarke. Generalized gradients and applications. Transactions of the American Mathematical Society, 205:247–247,

1975.

[12] Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural networks. In Advances in

Neural Information Processing Systems, pages 2053–2062, 2019.

[13] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes over-parameterized

neural networks. 10 2018.

[14] Pan Zhou and Jiashi Feng. The landscape of deep learning algorithms. arXiv preprint arXiv:1705.07038, 2017.

32

[15] Mahdi Soltanolkotabi. Learning ReLUs via gradient descent. arXiv preprint arXiv:1705.04591, 2017.

[16] Chi Jin, Lydia T Liu, Rong Ge, and Michael I Jordan. On the local minima of the empirical risk. In Advances in Neural

Information Processing Systems, pages 4901–4910, 2018.

[17] Song Mei, Yu Bai, and Andrea Montanari. The landscape of empirical risk for non-convex losses. arXiv preprint

arXiv:1607.06534, 2016.

[18] A. Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with Gaussian inputs. arXiv

preprint arXiv:1702.07966, 2017.

[19] Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with landscape design. arXiv preprint

arXiv:1711.00501, 2017.

[20] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery guarantees for one-hidden-layer

neural networks. arXiv preprint arXiv:1706.03175, 2017.

[21] Samet Oymak. Stochastic gradient descent learns state equations with nonlinear activations. arXiv preprint arXiv:1809.03019,

2018.

[22] Haoyu Fu, Yuejie Chi, and Yingbin Liang. Local geometry of one-hidden-layer neural networks for logistic regression.

arXiv preprint arXiv:1802.06463, 2018.

[23] Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. A critical view of global optimality in deep learning. arXiv preprint

arXiv:1802.03487, 2018.

[24] Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer relu neural networks. arXiv preprint

arXiv:1712.08968, 2017.

[25] Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. Sgd learns over-parameterized networks that

provably generalize on linearly separable data. arXiv preprint arXiv:1710.10174, 2017.

[26] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-batch

training for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836, 2016.

[27] Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. arXiv preprint arXiv:1810.02032,

2018.

[28] Mei Song, A Montanari, and P Nguyen. A mean field view of the landscape of two-layers neural networks. In Proceedings

of the National Academy of Sciences, volume 115, pages E7665–E7671, 2018.

[29] Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of the hessian of

over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

[30] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs, Jennifer Chayes, Levent

Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient descent into wide valleys. arXiv preprint arXiv:1611.01838,

2016.

[31] Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-parameterized models using

optimal transport. arXiv preprint arXiv:1805.09545, 2018.

[32] Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit acceleration by

overparameterization. arXiv preprint arXiv:1802.06509, 2018.

[33] Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. 10 2018.

33

[34] Zhihui Zhu, Daniel Soudry, Yonina C. Eldar, and Michael B. Wakin. The global optimization geometry of shallow linear

neural networks. 05 2018.

[35] Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error guarantees for multilayer neural

networks. 05 2016.

[36] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to understand kernel learning.

arXiv preprint arXiv:1802.01396, 2018.

[37] Lenaic Chizat and Francis Bach. A note on lazy training in supervised differentiable programming. arXiv preprint

arXiv:1812.07956, 2018.

[38] Mikhail Belkin, Alexander Rakhlin, and Alexandre B. Tsybakov. Does data interpolation contradict statistical optimality?

06 2018.

[39] Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel "ridgeless" regression can generalize. 08 2018.

[40] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-layers neural networks.

arXiv preprint arXiv:1804.06561, 2018.

[41] Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks: A central limit theorem. 08 2018.

[42] Grant M. Rotskoff and Eric Vanden-Eijnden. Neural networks as interacting particle systems: Asymptotic convexity of the

loss landscape and universal scaling of the approximation error. 05 2018.

[43] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. A pac-bayesian approach to spectrally-

normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564, 2017.

[44] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine learning and the bias-variance

trade-off. arXiv preprint arXiv:1812.11118, 2018.

[45] Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for deep nets via a compression

approach. 02 2018.

[46] Peter Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for neural networks. 06 2017.

[47] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of neural networks. 12 2017.

[48] Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. Sgd learns over-parameterized networks that

provably generalize on linearly separable data. 10 2017.

[49] Mikhail Belkin, Daniel Hsu, and Partha Mitra. Overfitting or perfect fitting? risk bounds for classification and regression

rules that interpolate. 06 2018.

[50] J. Schur. Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen veränderlichen. Journal für die

reine und angewandte Mathematik, 140:1–28, 1911.

[51] M. Ledoux. The concentration of measure phenomenon. volume 89 of Mathematical Surveys and Monographs. American

Matheamtical Society, Providence, RI, 2001.

[52] Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of optimization and

generalization for overparameterized two-layer neural networks. 01 2019.

[53] Samet Oymak, Zalan Fabian, Mingchen Li, and Mahdi Soltanolkotabi. Generalization guarantees for neural networks via

harnessing the low-rank structure of the jacobian. arXiv preprint arXiv:1906.05392, 2019.

34

APPENDIX

A. Proofs for bounding the eigenvalues of the Jacobian

1) Proof for the spectral norm of the Jacobian (Proof of Lemma 6.6)

To bound the spectral norm note that as stated earlier

J (W)J T (W) = (φ′ (XW T)diag (v)diag (v)φ′ (WXT))⊙ (XXT) .
Thus using Lemma 6.5 we have

∥J (W)∥2 ≤(max
i
∥diag (v)φ′ (Wxi)∥2`2)λmax (XXT)

=(max
i
∥diag (v)φ′ (Wxi)∥2`2)∥X∥2

≤ ∥v∥2`∞ (max
i
∥φ′ (Wxi)∥2`2)∥X∥2

≤kB2 ∥v∥2`∞ ∥X∥2 ,
completing the proof.

2) Proofs for minimum eigenvalue of the Jacobian at initialization (Proof of Lemma 6.7)

To lower bound the minimum eigenvalue of J (W0), we focus on lower bounding the minimum

eigenvalue of J (W0)J (W0)T . To do this we first lower bound the minimum eigenvalue of the

expected value E [J (W0)J (W0)T] and then related the matrix J (W0)J (W0)T to its expected

value. We proceed by simplifying the expected value. To this aim we use the identity

J (W)J T (W) = (φ′ (XW T)diag (v)diag (v)φ′ (WXT))⊙ (XXT)
=(k

∑̀
=1

v2

`φ
′ (Xw`)φ′ (Xw`)T)⊙ (XXT) ,

mentioned earlier to conclude that

E [J (W0)J (W0)T] = ∥v∥2`2 (Ew∼N (0,Id) [φ′ (Xw)φ′ (Xw)T])⊙ (XXT) ,
∶= ∥v∥2`2 Σ (X) . (A.1)

Thus

λmin (E [J (W0)J (W0)T]) ≥ ∥v∥2`2 λ(X). (A.2)

35

To relate the minimum eigenvalue of the expectation to that of J (W0)J (W0)T we utilize the

matrix Chernoff identity stated below.

Theorem A.1 (Matrix Chernoff): Consider a finite sequence A` ∈ R
n×n of independent, random,

Hermitian matrices with common dimension n. Assume that 0 ⪯ A` ⪯ RI for ` = 1,2, . . . , k.

Then

P

⎧⎪⎪⎨⎪⎪⎩λmin (k

∑̀
=1

A`) ≤ (1 − δ)λmin (k

∑̀
=1

E[A`])⎫⎪⎪⎬⎪⎪⎭ ≤ n(
e−δ(1 − δ)(1−δ))

λmin(∑k
`=1

E[A`])
R

for δ ∈ [0,1).
We shall apply this theorem with A` ∶= J (w`)J T (w`) = v2

`diag(φ′(Xw`))XXTdiag(φ′(Xw`)).
To this aim note that

v2

`diag(φ′(Xw`))XXTdiag(φ′(Xw`)) ⪯ B2 ∥v∥2`∞ ∥X∥2 I,
so that we can use Chernoff Matrix with R = B2 ∥v∥2`∞ ∥X∥2 to conclude that

P

⎧⎪⎪⎨⎪⎪⎩λmin (J (W0)J T (W0)) ≤ (1 − δ)λmin (E [J (W0)J T (W0)])⎫⎪⎪⎬⎪⎪⎭
≤ n(e−δ(1 − δ)(1−δ))

λmin

⎛
⎝E[J (W0)JT (W0)]⎞⎠
B2∥v∥2

`∞
∥X∥2

.

Thus using (A.2) in the above with δ = 1

2
we have

P

⎧⎪⎪⎨⎪⎪⎩λmin (J (W0)J T (W0)) ≤ 1

2
∥v∥2`2 λ (X)

⎫⎪⎪⎬⎪⎪⎭ ≤ n ⋅ e
−

1

10

∥v∥2
`2

λ(X)
B2∥v∥2

`∞
∥X∥2

.

Therefore, as long as

∥v∥`2∥v∥`∞ ≥
√
20 logn

∥X∥√
λ(X)B,

then

σmin (J (W0)) ≥ 1√
2
∥v∥`2√λ(X),

holds with probability at leat 1 − 1

n
.

36

B. Reduction to quadratic activations (Proof of Lemma 6.4)

First we note that (VI.5) simply follows from (VI.4) by noting that

(XXT)⊙ (XXT) = (X ∗X) (X ∗X)T .
Thus we focus on proving (VI.4). We begin the proof by noting two simple identities. First,

using multivariate Stein identity we have

E [Xwφ′ (Xw)T] = n

∑
i=1

E [Xw ⋅ φ′ (eT
i Xw)]eT

i

=

n

∑
i=1

XXT
E [φ′′ (eT

i Xw)ei]eT
i

=XXTdiag (E[φ′′(Xw)])
=Eg∼N (0,1)[φ′′(g)]XXT

=Eg∼N (0,1)[gφ′(g)]XXT

=µφXXT , (A.3)

where in the last line we used the fact that ∥xi∥`2 = 1. We note that while for clarity of exposition

we carried out the above proof using the fact that φ′ is differentiable the identity above continues

to hold without assuming φ′ is differentiable with a simple modification to the above proof. Next

we note that

E[φ′(Xw)] = Eg∼N (0,1)[φ′(g)]1 ∶= µ̃φ. (A.4)

We continue by noting that

E [(φ′ (Xw) − η1 − γXw) (φ′ (Xw) − η1 − γXw)T] ⪰ 0. (A.5)

Thus, using (A.3) and (A.4) we have

E[(φ′ (Xw) − η1 − γXw) (φ′ (Xw) − η1 − γXw)T]
=E [φ′ (Xw)φ′ (Xw)T] − 2ηµ̃φ11

T − 2γµφXXT

+ η211T + γ2XXT

=E [φ′ (Xw)φ′ (Xw)T] + η (η − 2µ̃φ)11T

+ γ (γ − 2µφ)XXT .

37

Combining the latter with (A.5) we arrive at

E [φ′ (Xw)φ′ (Xw)T] ⪰ η (2µ̃φ − η)11T + γ (2µφ − γ)XXT .

Hence, setting η = µ̃φ and γ = µφ we conclude that

E [φ′ (Xw)φ′ (Xw)T] ⪰ µ̃2

φ11
T + µ2

φXXT .

Thus

Σ (X) =(E [φ′ (Xw)φ′ (Xw)T])⊙ (XXT)
⪰ (µ̃2

φ11
T + µ2

φXXT)⊙ (XXT)
⪰µ2

φ(XXT)⊙ (XXT)
completing the proof of (VI.4) and the lemma.

C. Proofs for Jacobian perturbation

1) Proof for Lipschitzness of the Jacobian with smooth activations (Proof of Lemma 6.8)

To prove this lemma first note that using the form (VI.1) we have

J (W̃) −J (W) = (diag(v) (φ′ (XW̃ T) − φ′ (XW T))) ∗X.

Now using the fact that (A ∗B)(A ∗B)T = (AAT)⊙ (BBT) we conclude that

(J (W̃) −J (W)) (J (W̃) −J (W))T
= ((φ′ (XW̃ T) − φ′ (XW T))diag(v)diag(v) (φ′ (W̃XT) − φ′ (WXT)))
⊙ (XXT) . (A.6)

To continue further we use Lemma 6.5 combined with (A.6) to conclude that

∥J (W̃) −J (W)∥2 ≤ ∥diag(v) (φ′ (W̃XT) − φ′ (WXT))∥2 (max
i
∥xi∥2`2)

≤ ∥v∥2`∞ ∥φ′ (W̃XT) − φ′ (WXT)∥2
(a)
= ∥v∥2`∞ ∥φ′′ ((S ⊙W + (1 −S)⊙ W̃)XT)⊙ ((W̃ −W)XT)∥2
≤ ∥v∥2`∞ ∥φ′′ ((S ⊙W + (1 −S)⊙ W̃)XT)⊙ ((W̃ −W)XT)∥2

F

≤ ∥v∥2`∞ B2 ∥(W̃ −W)XT ∥2
F

≤ ∥v∥2`∞ B2 ∥X∥2 ∥W̃ −W ∥2
F
,

38

completing the proof of this lemma. Here, (a) holds by the mean value theorem for some matrix

S ∈ Rk×d with entries 0 ≤ Sij ≤ 1.

2) Jacobian perturbation results for ReLU networks (Proof of Lemma 6.9)

To prove Lemma 6.9 we first relate the perturbation of the Jacobian to perturbation of the

activation pattern φ′(XW T) as follows.

Lemma A.2: Consider the matrices W ,W̃ ∈ Rk×d and a data matrix X ∈ Rn×d with unit

Euclidean norm rows. Then,

∥J (W) −J (W̃)∥ ≤ ∥v∥`∞ ∥X∥ ⋅max
1≤i≤n
∥φ′ (Wxi) − φ′ (W̃xi)∥`2 .

Proof Similar to the smooth case in the previous section, the Jacobian difference is given by

J (W) −J (W̃) = (diag(v) (φ′(XW T) − φ′(XW̃ T))) ∗X.

Consequently,

∥J (W) −J (W̃)∥2 = ∥(J (W) −J (W̃)) (J (W) −J (W̃))T∥
≤ ∥((φ′ (XW T) − φ′ (XW̃ T))diag(v)diag(v) (φ′ (WXT) − φ′ (W̃XT)))

⊙ (XXT)∥
≤ (max

1≤i≤n
∥diag(v) (φ′ (Wxi) − φ′ (W̃xi))∥2`2) ⋅ ∥X∥2

≤ ∥v∥2`∞ ∥X∥2 ⋅max
1≤i≤n
∥φ′ (Wxi) − φ′ (W̃xi)∥2`2

The lemma above implies that, we simply need to control φ′(Wxi) around a neighborhood of

W0. To continue note that since φ′ is the step function, we shall focus on the number of sign

flips between the matrices WXT and W0XT . Let ∥v∥m− denote the mth smallest entry of v

after sorting its entries in terms of absolute value. We first state a intermediate lemma.

Lemma A.3: Given an integer m, suppose

∥W −W0∥ ≤√m ∣W0xi∣m− ,
holds for i = 1,2, . . . , n. Then

max
1≤i≤n
∥φ′(Wxi) − φ′(W0xi)∥`2 ≤√2m.

39

Proof We will prove this result by contradiction. Suppose there is an xi such that φ′(Wxi)
and φ′(W0xi) have (at least) 2m different entries. Let {(ar, br)}2mr=1 be (a subset of) entries of

Wxi,W0xi at these differing locations respectively and suppose ar’s are sorted decreasingly in

absolute value. By definition ∣ar∣ ≥ ∣W0xi∣m− for r ≤m. Consequently, using sign(ar) ≠ sign(br),
∥W −W0∥2 ≥ ∥(W −W0)xi∥2`2

≥

2m

∑
r=1

∣ar − br∣2
≥

2m

∑
r=1

∣ar∣2
≥m ∣W0xi∣2m− .

This implies ∥W −W0∥ ≥ √m ∣W0xi∣m− contradicting the assumption of the lemma and thus

concluding the proof.

Now note that by setting m =m2

0
in Lemma A.3 as long as

∥W −W0∥ ≤m0 ∣W0xi∣m2
0
−
, (A.7)

we have

max
1≤i≤n
∥φ′(Wxi) − φ′(W0xi)∥`2 ≤ ∥v∥`210∥v∥`∞

√
λ(X)∥X∥ ∶=

√
2m0. (A.8)

Using Lemma A.2, this in turn implies

∥J (W) −J (W0)∥ ≤ ∥v∥`∞ ∥X∥ ⋅max
1≤i≤n
∥φ′ (Wxi) − φ′ (W0xi)∥`2 ≤ 1

10
∥v∥`2√λ(X)

≤
1

6
√
2
∥v∥`2√λ(X).

Thus to complete the proof of Lemma 6.9 all that remains is to prove (A.7). To this aim, we

state the following lemma proven later in this section.

Lemma A.4: Let x1,x2, . . . ,xn ∈ R
d be the input data point with unit Euclidean norm. Also

let W0 ∈ R
k×d be a matrix with i.i.d. N (0,1) entries. Then, with probability at least 1 − ne−

m
6 ,

∣W0xi∣m− ≥ m

2k
for all i = 1,2, . . . , n.

40

Now applying Lemma A.4 we conclude that with probability at least 1 − ne
−

1

1200

∥v∥2
`2

∥v∥2
`∞

λ(X)
∥X∥2

m0 ∣W0xi∣m2
0
−
≥
m3

0

2k
,

holds for all i = 1,2, . . . , n. Hence, with same probability, all ∥W −W0∥ ≤ m3
0

2k
obeys (A.7)

concluding the proof of Lemma 6.9.

3) Proof of Lemma A.4

Observe that W0x1,W0x2, . . . ,W0xn are all standard normal however they depend on each

other. We begin by focusing on one such vector. We begin by proving that with probability at

least 1−e−
m
6 , at most m of the entries of W0xi are less than m

2k
. To this aim let γα be the number

for which P{∣g∣ ≤ γα} = α where g ∼ N (0,1) (i.e. the inverse cumulative density function of ∣g∣).
γα trivially obeys γα ≥

√
π/2α. To continue set g ∶=W0xi ∼ N (0,Ik) and the Bernouli random

variables δ` given by

δ` =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if ∣g`∣ ≤ γδ
0 if ∣g`∣ > γδ

with δ = m
2k

. Note that

E

⎡⎢⎢⎢⎢⎣
k

∑̀
=1

δ`

⎤⎥⎥⎥⎥⎦ =
k

∑̀
=1

E[δ`] = k

∑̀
=1

P{ ∣g`∣ ≤ γδ} = δk = m

2
.

Since the δ`’s are i.i.d., applying a standard Chernoff bound we obtain

P

⎧⎪⎪⎨⎪⎪⎩
k

∑̀
=1

δ` ≥m

⎫⎪⎪⎬⎪⎪⎭ ≤ e
−

m
6 .

The complementary event implies that at most m entries are less than m
2k

. This together with the

union bound completes the proof.

D. Proof of Corollary 6.11

First note that (VI.13) can be rewritten in the form

R ∶=
4

α
∥f(θ0) − y∥`2 ≤ α

L
.

Thus using the Lipschitzness of the Jacobian from (VI.8) for all θ ∈ B (θ0,R) we have

∥J (θ) −J (θ0)∥ ≤ L ∥θ − θ0∥`2 ≤ LR ≤ α.
41

Combining the latter with the triangular inequality we conclude that

σmin(J (θ)) ≥ σmin(J (θ0)) − ∥J (θ) −J (θ0)∥ ≥ 2α − α = α,
so that (VI.7) holds under the assumptions of the corollary. Therefore, all of the assumptions of

Theorem 6.10 continue to hold and thus so do its conclusions.

E. Proof of Corollary 2.2

The proof follows from a simple application of Theorem 2.1. We just need to calculate the

various constants involved in this result. First, we focus on the constants related to the activation.It

is trivial to check that B =M = 1 and µφ ≈ 0.207 so that (II.2) reduces to
√
kd ≥ c̃(1+ δ)κ(X)n

with c̃ a fixed numerical constant. Next we focus on the constant κ(X) that depends on the data

matrix. To this aim we note that standard results regarding the concentration of spectral norm of

random matrices with i.i.d. rows imply that

∥X∥ ≤ 2√n

d
,

holds with probability at least 1 − e−γ2d. Furthermore, based on a simple modification of [2,

Corollary 6.5]

σmin (X ∗X) ≥ c, (A.9)

holds with probability at least 1 − ne−γ1
√
n −

1

n
− 2ne−γ2d where c, γ1, and γ2 are fixed numerical

constants.

F. Proof of Theorem 2.6

The proof of this result follows from [10, Theorem 3.1] similar to how Theorem 2.1 follows

from Theorem 6.10 from the same paper. There are two differences in the proof. First [10, Theorem

3.1] requires Jacobian regularity condition (VI.7) to hold over the larger region Rsgd ∶=
ν∥f(θ0)−y∥`2

α

compared to Rgd ∶=
4∥f(θ0)−y∥`2

α
(recall ν ≥ 4).

This requires us to use a wider network as follows. Recalling Theorem 6.10, the minimum

and maximum singular values α and β of a wider network obeys the exact same guarantees

with better or equal probabilities. However, in light of Corollary 6.11, we have to ensure that

42

RsgdLsgd ≤ α where Lsgd is the Lipschitz constant of the Jacobian in Theorem 2.6 and Rsgd is

the larger SGD region defined above i.e. instead of (VI.13), we need to use α2

νL
≥ ∥f(θ0) − y∥`2 .

This will lead to a smaller Lipschitz constant compared to gradient descent analysis via the

relation Lsgd = α/Rsgd =
Rgd

Rsgd
Lgd where Lgd is the Lipschitz constant required for the gradient

descent analysis. As we show next, this leads to the width requirement of ksgd = (ν/4)2kgd. To

be rigorous, using the α,Lsgd,Rsgd estimates of (VI.14), Lemma 6.12, (VI.17) we need

RsgdLsgd ≤ α ⇐⇒
1

B√
kn
∥y∥`2 ∥X∥ ≥

8ν ∥y∥`2 (1 + (1 + δ)B)
∥y∥2`2
n

λ(X)
which implies√

k ≥
8ν
√
nB ∥X∥ (1 + (1 + δ)B)

λ(X) ⇐⇒

√
kd ≥ 8νBnκ̃(X) (1 + (1 + δ)B) .

Thus our bound on the SGD network requires exactly (ν/4)2 times as many parameters as the

gradient descent bound (i.e. compare to (VI.19)).

Secondly, the learning rate choice in [10, Theorem 3.1] requires us to calculate is the maximum

Euclidean norm of the rows of the Jacobian matrix. For neural networks this takes the following

form

max
i
∥Ji(W)∥`2 = ∥diag(v)φ′ (Wxi)xT

i ∥F
= ∥diag(v)φ′ (Wxi)∥F ∥xi∥`2
= ∥diag(v)φ′ (Wxi)∥F
≤ ∥φ′ (Wxi)∥`∞ ∥v∥`2
≤B ∥v∥`2 .

G. Proofs for nonsmooth optimization (Proof of Theorem 6.13)

To prove this theorem we begin by stating a few preliminary results and definitions.

Lemma A.5 (Asymmetric PSD perturbation): Consider the matrices A,B,C ∈ Rn×p obeying

∥B −C∥ ≤ ε and ∥A −C∥ ≤ ε. Then, for all r ∈ Rn,

∣rTBATr − ∥CTr∥2`2 ∣ ≤ 2ε∥CTr∥`2∥r∥`2 + ε2∥r∥2`2 .

43

Proof We have

rTBATr − ∥CTr∥2`2 = rT (B −C)(A −C)Tr + rTC(A −C)Tr + rT (B −C)CTr.

This implies

∣rTBATr − ∥CTr∥2`2 ∣ ≤ ∣rT (B −C)(A −C)Tr∣ + ∥(A −C)Tr∥`2∥CTr∥`2
+ ∥(B −C)Tr∥`2∥CTr∥`2

≤ ε2∥r∥2`2 + 2ε∥CTr∥`2∥r∥`2 ,
concluding the proof.

Definition A.6 (Average Jacobian): We define the average Jacobian along the path connecting

two points x,y ∈ Rp as

J (y,x) ∶= ∫ 1

0

J (x + α(y −x))dα. (A.10)

Lemma A.7: Suppose x,y ∈ Rp satisfy ∥x−θ0∥, ∥y −θ0∥ ≤ R. Then, under Assumptions 2 and

4, for any r ∈ Rd, we have

rTJ (y,x)J (x)Tr ≥ ∥J (θ0)Tr∥2`2
2

,

∥J (x)Tr∥2`2 ≤ 1.5∥J (θ0)Tr∥2`2 .
Proof Under Assumptions 2 and 4, applying Lemma A.5 with A = J (x), B = J (y,x),
C = J (θ0), and ε = α/3, we conclude that

rTJ (y,x)J (x)Tr − ∥J (θ0)Tr∥2`2 ≥ −(2α3 ∥J (θ0)Tr∥`2∥r∥`2 + α2

9
∥r∥2`2)

≥ −(2α
3
∥J (θ0)Tr∥`2∥r∥`2 + α

18
∥J (θ0)Tr∥`2∥r∥`2)

≥ −α∥J (θ0)Tr∥`2∥r∥`2
≥ −
∥J (θ0)Tr∥2`2

2
.

This implies rTJ (y,x)J (x)Tr ≥ ∥J (θ0)T r∥2
`2

2
. The upper bound similarly follows from Lemma

A.5 by setting A = B = J (x) and observing that the deviation is again upper bounded by
∥J (θ0)T r∥2

`2

2
.

44

Lemma A.8: Suppose Assumptions 2 and 4 hold. Consider two consequent iterative updates

θτ and θτ+1 which by definition obey

θτ+1 ∶= θτ − ηJ
T (θτ) (f(θτ) − y) ,

with η ≤ 1

3β2 . Also, denote the corresponding residuals by rτ+1 ∶= f(θτ+1)−y and rτ ∶= f(θτ)−y.

Finally, assume θτ ,θτ+1 satisfy ∥θτ+1 − θ0∥, ∥θτ − θ0∥ ≤ R. Then

∥rτ+1∥`2 ≤ ∥rτ∥`2 − η

4

∥J (θ0)Tr∥2`2∥r∥`2 .

Proof For this proof we use the short-hand Jτ+1,τ ∶= J (θτ ,θτ) and Jτ ∶= J (θτ). We expand

the residual at θτ+1 using Lemma A.7 as follows

∥rτ+1∥2`2 = ∥(I − ηJτ+1,τJ T
τ)rτ∥2`2

= ∥rτ∥2`2 − 2ηrT
τ Jτ+1,τJ

T
τ rτ + η

2∥Jτ+1,τJ T
τ rτ∥2`2

≤ ∥rτ∥2`2 − η∥J (θ0)Tr∥2`2 + η2β2∥J T
τ rτ∥2`2

≤ ∥rτ∥2`2 − η∥J (θ0)Tr∥2`2 + 3

2
η2β2∥J (θ0)Trτ∥2`2

Using the fact that η ≤ 1

3β2 , we conclude that

∥rτ+1∥2`2 ≤ ∥rτ∥2`2 − η

2
∥J (θ0)Tr∥2`2 Ô⇒ ∥rτ+1∥`2 ≤ ∥rτ∥`2 − η

4

∥J (θ0)Tr∥2`2∥r∥`2 .

1) Completing the proof of Theorem 6.13

With these lemmas in place we are now ready to complete the proof of Theorem 6.13. To

this aim suppose the conclusions hold until iteration τ > 0. We shall show the result for iteration

τ + 1. We first prove that iterates still stays inside the region ∥θ − θ0∥ ≤ R. To this aim first note

that by the induction hypothesis we know that

∥θτ − θ0∥ ≤ R − 3∥y − f(θτ)∥`2
α

.

45

Combining this with the gradient update rule, η ≤ 1/β2 and ∥J ∥ ≤ β yields

∥θτ+1 − θ0∥ ≤ ∥θτ − θ0∥ + η∥J (θτ)rτ∥
≤ ∥θτ − θ0∥ + η ∥J (θτ)rτ∥`2
≤ R −

3∥y − f(θτ)∥`2
α

+ η∥J (θτ)rτ∥`2
≤ R −

3∥y − f(θτ)∥`2
α

+
1

β
∥rτ∥`2

≤ R.

Now that we have shown ∥θτ+1 − θ0∥ ≤ R, we can apply Lemma A.8 to conclude that

∥rτ+1∥`2 ≤ ∥rτ∥`2 − η

4

∥J (θ0)Tr∥2`2∥r∥`2 ≤ ∥rτ∥`2 − ηα

2
∥J (θ0)Tr∥`2 . (A.11)

Next, we complement this by using Lemma A.7 to control the increase in the distance of the

iterates to the initial point. This allows us to conclude that

∥θτ+1 − θ0∥ ≤ ∥θτ − θ0∥ + η∥∇L(θτ)∥,
∥θτ+1 − θ0∥ ≤ ∥θτ − θ0∥ + η∥∇L(θτ)∥`2 ,

≤ ∥θτ − θ0∥ + η∥J T (θτ)rτ∥`2 ,
≤ ∥θτ − θ0∥ + 1.25η∥J T (θ0)rτ∥`2 .

Adding the latter two identities, we obtain

∥rτ+1∥`2 + α

3
∥θτ+1 − θ0∥ ≤ ∥rτ∥`2 + α

3
∥θτ − θ0∥ ≤ ∥r0∥`2 ,

completing the proof of (VI.22). Finally, the convergence rate guarantee (VI.21) follows from

(A.11) can be upper bounded by (1 − ηα2)∥rτ∥`2 .

H. Lower bounds on the minimum eigenvalue of covariance matrices

In this section we discuss lower bounds on the minimum eigenvalue of the neural network and

output feature covariance matrices which involve higher order Khatri-Rao products. This results

involve the Hermite expansion of the activation and its derivatives. For any φ with bounded

46

Gaussian meaure i.e. 1√
2π ∫

+∞

−∞
φ2(g)e− g2

2 dg <∞ the Hermite coefficients {µr(φ)}+∞r=0 associated

to φ are defined as

µr(φ) ∶= 1√
2π
∫
+∞

−∞

φ(g)hr(g)e− g2

2 dg,

where hr(g) is the normalized probabilists’ Hermite polynomial defined by

hr(x) ∶= 1√
r!
(−1)rex2

2

dr

dxr
e−

x2

2 .

Using these expansions we prove the following simple lemma. The first one is a generalization of

the reduction to quadratic activation Lemma (Lemma 6.4). See also [52] for related calculations.

We note that Lemma 6.4 is a special case as µ̃φ = µ0(φ) and µφ = µ1(φ).
Lemma A.9: For an activation φ ∶ R↦ R and a data matrix X ∈ Rn×d with unit Euclidean norm

rows the neural network covariance matrix and eigenvalue obey

Σ (X) =(µ2

0(φ′)11T +

+∞

∑
r=1

µ2

r(φ) (XXT)⊙r)⊙ (XXT) ⪰ µ2

r(φ′) (XXT)⊙(r+1) , (A.12)

λ (X) ≥µ2

r(φ′)σ2

min
(X∗(r+1)) for any r = 0,1,2, (A.13)

As a reminder, for a matrix A ∈ Rn×n, A⊙r ∈ Rn×n is defined inductively via A⊙r =A⊙(A⊙(r−1))
with A⊙0 = 11T . Similarly, for a matrix X ∈ Rn×d with rows given by xi ∈ Rd we define the

matrix X∗r
∈ Rn×dr as

[X∗r]
i
=

⎛⎜⎜⎝xi ⊗xi ⊗ . . .⊗xi´¹¹¸¹¹¹¶
r

⎞⎟⎟⎠
T

Proof To prove this result note that by the properties of Hermite expansions we have

[E[φ′ (Xw)φ′ (Xw)T]]
ij
=E[φ′(xT

i w)φ′(xT
j w)]

=

∞

∑
r=0

µ2

r(φ′)(xT
i xj)r

Thus

Σ (X) =(∞∑
r=0

µ2

r(φ′) (XXT)⊙r)⊙ (XXT) .
Furthermore,

∞

∑
r=0

µ2

r(φ′) (XXT)⊙r = ∞∑
r=0

(µr(φ′)X∗r) (µr(φ′)X∗r)T ⪰ µ2

r(φ′) (X∗r) (X∗r)T = µ2

r(φ′) (XXT)⊙r .
47

Using the latter combined with the fact that the Hadamard product of two PSD matrices are PSD

we arrive at (A.12). The latter also implies (A.13).

Similarly, it is also easy to prove the following result about the output feature covariance.

Lemma A.10: For an activation φ ∶ R ↦ R and a data matrix X ∈ Rn×d with unit Euclidean

norm rows the output feature covariance matrix and eigenvalue obey

Σ̃ (X) =(µ2

0(φ)11T +

+∞

∑
r=1

µ2

r(φ) (XXT)⊙r) ⪰ µ2

r(φ) (XXT)⊙(r) , (A.14)

λ̃ (X) ≥µ2

r(φ)σ2

min
(X∗r) for any r = 1,2, (A.15)

Proof To prove this result note that by the properties of Hermite expansions we have

[E[φ (Xw)φ (Xw)T]]
ij
=E[φ(xT

i w)φ(xT
j w)]

=

∞

∑
r=0

µ2

r(φ)(xT
i xj)r

Thus

Σ̃ (X) = ∞∑
r=0

µ2

r(φ) (XXT)⊙r ⪰ µ2

r(φ) (XXT)⊙(r) ,
concluding the proof of (A.14). This in turn also implies (A.15).

We begin by stating a result regarding the covariance of the indicator mapping. Below we use I

to denote the step function i.e. I(z) = 1{z≥0}.

Theorem A.11: Let x1, . . . ,xn be points in Rd with unit Euclidian norm and w ∼ N (0,Id).
Form the matrix X ∈ Rn×d

= [x1 . . . xn]T . Suppose there exists δ > 0 such that for every

1 ≤ i ≠ j ≤ n we have that

min(∥xi −xj∥`2 , ∥xi +xj∥`2) ≥ δ.
Then, the covariance of the vector I(Xw) obeys

E[I(Xw)I(Xw)T] ⪰ δ

100n2
. (A.16)

Proof Fix a unit length vector a ∈ Rn. Suppose there exists constants c1, c2 such that

P(∣aTI(Xw)∣ ≥ c1∥a∥`∞) ≥ c2δ

n
. (A.17)

48

This would imply that

E[(aTI(Xw))2] ≥ E[∣aTI(Xw)∣]2 ≥ c21∥a∥2`∞ c2δn ≥ c21c2 δ

n2
.

Since this is true for all a, we find (A.19) with c2
1
c2 =

1

100
by choosing c1 = 1/2, c2 = 1/25 as

described later. Hence, our goal is proving (A.17). For the most part, our argument is based on

exploiting independence of orthogonal decomposition associated with Gaussian vectors and we

will refine the argument of [8]. Without losing generality, assume ∣a1∣ = ∥a∥`∞ and construct an

orthonormal basis Q in Rd where the first column is equal to x1 and Q = [x1 Q̄]. Note that

g =QTw ∼ N (0,Id) and we have

w =Qg = g1x1 + Q̄ḡ.

For 0 ≤ γ ≤ 1/2, Gaussian small ball guarantees

P(∣g1∣ ≤ γ) ≥ 7γ

10
.

Next, we argue that zi = ⟨Q̄ḡ,xi⟩ is small for all i ≠ 1. For a fixed i ≥ 2, observe that

zi ∼ N (0,1 − (xT
1 xi)2).

Note that

1 − ∣xT
1 xi∣ = min(∥x1 −xi∥2`2 , ∥x1 +xi∥2`2)

2
≥
δ2

2
.

Hence 1 − (xT
1
xi)2 ≥ δ2/2. From Gaussian small ball and variance bound on zi, we have

P(∣zi∣ ≤ γ) ≤
√

2

π

γ√
1 − (xT

1
xi)2 ≤

2γ

δ
√
π

Union bounding, we find that, with probability 1 − 2nγ√
πδ

, we have that, ∣zi∣ > γ for all i ≥ 2. Since

ḡ is independent of g1, setting γ = δ

2
√
2n

(which is at most 1/2 since δ ≤
√
2),

P(E) ∶= P(∣g1∣ ≤ γ, ∣zi∣ > γ ∀ i ≥ 2) ≥ (1 − 2nγ√
πδ
)2γ
5
≥

δ

12n
.

To proceed, note that

f(g) ∶= aTI(Xw) = a1I(g1) + n

∑
i=2

(ai × I(xT
i x1g1 +x

T
i Q̄ḡ))

49

On the event E, we have that I(xT
i x1g1 +x

T
i Q̄ḡ) = I(xT

i Q̄ḡ) since ∣g1∣ ≤ γ ≤ ∣xT
i Q̄ḡ∣. Hence,

on E,

f(g) = a1I(g1) + rest(ḡ),
where rest(ḡ) = ∑n

i=2(ai × I(xT
i Q̄ḡ)). Furthermore, conditioned on E, g1, ḡ are independent

as zi’s are function of ḡ alone hence, E can be split into two equally likely events that are

symmetric with respect to g1 i.e. g1 ≥ 0 and g1 < 0. Consequently,

P(∣f(g)∣ ≥max(∣a1I(g1) + rest(ḡ)∣, ∣a1I(−g1) + rest(ḡ)∣) ∣ E) ≥ 1/2 (A.18)

Now, using max(∣a∣, ∣b∣) ≥ ∣a − b∣/2, we find

P(∣f(g)∣ ≥ ∣a1∣∣I(g1)−I(−g1)∣/2 ∣ E) = P(∣f(g)∣ ≥ ∣a1∣/2 ∣ E) = P(∣f(g)∣ ≥ ∥a∥`∞/2 ∣ E) ≥ 1/2.
This yields P(∣f(g)∣ ≥ ∥a∥`∞/2) ≥ P(E)/2 ≥ δ/24n, concluding the proof by using c1 = 1/2, c2 =
1/25.

Corollary A.12 (Covariance of ReLU Jacobian): Let x1, . . . ,xn be points in Rd with unit

Euclidian norm and w ∼ N (0,Id). Form the matrix X ∈ Rn×d
= [x1 . . . xn]T . Suppose there

exists δ > 0 such that for every 1 ≤ i ≠ j ≤ n, the input sample pairs have δ distance i.e.

min(∥xi −xj∥`2 , ∥xi +xj∥`2) ≥ δ.
Then, using Lemma 6.5 and Theorem A.11

E[I(Xw)I(Xw)T ⊙XXT] ⪰ δ

100n2
. (A.19)

Proof of Theorem 2.5

Proof For proof, we wish to apply the Meta-Theorem 6.3 with proper value of λ(X). Under

Assumption 1, using Corollary A.12, we have that

λ(X) ≥ δ

100n2
.

Substituting this λ(X) value results in the advertised result k ≥ O((1 + ν)2n9∥X∥6/δ4) and the

associated learning rate.

50

I. Proofs for training the output layer (Proof of Theorem 3.2)

To begin note that

ΦΦ
T
= φ (XW T)φ (WXT) = k

∑̀
=1

φ (Xw`)φ (Xw`)T ⪰ k

∑̀
=1

φ (Xw`)φ (Xw`)T 1{∥φ(Xw`)∥`2≤Tn}.

Here Tn a function of n whose value shall be determined later in the proofs. To continue we

need the matrix Chernoff result stated below.

Theorem A.13 (Matrix Chernoff): Consider a finite sequence A` ∈ R
n×n of independent, random,

Hermitian matrices with common dimension n. Assume that 0 ⪯ A` ⪯ RI for ` = 1,2, . . . , k.

Then

P

⎧⎪⎪⎨⎪⎪⎩λmin (k

∑̀
=1

A`) ≤ (1 − δ)λmin (k

∑̀
=1

E[A`])⎫⎪⎪⎬⎪⎪⎭ ≤ n(
e−δ(1 − δ)(1−δ))

λmin(∑k
`=1

E[A`])
R

for δ ∈ [0,1).
Applying this theorem with A` = φ (Xw`)φ (Xw`)T 1{∥φ(Xw`)∥`2≤Tn}, R = T 2

n and Ã(w) ∶=
φ (Xw)φ (Xw)T 1{∥φ(Xw)∥`2≤Tn}

λmin (ΦΦ
T) ≥ (1 − δ)kλmin (E[Ã(w)]) , (A.20)

holds with probability at least 1 − n (e−δ

(1−δ)(1−δ))
kλmin(E[Ã(w)])

T2
n .

Next we shall connect the the expected value of the truncated matrix Ã(w) to one that is not

51

truncated defined as A(w) = φ(Xw)φ(Xw)T . To do this note that

∥E[Ã(w) −A(w)]∥ =∥E [φ(Xw)φ(Xw)T1{∥φ(Xw)∥`2>Tn}]∥
(a)
≤ E [∥φ(Xw)φ(Xw)T1{∥φ(Xw)∥`2>Tn}∥]
≤E [∥φ(Xw)∥2`2 1{∥φ(Xw)∥`2>Tn}] (A.21)

(b)
≤ 2E [∥φ(Xw) − φ(0)∥2`2 1{∥φ(Xw)∥`2>Tn}] + 2E [∥φ(0)∥2`2 1{∥φ(Xw)∥`2>Tn}]
(c)
≤ 2B2

E [∥Xw∥2`2 1{∥φ(Xw)∥`2>Tn}] + 2nB2
P{∥φ(Xw)∥`2 > Tn}

(d)
≤ 2B2

√
E [∥Xw∥4`2]P{∥φ(Xw)∥`2 > Tn} + 2nB2

P{∥φ(Xw)∥`2 > Tn}
(e)
≤ 2
√
nB2

¿ÁÁÀ(n

∑
i=1

E [∣xT
i w∣4])P{∥φ(Xw)∥`2 > Tn} + 2nB2

P{∥φ(Xw)∥`2 > Tn}
(f)
≤ 2
√
3nB2

√
P{∥φ(Xw)∥`2 > Tn} + 2nB2

P{∥φ(Xw)∥`2 > Tn}
≤6nB2

√
P{∥φ(Xw)∥`2 > Tn}. (A.22)

Here, (a) follows from Jensen’s inequality, (b) from the simple identity (a + b)2 ≤ 2(a2 + b2), (c)

from ∣φ′(z)∣ ≤ B, (d) from the Cauchy-Schwarz inequality, (e) from Jensen’s inequality, and (f)

from the fact that for a standard moment random variable X we have E[X4] = 3.

To continue we need to show that P{∥φ(Xw)∥`2 > Tn} is small. To this aim note that for any

activation φ with ∣φ′(z)∣ ≤ B we have

∥φ (Xw2) − φ (Xw1)∥`2 ≤ B ∥X∥ ∥w2 −w1∥`2
Thus by Lipschitz concentration of Gaussian functions for a random vector w ∼ N (0,Id) we

have

∥φ (Xw)∥`2 ≤E[∥φ (Xw)∥`2] + t,
≤

√
E[∥φ (Xw)∥2`2] + t,

=

√
n
√

Eg∼N (0,1)[φ2(g)] + t,
≤B
√
2n + t,

52

holds with probability at least 1 − e
−

t2

2B2∥X∥2 . Thus using t =∆B
√
n we conclude that

∥φ (Xw)∥`2 ≤ (∆ +√2)B√n,
holds with probability at least 1 − e

−
∆

2

2

n

∥X∥2 . Thus using ∆ = c
√
logn and Tn = CB

√
n logn we

can conclude that

P{∥φ(Xw)∥`2 > Tn} ≤ 1

n202
.

Thus, using (A.21) we can conclude that

∥E[Ã(w) −A(w)]∥ ≤ 6B

n100
.

Combining this with (A.20) with δ = 1/2 we conclude that

λmin (ΦΦ
T) ≥ 1

2
k (λmin (E[A(w)]) − 6B

n100
) = 1

2
k (λ̃(X) − 6B

n100
) ,

holds with probability at least 1 − ne
−γ

kλ̃(X)
T2
n . The latter probability is larger than 1 − 1

n100 as long

as

k ≥ C log2(n) n

λ̃(X) ,
concluding the proof.

J. Utilizing Jacobian structure for even smaller networks

The results we have stated so far study the required over-parameterization to fit to any training

data including those involving adversarial corruption or pure noise. On practical data sets however

neural networks require significantly less number of parameters to perfectly fit to the training

data. Intuitively for semantically meaningful data where the labels are related to the input data

we expect it to be easier to perfectly fit to the training data compared to the case where we wish

to fit to pure noise. In this section we discuss our results (based on the companion paper [53])

that can harness the low-rank representation of semantically meaningful datasets via the Jacobian

of the neural net to approximately fit to the training data as soon as the network width is larger

than a fixed numerical constant. We remark that [53] appeared after the initial submission of

the present manuscript and in fact utilizes some of the techniques presented here. Our goal in

53

presenting these result here is to provide an alternative insight into gradient descent dynamics by

contrasting the network width required to approximately fit the training data vs that of finding a

perfect fit.

Global convergence over a restricted subspace: To guide the discussion, consider the eigenvalue

decomposition of the neural network covariance matrix (Neural Tangent Kernel) Σ(X) =
UΛUT

= ∑n
i=1 λiuiu

T
i . Let λcut > 0 be a scalar of our choice and suppose r is the index of

eigenvalue satisfying λr ≥ λcut ≥ λr+1 so that the top r eigenvalues are larger than λcut. Define

the top and bottom eigenspaces as

T = span((ui)ri=1) and B = span((ui)ni=r+1). (A.23)

Also let ΠS be the projection operator on a subspace S. The result below is obtained as a

corollary to Theorem 6.22 of [53]. Specifically, the result of [53] is stated for multiclass problems

and below we state it for a network with single output. This shows that one can interpolate over

the top subspace T and the network capacity depends only on λcut rather than λmin. However,

this comes at the expense of not obtaining a perfect fit.

Theorem A.14: Let (xi,yi)ni=1 be a dataset where input samples have unit Euclidian norm and

the concatenated label vector obeys ∥y∥`2 =√n. Suppose ∣φ′∣, ∣φ′′∣ ≤ B. Fix tolerance level ζ and

output variance σ as 10Bσ = ζ ≤ c/2. Set output layer v with half σ/√k and half −σ/√k entries.

Let B2∥X∥2 ≥ λcut > 0 be the spectrum cutoff level and set the top/bottom subspaces T and B

as described in (A.23). Choose λcut to ensure ∥ΠT (y)∥`2 ≥ c∥y∥`2 for some constant c > 0. Pick

η ≤ 1

B2σ2∥X∥2 . Set

λ̄cut =
λcut

B2∥X∥3/2n1/4 and k ≳
Γ4 log(n)
ζ4λ̄4

cut

. (A.24)

Fix Γ ≥ 1. With probability at least 1 − 2−50n/∥X∥
2

, after T = Γ

ησ2λcut
, iterations, we have that

∥f(WT) − y∥`2 ≤ ∥ΠB(y)∥`2 + e−Γ∥ΠT (y)∥`2 + 4ζ√n. (A.25)

This theorem achieves near-global convergence over the top subspace and the bias over the

bottom subspace is not affected and stays around ∥ΠB(y)∥`2 in the worst case. Most notably,

setting ζ,Γ to be constant and cutoff to be λcut ∼ O(n) we observe that k grows logarithmic in

54

the size of the dataset which improves over our requirement for global convergence which is

quadratic in sample size.

We note that the result above is not informative if the label vector lies on the bottom subspace

B. In contrast, Theorem 2.1 applies regardless of choice of labels i.e. it is guaranteed to work

for any labels(noisy or random labels) regardless of any semantic link to the input data. We

also remark that in (A.24) number of hidden nodes grow with the fourth power of λ̄−1cut which is

a weaker dependence than quadratic growth obtained by Theorem 2.1. Closing this gap is an

interesting direction for future research.

55

	Introduction
	Motivation
	Model
	Notations

	Main results
	Training networks with smooth activations via gradient descent
	Training ReLU networks via gradient descent
	Training using SGD
	Key proof ideas

	The need for overparameterization beyond width
	Numerical experiments
	Prior art
	Proofs
	Preliminaries
	Meta-theorems
	Reduction to quadratic activations and proofs for Theorems 2.1 and 2.3
	Lower and upper bounds on the eigenvalues of the Jacobian
	Jacobian perturbation
	Proofs for meta-theorem with smooth activations (Proof of Theorem 6.2)
	Upper bounding the initial misfit (Proof of Lemma 6.12)

	Proofs for meta-theorem with ReLU activations (Proof of Theorem 6.3)

	References
	Appendix
	Proofs for bounding the eigenvalues of the Jacobian
	Proof for the spectral norm of the Jacobian (Proof of Lemma 6.6)
	Proofs for minimum eigenvalue of the Jacobian at initialization (Proof of Lemma 6.7)

	Reduction to quadratic activations (Proof of Lemma 6.4)
	Proofs for Jacobian perturbation
	Proof for Lipschitzness of the Jacobian with smooth activations (Proof of Lemma 6.8)
	Jacobian perturbation results for ReLU networks (Proof of Lemma 6.9)
	Proof of Lemma A.4

	Proof of Corollary 6.11
	Proof of Corollary 2.2
	Proof of Theorem 2.6
	Proofs for nonsmooth optimization (Proof of Theorem 6.13)
	Completing the proof of Theorem 6.13

	Lower bounds on the minimum eigenvalue of covariance matrices
	Proofs for training the output layer (Proof of Theorem 3.2)
	Utilizing Jacobian structure for even smaller networks

