LibreCAN: Automated CAN Message Translator

Mert D. Pesé, Troy Stacer, C. Andrés Campos, Eric Newberry, Dongyao Chen, and Kang G. Shin
University of Michigan
Ann Arbor, MI, USA
{mpese,trstacer,andcmps,emnewber,chendy,kgshin}@umich.edu

ABSTRACT

Modern Connected and Autonomous Vehicles (CAVs) are equipped
with an increasing number of Electronic Control Units (ECUs),
many of which produce large amounts of data. Data is exchanged
between ECUs via an in-vehicle network, with the Controller Area
Network (CAN) bus being the de facto standard in contemporary
vehicles. Furthermore, CAVs have not only physical interfaces but
also increased data connectivity to the Internet via their Telematic
Control Units (TCUs), enabling remote access via mobile devices. It
is also possible to tap into, and read/write data from/to the CAN
bus, as data transmitted on the CAN bus is not encrypted. This
naturally generates concerns about automotive cybersecurity. One
commonality among most vehicular security attacks reported to
date is that they ultimately require write access to the CAN bus.
In order to cause targeted and intentional changes in vehicle be-
havior, malicious CAN injection attacks require knowledge of the
CAN message format. However, since this format is proprietary
to OEMs and can differ even among different models of a single
make of vehicle, one must manually reverse-engineer the CAN
message format of each vehicle they target — a time-consuming
and tedious process that does not scale. To mitigate this difficulty,
we develop LibreCAN, which can translate most CAN messages
with minimal effort. Our extensive evaluation on multiple vehicles
demonstrates LibreCAN’s efficiency in terms of accuracy, coverage,
required manual effort and scalability to any vehicle.

CCS CONCEPTS

« Security and privacy — Mobile and wireless security.

KEYWORDS

Reverse Engineering; CAN Bus; Automotive Security

ACM Reference Format:

Mert D. Pesé, Troy Stacer, C. Andrés Campos, Eric Newberry, Dongyao Chen,
and Kang G. Shin. 2019. LibreCAN: Automated CAN Message Translator. In
2019 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’19), November 11-15, 2019, London, United Kingdom. ACM, New York,
NY, USA, 18 pages. https://doi.org/10.1145/3319535.3363190

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’19, November 11-15, 2019, London, United Kingdom

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6747-9/19/11...$15.00
https://doi.org/10.1145/3319535.3363190

1 INTRODUCTION

Nearly all functions inside a modern vehicle, even in more tradi-
tionally mechanical domains like the powertrain, are controlled
electronically. Moreover, purely electronic systems have become
more prevalent as the number of sensors present in a vehicle has
increased, particularly given the rise of Advanced Driver Assistance
(ADAS) systems. All of these systems are controlled by Electronic
Control Units (ECUs), embedded microprocessors that interface
between a given system and the rest of the vehicle. Over the last
few years, the number of ECUs inside a vehicle has increased signif-
icantly. Compared to the early 1990s, when few ECUs were present
in a given vehicle, a modern vehicle features more than 40 ECUs (as
of 2015 in Europe) [39]. Meanwhile, premium cars can be equipped
with up to approximately 100 ECUs. These ECUs need to communi-
cate over a unified communications network that is sophisticated
and robust enough to handle all network traffic inside a vehicle,
particularly for time-critical information. To meet this need, Bosch
introduced the Controller Area Network (CAN) technology in 1987,
which has since become the de facto standard in-vehicle network.

According to Frost & Sullivan [46], data security and privacy are
among the most critical drivers and inhibitors of next-generation
mobility services. Automotive cybersecurity is a relatively young
field, with the first major publications appearing in 2010 [16, 33]. In
2015, several attacks were reported, including three major wireless
attacks: an attack on BMW Connected Drive [49], an attack on
GM OnStar [15], and the Tesla Door Attack [43]. Although the
first two attacks received some attention, it was not until Miller
and Valasek’s Jeep attack [42] that automotive cybersecurity was
perceived as a mainstream research and engineering issue. This
attack exploited vulnerabilities in the wireless Telematic Control
Unit (TCU) and In-Vehicle Infotainment (IVI) system to allow for
remote control of a vehicle. In the first-generation of automotive
security research, attacks were mounted through vehicles’ physical
interfaces, e.g., through the OBD-II port or wired interfaces on
the IVI. Meanwhile, remote or “wireless” attacks exploit wireless
interfaces, such as the Bluetooth, Wi-Fi, or cellular connections of
the TCU, as in the aforementioned Jeep attack.

A commonality between wired and wireless attacks is the need to
eventually inject messages onto the CAN bus in order to make the
vehicle act in an undesired or unexpected way. Even in the sophisti-
cated Jeep attack, the researchers had to manually reverse-engineer
portions of the CAN bus protocol in order to gain remote control
over the vehicle, e.g., over its steering control. This is very tedious
and unscalable. Additionally, these attacks can usually only target a
specific model or make of vehicle since message semantics are OEM-
proprietary and can even differ from model to model of the same ve-
hicle make. Academic offensive automotive cybersecurity research
suffers greatly from this lack of scalability. Although most defensive
solutions, such as Intrusion Detection Systems (IDSs) [18, 27, 30, 52],

https://doi.org/10.1145/3319535.3363190
https://doi.org/10.1145/3319535.3363190

do not require knowledge of the message semantics of a vehicle,
a straightforward and automated mechanism to reverse-engineer
CAN bus data could greatly accelerate vulnerability research and
allow software patches to be distributed before malicious entities
become aware of vulnerabilities.

The current security through obscurity paradigm pursued by
OEMs attempts to prevent wide-scale automotive attacks by keep-
ing CAN message translation tables, called DBC files, secret (and
therefore placing an additional barrier to vehicle hacking) is out-
dated and infeasible. Vehicles should be secure by design and not by
choice, following Kerckhoffs’s principle [32]. Therefore, automotive
Electrics/Electronics (E/E) architectures and networks should be
resilient against CAN injection attacks originating from external
sources, e.g., by firewalling messages from the OBD-II port, and
without making assumptions about the knowledge of an attacker.

In this paper, we propose LibreCAN, a tool to automatically trans-
late most CAN messages with minimal effort. Unlike prior limited
research on automated CAN reverse-engineering, LibreCAN not
only focuses on powertrain-related data available through the pub-
lic OBD-II protocol, but also leverages data from smartphone sen-
sors, and furthermore reverse-engineers body-related CAN data.
To the best of our knowledge, LibreCAN is the first system that
can reverse-engineer a relatively complete CAN communication
matrix for any given vehicle, as well as the full-scale experimental
evaluation of such a system.

This paper is organized as follows. Sec. 2 gives a primer on the
CAN bus, its typical messages and signals, and the interpretability
of CAN data, as well as in-vehicle network architecture. Sec. 3 de-
tails the design of LibreCAN, while Sec. 4 evaluates the accuracy,
coverage, and required manual and computation time for reverse-
engineering CAN messages. Sec. 5 discusses the limitations and
potential other use-cases of LibreCAN, as well as possible counter-
measures. Sec. 6 discusses related efforts in manual and automated
CAN reverse-engineering, while Sec. 7 concludes the paper.

2 BACKGROUND
2.1 CAN Primer

Vehicular sensor data is collected from ECUs located within a ve-
hicle. These ECUs are typically interconnected via an on-board
communication bus, or in-vehicle network (IVN), with the CAN
bus being the most widely-deployed technology in current vehicles.
Fig. 1 depicts the structure of a CAN 2.0A data frame — the most
common data-frame type used on the CAN bus.

1 1 16 7
bit bit bits bits

SOF CAN ID RTR Reserved DLC Data CRC-15 ACK EOF
Startof Message Remote Data Cylic Acknow- End of
Frame Identifier Trans- Length Redundancy ledge- Frame
mission Code Check ment

Request

Figure 1: CAN data frame structure

Highlighted with non-white color in this figure are the three
fields that are essential to the understanding of LibreCAN:

e CAN ID: CAN is a multi-master, message-based broadcast
bus. Unlike better-known socket-based communication pro-
tocols like Ethernet, CAN is message-oriented, i.e., CAN
message frames do not contain any information concerning
their source or destination ECUs, but instead each frame
carries a unique message identifier (ID) that represents its
meaning and priority. Lower CAN IDs have higher prior-
ity (e.g., powertrain- vs. body-related information) and will
“win” the distributed arbitration process that occurs when
multiple messages are sent on the CAN bus at the same time.
It is possible for the same ECU to send and/or receive mes-
sages with different CAN IDs. The basic CAN ID in the CAN
2.0A specification is 11 bits long, and thus allows for up to
2048 different CAN IDs.

e DLC: This field specifies the number of bytes in the payload
(data) field of the message. The DLC field is 4 bits long and
can specify a payload length ranging from 0 to 8 bytes.

e Data: This is the payload field of a CAN message containing
the actual message data. It can contain 0-8 bytes of data
depending on the value of the DLC field.

Next, we will describe the structure of the data payload field,
which consists of one or more “signals.” A “signal” is a piece of in-
formation transmitted by an ECU, such as vehicle speed. Messages
transmitted with the same CAN ID usually contain related signals
(within the same domain) so that the destination ECU needs to re-
ceive and process fewer messages. For instance, a message destined
for the Transmission Control Module (TCM) might contain both
the vehicle speed (m/s) and engine speed (RPM) signals in one CAN
message. The length and number of signals vary with CAN ID and
are defined in the aforementioned DBC file for the corresponding
vehicle. This translation file specifies the start position and length
of a signal, allowing it to be easily retrieved from the payload using
a bitmask if the DBC file is available.

Moreover, signals can not only contain physical information, but
also other types of information [37, 38], such as:

e Constants: Values that do not change over time.

e Multi-Values: Values with a domain consisting of only a few
constant values. [38] reported 2-3 changing values within
these types of signals. An example of a 2-value field could
be the status of a specific door (e.g., open or closed).

o Counters: Signals that behave as cyclic counters within a
specific range. These signals could serve as additional syntax
checks or be intended to order longer signal data at the
destination ECU(s).

o Checkcodes: Besides the CRC-15 field at the tail of every
CAN frame, the payload can also contain additional check-
codes, typically as the last signal in the payload.

A contrived example is given in Fig. 2 showing multiple signals of
different types (physical signals, multi-values, counters, CRCs, etc.)
embedded in the 8-byte payload of a CAN message. For instance,
the orange-colored entity represents a 2-byte physical signal and
the yellow one depicts a 12-bit counter, whereas the blue region is
another 1-byte long physical signal. Several CAN IDs also contain
1-bit signals that are multi-values, i.e., booleans that describe a
body-related event (e.g., door is open/closed). Three status flags
are depicted in byte 7 of this example. The remaining green signal

is a 4-bit checksum. White regions are unused, i.e., no signals are
defined in the DBC file. CAN signals are defined by the OEM and
can thus have arbitrary lengths. Some OEMs also decide not to
include specific signal types. For instance, none of our evaluation
vehicles (all from the same OEM) contain checksums.

Bit Positions
01 2 3 45 6 7

Byte Number

Figure 2: Example of CAN signals

2.2 DBC Files

All recorded CAN data can only be interpreted if one possesses
the translation tables for that particular vehicle. These tables can
come in different formats, as there is no single standard. Examples
are KCF (Kayak [29]) and ARXML (AUTOSAR [1]) files. However,
the most common format used for this purpose is DBC [24], a
standard created by German automotive supplier company Vector
Informatik.

DBC files contain a myriad of information. However, to under-
stand this paper, one must be aware of the following information
stored in these files:

e Message structure by type: CAN ID, Name, DLC, Sender;

e Signals located within messages, containing Name, Start Bit,
Length, Byte Order, Scale, Offset, Minimum/Maximum Value,
Unit, Receiver

The representation of translation data in DBC files can be con-
fusing [22]. CAN data can be represented in either big endian (Mo-
torola) or little endian (Intel) byte-order. The bits can also be num-
bered using either MSBO (most significant bit first) or LSBO (least
significant bit first). However, most DBC files use the Intel format
with LSBO numbering. Therefore, the start bit included in the signal
information does not describe the actual start bit. Since we need to
know the actual signal boundaries, we need to calculate the true
start bit s so that we can, combined with the signal length /, obtain
the signal end bit e:

s=|_§]+7—(s%8), "

e=s+1-1.

2.3 Information Sent on the CAN Bus

In order to know which data to reverse-engineer, we must first
determine the information commonly available in vehicles. This

depends greatly upon the age and price of the vehicle, and can
drastically differ even among comparable vehicles from different
OEMs. As a result, we must first establish a basic knowledge of
the most frequently deployed ECUs in vehicles and the signals that
they transmit on the CAN bus.

It is difficult to arrive at a deterministic answer to this question
since this information is only located in DBC files, which are pro-
prietary to the OEMs. As a result, reverse-engineering all signals
present in a vehicle is nearly impossible. Thus, our goal is to reverse-
engineer the most common subset of vehicular signals that are of
interest to both security researchers and third-party app developers.
[19] provides an overview of the automotive electronic systems
present in a typical vehicle. After analyzing multiple sources [40-
42], we derived a list of ECUs (Table 8 in Appendix A) typically
present in a vehicle (each of which usually transmits data using
one or more CAN message IDs), along with the signals present in
their respective CAN messages.

Raw CAN data is not encoded in a human-readable format and
does not reflect the actual sensor values. In order to obtain the actual
sensor values, raw CAN data must first be decoded [20]. Letting
rs, Mg, ts, and ds be the raw value, scale, offset, and decoded value
of sensor s, respectively, the actual value can be found with the
following equation:

ds = mg - rg + 1. (2)

2.4 In-Vehicle Network Architecture

There are four major bus systems used in cars: CAN, FlexRay, LIN,
and MOST. MOST is used for multimedia transmission, whereas
the other bus types are mostly used for control tasks, e.g., in the
powertrain domain. The most widely used In-Vehicle Network (IVN)
architecture is the central gateway architecture. An overview of the
buses and their interconnection within a vehicle is shown in Fig. 3.

mmm

Powertrain-CAN

Infotainment

MOST
Chassis-FlexRay

u
Body
CAN 2
Body-CAN 1 i i

Sub-BusLIN1 Sub-BusLIN 2

Figure 3: Common automotive E/E architecture (adapted
from [54])

Central
Gateway

The major point of entry into a vehicle for data collection (and
diagnostics) is the on-board diagnostics (OBD-II) interface. This
connector is mandatory for all vehicles sold in the US after 1996.

Emission-related sensors such as vehicle speed, engine speed,
intake temperature, mass airflow, etc., are universally available in
all vehicles (after 1996) via the standardized OBD-II protocol [13].
Apart from the standardized OBD-II protocol (called SAE]/1979),

this port can also be used to both read and write raw CAN data.
Note that the OBD-II protocol and OBD-II interface are different
and should not be confused.

Electric vehicles (EVs) are not mandated to either have an OBD-
II connector nor support the OBD-II protocol. The latter would
not contain a lot of information anyway due to the lack of me-
chanical powertrain components (the OBD-II protocol provides
emission-related information [13]). Since there is no standard for
EV diagnostics, EV OEMs can use any interface they desire. For
instance, older Tesla Model S and X still carry a traditional OBD-II
port, whereas the newer Model 3 has its proprietary hardware in-
terface [3]. Furthermore, proprietary diagnostic protocols are used
in EVs (instead of SAE J/1979).

OBD-II data cae n be accessed by anyone through aftermarket
dongles [25]. The OBD-II protocol uses the CAN bus at the physical
layer in all newer vehicles. It is a request-response protocol that
sends requests on CAN ID 0x7E0 and obtains responses on 0x7ES8.
For instance, to obtain the vehicle speed, a dongle connected to
the OBD-II port sends a CAN message with ID 0x7E0 and payload
0x02010D5555555555. The first byte (0x02) indicates that 2 more
bytes will follow, the second byte (0x01) corresponds to the OBD
mode of getting live data, and 0x0D indicates vehicle speed. Unused
bytes are set to 0x55 (“dummy load”) and ignored. A complete
specification is available in Wikipedia [13].

Note that the OBD-II protocol is public and does not make any
use of DBC files at all. As stated in [13], only certain emission-
related sensors can be read. Body-related signals are not part of the
OBD-1I specification. Nevertheless, signals in the aforementioned
specification are still available in the raw CAN protocol. However,
we would still like to locate the CAN IDs and signal positions of
emission-related signals on the CAN bus. For CAN injection attacks,
we need to know this information because the OBD-II protocol does
not allow writing arbitrary values to these sensors.

Since any node can tap into the unencrypted CAN bus and start
broadcasting data without prior authentication, a malicious entity
can gain access to the in-vehicle network by using an OBD-II dongle
as a CAN node and send messages (e.g., through a mobile app). If
the message semantics (i.e., the DBC file(s) or portions thereof)
are known to the attacker because they reverse-engineered the
CAN bus, they can cause the vehicle to misbehave by affecting the
operation of receiver ECUs. This can range from displaying false
information on the instrument cluster [33] to erroneously steering
the vehicle [40]. The latter impacts vehicle safety and, therefore,
poses greater risk. Furthermore, it is also possible to cause certain
ECUs:s to fail, possibly incurring operational/financial damage to
the vehicle.

Theoretically, it is possible to monitor the traffic on all in-vehicle
buses through the OBD-II interface. In practice, however, not all
buses are mirrored out by the central gateway, which is responsible
for routing CAN messages between buses or domains. This can be
justified as a security countermeasure, but the OBD-II connector
has only 16 pins, with some pins already assigned [14], and thus
only up to three CAN buses can be monitored through the OBD-II
port.

3 SYSTEM DESIGN

Fig. 4 provides an overview of LibreCAN’s system design, which
consists of three phases discussed below. Our system relies upon
the following three sets of signals as input:

e P: The set of IMU sensor data (called “motion sensors” in An-
droid), i.e., 3-dimensional accelerometer and 3-dimensional
gyroscope data collected from the smartphone (via the Torque
Pro app) while recording OBD-II data (V).

o V: The set of OBD-II data. It consists of all OBD-II PIDs that
the vehicle supports. The sampling rate depends on the used
data collection dongle and vehicle. As a result, we resample
the data to 1 Hz. A full list of OBD-II PIDs can be found
in [13].

e R: The set of raw CAN data that we recorded with the
OpenXC dongle. It includes the entire trace of driving data
broadcasted on the CAN bus and is accessible through the
OBD-II port.

Data from sets P and V are only used in Phase 1. As shown in
Table 9, we have 9 IMU sensors € P and 15 OBD-II PIDs € V that
we are analyzing. As we will see later, OBD-II PIDs only cover less
than 2% of the possible signals that can be reverse-engineered on
each of our evaluation vehicles.

3.1 Phase 0: Signal Extraction

As described in Sec. 2.2, CAN messages can contain multiple signals,
and hence we need to extract the signals associated with each CAN
ID. We built the signal extraction mechanism in this phase on top
of the READ algorithm in [37].

Using the rate at which the value of each bit changes, READ
determines signal boundaries under the assumption that lower-
order bits in a signal will more likely change more frequently than
higher-order bits. READ then labels each extracted signal as either a
counter, a cyclic redundancy check (CRC), or a physical value based
upon other characteristics of the bit-change rate of the particular
signal. Counters are characterized by a decreasing bit-flip rate, with
the latter approximately doubling as the significance of the bit rises.
Meanwhile, CRCs are characterized by a bit-change magnitude of
approximately 0. Physical signals (PHYS) are those that do not fit
into any of the above two categories.

We further defined three special types of physical signals: UNUSED
(all bits set to 0), CONST (all bits constantly set to the same value
across messages, but with at least one bit set to 1), and MULTI (the
value of the signal is from a set of n possible values).

We also modified the mechanism the READ algorithm uses to
determine signal boundaries. The original READ algorithm marks a
signal boundary when the value of [log;, Bitflip] for a bit decreases
as compared to the previous bit. However, our implementation
of READ instead checks whether the bit-flip rate decreased by a
specific percentage from the previous bit — this value was set via
an input parameter to our algorithm, as discussed below. In this
original implementation, pairs of consecutive bits whose bit-flip
rates change from (>.1 to <.1), (>.01 to <.01), or (>.001 to <.001)
would indicate a signal boundary. However, with our modification, a
change in bit-flip rate from 0.9 to 0.2 would only indicate a boundary
with any percentage threshold less than 77%. We found that using

Events E

Phase 0 Phase 1
Raw CAN
DataR T
< Signal Extraction
OBD-Il Data .
\ Matching

(xcorr)

IMU Data P

Top Scores

Linear Regression

Reference Phase 2 Event

Snippet Snippets

Reference Filter out
State constant
messages

Filter out
periodic
messages

Event-triggered messages

ICAN IDs

Filter out powertrain messages

v

idg , startg, endg, mg, tg

Ce = {id, }

Figure 4: System design overview

a percentage decrease allowed us to extract more signals correctly
than the original READ.

Full CAN Trace

Each CAN trace by
CAN ID

Split Trace

Pre-Process Bit flip rate per bit

f

Stage 2

Figure 5: Flowchart of Phase 0 algorithm

A flowchart of the algorithm for this phase is provided in Fig. 5.

The remainder of this subsection provides the details of the different
stages of this algorithm. Stages 0 and 2 are our own enhancements
to the READ algorithm [37].

Pre-Processing Stage: In this stage, we parse a CAN trace in order
to obtain the bit-flip rate of each payload bit. To achieve this, we

count the number of times the value of each bit changes in the
payload of a given CAN ID and then divide this by the number of
messages in the trace with this CAN ID.

Stage 0: This stage separates bits into three bins: UNUSED, CONST,
and POSS (possibly a COUNTER, MULTT, CRC, or physical signal PHYS).
This stage generates the preliminary signal boundaries and labels
for each signal from the above three categories.

To achieve this, we first separate the bits from the previous stage
into two sets: those that change and those that do not. These bits
are then grouped together into signals with preliminary boundaries,
assigning the boundaries based upon where regions of bits that
change transition regions of bits that do not, and vice versa. The
regions of bits that change are assigned the preliminary label of
POSS and are left to be processed later. Meanwhile, the bits that do
not change are processed using Alg. 1. We define two configurable
parameters for the algorithm, namely Tpo,0 and Tpo,1. The former
is the length that a signal must have to be considered an unused
signal. If a signal is shorter than this length, we attempt to append
it to the next signal. This is because we assume that, if there is a
short unused field, it actually contains the MSBs of the adjacent
signal for which we never observed a change in value. For example,
if 8 bits are used to express the speed in MPH, the most significant
bit would not change unless the trace included driving over 128
mph). We use Tpo,1 to determine how long the next signal must be
in order to have bits appended to it in this manner. This is necessary
since it does not make sense to always re-append unchanging bits
as the MSBs of the next signal.

Stage 1: This stage is similar to READ and evaluates all possible
signal boundaries and their bit-flip rates. We iterate from the LSB
of a signal to the MSB of the next adjacent signal, searching for a
decrease in bit-flip rate. However, unlike the READ algorithm, we
are looking for a certain percentage decrease, denoted as Tjo, 2. For
example, if Tpo,2 = 10%, we would mark a signal boundary when
the bit-flip rate decreases by greater than 10%. The output of this
phase is an array of boundaries that contains all partitions within
the boundaries of the previously marked POSS signals. This output

Algorithm 1 Stage 0

procedure stageO(trace_file, Tpo,0, Tpo,1)
bits_that_dont_change_label « []
for I, r € bits_that_dont_change do
if True € changes|l : r] then
bits_that_dont_change_label.append(CONST)
break
else if r — [< Tpg,o then
reinserted «— false
for [_c,r_c € bits_that_change do
if _c==r+1landr_c—I_c > Tpo,1 then
L ce1
reinserted «— false
delete [, c
break
if reinserted == false then
bits_that_dont_change_label.append(UNUSED)

contains the final signal boundaries that are used in the rest of our
evaluations.

Stage 2: This stage evaluates all signal boundaries marked POSS and
determines the number of unique values they contain throughout
the trace. To achieve this, we parse through the trace to determine
the number of unique values that each extracted signals from Stage
1 is set to — if this number is less than a pre-determined threshold
(Tpo,3), the signal is not considered in future stages. Any remaining
POSS signals at the end of this stage are marked as MULTI values. The
output of this phase is a new signal labeling set, now additionally
containing signals labeled as MULTI.

Stage 3: This stage is also similar to the READ algorithm and eval-
uates any values still labeled as POSS to determine if their bit-flip
rates resemble a counter. If this is not the case, we label the signal
as a PHYS value.

-z

Figure 6: Alignment of phone’s coordinate system (right)
with vehicular coordinate system (left)

Alignment: Phase 0 also encompasses phone alignment. As Fig. 6
shows, the vehicular coordinate system is not necessarily consis-
tent with the phone’s coordinate system, particularly if the user
moves their phone during the data-collection process. Therefore, it
may be necessary to align these coordinate systems using rotation
matrices, as discussed in [17]. In order to avoid this additional step,
we suggest that users pre-align their phone with the vehicular co-
ordinate system by mounting the phone inside their vehicle, e.g.,
in a phone/cup holder. Using the coordinate systems from Fig. 6,
the phone should be located on the center console, with the short
edge parallel to the direction of the vehicle’s motion.

3.2 Phase 1: Kinematic-related Data

The goal of this phase is to match the extracted signals from Phase
0 to openly available OBD-II PIDs (V'), as well as mobile sensor data
(P). The latter data can easily be collected using a smartphone.

The OBD-II PIDs (V) and IMU sensors (P) that we consider from
our data collection with Torque Pro — making up the set S (see
Fig. 4) — are depicted in Table 9. The commonality between these
signals (i.e., V, P, and S) is that they are kinematic- or powertrain-
related, i.e., they are captured while the vehicle is in motion. The
OBD-II protocol was standardized for the purpose of capturing and
diagnosing emissions data, which is powertrain-related. The IMU
sensors capture the movement of the smartphone in the vehicle and
therefore the movement of the vehicle, if the phone is fixed within
the vehicle and properly aligned. These signals are also present on
the CAN bus since this data is generated by and exchanged between
ECUs, with a copy mirrored out to the OBD-II connector.

As mentioned in Eq. (2), CAN signals usually do not encode
an absolute value, but instead a value with a linear relationship
to the latter. As a result, comparing the temporal sequence of a
raw CAN signal from set R and a signal from set S should yield a
high cross-correlation value. Hence, for each signal d € S, we run
normalized cross-correlation (xcorr) with all extracted signals r € R,
which yields a list of cross-correlation values. We then arrange
them in a descending order with respect to the cross-correlation
value. Since multiple CAN signals r can match a signal d (e.g., the
four wheel speeds match the OBD speed), we need to define an
intelligent cut-off point that keeps those relevant signals d with a
high correlation value, but deletes those starting with a correlation
score that deviates significantly from the last signal d that we wish
to remain. For this purpose, we define a threshold Tp;. Alg. 2 de-
scribes how to set the cut-off point. We will experiment with Tj
in Sec. 4.2 to achieve the best precision and recall for Phase 1.

Algorithm 2 Defining the Cut-Off Point

function Top_X(corr_result, Tp1)

running_sum, running_avg, cutof f « corr_result[0]
count <1
for val € corr_result[1:] do

if val < (1 - Tp1) - running_avg then

break
cutof f.append(val)
running_sum « running_sum + val

count « count + 1
running_sum

running_avg < Count

return cutof f

It is essential to re-sample the two input sets R and S before
running xcorr so that both signals are temporally aligned.

Some of these signals are highly correlated with each other so
that they can be matched to the same CAN signal extracted in
Phase 0. For instance, engine load is a scaled version of the engine
output torque. As a result, while generating our ground truth for
each vehicle, we need to consider these physical relationships and
confirm that they indeed hold during the evaluation of Phase 1.
The reason behind this lies in the xcorr function that we use in

the aforementioned phase. It cannot distinguish between different
physical signals as long as their temporal sequences are similar.
This is a limitation of Phase 1 and is left as part of our future work.
See Appendix A for a complete summary of relationships between
certain elements in set S.

The goal of Phase 1 (apart from finding the correct CAN signal
positions) is to output the scale (mg) and offset (5) of each sensor
(s). We can use linear regression on the matched CAN signals R
and signals from S to obtain these values. The latter can also be
validated against the ground truth DBC file, but this is omitted from
our evaluation.

To a greater extent, we are interested in comparing the matched
signal positions from before against the ground truth in order to
determine the accuracy of our algorithm in Phase 1. For this classi-
fication task, we define a confusion matrix as shown in Table 1.

3.3 Phase 2: Body-related Data

Phase 2 consists of a three-stage filtering process performed on snip-
pets of CAN data recorded while performing body-related events.
These events R, e € E are listed in Table 10.

A reference snippet Ry was recorded while the vehicle’s en-
gine/ignition was off, but with accessory power on. A reference
state, used later in the filtering process, was generated using this
snippet. In this section, we will describe how to generate the refer-
ence state from Ry.

In Eq. (3), we first count the number of bit-flips (BFC;) in con-
secutive messages mp, ; j € idy for that particular CAN ID (idy,) in
each of its 64 bit-positions j € [0, 63]:

lidn|-1
BFCpj= > 1,Vj€[0,63]andif my i # mni-1;. (3)
i=0

Then, we define the bit-flip array (BFAj, ;) for a particular CAN
ID (idy,) in each of its bit positions:

BFA, ; = DLcm 4

"= @

Finally, we define the bit-flip rate (BFR;) of a CAN ID (id,) as:
23, BFAp,j

BFR, = —/— . 5

we ©)

Note that the above bit-flip rate BFR, is different from the one
defined in Phase 0. The reference state contains a mapping of CAN
IDs idy, to message payloads that have a bit-flip rate lower than,
or equal to a threshold T2 0 (BFR, < Tpa,0), since messages that
change less frequently are more likely to be constant or alternat-
ing between a few constant states. Messages that change more
frequently, as evidenced by BFR,, > Tpy,0, are less likely to be as-
sociated with a single body-related event, especially because the
reference snippet Ry was recorded without any human interaction
in the vehicle that could have triggered body events.

Fig. 7 depicts an example of the filtering process in Phase 2. The
event snippet is shown in the TRACE section and the generated
reference state is shown in the REFERENCE section.

After generating the reference state, each event snippet R, was
filtered through three separate stages, each designed to indepen-
dently identify potential candidate CAN IDs. The order of these
filtering stages was set based upon extensive evaluation to achieve

STAGE 1: Constant Messages
STAGE 2: Reference Messages

TRACE STAGE 3: train Messages

PAYLOAD FILTERED IN
00.000 700 1111111100000000 STAGE 3
00.001 100 0000000000000000 CANDIDATE
00.002 300 000002000E20BE20 STAGE 1
00.004 900 FFFFFFFFFFFFFFFF CANDIDATE
00.008 300 000002000E20BE20 STAGE 1
00.009 300 000002000E20BE20 STAGE 1
00.011 600 000000024CBO16EA STAGE 2
00.015 800 00000000075BCD15 CANDIDATE
00.016 500 0000000000000000 STAGE 3
00.018 400 056089000A00A000 STAGE 2
00.020 200 0000000000000000 CANDIDATE

REFERENCE POWERTRAIN

ID PAYLOAD ID CORRELATION SCORE
100 0000A00A000BC300 | (100 .7433

200 0070070070070070 | (200
300 00000000075BCD15 | (300
400 056089000A00A000 | |400
500 0012300AE0030000 | (500
600 000000024CBO16GEA | (600
700 1000000001100001 | (700
800 00000000000000FF | (800
900 0F0OB9900OAQAOFOE | |900

[SESHSNSHSNSESESRS]
(=)
(<]
0o
N

Figure 7: Phase 2 Filtering Example

the highest accuracy. Stages 1, 2, and 3 operate under the assump-
tion that body-related events should trigger visible and immediate
changes in the messages broadcast on the CAN bus.

Stage 1: Filtering messages with constant payloads. We as-
sume that body-related events should trigger changes in message
payloads for at least one CAN ID, so we removed all CAN IDs whose
payloads did not change throughout the snippet. As an example,
in Fig. 7, messages with a CAN ID of 300 were filtered out at this
stage because all payloads sent in the event snippet were the same.
Stage 2: Filtering messages present in the reference state. We
removed candidate messages if their CAN IDs and payloads matched
a (CANID, payload) pair found in the reference state. If a candidate’s
payload from the event snippet was identical to the reference state,
when no body-related events occurred, it is highly unlikely this
message was sent due to a change in the state of the vehicle’s body.
This stage can be considered a diff between the reference state
and each event R. In Fig. 7, messages with the (CAN ID, payload)
pairs (400, 056089000A00A000) and (600, 000000024CB016EA) were
filtered out because they were present in the reference state. Fur-
thermore, we found better results obtained by rejecting candidates
whose CAN IDs were not present in the reference state.

Stage 3: Filtering messages which were likely powertrain-
related. To reduce the quantity of remaining candidates, we re-
moved those CAN IDs that were identified as potential candidates
for powertrain-related events in Phase 1. This was possible since
there was little overlap between the events being identified in both
phases. To minimize the removal of candidates that were mistak-
enly classified as powertrain-related in Phase 1, we only removed
CAN IDs if their correlation scores from Phase 1 were higher than

Table 1: Confusion Matrix for Phases 1 and 2

Ground Truth

Positive

Negative

TP

Phase 1: Signals that are correctly identified

t of th d truth
Results from Positive as part of the ground tru

Phases 1 & 2

Phase 2: Candidate CAN IDs that were

FP
Phase 1: Signals that are incorrectly identified
and are not part of the ground truth
Phase 2: Candidate CAN IDs that were incorrectly

correctly identified as being related to an event identified as being related to an event

FN

Phase 1: Signals that are not identified,

Negative but are part of ground truth

Phase 2: CAN IDs that were incorrectly
rejected during the filtering process

TN
Phase 1: Signals that are not identified,
but are also not part of ground truth
Phase 2: CAN IDs that were correctly
identified as not being related to an event

a threshold (Tp2,3). The correlation scores for each CAN ID in the
example in Fig. 7 can be observed in the section POWERTRAIN. In
such a situation, messages were filtered out at this stage if their
correlation scores were greater than 0.80.

Finally, those messages that were not filtered out are considered
the candidates for that particular event snippet. In Fig. 7, the (CAN
ID, payload) pairs that were not filtered out are labeled CANDIDATE
in the TRACE section. Eventually, we need to compare the results
obtained from our intelligent filtering algorithm against the ground
truth. As in Phase 1, a ground truth needs to be created from manual
inspection of the DBC files for each test vehicle — a confusion matrix
is defined for this classification task in Table 1.

4 EVALUATION
4.1 Data Collection

Four vehicles are used for our evaluation, all from the same OEM:
Vehicle A is a 2017 luxury mid-size sedan, Vehicle B is a 2018
compact crossover SUV, Vehicle C is a full-size crossover SUV while
Vehicle D is a full-size pickup truck. We have acquired DBC files
for all four vehicles and used them as the ground truths against
which to compare the results of LibreCAN. Vehicles A, C and D have
at least two HS-CAN buses, both of which are routed out to the
OBD-II connector, whereas Vehicle B has at least one HS-CAN and
one MS-CAN, with only the former being accessible via OBD-IL

We collected two types of data: Free driving data for an hour
with each vehicle (for Phase 1) as well as event data for reverse-
engineering body-related events (for Phase 2). For the former, data
was collected through the OBD-II port with two devices: an ELM327
dongle and an OpenXC dongle. A Y-cable was used to allow both
devices to connect to the port at the same time, allowing us to
gather raw CAN data via the OpenXC dongle, while simultaneously
gathering OBD-II data and smartphone data via the ELM327 dongle.
The recorded CAN dump consists of raw JSON data with CAN
message metadata such as the CAN ID and timestamp, along with
the payload data. We used the Torque Pro Android app to interface
with the ELM327 dongle via Bluetooth. This produced a CSV file
with around 22 signals d € S, containing both OBD-II PIDs V as
well as mobile sensor data P (see Table 9). For Phase 2, we solely
used the OpenXC dongle to record raw CAN data.

4.2 Accuracy and Coverage

In the previous subsection, we introduced several parameters for
each phase x that are denoted as Ty, y, where y is an incremental
number. Besides tuning these parameters to achieve the highest
accuracy, another design goal is to find a set of parameters for each
vehicle — henceforth called parameter configuration — that does not
significantly differ from the configuration of other vehicles. In a real-
world use-case of LibreCAN, DBC files are not available, and thus
the parameters cannot be tuned to achieve optimal performance. So,
we would like to show the existence of a universal configuration
that can achieve good performance on any vehicle without any
prior knowledge of its architecture or DBC structure.

Phase 0: Signal Bounds Accuracy and Reverse-Engineering
Coverage. To evaluate how well our implementation and enhance-
ments to the READ algorithm’s extracted signal boundaries, we
compared the boundaries produced by Phase 0 with the ground
truth boundaries extracted from the DBC files for both vehicles. To
find the optimal values of the four parameters defined in Section 3.1,
we performed a brute-force search through all possible combina-
tions as depicted in Table 3. For Phase 0, we defined optimal as
the total number of correctly extracted signals (CE). We sorted all
parameter configurations in a descending list by this metric. For
the maximum number of CE, we manually inspected these con-
figurations among all four vehicles for similarity and selected the
configurations with the smallest distance to each other. As shown
in the first four columns of Table 3, the numbers of each 4-tuple
configuration are very close to each other.

The results of the run with the optimal parameters for Phase 0 are
summarized in Table 2. It shows the number of correctly extracted
signals (CE) that we optimized our parameter configurations for,
the number of total extracted signals (TE) and the total number of
signals in the DBC files (TDBC). Note that Vehicle B has a lower
number of TDBC since we can only reverse-engineer one CAN bus
(the second one is not available through the OBD-II port). We define
two ratios: CE/TE and TE/TDBC. The latter can be defined as reverse-
engineering coverage. LibreCANcan always extract more than half
of the available signals, with varying success for the number of
correctly extracted signals. There are multiple reasons for these
less than desirable numbers.

Table 2: Phase 0 Evaluation Metrics

Veh Exiracted Exracted inppc CE/ TE/
(CE) (TE) (TDBC)

Veh A 308 846 1640 36.4% 51.6%

VehB 95 453 829 21.0% 54.6%

Veh C 208 698 1236 29.8% 56.5%

VehD 251 828 1327 30.3% 62.4%

First, not all signals can be triggered in the recordings. Although
we use both free driving and event data for signal extraction in
Phase 0, it is impossible to capture everything, e.g., deployed airbags
or emergency call signals. Since all our evaluation vehicles were
newer with several features and also not the highest trim level
for that particular model, the number of functionalities and thus
signals is relatively higher than an older vehicle. This explains the
TE/TDBC ratio. Second, it is not always possible to match the exact
signal boundaries to the ground truth DBC file. For instance, the
engine speed (RPM) range can go up to 8000 RPM in most vehicles.
Under normal driving conditions with an automatic transmission,
the vehicle will shift to the next gear in the range of 2000-3000
RPM. As a result, we will miss the most significant bits of that
particular signals. The same applies to another physical signals,
such as vehicle speed or engine coolant temperature. This will
intrinsically result in a low CE/TE ratio.

As a result, the aforementioned ratio in Table 2 should not be
used to draw conclusions about the performance of LibreCAN since
the signals inspected in Phases 1 and 2 yield high accuracy numbers.

Table 3: Optimal Parameters in LibreCAN

Tpo,0 Tpo,1 Tpoz Tpos Tp1 Tpzo Tpzs
[0,64] [0.64] [0,1] [0,64] [0.1] [0,1] [2,1]

Veh.A 0 3 002 2 0.05 0.03 0.70
Veh.B 2 3 001 2 0.07 0.03 0.70
Veh.C 0 4 001 2 0.05 0.03 0.55
Veh.D 2 3 001 2 0.06 0.02 0.60

Phase 1: Correlation Accuracy. We analyzed the accuracy of
Phase 1 both independently from Phase 0 (using correct signal
boundaries from the DBC files) in order to avoid possible error
propagation, as well as with the extracted signal boundaries from
Phase 0.

Using the terminology from the confusion matrix in Table 1, we
defined the following metrics to assess for Phase 1:

- TP+TN
® Accuracy = 1p N+ P T FN

e Precision = TP+ TP

_ TP
e Recall = TP+ TN

In Phase 1, we introduced one parameter that can be tuned
to achieve the best performance. This parameter is the threshold
Tp1 to define the cut-off point, defined previously in Sec. 3.2. One
mechanism to define the optimal value for Tj is via the Receiver
Operating Characteristic (ROC) curve. Since we have an unbalanced
ground truth (e.g., the speed contains more CAN signals r than
altitude), a Precision-Recall (PR) curve is a better option. Fig. 8 shows
the PR curve for both vehicles. Each data point depicts a value of
Tp1 € [0, 1].

1.0
—A— Vehicle A
—e— Vehicle B
—»— Vehicle C
0.8 —&— Vehicle D
0.6 1
c
2
L A (N e SRR SO yusipoey U PR
o]
<
a
0.4 1
0.2
0.0 T T T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 8: Precision-Recall Curve for Phase 1

The closest data point to the upper right corner delivers the
optimal threshold Ty for the best performance. The PR curve de-
picted in Fig. 8 does not have an ideal shape for Vehicles A, B and
C because the recall value never exceeds 0.55. According to the
above definition of recall, this means that the True Positives (TP)
are always smaller than the number of False Negatives (FN), i.e.,
the ground truth contains CAN signals that can never be found by
our algorithm. Since the ground truth is a subjective interpretation
which we generated by manual inspection of the DBC files, we as-
sume that some CAN signals r are unrelated to the analyzed signal
d. This is a limitation of our work since we could not receive the
OEM'’s help in interpreting the DBC files. Some examples where we
encountered this phenomenon are the z-component of accelerome-
ter, altitude and bearing (all from phone). The former two can be
explained by the fact that all our driving took place in a relatively
flat area without many hills. The latter could be caused by GPS
issues since bearing is collected from the phone’s GPS module.

The first part of Table 4 sums up the precision and recall values
using the optimal threshold T} (see Table 3) obtained from the PR
curve analysis. entering The precision and recall values reflect the
evaluation of Phase 1 with correct bounds in the first line and with
the signal bounds from Phase 0 in the second. The latter values are
shown to be slightly lower for all vehicles, with the exception of
Vehicle C. High precision values mean that most of the identified
signals are part of the ground truth, whereas relatively low recall
values mean that we cannot match the majority of signals defined
in our subjective ground truth due to the high number of FNs, as
mentioned previously.

Table 4: Phases 1 and 2 Evaluation Metrics

Phase 1 Phase2
Prec. Recall Acc. Prec. Recall

. 82.6%/ 44.1%/
Vehicle A 179 41.8% 88.0% 8.9% 58.2%

. 66.7%/ 26.4%/
Vehicle B 611% 25.6% 90.1% 8.5% 46.2%

. 74.4%/ 45.7%/
Vehicle C 78.1% 44.9% 91.5% 11.7% 51.6%

. 79.7%/ 61.8%/
Vehicle D 708% 573% 95.1% 15.0% 47.2%

The anomaly for Vehicle C can be explained as follows: With
more signals available for the run with correct boundaries, Phase 1
over-identifies signals and causes a higher number of false positives
for that specific vehicle. This is certainly possible.

Phase 2: Candidate Accuracy. The goal of this phase was to
identify CAN IDs that were likely associated with a body-related
event defined in Table 10. To evaluate the results of our algorithm,
we used metrics such as accuracy, precision, and recall. To evaluate
these metrics, we need to revisit the terms from the confusion
matrix in Table 1. Note that this is a coarser-grained analysis than
Phase 1. We assessed how well Phase 2 identified the corresponding
CAN IDs of events, not the signal position within a CAN message.

Our three-stage filtering process uses two input parameters that
were defined in Sec. 3.3: (1) the bit-flip threshold (Tj2,¢), used to
generate the reference state and (2) the powertrain minimum cor-
relation score (T2, 3), used in the powertrain filtering stage.

We ran the collected event traces through Phase 2 for each pa-
rameter configuration, calculating the accuracy, precision, and recall
metrics for each event. Since our goal was to facilitate the identifica-
tion of potential candidate CAN IDs, we preferred those parameters
that resulted in a high FP rate instead of a high FN rate — we wanted
to avoid excluding a potential candidate from consideration. The
optimal parameter values discovered for each vehicle are shown in
the last two columns of Table 3.

The second part of Table 4 summarizes the mean values of our
metrics for all 53 events while Fig. 9 shows the median number of
CAN IDs remaining after each filtering stage (per event), as well as
the total number of ground truth CAN IDs lost over all events at
each filtering stage. As predicted, our accuracy is high since we filter
out most unrelated CAN IDs for each event, whereas our precision
is relatively low. The latter metric indicates the ratio of correct CAN
IDs in the candidate set to the total number of candidates. However,
we do not consider low precision to be an issue. As Fig. 9 shows, we
can reduce the number of CAN IDs after three filtering stages by
more than 10x, despite losing some correct CAN IDs at each stage.

Additionally, some signals for body-related events were not avail-
able on the CAN buses we used for our evaluations. For instance,
the signal for the horn was not available on the CAN bus of any
vehicle we evaluated. We were unable to record data for 7 events
for Vehicle A, 15 events for Vehicle B, 7 events for Vehicle C, and 10

100 4 Hmm Median Number of Unique CAN IDs Per Event (Veh. A)
mmm Total Number of Ground Truth CAN IDs Lost (Veh. A)
I Median Number of Unique CAN IDs Per Event (Veh. B)
Total Number of Ground Truth CAN IDs Lost (Veh. B)
80 Emm Median Number of Unique CAN IDs Per Event (Veh. C)
Total Number of Ground Truth CAN IDs Lost (Veh. C)
8 Emm Median Number of Unique CAN IDs Per Event (Veh. D)
= Total Number of Ground Truth CAN IDs Lost (Veh. D)
< 60
o
k]
@
Qo
g 40 1
z
201

Powertrain

Reference
Stage

Raw Constant

Figure 9: Filtering out CAN IDs in each stage

events for Vehicle D. However, 10 of the events we were not able to
record for Vehicle B were on the MS-CAN that was not accessible
through the OBD-II port. We opted to not remove those events from
our evaluation since it is likely that CAN data recorded on another
vehicle would yield similar results.

4.3 Manual Effort

An important metric for demonstrating the feasibility of LibreCAN
is the level of automation available, compared with the amount of
manual effort required on the part of the user. Although all three
phases in the system can run and generate results without human
intervention, there is still manual effort required to collect input
traces. The goal of LibreCAN is to enable every user to reverse-
engineer the CAN message format of their vehicle with as little
effort as possible. Hence, we want to assess how much data has to
be collected for Phase 1 to yield a reasonable precision and how
long it takes to record all 53 of the events used in Phase 2.

Phase 1. The recorded traces of all evaluation vehicles were around
60 minutes long. The precision reported in Sec. 4.2 reflects the entire
re-sampled trace. We wanted to see how a shorter recording would
affect this metric. We re-ran Phase 1 with signals obtained in Phase
0, with 25%, 50% and 75% of the trace length. In order to avoid
a bias towards more city or highway driving, we calculated the
precision for overlapping segments of this trace. For instance, to
analyze recordings of only half the length of the original trace, we
would use evaluate the following segments of the trace: (1) the first
half of the trace, (2) the slice of the trace between the first and last
quarters of its length, and (3) the last half The mean results of these
evaluations are plotted in Fig. 10.

A reduction in trace length results in a slight precision drop for
all vehicles except Vehicle B. The latter exhibits different behavior
because a significantly higher number of signals were extracted
with its 100% trace compared to the one in other vehicles — since
a greater number of signals were extracted in Phase 0, a greater
number signals were processed in Phase 1. Both the 75% and 100%
traces for this vehicle yielded the same number of correct signals

751

Precision (in %)
[=)] ~
w o
L !

o
o
L

—&— Vehicle A
—&— Vehicle B
—*— Vehicle C
—&— Vehicle D

55

30 40 50 60 70 80 90 100
Trace Length (in %)

Figure 10: Precision of Phase 1 with varying trace lengths

(our design goal in Phase 0), but the 100% trace resulted in more
signals being processed (due to a higher number of total extracted
signals), which increased the number of false positives and thus
decreased the precision. In order to achieve at least 65% precision,
we recommend using a trace covering 30 minutes or more.

Phase 2. In order to assess the time required to record all 53 events
listed in Table 10, we conducted a human-study experiment, for
which we obtained an IRB approval (Registration No. IRB00000245).
For this purpose, we developed an Android app that ran on top of
CarLab [44]. The participant was required to interact with this app,
which loops through all 53 events, displaying them one at a time on
the screen. A timer begins with the start of recording for the first
event and the participant, seated in the driver’s seat, is instructed
to perform each event and then click the Next Event button. The
timer stops after the last event has been performed. During the
experiment, a member of the study team sat in the passenger seat
and evaluated participant’s performance of the events, namely if
one was performed incorrectly or skipped.

A total of ten people participated in this experiment. They were
instructed on how to operate the app and were not allowed to ask
questions once the experiment began. After completing all events,
the team member recorded how long the participants took and
asked them how familiar they were with the test vehicle (Vehicle
A) on a scale from 1 to 5, with 5 being the most familiar. Fig. 11
(a) summarizes the correlation between the level of experience
with the time span. Note that the completion time was not affected
much by the experience level, except for one totally inexperienced
(1/5) and one very experienced (5/5) participant. Specifically, for
users with experience levels ranging from 2 to 4, the median of
their completion time varies between 9.0 to 10.4 minutes. Fig. 11
(b) shows the key behavioral metrics (i.e., number of mistakes and
skips) of all participants. The median numbers of mistakes and skips
are 3.5 and 1, respectively. As a result, drivers of different experience
levels are capable of performing all 53 events with the median rates
of error and skip at 6.6% (=3.5/53) and 1.9%, respectively.

In conclusion, we estimate that a 30 minute drive for Phase 1
and a 10 minute experiment session for Phase 2 are sufficient to

> ® o N
— =

Number of occurrences
IN

1]
T
S
}7
[T F

1 2 3 4 5 Mistakes Skips
Experience Metrics

(a) Experience-time correlation (b) Key metrics

Figure 11: Results in user-study experiment

produce good results. These numbers are feasible for an otherwise
completely automated CAN reverse-engineering framework, espe-
cially given the time that manual reverse-engineering would likely
take. The latter can take from days to weeks, given the detail and
precision of the reverse-engineering needed. Although no explicit
times are reported for manual reverse-engineering, tutorials [48]
imply significant effort is required. However, researchers from the
well-known Jeep hack [42] provide a reference in their paper: "(...)
we spent an entire year figuring out which messages to send for
the Ford and Toyota (...)". Although they very likely did not spend
that entire time frame for reverse engineering of CAN messages, it
shows that is not a trivial process and takes a lot of experimenting
to find the correct payload for their CAN injection attack.

4.4 Computation Time

Having discussed the manual effort required to use LibreCAN, we
analyze the computation time of all three phases individually.

All experiments were conducted using Python 3 on a computer
running 64-bit Ubuntu 16.04. This computer featured 128 GB of
registered ECC DDR4 RAM and two Intel Xeon E5-2683 V4 CPUs
(2.1 GHz with 16 cores/32 threads each). Phase 0 utilizes all available
computational resources (64 threads), whereas Phase 1 uses one
thread per signal d plus one main thread (23 threads). Meanwhile,
the computationally inexpensive Phase 2 runs in a single thread.

Table 5 reports the time required for all computation steps. Note
that these values have been generated for a run with the optimal
parameter configuration. The total runtimes include operations
that finished in less than one second, which are listed as completing
in 0 seconds in Table 5.

The entire three phase automated process takes 79 seconds for
Vehicle A, 74 seconds for Vehicle B, 70 seconds for Vehicle C and 72
seconds for Vehicle D. All vehicles have a similar computation time,
indicating that LibreCANis highly efficient in reverse-engineering
a vehicle’s CAN bus (slightly more than 1 minute) with only a small
amount of manual effort (around 40 minutes).

4.5 Testing on Generic Parameters

As mentioned before, LibreCAN was designed to achieve a good
performance with a universal set of parameters in all three phases.
In order to show that anyone can achieve a comparable performance
as reported in the previous subsections without a priori knowledge

Table 5: Summary of computation time in each phase and
stage (units are in seconds)

Phases Stages VehA VehB VehC VehD

Parse Raw

CAN File 1 12 ? ?
Split Trace 2 2 2 2
Phase
0 Remove Un-
used Columns 0 0 0 0
Extract Signals 4 9 5 5
M
‘ove Small 0 0 0 0
Files
Total 17 23 16 16
Run Correlate 40 30 36 40
Phase Calculate Scale 17 18 16 13
1 and Offset
Total 57 48 52 53
Create Ref.
State 0 0 0 0
Phase Filter Constant ") 9 5
2 Messages
Compare to 0 0 0 0
Ref. State
Filter Power-
train Related 0 0 0 0
Messages
Total 5 3 2 3
Libre
CAN Total 79 74 70 72

of the parameters, we would like to introduce an accuracy analysis
similar to the one in Sec. 4.2. Since one of our design goals was to
select similar parameters among the four evaluation vehicles, we
can now pick any configuration of these four vehicles for testing.
We evaluated all four vehicles on parameters Tpo,0 = 2, Tpo,1 = 3,
TpO,Z =0.01, Tpo,g =2, Tpl,O =0.05, Tpgyo =0.03, and Tp2’4 =0.70.
The results are summarized in Table 6. A comparison with the
optimal results for each vehicle in Table 4 shows that they are
relatively similar. Through our design goals as well as exhaustive
evaluation on four vehicles, we found a parameter configuration
that can produce favorable results for any testing vehicle. This
corroborate the scalability of LibreCAN.

5 DISCUSSION

5.1 Limitations and Improvements

During the evaluation phase, we discovered some limitations of
LibreCAN. First, not all possible values of a kinematic-related sig-
nal will be "exercised" with normal driving behavior. For instance,
RPM values over 3000 are unlikely due to the nature of automatic

Table 6: Phases 1 and 2 Evaluation Metrics for Generic Pa-
rameters

Phase 1 Phase2
Prec. Recall Acc. Prec. Recall

Vehicle A 77.2% 41.8% 88.0% 8.9% 58.2%

Vehicle B 65.9% 22.5% 90.1% 8.5% 46.2%

Vehicle C 78.1% 44.9% 91.5% 11.7% 51.6%

Vehicle D 72.5% 56.2% 94.6% 13.7% 47.2%

transmissions, except in cases of aggressive acceleration. We tried
to compensate for this in Phase 0 by classifying signals as correct
even if we missed 20% of the Most Significant Bits (MSBs).

Second, for Phase 2, not all vehicles may have the 53 events de-
fined in Table 10. We conducted experiments on newer vehicles, but
cannot guarantee that older vehicles will have the same functional-
ities. These events are present on the IVN, but cannot be accessed
via the OBD-II port. A possible solution to this problem would be to
physically tap into the CAN bus by opening compartments. How-
ever, this voids the vehicle’s warranty, and hence is not feasible for
average drivers.

Third, our accuracy evaluations are somewhat subjective (as
discussed earlier) despite their reflection of inputs from multiple
other researchers. The only way to address this subjectivity would
be to involve the vehicle OEMs.

One can also make some improvements to LibreCAN. For in-
stance, a fine-grained analysis could be performed in Phase 2 to
identify the correct regions of the events within a CAN ID. Signal
extraction in Phase 0 could also be enhanced by leveraging the
Data Length Code (DLC) field in the CAN header (see Fig. 1). Fi-
nally, we could construct additional d signals that are not directly
available on SAE J/1979 or mobile phones. For example, steering
wheel angle (SWA) is a popular signal (especially in AVs) that we
could reconstruct using the gyroscope readings from a phone [34].

5.2 Other Use-Cases of LibreCAN

The main use-case of LibreCAN is as a tool for security researchers
or (white-hat) hackers. It can help them lower the car-hacking
barrier and allow vulnerabilities to be exploited faster. Another
potential use-case we envision for LibreCANis as a utility to enable
the development of apps for vehicles, both in industry and academia.

Big data generation and sharing will lead to the monetization of
driving data and create an additional source of revenue for OEMs
and services. According to PwC, by 2022 the connected car space
could grow to $155.9 billion, up from an estimated $52.5 billion in
2017 [50]. OEM-independent, universal access to data by third-party
service providers can make the latter a major player in automotive
data monetization. Third-parties already offer OBD-II dongles that
can access the in-vehicular network and obtain publicly available
data (OBD-II PIDs [13]). In particular, usage-based insurance (UBI)
companies [4, 5, 8, 11] are known to distribute dongles to track
driving behavior, allowing them to adjust insurance premiums.
As mentioned previously, CAN data contains richer information

than OBD-II PIDs and can be leveraged to build more powerful
third-party apps. This also encompasses academic research, which
usually has limited knowledge about vehicular data collection.

5.3 Countermeasures

Our point of entry to vehicles was the OBD-II port. Although we
only read data from this port (OBD-II and raw CAN data), it is
possible to inject CAN data into the vehicle via this port, as shown
by [33, 40, 42]. A very simple and intuitive, but also powerful,
solution to this attack would be to implement access control into
the vehicular gateway that the OBD-II port attaches to (see Fig. 3).

Recently, there have been efforts to secure IVNs from outside
attacks. For instance, the Society of Automotive Engineers (SAE)
is planning to harden the OBD-II port [12]. In the corresponding
SAE standard [10], data access via OBD-II (SAE J/1979) and Uni-
fied Diagnostic Services (ISO 14229-1) is categorized as intrusive
and non-intrusive, respectively. Nevertheless, this standard does
not classify how intrusive the actions of reading data via OBD-II
(Service 0x01 of J1979) or reading raw CAN data are.

In any case, these changes are only possible with an improved
vehicular gateway. This topic has been discussed since 2015 [26],
when coverage of car hacking by news outlets increased signifi-
cantly [9]. [7] also suggests enhancing existing gateway designs by
adding additional security measures, such as a firewall. The afore-
mentioned SAE standard [10] even hints that some OEMs might
want to continue without a gateway at all, primarily due to cost.

Finally, we want to point out existing academic work in this
area. Automotive gateways have many advantages for vehicle cy-
bersecurity as summarized in [36, 47]. In addition to traditional
functions such as routing, gateways can also be used for secure
CAN or Automotive Ethernet communications through the use of
authenticated ECUs [28, 36] or via access control/firewalls 35, 45].

6 RELATED WORK

6.1 Manual CAN Reverse Engineering

[21] extracted CAN messages using the OBD-II port, interpreted
those messages by examining how different bytes changed over
time given different actions being performed on/by the vehicle, and
then replayed these messages to manipulate their corresponding
functions. However, the experiment they performed is limited be-
cause it requires prior knowledge of the implementation details of
the vehicle — the paper mentions in several places that it is impor-
tant to have an understanding the specific car being hacked. They
also discuss the proprietary nature of the CAN bus and in-vehicle
E/E architecture, meaning that there could be differing numbers or
locations of CAN buses across different vehicle models, and thus
the functions of each bus could be split up differently. In order to
gain knowledge about the car they evaluated, they purchased a sub-
scription to an online data service that provided this information.

Other automotive attacks, such as [40, 42], require that the E/E
architecture be analyzed and that the CAN message format be
manually reverse-engineered before data can be injected. This is a
tedious process that can require days to weeks to reverse-engineer
a targeted portion of CAN data and is not scalable to other vehicles.

Additionally, several tools exist that can help manually reverse-
engineer CAN data. For instance, [23] demonstrates how Wireshark

can be leveraged to capture CAN traffic and visualize changing bits
in real time when an event is executed, as in our Phase 2.

6.2 Automating CAN Reverse-Engineering

[38] built an anomaly detection system to split CAN messages into
different fields/signals without prior knowledge of the message
format. Their classifier identified the boundaries and types of the
fields (Constant, Multi-Value, or Counter/Sensor).

READ [37] proposed an algorithm to split synthetic and recorded
CAN messages into signals, comparable to Stages 1 and 3 of our
Phase 0. They present methods to isolate counters and CRCs, with
all other values marked as physical signals, the type of signal we
seek to evaluate in Phase 1 of LibreCAN. Although they reported
high precision values (see Table 7), it is important to note that
their experiments were conducted on an older vehicle (confirmed
by e-mail to the authors), with less signals available in its DBC.
Along with LibreCAN, we report the best results of READ in the
aforementioned table.

ACTT [51] proposes a simple algorithm to extract signals from
CAN messages and label them using OBD-II PIDs. Their signal
extraction only considers signals that do not consist of contiguous
sets of constant bits. Furthermore, they do not distinguish between
signal types as we did. The authors find that roughly 70% of the
CAN traffic consists of constant bits (comparable to constant signals
in LibreCAN), matching only 16.8% of the present bits to OBD-II
PIDs. The paper also lacks an extensive evaluation, only showing
some examples of matched signals. Furthermore, they evaluated
their framework on an older vehicle from 2008 such as READ.

7 CONCLUSION

In this paper, we propose LibreCAN, an automated CAN bus reverse
engineering framework. To the best of our knowledge, this is the
first complete tool to reverse-engineer both kinematic- and body-
related data. LibreCAN has been tested extensively on four real
vehicles, showing similarly good results on all of them. It consists of
three phases: extracting signals from raw CAN recordings, finding
kinematic signals, and reducing body events to a minimal candidate
set by 10x. Besides the very high accuracy of the novel Phase 2, we
demonstrated that Phase 1 can achieve better precision than prior
related work.

In addition to achieving considerably good accuracy, LibreCAN re-
duces the tedious manual effort required to reverse-engineer CAN
bus messages to around 40 minutes on average. Since CAN reverse-
engineering is a crucial step in numerous automotive attacks, we
pride ourselves in overcoming the car hacking barrier and high-
lighting the importance of automotive security. The security by
obscurity paradigm that automotive OEMs follow by keeping CAN
translation tables proprietary needs to be overcome and replaced by
more advanced security paradigms. Finally, we also proposed some
countermeasures to mitigate attacks on vehicles if the aforemen-
tioned CAN translation tables are made public through frameworks
such as LibreCAN.

Table 7: Comparison to Related Work

LibreCAN READ [37] ACTT [51]
Phase 0 Phase1 Phase 2 Phase 0 Phase 1 Phase 2 Phase 0 Phase1 Phase 2
Precision (Phase 0 & 1) 50 /0 o560 05.1% 97.1% - - 168% 47.7% -
Accuracy (Phase 2)
ACKNOWLEDGMENTS [26] Equipment and Tool Institute. 2015. The case for a Vehicle Gateway. URL: http:

The work reported in this paper was supported in part by NSF under
Grant CNS-1646130. Assistance from undergraduate researcher
Alice C. Ying is also gratefully acknowledged.

REFERENCES

(1]

[16]

[17]

[18]

[19

[20]

[21

[22]

[24]

[25

[n.d.]. AUTOSAR XML Schema. https://automotive.wiki/index.php/ AUTOSAR _
XML_Schema

[n.d.]. Barometric Formula. https://www.math24.net/barometric-formula/
[n.d.]. Diagnostic Port Index. https://teslamotorsclub.com/tmc/threads/
diagnostic-port-index.98663/
[n.d]. Drivewise - Allstate.
drivewise-device.aspx

[n.d.]. Esurance Insurance Company. https://www.esurance.com/drivesense
[n.d.]. Power vs. Torque. https://x-engineer.org/automotive-engineering/
internal-combustion-engines/performance/power-vs-torque/

[n.d.]. Steps carmakers need to make to secure connected car
data. https://internetofthingsagenda.techtarget.com/blog/IoT- Agenda/
Steps-carmakers-need-to-make-to-secure-connected-car-data

[n.d.]. What is Snapshot and How You Can Save. https://www.progressive.com/
auto/discounts/snapshot/

2018. A Brief History of Car Hacking 2010 to the Present. https://smart.gi-de.
com/2017/08/brief-history-car-hacking-2010-present/

. 2018. Diagnostic Link Connector Security. https://doi.org/10.4271/J3138_201806
2018. Drive Safe & Save™ - State Farm®. https://www.statefarm.com/insurance/
auto/discounts/drive-safe-save

2018. Sharpening the focus on OBD-II security. https://www.sae.org/news/2017/
02/sharpening-the-focus-on-obd-ii-security

2019. OBD-II PIDs. https://en.wikipedia.org/wiki/OBD-II_PIDs

2019. On-board diagnostics. https://en.wikipedia.org/wiki/On-board_
diagnostics#OBD-II_diagnostic_connector

Gabriel Brindusescu. 2015. DARPA Hacked a Chevy Impala
Through Its OnStar System. https://www.autoevolution.com/news/
darpa-hacked-a-chevy-impala-through-its-onstar- system-video-92194.html
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Ta-
dayoshi Kohno, et al. 2011. Comprehensive experimental analyses of automotive
attack surfaces. In Proceedings of the 20th USENIX Security Symposium (USENIX
Security ’11). USENIX, 77-92.

Dongyao Chen, Kyong-Tak Cho, Sihui Han, Zhizhuo Jin, and Kang G Shin. 2015.
Invisible sensing of vehicle steering with smartphones. In Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and Services.
ACM, 1-13.

Kyong-Tak Cho and Kang G Shin. 2016. Fingerprinting electronic control units
for vehicle intrusion detection. In 25¢th { USENIX} Security Symposium ({ USENIX}
Security 16). 911-927.

Clemson Vehicular Electronic Laboratory. [n.d.]. Clemson Vehicular Electronics
Laboratory: Automotive Electronic Systems. https://cecas.clemson.edu/cvel/
auto/systems/auto- systems.html

CSS Electronics. [n.d.]. CAN Bus Explained - A Simple Intro (2019). https:
/[www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en

R Currie. 2017. Hacking the can bus: basic manipulation of a modern automobile
through can bus reverse engineering. SANS Institute (2017).

Ebroecker. [n.d.]. ebroecker/canmatrix. https://github.com/ebroecker/canmatrix/
wiki/signal-Byteorder

CSS Electronics. [n.d.]. ~ CAN Bus Sniffer - Reverse Engineering Ve-
hicle Data (Wireshark). https://www.csselectronics.com/screen/page/
reverse-engineering-can-bus- messages- with- wireshark/language/en

CSS Electronics. [n.d.]. CAN DBC File - Convert Data in Real
Time (Wireshark, J1939). https://www.csselectronics.com/screen/page/
dbc-database-can-bus- conversion-wireshark-j1939-example/language/en

Elm Electronics, Inc. [n.d.]. OBD. https://www.elmelectronics.com/products/
ics/obd/

https://www.allstate.com/drive-wise/

‘<
o)

@
&

[35

[36

(37

(38]

@
20,

[40

[41

[42

[43

[44]

[45

[46

[47

[48

[49

//www.eti-home.org/TT-2015/Presos/ETI-ToolTech_2015_Gateway.pdf.

Arun Ganesan, Jayanthi Rao, and Kang Shin. 2017. Exploiting consistency among
heterogeneous sensors for vehicle anomaly detection. Technical Report. SAE Tech-
nical Paper.

Kyusuk Han, André Weimerskirch, and Kang G Shin. 2014. Automotive cyberse-
curity for in-vehicle communication. In IQT QUARTERLY, Vol. 6. 22-25.
Julietkilo. 2017. julietkilo/ked. https://github.com/julietkilo/ked

Min-Joo Kang and Je-Won Kang. 2016. Intrusion detection system using deep
neural network for in-vehicle network security. PloS one 11, 6 (2016), €0155781.
Kalwinder Kaur. 2019. Accelerator Pedal Position Sensors vs. Throttle Position
Sensors. https://www.azosensors.com/article.aspx?ArticleID=51

Auguste Kerckhoffs. 1883. La cryptographie militaire. Journal des sciences
militaires 9 (1883), 5-38.

Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, et al. 2010. Experimental security analysis of a modern automobile. In
Security and Privacy (SP), 2010 IEEE Symposium on. IEEE, 447-462.

Xinhua Liu, Huafeng Mei, Huachang Lu, Hailan Kuang, and Xiaolin Ma. 2017.
A vehicle steering recognition system based on low-cost smartphone sensors.
Sensors 17, 3 (2017), 633.

Feng Luo and Shuo Hou. 2019. Security Mechanisms Design of Automotive
Gateway Firewall. In WCX SAE World Congress Experience. SAE International.
https://doi.org/10.4271/2019-01-0481

Feng Luo and Qiang Hu. 2018. Security Mechanisms Design for In-Vehicle
Network Gateway. In WCX World Congress Experience. SAE International. https:
//doi.org/10.4271/2018-01-0018

Mirco Marchetti and Dario Stabili. 2019. READ: Reverse Engineering of Automo-
tive Data Frames. IEEE Transactions on Information Forensics and Security 14, 4
(April 2019), 1083-1097. https://doi.org/10.1109/TIFS.2018.2870826

Moti Markovitz and Avishai Wool. 2017. Field classification, modeling and
anomaly detection in unknown CAN bus networks. Vehicular Communications 9
(2017), 43-52.

Kirsten Matheus and Thomas Konigseder. 2017. Automotive ethernet. Cambridge
University Press.

Charlie Miller and Chris Valasek. 2014. Adventures in Automotive Networks and
Control Units.

Charlie Miller and Chris Valasek. 2014. A survey of remote automotive attack
surfaces. black hat USA 2014 (2014), 94.

Charlie Miller and Chris Valasek. 2015. Remote exploitation of an unaltered
passenger vehicle. Black Hat USA 2015 (2015), 91.

Jose Pagliery. 2014. Tesla car doors can be hacked. https://money.cnn.com/2014/
03/31/technology/security/tesla-hack/

Mert D. Pesé, Arun Ganesan, and Kang G. Shin. 2017. CarLab: Framework
for Vehicular Data Collection and Processing. In Proceedings of the 2Nd ACM
International Workshop on Smart, Autonomous, and Connected Vehicular Systems
and Services (CarSys '17). ACM, New York, NY, USA, 43-48. https://doi.org/10.
1145/3131944.3133940

Mert D. Pesé, Karsten Schmidt, and Harald Zweck. 2017. Hardware/Software Co-
Design of an Automotive Embedded Firewall. In WCX™ 17: SAE World Congress
Experience. SAE International. https://doi.org/10.4271/2017-01-1659

PYMNTS. 2018. Who Controls Data In Web-Connected Vehicles? https://www.
pymnts.com/innovation/2018/data- sharing- smart- cars-privacy/

S. Seifert and R. Obermaisser. 2014. Secure automotive gateway — Secure commu-
nication for future cars. In 2014 12th IEEE International Conference on Industrial
Informatics (INDIN). 213-220. https://doi.org/10.1109/INDIN.2014.6945510

Craig Smith. 2016. The car hacker’s handbook: a guide for the penetration tester.
No Starch Press.

Dieter Spaar and Fabian A. Scherschel. 2015. Beemer, Open
Thyself! - Security vulnerabilities in BMW’s ConnectedDrive.

https://www.heise.de/ct/artikel/Beemer-Open-Thyself-Security-vulnerabilities-
in-BMW-s-ConnectedDrive-2540957.html.

https://automotive.wiki/index.php/AUTOSAR_XML_Schema
https://automotive.wiki/index.php/AUTOSAR_XML_Schema
https://www.math24.net/barometric-formula/
https://teslamotorsclub.com/tmc/threads/diagnostic-port-index.98663/
https://teslamotorsclub.com/tmc/threads/diagnostic-port-index.98663/
https://www.allstate.com/drive-wise/drivewise-device.aspx
https://www.allstate.com/drive-wise/drivewise-device.aspx
https://www.esurance.com/drivesense
https://x-engineer.org/automotive-engineering/internal-combustion-engines/performance/power-vs-torque/
https://x-engineer.org/automotive-engineering/internal-combustion-engines/performance/power-vs-torque/
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Steps-carmakers-need-to-make-to-secure-connected-car-data
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Steps-carmakers-need-to-make-to-secure-connected-car-data
https://www.progressive.com/auto/discounts/snapshot/
https://www.progressive.com/auto/discounts/snapshot/
https://smart.gi-de.com/2017/08/brief-history-car-hacking-2010-present/
https://smart.gi-de.com/2017/08/brief-history-car-hacking-2010-present/
https://doi.org/10.4271/J3138_201806
https://www.statefarm.com/insurance/auto/discounts/drive-safe-save
https://www.statefarm.com/insurance/auto/discounts/drive-safe-save
https://www.sae.org/news/2017/02/sharpening-the-focus-on-obd-ii-security
https://www.sae.org/news/2017/02/sharpening-the-focus-on-obd-ii-security
https://en.wikipedia.org/wiki/OBD-II_PIDs
https://en.wikipedia.org/wiki/On-board_diagnostics#OBD-II_diagnostic_connector
https://en.wikipedia.org/wiki/On-board_diagnostics#OBD-II_diagnostic_connector
https://www.autoevolution.com/news/darpa-hacked-a-chevy-impala-through-its-onstar-system-video-92194.html
https://www.autoevolution.com/news/darpa-hacked-a-chevy-impala-through-its-onstar-system-video-92194.html
https://cecas.clemson.edu/cvel/auto/systems/auto-systems.html
https://cecas.clemson.edu/cvel/auto/systems/auto-systems.html
https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en
https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en
https://github.com/ebroecker/canmatrix/wiki/signal-Byteorder
https://github.com/ebroecker/canmatrix/wiki/signal-Byteorder
https://www.csselectronics.com/screen/page/reverse-engineering-can-bus-messages-with-wireshark/language/en
https://www.csselectronics.com/screen/page/reverse-engineering-can-bus-messages-with-wireshark/language/en
https://www.csselectronics.com/screen/page/dbc-database-can-bus-conversion-wireshark-j1939-example/language/en
https://www.csselectronics.com/screen/page/dbc-database-can-bus-conversion-wireshark-j1939-example/language/en
https://www.elmelectronics.com/products/ics/obd/
https://www.elmelectronics.com/products/ics/obd/
http://www.eti-home.org/TT-2015/Presos/ETI-ToolTech_2015_Gateway.pdf
http://www.eti-home.org/TT-2015/Presos/ETI-ToolTech_2015_Gateway.pdf
https://github.com/julietkilo/kcd
https://www.azosensors.com/article.aspx?ArticleID=51
https://doi.org/10.4271/2019-01-0481
https://doi.org/10.4271/2018-01-0018
https://doi.org/10.4271/2018-01-0018
https://doi.org/10.1109/TIFS.2018.2870826
https://money.cnn.com/2014/03/31/technology/security/tesla-hack/
https://money.cnn.com/2014/03/31/technology/security/tesla-hack/
https://doi.org/10.1145/3131944.3133940
https://doi.org/10.1145/3131944.3133940
https://doi.org/10.4271/2017-01-1659
https://www.pymnts.com/innovation/2018/data-sharing-smart-cars-privacy/
https://www.pymnts.com/innovation/2018/data-sharing-smart-cars-privacy/
https://doi.org/10.1109/INDIN.2014.6945510

[50

[51

[52

[53

[54

A

] Tecsynt Solutions. 2018. How to Reach the New Business Niche: Connected
Car App Development Approaches. https://medium.com/swlh/how-to-
reach-the-new-business-niche-connected-car-app-development-approaches-
7e4d3849b4fb.

] Miki E Verma, Robert A Bridges, and Samuel C Hollifield. 2018. ACTT: Au-
tomotive CAN Tokenization and Translation. arXiv preprint arXiv:1811.07897
(2018).

] Armin R Wasicek, Mert D Pesé, André Weimerskirch, Yelizaveta Burakova, and
Karan Singh. 2017. Context-aware intrusion detection in automotive control
systems. In 5th ESCAR USA Conference, USA. 21-22.

] Saheed Wasiu, Rashid Abdul Aziz, and Hanif Akmal. 2018. Effects of Pressure
Boost on the Performance Characteristics of the Direct Injection Spark Ignition
Engine Fuelled by Gasoline at Various Throttle Positions. International Journal
of Applied Engineering Research 13, 1 (2018), 691-696.

] Werner Zimmermann and Ralf Schmidgall. 2006. Bussysteme in der Fahrzeugtech-
nik. Springer.

VEHICULAR SIGNALS

Table 8 depicts an overview of frequently installed ECUs in newer
vehicles. It also includes physical signals that each ECU might
generate.

In the following, we present a full list of physical relationships

between certain elements in set S:

e Torque (7) and engine speed (rpm) share a linear relationship
for engine speeds lower than 2000-3000 RPM, as can be
extracted from torque curves [6]. Since the engine speed is
lower than the aforementioned threshold during almost the
entire drive, we can assume that and rpm are proportional
to each other:

T & rpm. 6)

Engine load (loadengine) can be calculated as the fraction
of actual engine output torque (7) to the maximum engine
output torque (Tenging’max):

loadengine o 7. (7)

e For engine speed values up to approximately 2000 RPM,

torque (7) and pressure boost (pp0s) are linearly related [53].

Furthermore, for boosted engines, such as in vehicles with
turbochargers (all of our evaluation vehicles except Vehicle
©), the intake manifold pressure (pmqp) is proportional to
Pboost*

T X Pboost %Pmap- (8)
The electrical circuitry in the Accelerator Pedal Position
(APP) and Throttle Position (TPS) sensors is identical [31].
Both sensors are fixed to the throttle body and convert the
position of the throttle pedal to a voltage reading. As a result,
accelerator pedal position (ACC_PED) and throttle position
(THR_POS) are highly related:

ACC_PED « THR_POS.)

e The centripetal acceleration (ay) is proportional to the prod-
uct of yaw rate and vehicle speed:

ay x wzv. (10)

e The barometric pressure reading (p) obtained from phone
sensors does not only change with the weather, but is also a
function of the altitude (k) [2]. Via the barometric formula:

px e khM (11)

In this equation, k is a constant and M the molar mass of dry
air. Despite having an exponential curve, for small altitude

Table 8: Overview of common ECUs with respective signals

ECU Signals

Pedal Position

Throttle Position
Engine Oil Temperature
Fuel Level

Oil Pressure

Wheel Speeds

Engine Speed

Torque

Coolant Temperature
Engine Load

HVAC
Turn Signals
Lights
Wipers
Body Control Module (BCM) Trunk
Doors
Windows
Mirrors
Remote Keyless Entry

Radio
GPS

Powertrain Control Module (PCM)
— usually combination of Engine
Control Module (ECM) and
Transmission Control Module
(TCM)

Telematic Control Unit (TCU)

Cameras (e.g. rear-view)
Radar
LiDAR

Vehicle Speed

Engine Speed

Current Gear

MIL Light
Instrument Cluster (IC) TPMS Light

Odometer

Fuel Level

Engine Temperature

Turn Signals

Advanced Driver Assistant
Systems (ADAS)

Supplemental Restraint Airbag Status
Systems (SRS) Seatbelt Status

Steering Wheel Torque
Electronic Power Steering (EPS) Steering Wheel Position
Wheel Speed

changes, the relationship between p and h is approximately
constant. Furthermore, considering the fact that weather
does not change significantly during data collection, changes
in p can be directly linked to .

B PHASE 1

Table 9 depicts a complete list of all signals in set S that we are
considering for correlation in Phase 1. Table 10 shows all 53 events
that were analyzed for Phase 2.

Table 9:

Complete List of 24 Signals in Set S (Italic Signals are from Set P C S)

o Intake Manifold o Fuel Rail Pressure e Engine RPM o Acceleration e Barometric
Pressure e Engine Coolant o Intake Air Sensor(X axis) Pressure

e Ambient Air Temperature Temperature o Acceleration o Altitude
Temperature e Torque e Engine Load Sensor(Y axis) e Bearing

e Speed e Accelerator Pedal (Absolute) e Acceleration

e Voltage (Control Position D o Absolute Throttle Sensor(Z axis)
Module) e Accelerator Pedal Position B e G(x)

e Turbo Boost & Position E o Fuel Flow Rate o G(y)
Vacuum Gauge * G(z)

Table 10: Complete List of 53 Events

e Lock driver’s side o Close door left o Close window o Headlights off-on o Left turn signal on

e Lock passenger’s back right back e Headlights on-off o Left turn signal
side e Open door right o Turn on heating e Hazard lights on off

e Unlock driver’s back o Incremental fan e Hazard lights off o Right turn signal
side e Close door right speed increase e Windshield on

e Unlock back o Increase wipers once o Right turn signal
passenger’s side e Open driver’s temperature e Windshield off

e Open trunk window incrementally wipers speed 1 e Activate parking

o Close trunk o Close driver’s 65-75F e Windshield brake

e Open driver’s window e Decrease wipers speed 2 o Release parking
door e Open passenger’s temperature e Windshield brake

o Close driver’s window incrementally wipers speed 3 e Open hood
door o Close passenger’s 75-65F e Interior lights all o Close hood

Open passenger’s
door
Close passenger’s

window
Open window left

back

e Incremental fan
speed decrease
e Air circulation

on
Interior lights all
off

Drivers side
mirror left right
up down

door o Close window left button on e Windshield wiper e Passengers side
e Open door left back o Air circulation fluid mirror left right
back e Open window button off up down
right back e Honking horn o Buckle driver
e Unbuckle driver
C PHASE 2

Fig. 12 depicts which CAN IDs have been filtered out at what stage
for each of the 53 events for Vehicle A. Fig. 13, Fig. 14, and Fig. 15
are similar, but for Vehicles B, C, and D, respectively.

I Stage 2: Reference state filtering
I Stage 3: Powertrain filtering

I Raw Event Trace

160

140 - Il Stage 1: Constant message filtering

sdl NvD anbiun

3ONO_ONILLIS_SYIdIM
QIN14 ONILLIS SY3dIM
€-Z_ONILLIS_SYIdIM
Z-T_ONILLIS_SYIdIM
T-0_ONILLIS SHAdIM
94_dN_MOANIM

91 dN_MOANIM

a dN_MOANIM

dN_d MOGNIM

84 NMOQ MOANIM
d NMOd MOGANIM
87 NMOQ MOGNIM
@ NMOQ MOGANIM
dID0TNN

a 0NN

YIAMA IHONENN
N3dO L

35010 L _

LHOIY NO NYNL
1437 NO N¥NL
LHOIY 440 N¥NL
1437 340_NYNL
SL-69_dN dW3L
S9-S/"NMOQ diW3L
139 3IVHE_ONIIYVd
1DV Iivyg ONIYVd
d_dOoYYIN

Q 4O¥dIN

d 01

a0l _

NO SLHOIT INI

440 SLHOIT INI
SNOH_NYOH

N3dO QOOH

350710 QOOH
440-NO_SLHOMNQVaH
NO-340 SLHOINAV3H
NO SQYvZvH

340 SQYYZVH

94 N3dO ¥00a

d N3dO ¥00a

87 N30 ¥00a

a N3do ¥00d

84 35010 ¥00d
4350710 ¥00d

81 35012 ¥00d

@ 350710 ¥00d
Y3AINA IHONE

NO D¥ID ¥IV

440 DYID NIV _

dN @33dS NV OV _
NMOQ @33dS NV4 OV
NO NV OV

Events

CAN IDs Remaining After Each Stage for all 53 Events for Vehicle A

: Number of Unique

Figure 12

I Stage 2: Reference state filtering
Il Stage 3: Powertrain filtering

s Raw Event Trace

I Stage 1: Constant message filtering

80

70 1

o o o
el < m

sal NvD anbiun

3ONO_ONILLIS_S¥3dIM
QIN14 ONILLIS S¥IdIM
€-Z_ONILLIS_SHIdIM
Z-T_ONILLIS_S¥3dIM
T-0_ ONILLIS S¥3diMm
g4_dn_MOANIM

g1 dN MOANIM
a”dn”_MOANIM

dN_d MOQNIM

a4 NMOd MOANIM
d NMOQ MOANIM
81 NMOQ MOANIM
Q_NMOQ MOGNIM
dDOINN
a>DO0INN

"3IAIMA IBIONENN
N3dO L

35010 L _

LHOIY NO NYNL
1437 NO N¥NL
LHOIY 440 N¥NL
1437 340_N¥NL
S£-§9_dN dW3L
S9-G/"NMOQ diW3L
134 3vHE_ONDIYV
1OV e ONDIYVd
d_4oYdIN

aQ HOuYIN

d 3001

a0l

NO SLHOIMT INI

440 SLHOIT INI
SNOH_NYOH

N3dO JOOH

350710 QOOH
440-NO_SLHONAVaH
NO-340 SLHOI1AV3IH
NO SQYVZVH

440 SQUYZVH

g4 N3O ¥00a

d N3dO ¥00a

g7 N3d0 ¥00d
a’N3d0 ¥00d

gy 35010 ¥00d

d 35010 ¥ood

g1 35010 ¥00a
Q735072 ¥00a
Y¥3IANA IDIONE

NO D¥ID ¥IV

440 WD NIV _

dn @33dS Nv4 OV_
NMOQ d33dS Nv4 OV
NO NV4 OV

Events

CAN IDs Remaining After Each Stage for all 53 Events for Vehicle B

: Number of Unique

Figure 13

I Stage 2: Reference state filtering
I Stage 3: Powertrain filtering

I Raw Event Trace

I Stage 1: Constant message filtering

120

100 A

o o o
[e0] ©o <

sal NvD anbiun

3ONO_ONILLIS_SYIdIM
QIN14 ONILLIS SY3dIM
€-Z_ONILLIS_S¥IdIM
Z-T_ONILLIS_SYIdIM
T-0_ONILLIS SHAdIM
94_dN_MOANIM

91 dN_MOANIM

a dN_MOANIM

dN_d MOGNIM

84 NMOQ MOANIM
d NMOQ MOGANIM
81 NMOQ MOGNIM
@ NMOQ MOGANIM
dID0INN

a 0NN

YIAMA IHONENN
N3dO L

35010 L _

LHOIY NO NYNL
1437 NO N¥NL
LHOIY 440 N¥NL
1437 340_NYNL
SL-59_dN dW3L
S9-G/"NMOQ diW3L
134 3IVHE_ONIIEVd
1DV Iiveg DNV
d_dOouYIN

Q 4OoYYIN

d 01

axol _

NO SLHOIT INI

440 SLHOIT NI
SNOH_NYOH

N3dO QOOH

350710 QOOH
440-NO_SLHOMNAVaH
NO-3440 SLHOINAVIH
NO SQYVZVH

440 SQYYZVH

84 N3dO ¥00Q

d N3dO ¥00d

91 N30 ¥00a
a"N3dO ¥00a

84 35010 ¥00d
4735010 ¥00a

81 35012 ¥00d

@ 35010 ¥00a
¥3IAIMA IIONEG

NO D¥ID ¥V

440 DHID NIV _

dN @33dS NV OV _
NMOQ @33dS Nv4 OV
NO Nv4 OV

Events

CAN IDs Remaining After Each Stage for all 53 Events for Vehicle C

: Number of Unique

Figure 14

I Stage 2: Reference state filtering
I Stage 3: Powertrain filtering

s Raw Event Trace

160

140 - I Stage 1: Constant message filtering

sdl NvD anbiun

3ONO_ONILLIS SYIdIM
QIN14 ONILLIS SY3dIM
€-Z_ONILLIS_S¥IdIM
Z-T_ONILLIS_SYIdIM
T-0_ONILLIS SHAdIM
94_dN_MOANIM

91 dN_MOANIM

a dN_MOANIM

dN_d MOGNIM

84 NMOQ MOANIM
d NMOQd MOGANIM
81 NMOQ MOGNIM
a_NMOQ MOGNIM

d 00NN
aD0INN

YIAMA THONENN
N3dO L

35010 L _

LHOIY NO NYNL
1437 NO N¥NL
LHOIY 440 N¥NL
1437 340_NYNL
S-G9 dN dW3L
S9-S/"NMOQ diW3L
13 _3HVYE_ONINYVY
1DV 3ivyg ONIYVd
d_douYIn

Q 4OYYIW

d 01

a0l _

NO SLHOIT LNI

4407 SLHOIT INI
SNOH_NYOH

N3dO QOOH

350710 QOOH
440-NO_SLHOINAVaH
NO-340 SLHOINAV3H
NO SQYvZVH

440 SQYYZVH

84 N3dO ¥00Q

d N3dO ¥00a

87 N3d0 ¥00a

a N3do ¥00d

84 35010 ¥00d
4350710 ¥00d

81 35012 ¥00d

@ 350710 ¥00d
Y3AINA IBHONE

NO D¥ID ¥IV

440 DY NIV _

dN @33dS NV OV _
NMOQ Q33dS NV4 OV
NO Nvi OV

Events

CAN IDs Remaining After Each Stage for all 53 Events for Vehicle D

: Number of Unique

Figure 15

	Abstract
	1 Introduction
	2 Background
	2.1 CAN Primer
	2.2 DBC Files
	2.3 Information Sent on the CAN Bus
	2.4 In-Vehicle Network Architecture

	3 System Design
	3.1 Phase 0: Signal Extraction
	3.2 Phase 1: Kinematic-related Data
	3.3 Phase 2: Body-related Data

	4 Evaluation
	4.1 Data Collection
	4.2 Accuracy and Coverage
	4.3 Manual Effort
	4.4 Computation Time
	4.5 Testing on Generic Parameters

	5 Discussion
	5.1 Limitations and Improvements
	5.2 Other Use-Cases of LibreCAN
	5.3 Countermeasures

	6 Related Work
	6.1 Manual CAN Reverse Engineering
	6.2 Automating CAN Reverse-Engineering

	7 Conclusion
	Acknowledgments
	References
	A Vehicular Signals
	B Phase 1
	C Phase 2

