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ABSTRACT
Modern Connected and Autonomous Vehicles (CAVs) are equipped

with an increasing number of Electronic Control Units (ECUs),

many of which produce large amounts of data. Data is exchanged

between ECUs via an in-vehicle network, with the Controller Area

Network (CAN) bus being the de facto standard in contemporary

vehicles. Furthermore, CAVs have not only physical interfaces but

also increased data connectivity to the Internet via their Telematic

Control Units (TCUs), enabling remote access via mobile devices. It

is also possible to tap into, and read/write data from/to the CAN

bus, as data transmitted on the CAN bus is not encrypted. This

naturally generates concerns about automotive cybersecurity. One

commonality among most vehicular security attacks reported to

date is that they ultimately require write access to the CAN bus.

In order to cause targeted and intentional changes in vehicle be-

havior, malicious CAN injection attacks require knowledge of the

CAN message format. However, since this format is proprietary

to OEMs and can differ even among different models of a single

make of vehicle, one must manually reverse-engineer the CAN

message format of each vehicle they target — a time-consuming

and tedious process that does not scale. To mitigate this difficulty,

we develop LibreCAN, which can translate most CAN messages

with minimal effort. Our extensive evaluation on multiple vehicles

demonstrates LibreCAN’s efficiency in terms of accuracy, coverage,

required manual effort and scalability to any vehicle.
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1 INTRODUCTION
Nearly all functions inside a modern vehicle, even in more tradi-

tionally mechanical domains like the powertrain, are controlled

electronically. Moreover, purely electronic systems have become

more prevalent as the number of sensors present in a vehicle has

increased, particularly given the rise of Advanced Driver Assistance

(ADAS) systems. All of these systems are controlled by Electronic

Control Units (ECUs), embedded microprocessors that interface

between a given system and the rest of the vehicle. Over the last

few years, the number of ECUs inside a vehicle has increased signif-

icantly. Compared to the early 1990s, when few ECUs were present

in a given vehicle, a modern vehicle features more than 40 ECUs (as

of 2015 in Europe) [39]. Meanwhile, premium cars can be equipped

with up to approximately 100 ECUs. These ECUs need to communi-

cate over a unified communications network that is sophisticated

and robust enough to handle all network traffic inside a vehicle,

particularly for time-critical information. To meet this need, Bosch

introduced the Controller Area Network (CAN) technology in 1987,

which has since become the de facto standard in-vehicle network.

According to Frost & Sullivan [46], data security and privacy are

among the most critical drivers and inhibitors of next-generation

mobility services. Automotive cybersecurity is a relatively young

field, with the first major publications appearing in 2010 [16, 33]. In

2015, several attacks were reported, including three major wireless

attacks: an attack on BMW Connected Drive [49], an attack on

GM OnStar [15], and the Tesla Door Attack [43]. Although the

first two attacks received some attention, it was not until Miller

and Valasek’s Jeep attack [42] that automotive cybersecurity was

perceived as a mainstream research and engineering issue. This

attack exploited vulnerabilities in the wireless Telematic Control

Unit (TCU) and In-Vehicle Infotainment (IVI) system to allow for

remote control of a vehicle. In the first-generation of automotive

security research, attacks were mounted through vehicles’ physical

interfaces, e.g., through the OBD-II port or wired interfaces on

the IVI. Meanwhile, remote or “wireless” attacks exploit wireless

interfaces, such as the Bluetooth, Wi-Fi, or cellular connections of

the TCU, as in the aforementioned Jeep attack.

A commonality between wired and wireless attacks is the need to

eventually inject messages onto the CAN bus in order to make the

vehicle act in an undesired or unexpected way. Even in the sophisti-

cated Jeep attack, the researchers had to manually reverse-engineer

portions of the CAN bus protocol in order to gain remote control

over the vehicle, e.g., over its steering control. This is very tedious

and unscalable. Additionally, these attacks can usually only target a

specific model or make of vehicle since message semantics are OEM-

proprietary and can even differ frommodel to model of the same ve-

hicle make. Academic offensive automotive cybersecurity research

suffers greatly from this lack of scalability. Although most defensive

solutions, such as Intrusion Detection Systems (IDSs) [18, 27, 30, 52],
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do not require knowledge of the message semantics of a vehicle,

a straightforward and automated mechanism to reverse-engineer

CAN bus data could greatly accelerate vulnerability research and

allow software patches to be distributed before malicious entities

become aware of vulnerabilities.

The current security through obscurity paradigm pursued by

OEMs attempts to prevent wide-scale automotive attacks by keep-

ing CAN message translation tables, called DBC files, secret (and
therefore placing an additional barrier to vehicle hacking) is out-

dated and infeasible. Vehicles should be secure by design and not by
choice, following Kerckhoffs’s principle [32]. Therefore, automotive

Electrics/Electronics (E/E) architectures and networks should be

resilient against CAN injection attacks originating from external

sources, e.g., by firewalling messages from the OBD-II port, and

without making assumptions about the knowledge of an attacker.

In this paper, we propose LibreCAN, a tool to automatically trans-

late most CAN messages with minimal effort. Unlike prior limited

research on automated CAN reverse-engineering, LibreCAN not

only focuses on powertrain-related data available through the pub-

lic OBD-II protocol, but also leverages data from smartphone sen-

sors, and furthermore reverse-engineers body-related CAN data.

To the best of our knowledge, LibreCAN is the first system that

can reverse-engineer a relatively complete CAN communication

matrix for any given vehicle, as well as the full-scale experimental

evaluation of such a system.

This paper is organized as follows. Sec. 2 gives a primer on the

CAN bus, its typical messages and signals, and the interpretability

of CAN data, as well as in-vehicle network architecture. Sec. 3 de-

tails the design of LibreCAN, while Sec. 4 evaluates the accuracy,
coverage, and required manual and computation time for reverse-

engineering CAN messages. Sec. 5 discusses the limitations and

potential other use-cases of LibreCAN, as well as possible counter-
measures. Sec. 6 discusses related efforts in manual and automated

CAN reverse-engineering, while Sec. 7 concludes the paper.

2 BACKGROUND
2.1 CAN Primer
Vehicular sensor data is collected from ECUs located within a ve-

hicle. These ECUs are typically interconnected via an on-board

communication bus, or in-vehicle network (IVN), with the CAN

bus being the most widely-deployed technology in current vehicles.

Fig. 1 depicts the structure of a CAN 2.0A data frame — the most

common data-frame type used on the CAN bus.
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Figure 1: CAN data frame structure

Highlighted with non-white color in this figure are the three

fields that are essential to the understanding of LibreCAN:

• CAN ID: CAN is a multi-master, message-based broadcast

bus. Unlike better-known socket-based communication pro-

tocols like Ethernet, CAN is message-oriented, i.e., CAN

message frames do not contain any information concerning

their source or destination ECUs, but instead each frame

carries a unique message identifier (ID) that represents its

meaning and priority. Lower CAN IDs have higher prior-

ity (e.g., powertrain- vs. body-related information) and will

“win” the distributed arbitration process that occurs when

multiple messages are sent on the CAN bus at the same time.

It is possible for the same ECU to send and/or receive mes-

sages with different CAN IDs. The basic CAN ID in the CAN

2.0A specification is 11 bits long, and thus allows for up to

2048 different CAN IDs.

• DLC: This field specifies the number of bytes in the payload

(data) field of the message. The DLC field is 4 bits long and

can specify a payload length ranging from 0 to 8 bytes.

• Data: This is the payload field of a CAN message containing

the actual message data. It can contain 0–8 bytes of data

depending on the value of the DLC field.

Next, we will describe the structure of the data payload field,

which consists of one or more “signals.” A “signal” is a piece of in-

formation transmitted by an ECU, such as vehicle speed. Messages

transmitted with the same CAN ID usually contain related signals

(within the same domain) so that the destination ECU needs to re-

ceive and process fewer messages. For instance, a message destined

for the Transmission Control Module (TCM) might contain both

the vehicle speed (m/s) and engine speed (RPM) signals in one CAN

message. The length and number of signals vary with CAN ID and

are defined in the aforementioned DBC file for the corresponding

vehicle. This translation file specifies the start position and length

of a signal, allowing it to be easily retrieved from the payload using

a bitmask if the DBC file is available.

Moreover, signals can not only contain physical information, but

also other types of information [37, 38], such as:

• Constants: Values that do not change over time.

• Multi-Values:Values with a domain consisting of only a few

constant values. [38] reported 2–3 changing values within

these types of signals. An example of a 2-value field could

be the status of a specific door (e.g., open or closed).

• Counters: Signals that behave as cyclic counters within a

specific range. These signals could serve as additional syntax

checks or be intended to order longer signal data at the

destination ECU(s).

• Checkcodes: Besides the CRC-15 field at the tail of every

CAN frame, the payload can also contain additional check-

codes, typically as the last signal in the payload.

A contrived example is given in Fig. 2 showingmultiple signals of

different types (physical signals, multi-values, counters, CRCs, etc.)

embedded in the 8-byte payload of a CAN message. For instance,

the orange-colored entity represents a 2-byte physical signal and

the yellow one depicts a 12-bit counter, whereas the blue region is

another 1-byte long physical signal. Several CAN IDs also contain

1-bit signals that are multi-values, i.e., booleans that describe a

body-related event (e.g., door is open/closed). Three status flags

are depicted in byte 7 of this example. The remaining green signal



is a 4-bit checksum. White regions are unused, i.e., no signals are

defined in the DBC file. CAN signals are defined by the OEM and

can thus have arbitrary lengths. Some OEMs also decide not to

include specific signal types. For instance, none of our evaluation

vehicles (all from the same OEM) contain checksums.
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Figure 2: Example of CAN signals

2.2 DBC Files
All recorded CAN data can only be interpreted if one possesses

the translation tables for that particular vehicle. These tables can

come in different formats, as there is no single standard. Examples

are KCF (Kayak [29]) and ARXML (AUTOSAR [1]) files. However,

the most common format used for this purpose is DBC [24], a

standard created by German automotive supplier company Vector

Informatik.

DBC files contain a myriad of information. However, to under-

stand this paper, one must be aware of the following information

stored in these files:

• Message structure by type: CAN ID, Name, DLC, Sender;

• Signals located within messages, containing Name, Start Bit,

Length, Byte Order, Scale, Offset, Minimum/MaximumValue,

Unit, Receiver

The representation of translation data in DBC files can be con-

fusing [22]. CAN data can be represented in either big endian (Mo-

torola) or little endian (Intel) byte-order. The bits can also be num-

bered using either MSB0 (most significant bit first) or LSB0 (least

significant bit first). However, most DBC files use the Intel format

with LSB0 numbering. Therefore, the start bit included in the signal

information does not describe the actual start bit. Since we need to

know the actual signal boundaries, we need to calculate the true

start bit s so that we can, combined with the signal length l , obtain
the signal end bit e:

s = ⌊
s

8

⌋ + 7 − (s % 8),

e = s + l − 1.
(1)

2.3 Information Sent on the CAN Bus
In order to know which data to reverse-engineer, we must first

determine the information commonly available in vehicles. This

depends greatly upon the age and price of the vehicle, and can

drastically differ even among comparable vehicles from different

OEMs. As a result, we must first establish a basic knowledge of

the most frequently deployed ECUs in vehicles and the signals that

they transmit on the CAN bus.

It is difficult to arrive at a deterministic answer to this question

since this information is only located in DBC files, which are pro-

prietary to the OEMs. As a result, reverse-engineering all signals
present in a vehicle is nearly impossible. Thus, our goal is to reverse-

engineer the most common subset of vehicular signals that are of

interest to both security researchers and third-party app developers.

[19] provides an overview of the automotive electronic systems

present in a typical vehicle. After analyzing multiple sources [40–

42], we derived a list of ECUs (Table 8 in Appendix A) typically

present in a vehicle (each of which usually transmits data using

one or more CAN message IDs), along with the signals present in

their respective CAN messages.

Raw CAN data is not encoded in a human-readable format and

does not reflect the actual sensor values. In order to obtain the actual

sensor values, raw CAN data must first be decoded [20]. Letting

rs ,ms , ts , and ds be the raw value, scale, offset, and decoded value

of sensor s , respectively, the actual value can be found with the

following equation:

ds =ms · rs + ts . (2)

2.4 In-Vehicle Network Architecture
There are four major bus systems used in cars: CAN, FlexRay, LIN,

and MOST. MOST is used for multimedia transmission, whereas

the other bus types are mostly used for control tasks, e.g., in the

powertrain domain. Themost widely used In-Vehicle Network (IVN)

architecture is the central gateway architecture. An overview of the

buses and their interconnection within a vehicle is shown in Fig. 3.
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Figure 3: Common automotive E/E architecture (adapted
from [54])

The major point of entry into a vehicle for data collection (and

diagnostics) is the on-board diagnostics (OBD-II) interface. This

connector is mandatory for all vehicles sold in the US after 1996.

Emission-related sensors such as vehicle speed, engine speed,

intake temperature, mass airflow, etc., are universally available in

all vehicles (after 1996) via the standardized OBD-II protocol [13].

Apart from the standardized OBD-II protocol (called SAE J/1979),



this port can also be used to both read and write raw CAN data.

Note that the OBD-II protocol and OBD-II interface are different

and should not be confused.

Electric vehicles (EVs) are not mandated to either have an OBD-

II connector nor support the OBD-II protocol. The latter would

not contain a lot of information anyway due to the lack of me-

chanical powertrain components (the OBD-II protocol provides

emission-related information [13]). Since there is no standard for

EV diagnostics, EV OEMs can use any interface they desire. For

instance, older Tesla Model S and X still carry a traditional OBD-II

port, whereas the newer Model 3 has its proprietary hardware in-

terface [3]. Furthermore, proprietary diagnostic protocols are used

in EVs (instead of SAE J/1979).

OBD-II data cae n be accessed by anyone through aftermarket

dongles [25]. The OBD-II protocol uses the CAN bus at the physical

layer in all newer vehicles. It is a request-response protocol that

sends requests on CAN ID 0x7E0 and obtains responses on 0x7E8.

For instance, to obtain the vehicle speed, a dongle connected to

the OBD-II port sends a CAN message with ID 0x7E0 and payload

0x02010D5555555555. The first byte (0x02) indicates that 2 more

bytes will follow, the second byte (0x01) corresponds to the OBD

mode of getting live data, and 0x0D indicates vehicle speed. Unused

bytes are set to 0x55 (“dummy load”) and ignored. A complete

specification is available in Wikipedia [13].

Note that the OBD-II protocol is public and does not make any

use of DBC files at all. As stated in [13], only certain emission-

related sensors can be read. Body-related signals are not part of the

OBD-II specification. Nevertheless, signals in the aforementioned

specification are still available in the raw CAN protocol. However,

we would still like to locate the CAN IDs and signal positions of

emission-related signals on the CAN bus. For CAN injection attacks,

we need to know this information because the OBD-II protocol does

not allow writing arbitrary values to these sensors.

Since any node can tap into the unencrypted CAN bus and start

broadcasting data without prior authentication, a malicious entity

can gain access to the in-vehicle network by using an OBD-II dongle

as a CAN node and send messages (e.g., through a mobile app). If

the message semantics (i.e., the DBC file(s) or portions thereof)

are known to the attacker because they reverse-engineered the

CAN bus, they can cause the vehicle to misbehave by affecting the

operation of receiver ECUs. This can range from displaying false

information on the instrument cluster [33] to erroneously steering

the vehicle [40]. The latter impacts vehicle safety and, therefore,

poses greater risk. Furthermore, it is also possible to cause certain

ECUs to fail, possibly incurring operational/financial damage to

the vehicle.

Theoretically, it is possible to monitor the traffic on all in-vehicle

buses through the OBD-II interface. In practice, however, not all

buses are mirrored out by the central gateway, which is responsible

for routing CAN messages between buses or domains. This can be

justified as a security countermeasure, but the OBD-II connector

has only 16 pins, with some pins already assigned [14], and thus

only up to three CAN buses can be monitored through the OBD-II

port.

3 SYSTEM DESIGN
Fig. 4 provides an overview of LibreCAN’s system design, which

consists of three phases discussed below. Our system relies upon

the following three sets of signals as input:

• P : The set of IMU sensor data (called “motion sensors” in An-

droid), i.e., 3-dimensional accelerometer and 3-dimensional

gyroscope data collected from the smartphone (via the Torque

Pro app) while recording OBD-II data (V ).

• V : The set of OBD-II data. It consists of all OBD-II PIDs that

the vehicle supports. The sampling rate depends on the used

data collection dongle and vehicle. As a result, we resample

the data to 1 Hz. A full list of OBD-II PIDs can be found

in [13].

• R: The set of raw CAN data that we recorded with the

OpenXC dongle. It includes the entire trace of driving data

broadcasted on the CAN bus and is accessible through the

OBD-II port.

Data from sets P and V are only used in Phase 1. As shown in

Table 9, we have 9 IMU sensors ∈ P and 15 OBD-II PIDs ∈ V that

we are analyzing. As we will see later, OBD-II PIDs only cover less

than 2% of the possible signals that can be reverse-engineered on

each of our evaluation vehicles.

3.1 Phase 0: Signal Extraction
As described in Sec. 2.2, CANmessages can contain multiple signals,

and hence we need to extract the signals associated with each CAN

ID. We built the signal extraction mechanism in this phase on top

of the READ algorithm in [37].

Using the rate at which the value of each bit changes, READ
determines signal boundaries under the assumption that lower-

order bits in a signal will more likely change more frequently than

higher-order bits. READ then labels each extracted signal as either a

counter, a cyclic redundancy check (CRC), or a physical value based

upon other characteristics of the bit-change rate of the particular

signal. Counters are characterized by a decreasing bit-flip rate, with

the latter approximately doubling as the significance of the bit rises.

Meanwhile, CRCs are characterized by a bit-change magnitude of

approximately 0. Physical signals (PHYS) are those that do not fit

into any of the above two categories.

We further defined three special types of physical signals: UNUSED
(all bits set to 0), CONST (all bits constantly set to the same value

across messages, but with at least one bit set to 1), and MULTI (the

value of the signal is from a set of n possible values).

We also modified the mechanism the READ algorithm uses to

determine signal boundaries. The original READ algorithm marks a

signal boundary when the value of ⌈log
10
Bitflip⌉ for a bit decreases

as compared to the previous bit. However, our implementation

of READ instead checks whether the bit-flip rate decreased by a

specific percentage from the previous bit – this value was set via

an input parameter to our algorithm, as discussed below. In this

original implementation, pairs of consecutive bits whose bit-flip

rates change from (>.1 to <.1), (>.01 to <.01), or (>.001 to <.001)

would indicate a signal boundary. However, with ourmodification, a

change in bit-flip rate from 0.9 to 0.2 would only indicate a boundary

with any percentage threshold less than 77%. We found that using
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a percentage decrease allowed us to extract more signals correctly

than the original READ.
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Figure 5: Flowchart of Phase 0 algorithm

A flowchart of the algorithm for this phase is provided in Fig. 5.

The remainder of this subsection provides the details of the different

stages of this algorithm. Stages 0 and 2 are our own enhancements

to the READ algorithm [37].

Pre-Processing Stage: In this stage, we parse a CAN trace in order

to obtain the bit-flip rate of each payload bit. To achieve this, we

count the number of times the value of each bit changes in the

payload of a given CAN ID and then divide this by the number of

messages in the trace with this CAN ID.

Stage 0: This stage separates bits into three bins: UNUSED, CONST,
and POSS (possibly a COUNTER, MULTI, CRC, or physical signal PHYS).
This stage generates the preliminary signal boundaries and labels

for each signal from the above three categories.

To achieve this, we first separate the bits from the previous stage

into two sets: those that change and those that do not. These bits

are then grouped together into signals with preliminary boundaries,

assigning the boundaries based upon where regions of bits that

change transition regions of bits that do not, and vice versa. The

regions of bits that change are assigned the preliminary label of

POSS and are left to be processed later. Meanwhile, the bits that do

not change are processed using Alg. 1. We define two configurable

parameters for the algorithm, namely Tp0,0 and Tp0,1. The former

is the length that a signal must have to be considered an unused

signal. If a signal is shorter than this length, we attempt to append

it to the next signal. This is because we assume that, if there is a

short unused field, it actually contains the MSBs of the adjacent

signal for which we never observed a change in value. For example,

if 8 bits are used to express the speed in MPH, the most significant

bit would not change unless the trace included driving over 128

mph). We use Tp0,1 to determine how long the next signal must be

in order to have bits appended to it in this manner. This is necessary

since it does not make sense to always re-append unchanging bits

as the MSBs of the next signal.

Stage 1: This stage is similar to READ and evaluates all possible

signal boundaries and their bit-flip rates. We iterate from the LSB

of a signal to the MSB of the next adjacent signal, searching for a

decrease in bit-flip rate. However, unlike the READ algorithm, we

are looking for a certain percentage decrease, denoted as Tp0,2. For
example, if Tp0,2 = 10%, we would mark a signal boundary when

the bit-flip rate decreases by greater than 10%. The output of this

phase is an array of boundaries that contains all partitions within

the boundaries of the previously marked POSS signals. This output



Algorithm 1 Stage 0

procedure staдe0(trace_f ile,Tp0,0,Tp0,1)
bits_that_dont_chanдe_label ← []
for l , r ∈ bits_that_dont_chanдe do

if True ∈ chanдes[l : r ] then
bits_that_dont_chanдe_label .append(CONST)
break

else if r − l < Tp0,0 then
reinserted ← f alse
for l_c, r_c ∈ bits_that_chanдe do

if l_c == r + 1and r_c − l_c > Tp0,1 then
l_c ← l
reinserted ← f alse
delete l , c
break

if reinserted == f alse then
bits_that_dont_chanдe_label .append(UNUSED)

contains the final signal boundaries that are used in the rest of our

evaluations.

Stage 2: This stage evaluates all signal boundaries marked POSS and
determines the number of unique values they contain throughout

the trace. To achieve this, we parse through the trace to determine

the number of unique values that each extracted signals from Stage

1 is set to — if this number is less than a pre-determined threshold

(Tp0,3), the signal is not considered in future stages. Any remaining

POSS signals at the end of this stage aremarked as MULTI values. The
output of this phase is a new signal labeling set, now additionally

containing signals labeled as MULTI.
Stage 3: This stage is also similar to the READ algorithm and eval-

uates any values still labeled as POSS to determine if their bit-flip

rates resemble a counter. If this is not the case, we label the signal

as a PHYS value.
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Figure 6: Alignment of phone’s coordinate system (right)
with vehicular coordinate system (left)

Alignment: Phase 0 also encompasses phone alignment. As Fig. 6

shows, the vehicular coordinate system is not necessarily consis-

tent with the phone’s coordinate system, particularly if the user

moves their phone during the data-collection process. Therefore, it

may be necessary to align these coordinate systems using rotation

matrices, as discussed in [17]. In order to avoid this additional step,

we suggest that users pre-align their phone with the vehicular co-

ordinate system by mounting the phone inside their vehicle, e.g.,

in a phone/cup holder. Using the coordinate systems from Fig. 6,

the phone should be located on the center console, with the short

edge parallel to the direction of the vehicle’s motion.

3.2 Phase 1: Kinematic-related Data
The goal of this phase is to match the extracted signals from Phase

0 to openly available OBD-II PIDs (V ), as well as mobile sensor data

(P ). The latter data can easily be collected using a smartphone.

The OBD-II PIDs (V ) and IMU sensors (P ) that we consider from
our data collection with Torque Pro — making up the set S (see

Fig. 4) — are depicted in Table 9. The commonality between these

signals (i.e., V , P , and S) is that they are kinematic- or powertrain-

related, i.e., they are captured while the vehicle is in motion. The

OBD-II protocol was standardized for the purpose of capturing and

diagnosing emissions data, which is powertrain-related. The IMU

sensors capture the movement of the smartphone in the vehicle and

therefore the movement of the vehicle, if the phone is fixed within

the vehicle and properly aligned. These signals are also present on

the CAN bus since this data is generated by and exchanged between

ECUs, with a copy mirrored out to the OBD-II connector.

As mentioned in Eq. (2), CAN signals usually do not encode

an absolute value, but instead a value with a linear relationship

to the latter. As a result, comparing the temporal sequence of a

raw CAN signal from set R and a signal from set S should yield a

high cross-correlation value. Hence, for each signal d ∈ S , we run
normalized cross-correlation (xcorr) with all extracted signals r ∈ R,
which yields a list of cross-correlation values. We then arrange

them in a descending order with respect to the cross-correlation

value. Since multiple CAN signals r can match a signal d (e.g., the

four wheel speeds match the OBD speed), we need to define an

intelligent cut-off point that keeps those relevant signals d with a

high correlation value, but deletes those starting with a correlation

score that deviates significantly from the last signal d that we wish

to remain. For this purpose, we define a threshold Tp1. Alg. 2 de-
scribes how to set the cut-off point. We will experiment with Tp1
in Sec. 4.2 to achieve the best precision and recall for Phase 1.

Algorithm 2 Defining the Cut-Off Point

function Top_X (corr_result ,Tp1)
runninд_sum, runninд_avд, cuto f f ← corr_result[0]
count ← 1

for val ∈ corr_result[1 :] do
if val < (1 −Tp1) · runninд_avд then

break
cuto f f .append(val)
runninд_sum ← runninд_sum +val
count ← count + 1
runninд_avд←

runninд_sum
count

return cuto f f

It is essential to re-sample the two input sets R and S before

running xcorr so that both signals are temporally aligned.

Some of these signals are highly correlated with each other so

that they can be matched to the same CAN signal extracted in

Phase 0. For instance, engine load is a scaled version of the engine

output torque. As a result, while generating our ground truth for

each vehicle, we need to consider these physical relationships and

confirm that they indeed hold during the evaluation of Phase 1.

The reason behind this lies in the xcorr function that we use in



the aforementioned phase. It cannot distinguish between different

physical signals as long as their temporal sequences are similar.

This is a limitation of Phase 1 and is left as part of our future work.

See Appendix A for a complete summary of relationships between

certain elements in set S .
The goal of Phase 1 (apart from finding the correct CAN signal

positions) is to output the scale (ms ) and offset (ts ) of each sensor

(s). We can use linear regression on the matched CAN signals R
and signals from S to obtain these values. The latter can also be

validated against the ground truth DBC file, but this is omitted from

our evaluation.

To a greater extent, we are interested in comparing the matched
signal positions from before against the ground truth in order to

determine the accuracy of our algorithm in Phase 1. For this classi-

fication task, we define a confusion matrix as shown in Table 1.

3.3 Phase 2: Body-related Data
Phase 2 consists of a three-stage filtering process performed on snip-

pets of CAN data recorded while performing body-related events.

These events Re , e ∈ E are listed in Table 10.

A reference snippet R0 was recorded while the vehicle’s en-

gine/ignition was off, but with accessory power on. A reference

state, used later in the filtering process, was generated using this

snippet. In this section, we will describe how to generate the refer-

ence state from R0.
In Eq. (3), we first count the number of bit-flips (BFCj ) in con-

secutive messagesmn,i, j ∈ idn for that particular CAN ID (idn ) in
each of its 64 bit-positions j ∈ [0, 63]:

BFCn, j =

|idn |−1∑
i=0

1,∀j ∈ [0, 63] and ifmn,i, j ,mn,i−1, j . (3)

Then, we define the bit-flip array (BFAn, j ) for a particular CAN
ID (idn ) in each of its bit positions:

BFAn, j =
BFCn, j

|idn |
. (4)

Finally, we define the bit-flip rate (BFRn ) of a CAN ID (idn ) as:

BFRn =

∑
63

j=0 BFAn, j

64

. (5)

Note that the above bit-flip rate BFRn is different from the one

defined in Phase 0. The reference state contains a mapping of CAN

IDs idn to message payloads that have a bit-flip rate lower than,

or equal to a threshold Tp2,0 (BFRn ≤ Tp2,0), since messages that

change less frequently are more likely to be constant or alternat-

ing between a few constant states. Messages that change more

frequently, as evidenced by BFRn > Tp2,0, are less likely to be as-

sociated with a single body-related event, especially because the

reference snippet R0 was recorded without any human interaction

in the vehicle that could have triggered body events.

Fig. 7 depicts an example of the filtering process in Phase 2. The

event snippet is shown in the TRACE section and the generated

reference state is shown in the REFERENCE section.

After generating the reference state, each event snippet Re was

filtered through three separate stages, each designed to indepen-

dently identify potential candidate CAN IDs. The order of these

filtering stages was set based upon extensive evaluation to achieve

Figure 7: Phase 2 Filtering Example

the highest accuracy. Stages 1, 2, and 3 operate under the assump-

tion that body-related events should trigger visible and immediate

changes in the messages broadcast on the CAN bus.

Stage 1: Filtering messages with constant payloads. We as-

sume that body-related events should trigger changes in message

payloads for at least one CAN ID, so we removed all CAN IDs whose

payloads did not change throughout the snippet. As an example,

in Fig. 7, messages with a CAN ID of 300 were filtered out at this

stage because all payloads sent in the event snippet were the same.

Stage 2: Filteringmessages present in the reference state.We

removed candidatemessages if their CAN IDs and payloadsmatched

a (CAN ID, payload) pair found in the reference state. If a candidate’s

payload from the event snippet was identical to the reference state,

when no body-related events occurred, it is highly unlikely this

message was sent due to a change in the state of the vehicle’s body.

This stage can be considered a diff between the reference state

and each event Re . In Fig. 7, messages with the (CAN ID, payload)

pairs (400, 056089000A00A000) and (600, 000000024CB016EA) were

filtered out because they were present in the reference state. Fur-

thermore, we found better results obtained by rejecting candidates

whose CAN IDs were not present in the reference state.

Stage 3: Filtering messages which were likely powertrain-
related. To reduce the quantity of remaining candidates, we re-

moved those CAN IDs that were identified as potential candidates

for powertrain-related events in Phase 1. This was possible since

there was little overlap between the events being identified in both

phases. To minimize the removal of candidates that were mistak-

enly classified as powertrain-related in Phase 1, we only removed

CAN IDs if their correlation scores from Phase 1 were higher than



Table 1: Confusion Matrix for Phases 1 and 2

Ground Truth

Positive Negative

TP FP

Results from
Phases 1 & 2

Positive

Phase 1: Signals that are correctly identified

as part of the ground truth

Phase 2: Candidate CAN IDs that were

correctly identified as being related to an event

Phase 1: Signals that are incorrectly identified

and are not part of the ground truth

Phase 2: Candidate CAN IDs that were incorrectly

identified as being related to an event

FN TN

Negative

Phase 1: Signals that are not identified,

but are part of ground truth

Phase 2: CAN IDs that were incorrectly

rejected during the filtering process

Phase 1: Signals that are not identified,

but are also not part of ground truth

Phase 2: CAN IDs that were correctly

identified as not being related to an event

a threshold (Tp2,3). The correlation scores for each CAN ID in the

example in Fig. 7 can be observed in the section POWERTRAIN. In
such a situation, messages were filtered out at this stage if their

correlation scores were greater than 0.80.

Finally, those messages that were not filtered out are considered

the candidates for that particular event snippet. In Fig. 7, the (CAN

ID, payload) pairs that were not filtered out are labeled CANDIDATE
in the TRACE section. Eventually, we need to compare the results

obtained from our intelligent filtering algorithm against the ground

truth. As in Phase 1, a ground truth needs to be created frommanual

inspection of the DBCfiles for each test vehicle — a confusionmatrix

is defined for this classification task in Table 1.

4 EVALUATION
4.1 Data Collection
Four vehicles are used for our evaluation, all from the same OEM:

Vehicle A is a 2017 luxury mid-size sedan, Vehicle B is a 2018

compact crossover SUV, Vehicle C is a full-size crossover SUV while

Vehicle D is a full-size pickup truck. We have acquired DBC files

for all four vehicles and used them as the ground truths against

which to compare the results of LibreCAN. Vehicles A, C and D have

at least two HS-CAN buses, both of which are routed out to the

OBD-II connector, whereas Vehicle B has at least one HS-CAN and

one MS-CAN, with only the former being accessible via OBD-II.

We collected two types of data: Free driving data for an hour

with each vehicle (for Phase 1) as well as event data for reverse-

engineering body-related events (for Phase 2). For the former, data

was collected through the OBD-II port with two devices: an ELM327

dongle and an OpenXC dongle. A Y-cable was used to allow both

devices to connect to the port at the same time, allowing us to

gather raw CAN data via the OpenXC dongle, while simultaneously

gathering OBD-II data and smartphone data via the ELM327 dongle.

The recorded CAN dump consists of raw JSON data with CAN

message metadata such as the CAN ID and timestamp, along with

the payload data. We used the Torque Pro Android app to interface

with the ELM327 dongle via Bluetooth. This produced a CSV file

with around 22 signals d ∈ S , containing both OBD-II PIDs V as

well as mobile sensor data P (see Table 9). For Phase 2, we solely

used the OpenXC dongle to record raw CAN data.

4.2 Accuracy and Coverage
In the previous subsection, we introduced several parameters for

each phase x that are denoted as Tpx,y , where y is an incremental

number. Besides tuning these parameters to achieve the highest

accuracy, another design goal is to find a set of parameters for each

vehicle — henceforth called parameter configuration— that does not

significantly differ from the configuration of other vehicles. In a real-

world use-case of LibreCAN, DBC files are not available, and thus

the parameters cannot be tuned to achieve optimal performance. So,

we would like to show the existence of a universal configuration

that can achieve good performance on any vehicle without any

prior knowledge of its architecture or DBC structure.

Phase 0: Signal Bounds Accuracy and Reverse-Engineering
Coverage. To evaluate how well our implementation and enhance-

ments to the READ algorithm’s extracted signal boundaries, we

compared the boundaries produced by Phase 0 with the ground

truth boundaries extracted from the DBC files for both vehicles. To

find the optimal values of the four parameters defined in Section 3.1,

we performed a brute-force search through all possible combina-

tions as depicted in Table 3. For Phase 0, we defined optimal as
the total number of correctly extracted signals (CE). We sorted all

parameter configurations in a descending list by this metric. For

the maximum number of CE, we manually inspected these con-

figurations among all four vehicles for similarity and selected the

configurations with the smallest distance to each other. As shown

in the first four columns of Table 3, the numbers of each 4-tuple

configuration are very close to each other.

The results of the runwith the optimal parameters for Phase 0 are

summarized in Table 2. It shows the number of correctly extracted

signals (CE) that we optimized our parameter configurations for,

the number of total extracted signals (TE) and the total number of

signals in the DBC files (TDBC). Note that Vehicle B has a lower

number of TDBC since we can only reverse-engineer one CAN bus

(the second one is not available through the OBD-II port). We define

two ratios: CE/TE and TE/TDBC. The latter can be defined as reverse-
engineering coverage. LibreCANcan always extract more than half

of the available signals, with varying success for the number of

correctly extracted signals. There are multiple reasons for these

less than desirable numbers.



Table 2: Phase 0 Evaluation Metrics

Veh.
Correctly
Extracted
(CE)

Total
Extracted
(TE)

Total
in DBC
(TDBC)

CE /
TE

TE /
TDBC

Veh A 308 846 1640 36.4% 51.6%

Veh B 95 453 829 21.0% 54.6%

Veh C 208 698 1236 29.8% 56.5%

Veh D 251 828 1327 30.3% 62.4%

First, not all signals can be triggered in the recordings. Although

we use both free driving and event data for signal extraction in

Phase 0, it is impossible to capture everything, e.g., deployed airbags

or emergency call signals. Since all our evaluation vehicles were

newer with several features and also not the highest trim level

for that particular model, the number of functionalities and thus

signals is relatively higher than an older vehicle. This explains the

TE/TDBC ratio. Second, it is not always possible to match the exact

signal boundaries to the ground truth DBC file. For instance, the

engine speed (RPM) range can go up to 8000 RPM in most vehicles.

Under normal driving conditions with an automatic transmission,

the vehicle will shift to the next gear in the range of 2000–3000

RPM. As a result, we will miss the most significant bits of that

particular signals. The same applies to another physical signals,

such as vehicle speed or engine coolant temperature. This will

intrinsically result in a low CE/TE ratio.

As a result, the aforementioned ratio in Table 2 should not be

used to draw conclusions about the performance of LibreCAN since
the signals inspected in Phases 1 and 2 yield high accuracy numbers.

Table 3: Optimal Parameters in LibreCAN

Tp0,0 Tp0,1 Tp0,2 Tp0,3 Tp1 Tp2,0 Tp2,3

[0,64] [0,64] [0,1] [0,64] [0,1] [0,.1] [.2,1]

Veh. A 0 3 0.02 2 0.05 0.03 0.70

Veh. B 2 3 0.01 2 0.07 0.03 0.70

Veh. C 0 4 0.01 2 0.05 0.03 0.55

Veh. D 2 3 0.01 2 0.06 0.02 0.60

Phase 1: Correlation Accuracy. We analyzed the accuracy of

Phase 1 both independently from Phase 0 (using correct signal

boundaries from the DBC files) in order to avoid possible error

propagation, as well as with the extracted signal boundaries from

Phase 0.

Using the terminology from the confusion matrix in Table 1, we

defined the following metrics to assess for Phase 1:

• Accuracy = TP + TN

TP + TN + FP + FN

• Precision = TP

TP + FP

• Recall = TP

TP + FN

In Phase 1, we introduced one parameter that can be tuned

to achieve the best performance. This parameter is the threshold

Tp1 to define the cut-off point, defined previously in Sec. 3.2. One

mechanism to define the optimal value for Tp1 is via the Receiver
Operating Characteristic (ROC) curve. Since we have an unbalanced

ground truth (e.g., the speed contains more CAN signals r than

altitude), a Precision-Recall (PR) curve is a better option. Fig. 8 shows
the PR curve for both vehicles. Each data point depicts a value of

Tp1 ∈ [0, 1].
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Figure 8: Precision-Recall Curve for Phase 1

The closest data point to the upper right corner delivers the

optimal threshold Tp1 for the best performance. The PR curve de-

picted in Fig. 8 does not have an ideal shape for Vehicles A, B and

C because the recall value never exceeds 0.55. According to the

above definition of recall, this means that the True Positives (TP)
are always smaller than the number of False Negatives (FN), i.e.,
the ground truth contains CAN signals that can never be found by

our algorithm. Since the ground truth is a subjective interpretation

which we generated by manual inspection of the DBC files, we as-

sume that some CAN signals r are unrelated to the analyzed signal

d . This is a limitation of our work since we could not receive the

OEM’s help in interpreting the DBC files. Some examples where we

encountered this phenomenon are the z-component of accelerome-

ter, altitude and bearing (all from phone). The former two can be

explained by the fact that all our driving took place in a relatively

flat area without many hills. The latter could be caused by GPS

issues since bearing is collected from the phone’s GPS module.

The first part of Table 4 sums up the precision and recall values

using the optimal threshold Tp1 (see Table 3) obtained from the PR

curve analysis. entering The precision and recall values reflect the

evaluation of Phase 1 with correct bounds in the first line and with

the signal bounds from Phase 0 in the second. The latter values are

shown to be slightly lower for all vehicles, with the exception of

Vehicle C. High precision values mean that most of the identified

signals are part of the ground truth, whereas relatively low recall

values mean that we cannot match the majority of signals defined

in our subjective ground truth due to the high number of FNs, as

mentioned previously.



Table 4: Phases 1 and 2 Evaluation Metrics

Phase 1 Phase2

Prec. Recall Acc. Prec. Recall

Vehicle A

82.6%/

77.2%

44.1%/

41.8%

88.0% 8.9% 58.2%

Vehicle B

66.7%/

61.1%

26.4%/

25.6%

90.1% 8.5% 46.2%

Vehicle C

74.4%/

78.1%

45.7%/

44.9%

91.5% 11.7% 51.6%

Vehicle D

79.7%/

70.8%

61.8%/

57.3%

95.1% 15.0% 47.2%

The anomaly for Vehicle C can be explained as follows: With

more signals available for the run with correct boundaries, Phase 1

over-identifies signals and causes a higher number of false positives
for that specific vehicle. This is certainly possible.

Phase 2: Candidate Accuracy. The goal of this phase was to

identify CAN IDs that were likely associated with a body-related

event defined in Table 10. To evaluate the results of our algorithm,

we used metrics such as accuracy, precision, and recall. To evaluate

these metrics, we need to revisit the terms from the confusion

matrix in Table 1. Note that this is a coarser-grained analysis than

Phase 1. We assessed how well Phase 2 identified the corresponding

CAN IDs of events, not the signal position within a CAN message.

Our three-stage filtering process uses two input parameters that

were defined in Sec. 3.3: (1) the bit-flip threshold (Tp2,0), used to

generate the reference state and (2) the powertrain minimum cor-

relation score (Tp2,3), used in the powertrain filtering stage.

We ran the collected event traces through Phase 2 for each pa-
rameter configuration, calculating the accuracy, precision, and recall
metrics for each event. Since our goal was to facilitate the identifica-

tion of potential candidate CAN IDs, we preferred those parameters

that resulted in a high FP rate instead of a high FN rate —we wanted

to avoid excluding a potential candidate from consideration. The

optimal parameter values discovered for each vehicle are shown in

the last two columns of Table 3.

The second part of Table 4 summarizes the mean values of our

metrics for all 53 events while Fig. 9 shows the median number of

CAN IDs remaining after each filtering stage (per event), as well as

the total number of ground truth CAN IDs lost over all events at

each filtering stage. As predicted, our accuracy is high since we filter
out most unrelated CAN IDs for each event, whereas our precision
is relatively low. The latter metric indicates the ratio of correct CAN

IDs in the candidate set to the total number of candidates. However,

we do not consider low precision to be an issue. As Fig. 9 shows, we

can reduce the number of CAN IDs after three filtering stages by

more than 10x, despite losing some correct CAN IDs at each stage.

Additionally, some signals for body-related events were not avail-

able on the CAN buses we used for our evaluations. For instance,

the signal for the horn was not available on the CAN bus of any

vehicle we evaluated. We were unable to record data for 7 events

for Vehicle A, 15 events for Vehicle B, 7 events for Vehicle C, and 10
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Figure 9: Filtering out CAN IDs in each stage

events for Vehicle D. However, 10 of the events we were not able to

record for Vehicle B were on the MS-CAN that was not accessible

through the OBD-II port. We opted to not remove those events from

our evaluation since it is likely that CAN data recorded on another

vehicle would yield similar results.

4.3 Manual Effort
An important metric for demonstrating the feasibility of LibreCAN
is the level of automation available, compared with the amount of

manual effort required on the part of the user. Although all three

phases in the system can run and generate results without human

intervention, there is still manual effort required to collect input

traces. The goal of LibreCAN is to enable every user to reverse-

engineer the CAN message format of their vehicle with as little

effort as possible. Hence, we want to assess how much data has to

be collected for Phase 1 to yield a reasonable precision and how

long it takes to record all 53 of the events used in Phase 2.

Phase 1. The recorded traces of all evaluation vehicles were around
60 minutes long. The precision reported in Sec. 4.2 reflects the entire

re-sampled trace. We wanted to see how a shorter recording would

affect this metric. We re-ran Phase 1 with signals obtained in Phase

0, with 25%, 50% and 75% of the trace length. In order to avoid

a bias towards more city or highway driving, we calculated the

precision for overlapping segments of this trace. For instance, to

analyze recordings of only half the length of the original trace, we

would use evaluate the following segments of the trace: (1) the first

half of the trace, (2) the slice of the trace between the first and last

quarters of its length, and (3) the last half The mean results of these

evaluations are plotted in Fig. 10.

A reduction in trace length results in a slight precision drop for

all vehicles except Vehicle B. The latter exhibits different behavior

because a significantly higher number of signals were extracted

with its 100% trace compared to the one in other vehicles — since

a greater number of signals were extracted in Phase 0, a greater

number signals were processed in Phase 1. Both the 75% and 100%

traces for this vehicle yielded the same number of correct signals
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Figure 10: Precision of Phase 1 with varying trace lengths

(our design goal in Phase 0), but the 100% trace resulted in more

signals being processed (due to a higher number of total extracted

signals), which increased the number of false positives and thus

decreased the precision. In order to achieve at least 65% precision,

we recommend using a trace covering 30 minutes or more.

Phase 2. In order to assess the time required to record all 53 events

listed in Table 10, we conducted a human-study experiment, for

which we obtained an IRB approval (Registration No. IRB00000245).

For this purpose, we developed an Android app that ran on top of

CarLab [44]. The participant was required to interact with this app,

which loops through all 53 events, displaying them one at a time on

the screen. A timer begins with the start of recording for the first

event and the participant, seated in the driver’s seat, is instructed

to perform each event and then click the Next Event button. The
timer stops after the last event has been performed. During the

experiment, a member of the study team sat in the passenger seat

and evaluated participant’s performance of the events, namely if

one was performed incorrectly or skipped.

A total of ten people participated in this experiment. They were

instructed on how to operate the app and were not allowed to ask

questions once the experiment began. After completing all events,

the team member recorded how long the participants took and

asked them how familiar they were with the test vehicle (Vehicle

A) on a scale from 1 to 5, with 5 being the most familiar. Fig. 11

(a) summarizes the correlation between the level of experience

with the time span. Note that the completion time was not affected

much by the experience level, except for one totally inexperienced

(1/5) and one very experienced (5/5) participant. Specifically, for

users with experience levels ranging from 2 to 4, the median of

their completion time varies between 9.0 to 10.4 minutes. Fig. 11

(b) shows the key behavioral metrics (i.e., number of mistakes and

skips) of all participants. The median numbers of mistakes and skips

are 3.5 and 1, respectively. As a result, drivers of different experience

levels are capable of performing all 53 events with the median rates

of error and skip at 6.6% (=3.5/53) and 1.9%, respectively.

In conclusion, we estimate that a 30 minute drive for Phase 1

and a 10 minute experiment session for Phase 2 are sufficient to
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Figure 11: Results in user-study experiment

produce good results. These numbers are feasible for an otherwise

completely automated CAN reverse-engineering framework, espe-

cially given the time that manual reverse-engineering would likely

take. The latter can take from days to weeks, given the detail and

precision of the reverse-engineering needed. Although no explicit

times are reported for manual reverse-engineering, tutorials [48]

imply significant effort is required. However, researchers from the

well-known Jeep hack [42] provide a reference in their paper: "(...)

we spent an entire year figuring out which messages to send for

the Ford and Toyota (...)". Although they very likely did not spend

that entire time frame for reverse engineering of CAN messages, it

shows that is not a trivial process and takes a lot of experimenting

to find the correct payload for their CAN injection attack.

4.4 Computation Time
Having discussed the manual effort required to use LibreCAN, we
analyze the computation time of all three phases individually.

All experiments were conducted using Python 3 on a computer

running 64-bit Ubuntu 16.04. This computer featured 128 GB of

registered ECC DDR4 RAM and two Intel Xeon E5-2683 V4 CPUs

(2.1 GHz with 16 cores/32 threads each). Phase 0 utilizes all available

computational resources (64 threads), whereas Phase 1 uses one

thread per signal d plus one main thread (23 threads). Meanwhile,

the computationally inexpensive Phase 2 runs in a single thread.

Table 5 reports the time required for all computation steps. Note

that these values have been generated for a run with the optimal

parameter configuration. The total runtimes include operations

that finished in less than one second, which are listed as completing

in 0 seconds in Table 5.

The entire three phase automated process takes 79 seconds for

Vehicle A, 74 seconds for Vehicle B, 70 seconds for Vehicle C and 72

seconds for Vehicle D. All vehicles have a similar computation time,

indicating that LibreCANis highly efficient in reverse-engineering

a vehicle’s CAN bus (slightly more than 1 minute) with only a small

amount of manual effort (around 40 minutes).

4.5 Testing on Generic Parameters
As mentioned before, LibreCAN was designed to achieve a good

performance with a universal set of parameters in all three phases.

In order to show that anyone can achieve a comparable performance

as reported in the previous subsections without a priori knowledge



Table 5: Summary of computation time in each phase and
stage (units are in seconds)

Phases Stages Veh A Veh B Veh C Veh D

Phase

0

Parse Raw

CAN File

11 12 9 9

Split Trace 2 2 2 2

Remove Un-

used Columns

0 0 0 0

Extract Signals 4 9 5 5

Move Small

Files

0 0 0 0

Total 17 23 16 16

Phase

1

Run Correlate 40 30 36 40

Calculate Scale

and Offset

17 18 16 13

Total 57 48 52 53

Phase

2

Create Ref.

State

0 0 0 0

Filter Constant

Messages

4 2 2 3

Compare to

Ref. State

0 0 0 0

Filter Power-

train Related

Messages

0 0 0 0

Total 5 3 2 3

Libre
CAN

Total 79 74 70 72

of the parameters, we would like to introduce an accuracy analysis

similar to the one in Sec. 4.2. Since one of our design goals was to

select similar parameters among the four evaluation vehicles, we

can now pick any configuration of these four vehicles for testing.

We evaluated all four vehicles on parameters Tp0,0 = 2, Tp0,1 = 3,

Tp0,2 = 0.01, Tp0,3 = 2, Tp1,0 = 0.05, Tp2,0 = 0.03, and Tp2,4 = 0.70.

The results are summarized in Table 6. A comparison with the

optimal results for each vehicle in Table 4 shows that they are

relatively similar. Through our design goals as well as exhaustive

evaluation on four vehicles, we found a parameter configuration

that can produce favorable results for any testing vehicle. This

corroborate the scalability of LibreCAN.

5 DISCUSSION
5.1 Limitations and Improvements
During the evaluation phase, we discovered some limitations of

LibreCAN. First, not all possible values of a kinematic-related sig-

nal will be "exercised" with normal driving behavior. For instance,

RPM values over 3000 are unlikely due to the nature of automatic

Table 6: Phases 1 and 2 Evaluation Metrics for Generic Pa-
rameters

Phase 1 Phase2

Prec. Recall Acc. Prec. Recall

Vehicle A 77.2% 41.8% 88.0% 8.9% 58.2%

Vehicle B 65.9% 22.5% 90.1% 8.5% 46.2%

Vehicle C 78.1% 44.9% 91.5% 11.7% 51.6%

Vehicle D 72.5% 56.2% 94.6% 13.7% 47.2%

transmissions, except in cases of aggressive acceleration. We tried

to compensate for this in Phase 0 by classifying signals as correct

even if we missed 20% of the Most Significant Bits (MSBs).

Second, for Phase 2, not all vehicles may have the 53 events de-

fined in Table 10. We conducted experiments on newer vehicles, but

cannot guarantee that older vehicles will have the same functional-

ities. These events are present on the IVN, but cannot be accessed

via the OBD-II port. A possible solution to this problem would be to

physically tap into the CAN bus by opening compartments. How-

ever, this voids the vehicle’s warranty, and hence is not feasible for

average drivers.

Third, our accuracy evaluations are somewhat subjective (as

discussed earlier) despite their reflection of inputs from multiple

other researchers. The only way to address this subjectivity would

be to involve the vehicle OEMs.

One can also make some improvements to LibreCAN. For in-
stance, a fine-grained analysis could be performed in Phase 2 to

identify the correct regions of the events within a CAN ID. Signal

extraction in Phase 0 could also be enhanced by leveraging the

Data Length Code (DLC) field in the CAN header (see Fig. 1). Fi-

nally, we could construct additional d signals that are not directly

available on SAE J/1979 or mobile phones. For example, steering
wheel angle (SWA) is a popular signal (especially in AVs) that we

could reconstruct using the gyroscope readings from a phone [34].

5.2 Other Use-Cases of LibreCAN
The main use-case of LibreCAN is as a tool for security researchers

or (white-hat) hackers. It can help them lower the car-hacking

barrier and allow vulnerabilities to be exploited faster. Another

potential use-case we envision for LibreCANis as a utility to enable

the development of apps for vehicles, both in industry and academia.

Big data generation and sharing will lead to the monetization of

driving data and create an additional source of revenue for OEMs

and services. According to PwC, by 2022 the connected car space

could grow to $155.9 billion, up from an estimated $52.5 billion in

2017 [50]. OEM-independent, universal access to data by third-party

service providers can make the latter a major player in automotive

data monetization. Third-parties already offer OBD-II dongles that

can access the in-vehicular network and obtain publicly available

data (OBD-II PIDs [13]). In particular, usage-based insurance (UBI)

companies [4, 5, 8, 11] are known to distribute dongles to track

driving behavior, allowing them to adjust insurance premiums.

As mentioned previously, CAN data contains richer information



than OBD-II PIDs and can be leveraged to build more powerful

third-party apps. This also encompasses academic research, which

usually has limited knowledge about vehicular data collection.

5.3 Countermeasures
Our point of entry to vehicles was the OBD-II port. Although we

only read data from this port (OBD-II and raw CAN data), it is

possible to inject CAN data into the vehicle via this port, as shown

by [33, 40, 42]. A very simple and intuitive, but also powerful,

solution to this attack would be to implement access control into

the vehicular gateway that the OBD-II port attaches to (see Fig. 3).

Recently, there have been efforts to secure IVNs from outside

attacks. For instance, the Society of Automotive Engineers (SAE)

is planning to harden the OBD-II port [12]. In the corresponding

SAE standard [10], data access via OBD-II (SAE J/1979) and Uni-

fied Diagnostic Services (ISO 14229-1) is categorized as intrusive
and non-intrusive, respectively. Nevertheless, this standard does

not classify how intrusive the actions of reading data via OBD-II

(Service 0x01 of J1979) or reading raw CAN data are.

In any case, these changes are only possible with an improved

vehicular gateway. This topic has been discussed since 2015 [26],

when coverage of car hacking by news outlets increased signifi-

cantly [9]. [7] also suggests enhancing existing gateway designs by

adding additional security measures, such as a firewall. The afore-

mentioned SAE standard [10] even hints that some OEMs might

want to continue without a gateway at all, primarily due to cost.

Finally, we want to point out existing academic work in this

area. Automotive gateways have many advantages for vehicle cy-

bersecurity as summarized in [36, 47]. In addition to traditional

functions such as routing, gateways can also be used for secure

CAN or Automotive Ethernet communications through the use of

authenticated ECUs [28, 36] or via access control/firewalls [35, 45].

6 RELATED WORK
6.1 Manual CAN Reverse Engineering
[21] extracted CAN messages using the OBD-II port, interpreted

those messages by examining how different bytes changed over

time given different actions being performed on/by the vehicle, and

then replayed these messages to manipulate their corresponding

functions. However, the experiment they performed is limited be-

cause it requires prior knowledge of the implementation details of

the vehicle — the paper mentions in several places that it is impor-

tant to have an understanding the specific car being hacked. They

also discuss the proprietary nature of the CAN bus and in-vehicle

E/E architecture, meaning that there could be differing numbers or

locations of CAN buses across different vehicle models, and thus

the functions of each bus could be split up differently. In order to

gain knowledge about the car they evaluated, they purchased a sub-

scription to an online data service that provided this information.

Other automotive attacks, such as [40, 42], require that the E/E

architecture be analyzed and that the CAN message format be

manually reverse-engineered before data can be injected. This is a

tedious process that can require days to weeks to reverse-engineer

a targeted portion of CAN data and is not scalable to other vehicles.

Additionally, several tools exist that can help manually reverse-

engineer CAN data. For instance, [23] demonstrates howWireshark

can be leveraged to capture CAN traffic and visualize changing bits

in real time when an event is executed, as in our Phase 2.

6.2 Automating CAN Reverse-Engineering
[38] built an anomaly detection system to split CAN messages into

different fields/signals without prior knowledge of the message

format. Their classifier identified the boundaries and types of the

fields (Constant, Multi-Value, or Counter/Sensor).

READ [37] proposed an algorithm to split synthetic and recorded

CAN messages into signals, comparable to Stages 1 and 3 of our

Phase 0. They present methods to isolate counters and CRCs, with

all other values marked as physical signals, the type of signal we

seek to evaluate in Phase 1 of LibreCAN. Although they reported

high precision values (see Table 7), it is important to note that

their experiments were conducted on an older vehicle (confirmed

by e-mail to the authors), with less signals available in its DBC.

Along with LibreCAN, we report the best results of READ in the

aforementioned table.

ACTT [51] proposes a simple algorithm to extract signals from

CAN messages and label them using OBD-II PIDs. Their signal

extraction only considers signals that do not consist of contiguous

sets of constant bits. Furthermore, they do not distinguish between

signal types as we did. The authors find that roughly 70% of the

CAN traffic consists of constant bits (comparable to constant signals

in LibreCAN), matching only 16.8% of the present bits to OBD-II

PIDs. The paper also lacks an extensive evaluation, only showing

some examples of matched signals. Furthermore, they evaluated

their framework on an older vehicle from 2008 such as READ.

7 CONCLUSION
In this paper, we propose LibreCAN, an automated CAN bus reverse

engineering framework. To the best of our knowledge, this is the

first complete tool to reverse-engineer both kinematic- and body-

related data. LibreCAN has been tested extensively on four real

vehicles, showing similarly good results on all of them. It consists of

three phases: extracting signals from raw CAN recordings, finding

kinematic signals, and reducing body events to a minimal candidate

set by 10x. Besides the very high accuracy of the novel Phase 2, we

demonstrated that Phase 1 can achieve better precision than prior

related work.

In addition to achieving considerably good accuracy, LibreCAN re-
duces the tedious manual effort required to reverse-engineer CAN

bus messages to around 40 minutes on average. Since CAN reverse-

engineering is a crucial step in numerous automotive attacks, we

pride ourselves in overcoming the car hacking barrier and high-

lighting the importance of automotive security. The security by
obscurity paradigm that automotive OEMs follow by keeping CAN

translation tables proprietary needs to be overcome and replaced by

more advanced security paradigms. Finally, we also proposed some

countermeasures to mitigate attacks on vehicles if the aforemen-

tioned CAN translation tables are made public through frameworks

such as LibreCAN.



Table 7: Comparison to Related Work

LibreCAN READ [37] ACTT [51]

Phase 0 Phase 1 Phase 2 Phase 0 Phase 1 Phase 2 Phase 0 Phase 1 Phase 2

Precision (Phase 0 & 1)

Accuracy (Phase 2)

36.4% 82.6% 95.1% 97.1% - - 16.8% 47.7% -
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A VEHICULAR SIGNALS
Table 8 depicts an overview of frequently installed ECUs in newer

vehicles. It also includes physical signals that each ECU might

generate.

In the following, we present a full list of physical relationships

between certain elements in set S :

• Torque (τ ) and engine speed (rpm) share a linear relationship

for engine speeds lower than 2000-3000 RPM, as can be

extracted from torque curves [6]. Since the engine speed is

lower than the aforementioned threshold during almost the

entire drive, we can assume that τ and rpm are proportional

to each other:

τ ∝∼ rpm. (6)

• Engine load (loadenдine ) can be calculated as the fraction

of actual engine output torque (τ ) to the maximum engine

output torque (τenдine,max ):

loadenдine ∝ τ . (7)

• For engine speed values up to approximately 2000 RPM,

torque (τ ) and pressure boost (pboost ) are linearly related [53].
Furthermore, for boosted engines, such as in vehicles with

turbochargers (all of our evaluation vehicles except Vehicle

C), the intake manifold pressure (pmap ) is proportional to

pboost :
τ ∝∼ pboost ∝∼ pmap . (8)

• The electrical circuitry in the Accelerator Pedal Position

(APP) and Throttle Position (TPS) sensors is identical [31].

Both sensors are fixed to the throttle body and convert the

position of the throttle pedal to a voltage reading. As a result,

accelerator pedal position (ACC_PED) and throttle position

(THR_POS) are highly related:

ACC_PED ∝∼ THR_POS . (9)

• The centripetal acceleration (ay ) is proportional to the prod-

uct of yaw rate and vehicle speed:

ay ∝ ωzv . (10)

• The barometric pressure reading (p) obtained from phone

sensors does not only change with the weather, but is also a

function of the altitude (h) [2]. Via the barometric formula:

p ∝∼ e
−k ·h ·M . (11)

In this equation, k is a constant andM the molar mass of dry

air. Despite having an exponential curve, for small altitude

Table 8: Overview of common ECUs with respective signals

ECU Signals

Powertrain Control Module (PCM)

— usually combination of Engine

Control Module (ECM) and

Transmission Control Module

(TCM)

Pedal Position

Throttle Position

Engine Oil Temperature

Fuel Level

Oil Pressure

Wheel Speeds

Engine Speed

Torque

Coolant Temperature

Engine Load

Body Control Module (BCM)

HVAC

Turn Signals

Lights

Wipers

Trunk

Doors

Windows

Mirrors

Remote Keyless Entry

Telematic Control Unit (TCU)

Radio

GPS

Advanced Driver Assistant

Systems (ADAS)

Cameras (e.g. rear-view)

Radar

LiDAR

Instrument Cluster (IC)

Vehicle Speed

Engine Speed

Current Gear

MIL Light

TPMS Light

Odometer

Fuel Level

Engine Temperature

Turn Signals

Supplemental Restraint

Systems (SRS)

Airbag Status

Seatbelt Status

Electronic Power Steering (EPS)

Steering Wheel Torque

Steering Wheel Position

Wheel Speed

changes, the relationship between p and h is approximately

constant. Furthermore, considering the fact that weather

does not change significantly during data collection, changes

in p can be directly linked to h.

B PHASE 1
Table 9 depicts a complete list of all signals in set S that we are

considering for correlation in Phase 1. Table 10 shows all 53 events

that were analyzed for Phase 2.



Table 9: Complete List of 24 Signals in Set S (Italic Signals are from Set P ⊂ S)

• Intake Manifold

Pressure

• Ambient Air

Temperature

• Speed

• Voltage (Control

Module)

• Turbo Boost &

Vacuum Gauge

• Fuel Rail Pressure

• Engine Coolant

Temperature

• Torque

• Accelerator Pedal

Position D

• Accelerator Pedal

Position E

• Engine RPM

• Intake Air

Temperature

• Engine Load

(Absolute)

• Absolute Throttle

Position B

• Fuel Flow Rate

• Acceleration
Sensor(X axis)
• Acceleration
Sensor(Y axis)
• Acceleration
Sensor(Z axis)
• G(x)
• G(y)
• G(z)

• Barometric
Pressure
• Altitude
• Bearing

Table 10: Complete List of 53 Events

• Lock driver’s side

• Lock passenger’s

side

• Unlock driver’s

side

• Unlock

passenger’s side

• Open trunk

• Close trunk

• Open driver’s

door

• Close driver’s

door

• Open passenger’s

door

• Close passenger’s

door

• Open door left

back

• Close door left

back

• Open door right

back

• Close door right

back

• Open driver’s

window

• Close driver’s

window

• Open passenger’s

window

• Close passenger’s

window

• Open window left

back

• Close window left

back

• Open window

right back

• Close window

right back

• Turn on heating

• Incremental fan

speed increase

• Increase

temperature

incrementally

65-75F

• Decrease

temperature

incrementally

75-65F

• Incremental fan

speed decrease

• Air circulation

button on

• Air circulation

button off

• Honking horn

• Headlights off-on

• Headlights on-off

• Hazard lights on

• Hazard lights off

• Windshield

wipers once

• Windshield

wipers speed 1

• Windshield

wipers speed 2

• Windshield

wipers speed 3

• Interior lights all

on

• Interior lights all

off

• Windshield wiper

fluid

• Left turn signal on

• Left turn signal

off

• Right turn signal

on

• Right turn signal

off

• Activate parking

brake

• Release parking

brake

• Open hood

• Close hood

• Drivers side

mirror left right

up down

• Passengers side

mirror left right

up down

• Buckle driver

• Unbuckle driver

C PHASE 2
Fig. 12 depicts which CAN IDs have been filtered out at what stage

for each of the 53 events for Vehicle A. Fig. 13, Fig. 14, and Fig. 15

are similar, but for Vehicles B, C, and D, respectively.
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Figure 12: Number of Unique CAN IDs Remaining After Each Stage for all 53 Events for Vehicle A
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Figure 13: Number of Unique CAN IDs Remaining After Each Stage for all 53 Events for Vehicle B
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Figure 14: Number of Unique CAN IDs Remaining After Each Stage for all 53 Events for Vehicle C
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Figure 15: Number of Unique CAN IDs Remaining After Each Stage for all 53 Events for Vehicle D
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