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Abstract

Model-free reinforcement learning techniques attempt to find an optimal control action for an

unknown dynamical system by directly searching over the parameter space of controllers. The

convergence behavior and statistical properties of these approaches are often poorly understood

because of the nonconvex nature of the underlying optimization problems as well as the lack of

exact gradient computation. In this paper, we examine the standard infinite-horizon linear quadratic

regulator problem for continuous-time systems with unknown state-space parameters. We provide

theoretical bounds on the convergence rate and sample complexity of a random search method. Our

results demonstrate that the required simulation time for achieving ε-accuracy in a model-free setup

and the total number of function evaluations are both of O(log (1/ε)).

Keywords: Data-driven control, linear quadratic regulator, model-free control, nonconvex optimiza-

tion, random search method, reinforcement learning, sample complexity.

1. Introduction

In many emerging applications, control-oriented models are not readily available and classical

approaches from optimal control may not be directly applicable. This challenge has led to the

emergence of Reinforcement Learning (RL) approaches that often perform well in practice. Examples

include learning complex locomotion tasks via neural network dynamics (Nagabandi et al., 2018)

and playing Atari games based on images using deep-RL (Mnih et al., 2013).

RL approaches can be broadly divided into model based (Dean et al., 2017; Simchowitz et al.,

2018) and model free (Bertsekas, 2011; Abbasi-Yadkori et al., 2019). While model-based RL uses

data to obtain approximations of the underlying dynamics, its model-free counterpart prescribes

control actions based on estimated values of a cost function without attempting to identify a model. In

spite of the empirical success of RL in a variety of domains, the mathematical understanding of these

techniques is still in its infancy. Because of the interactive and nonconvex nature of these algorithms,

fundamental questions surrounding convergence and sample complexity remain unanswered even

for classical control problems, including the linear quadratic regulator (LQR). In this paper, we take

a step towards addressing such challenges with a focus on the infinite-horizon LQR problem for

continuous-time systems.

The globally optimal solution of the LQR problem can be obtained by solving the Riccati

equation. However, computing the optimal solution becomes challenging for large-scale problems,
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when prior knowledge is not available, or in the presence of structural constraints on the controller.

This motivates the use of direct search methods for controller synthesis. Unfortunately, the nonconvex

nature of this formulation complicates the analysis of first- and second-order optimization algorithms.

To make matters worse, structural constraints on the feedback gain matrix may result in a disjoint

search landscape limiting the utility of conventional descent-based methods (Ackermann, 1980).

Furthermore, in the model-free setting the exact model (and hence the gradient of the loss) is unknown

so that only zero-order methods can be used to estimate the gradient.

Recent reference (Mohammadi et al., 2019a) showed that the gradient descent method on the

state-feedback gain can indeed solve the continuous-time LQR problem with a linear convergence

rate. While computing the exact value of gradient requires the system dynamics to be known, this

convergence result motivates the use of a random search method for the model-free setting. Random

search is perhaps the simplest model-free approach to RL which attempts to emulate the behavior

of gradient descent using gradient approximations obtained from function values. It has been used

to solve benchmark control problems such as locomotion tasks, matching state-of-the-art sample

efficiency (Mania et al., 2018). However, even for the standard LQR problem, many open theoretical

questions surround convergence properties and sample complexity of this method.

For the discrete-time LQR problem, global convergence guarantees were recently provided

in Fazel et al. (2018) for gradient decent and the random search method with one-point gradient

estimates. The authors established a bound on the sample complexity for reaching the error tolerance

ε that requires a number of function evaluations that is at least proportional to (1/ε4) log (1/ε). If

one has access to the infinite-horizon cost values, the number of function evaluations for the random

search method with one-point estimates was improved to 1/ε2 in Malik et al. (2019). Moreover, this

work showed that the use of two-point estimates reduces the number of function evaluations to 1/ε.
In this paper, we focus on the continuous-time LQR problem, and establish that the random

search method with two-point gradient estimates converges to the optimal solution at a linear rate

with high probability. Relative to the existing literature, we also offer a significant improvement both

in terms of the required function evaluations and simulation time. Specifically, the total number of

function evaluations required in our results to achieve an accuracy of ε is proportional to log (1/ε)
compared to at least (1/ε4) log (1/ε) in Fazel et al. (2018) and 1/ε in Malik et al. (2019). Similarly,

the simulation time required in our results to achieve an accuracy of ε is proportional to log (1/ε);
this is in contrast to Fazel et al. (2018) which requires poly (1/ε) simulation time and Malik et al.

(2019) which assumes an infinite simulation time. We only present the main result and a sketch of

the proof and refer the reader to our more recent work Mohammadi et al. (2019b) for details.

2. Problem formulation

Consider the LTI system

ẋ = Ax + Bu, x(0) ∼ D (1a)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input, A and B are constant matrices, and

x(0) is a random initial condition with distribution D. The quadratic performance index is given by

minimize
x, u

E

[∫
∞

0
(xT (t)Qx(t) + uT (t)Ru(t)) dt

]
(1b)

where Q and R are positive definite matrices and the expectation is taken over x(0). For a controllable

pair (A,B), the solution to LQR problem (1) is given by u(t) = −K?x(t) = −R−1BTP ?x(t),
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where P ? is the unique positive definite solution to the algebraic Riccati equation, ATP ? + P ?A+
Q− P ?BR−1BTP ? = 0. Unfortunately, this approach is not directly applicable when the matrices

A and B are not known. Exploiting the linearity of the optimal controller, we can alternatively

formulate the LQR problem as a direct search for the optimal feedback gain, namely

minimize
K

f(K) (2a)

where

f(K) :=

{
trace

(
(Q+KTRK)X(K)

)
, K ∈ S

∞, otherwise.
(2b)

Here, f(K) determines the objective function in (1b) associated with the feedback law u = −Kx,

S := {K ∈ R
m×n |A − BK is Hurwitz} is the set of stabilizing feedback gains, and for any

K ∈ S , the matrix X(K) is determined by

X(K) =

∫
∞

0
e(A−BK)tΩe(A−BK)T t dt (2c)

where Ω := E[x(0)xT (0)] is the covariance matrix of the zero-mean initial condition x(0). Since the

optimal feedback gain K? does not depend on x(0), without loss of generality, we assume Ω � 0.

In (2), K is the optimization variable and (A, B, Q � 0, R � 0, Ω � 0) are the problem parameters.

The formulation of the LQR problem given by (2) has been studied for both continuous-time (An-

derson and Moore, 1990; Mohammadi et al., 2019a) and discrete-time systems (Fazel et al., 2018;

Bu et al., 2019). In this paper, we study the convergence of a local-search method based on random

sampling (Mania et al., 2018; Recht, 2019) for solving problem (2) that does not require knowledge

of system matrices A and B. At each iteration in Algorithm 1, we form an empirical approximation

∇f(K) to the gradient of the objective function via simulation of system (1a) for randomly perturbed

feedback gains K ± Ui with i = 1, . . . , N and update K via,

Kk+1 := Kk − α∇f(Kk), K0 ∈ S. (RS)

Note that the gradient estimation scheme in Algorithm 1 does not use system matrices A and B
in (1a); only access to a simulation engine is required.

3. Main result

Our analysis of the convergence of the random search method (RS) exploits two key properties of the

LQR objective function f : smoothness and the Polyak-Łojasiewicz (PL) condition over its sublevel

sets S(a) := {K ∈ S|f(K) ≤ a}, where a is a positive scalar. In particular, for all feedback gains

K and K ′ such that the line segment between them belongs to S(a), the function f satisfies

Smoothness: f(K
′

) − f(K) ≤
〈
∇f(K),K ′ − K

〉
+

Lf (a)

2
‖K − K ′‖2F

PL condition: f(K) − f(K?) ≤ 1

2µf (a)
‖∇f(K)‖2F

where the smoothness and PL parameters Lf (a) and µf (a) are positive rational functions of a. This

result holds for both continuous-time (Mohammadi et al., 2019a; Fatkhullin and Polyak, 2020)

and discrete-time (Fazel et al., 2018; Bu et al., 2019) LQR problems. We also make the following

assumption on the statistical properties of the initial condition.
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Algorithm 1 Gradient estimation

Input: Feedback gain K ∈ R
m×n, state and control weight matrices Q and R, distribution D,

smoothing constant r, simulation time τ , number of random samples N .

for i = 1 to N do

– Define two perturbed feedback gains Ki,1 := K + rUi and Ki,2 := K − rUi, where vec(Ui)
is a random vector uniformly distributed on the sphere

√
mnSmn−1.

– Sample an initial condition xi from distribution D.

– For j ∈ {1, 2}, simulate system (1a) up to time τ with the feedback gain Ki,j and initial

condition x(0) = xi to form f̂i,j =

∫ τ

0
(xT (t)Qx(t) + uT (t)Ru(t)) dt.

end for

Output: The gradient estimate ∇f(K) :=
1

2rN

N∑

i=1

(
f̂i,1 − f̂i,2

)
Ui.

Assumption 1 (Initial distribution) Let the distribution D of the initial condition have i.i.d. zero-

mean unit-variance entries with bounded sub-Gaussian norm, i.e., for a random vector v ∈ R
n

distributed according to D, E[vi] = 0 and ‖vi‖ψ2
≤ κ, for some constant κ and i = 1, . . . , n.

We now state our main theoretical result.

Theorem 1 Consider the random search method (RS) that uses the gradient estimates of Algorithm 1

for finding the optimal solution K? of problem (2). Let the initial condition x0 ∼ D obey Assumption 1

and let the simulation time τ and the number of samples N in Algorithm 1 satisfy

τ ≥ θ′(a) log (1/ε) and N ≥ c
(
1 + β4κ4 θ(a) log6N

)
n

for some β > 0 and a desired accuracy ε > 0. Then, we can choose a smoothing parameter

r < θ′′(a)
√
ε in Algorithm 1 such that, for any initial condition K0 ∈ S(a), random search

method (RS) with the constant stepsize α = 1/(ω(a)Lf (a)) achieves f(Kk)−f(K?) ≤ ε in at most

k ≤ log
f(K0)− f(K?)

ε

/
log

1

1− µf (a)α/8

iterations. This holds with probability at least 1 − c′k(n−β + N−β + Ne−
n

8 + e−c
′N ). Here,

ω(a) := c′′
(√

m+ βκ2θ(a)
√
mn log n

)2
, the positive scalars c, c′, and c′′ are absolute constants,

µf (a) and Lf (a) are the PL and smoothness parameters of f over the sublevel set S(a), and θ, θ′,
and θ′′ are positive polynomials that depend only on the parameters of the LQR problem.

For a desired accuracy level ε > 0, Theorem 1 shows that the random search iterates (RS) with

constant stepsize (that does not depend on ε) reach an accuracy level ε at a linear rate (i.e., in at most

O(log (1/ε)) iterations) with high probability. Furthermore, the total number of function evaluations

and the simulation time required to achieve an accuracy level ε are proportional to log (1/ε). As

stated earlier, this significantly improves the existing results for discrete-time LQR (Fazel et al., 2018;

Malik et al., 2019) that require O(1/ε) function evaluations and poly(1/ε) simulation time.
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4. Proof sketch

The random search method in (RS) updates the iterates using gradient estimates obtained via

Algorithm 1. For any stabilizing feedback gain K ∈ S , we have (Lin et al., 2013),

∇f(K) = 2
(
RK −BTP (K)

)
X(K) (3)

where X(K) is given by (2c) and

P (K) =

∫
∞

0
e(A−BK)T t (Q + KTRK) e(A−BK)t dt � 0. (4)

Although nonconvex, the smoothness and PL property of the objective function were utilized to prove

linear convergence of gradient descent for continuous-time systems (Mohammadi et al., 2019a). We

note that similar analysis was used to show convergence of gradient descent for LQR problem for

discrete-time systems (Fazel et al., 2018).

In the random search method, we do not have access to the gradient and ∇f(K) is a biased

estimate of ∇f(K). According to Fazel et al. (2018), achieving ‖∇f(K) − ∇f(K)‖F ≤ ε may

take N = Ω(1/ε4) samples. Because of this poor sample complexity, we take an alternative route

and give up on the objective of controlling the gradient estimation error. By exploiting the problem

structure, we show that with a linear number of samples N = Õ(n), where n is the number of states,

the estimate ∇f(K) concentrates with high probability when projected to the direction of ∇f(K).
In what follows, we first control the bias by establishing that, for any ε > 0, using a simulation

time τ = O(log (1/ε)) and an appropriate smoothing parameter r in Algorithm 1, the estimate

∇f(K) can be made ε-close to an unbiased estimate ∇̂f(K) of the gradient with high probability,

‖∇f(K) − ∇̂f(K)‖F ≤ ε (5)

where the definition of ∇̂f(K) is given in Eq. (7). We then show that by choosing a large number of

samples N , our unbiased estimate ∇̂f(K) becomes highly correlated with the gradient. In particular,

we show that the following two events

M1 :=
{〈

∇̂f(K),∇f(K)
〉
≥ µ1‖∇f(K)‖2F

}
, M2 :=

{
‖∇̂f(K)‖2F ≤ µ2‖∇f(K)‖2F

}
(6)

occur with high probability for some positive scalars µ1 and µ2. To justify the definition of these

events, let us first demonstrate that the gradient estimate ∇̂f(K) can be used to decrease the objective

error by a geometric factor if both M1 and M2 occur.

Proposition 1 [Approximate GD] If the matrix G ∈ R
m×n and K ∈ S(a) are such that

〈G,∇f(K)〉 ≥ µ1‖∇f(K)‖2F , ‖G‖2F ≤ µ2‖∇f(K)‖2F

for some scalars µ1, µ2 > 0, then K − αG ∈ S(a) for all α ∈ [0, µ1/(µ2Lf (a))], and

f(K − αG)− f(K?) ≤
(
1− µf (a)µ1α

)(
f(K)− f(K?)

)

where Lf (a) and µf (a) are the smoothness and PL parameters of the function f over S(a).
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4.1. Controlling the bias

Herein, we define the unbiased estimate ∇̂f(K) of the gradient and establish an upper bound on its

distance to the output ∇f(K) of Algorithm 1 given by Eq. (5). To simplify our presentation, for any

K ∈ R
m×n, we define the closed-loop Lyapunov operator AK : Sn → S

n as

AK(X) := (A − BK)X + X(A − BK)T

where S
n ⊂ R

n×n is the set of symmetric matrices. For K ∈ S , both AK and its adjoint

A∗

K(P ) = (A − BK)TP + P (A − BK)

are invertible and we have X(K) = A−1
K (−Ω) and P (K) = (A∗

K)−1(−KTRK −Q).
For any τ ≥ 0 and x0 ∈ R

n, let us define the τ -truncated version of the LQR objective function

fx0,τ (K) :=

∫ τ

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

associated with system (1a) with the initial condition x(0) = x0 and feedback law u = −Kx. For

any K ∈ S and x0 ∈ R
n, the infinite-horizon cost fx0(K) := fx0,∞(K) exists and it satisfies

f(K) = Ex0 [fx0(K)]. Furthermore, the gradient of fx0(K) is given by (cf. (3))

∇fx0(K) = 2(RK − BTP (K))Xx0(K), Xx0(K) := A−1
K (−x0x

T
0 ).

Since the gradients ∇f(K) and ∇fx0(K) are linear in X(K) and Xx0(K), respectively, for the

random initial condition x(0) = x0 with E[x0x
T
0 ] = Ω the linearity of AK implies

Ex0 [Xx0(K)] = X(K), Ex0 [∇fx0(K)] = ∇f(K).

Next we define the following three estimates of the gradient

∇f(K) :=
1

2rN

N∑

i=1

(fxi,τ (K + rUi)− fxi,τ (K − rUi))Ui

∇̃f(K) :=
1

2rN

N∑

i=1

(fxi(K + rUi)− fxi(K − rUi))Ui

∇̂f(K) :=
1

N

N∑

i=1

〈∇fxi(K), Ui〉Ui.

(7)

Here, Ui ∈ R
m×n are i.i.d. random matrices with vec(Ui) uniformly distributed on the sphere√

mnSmn−1 and xi ∈ R
n are i.i.d. random initial conditions sampled from distribution D. Note

that ∇̃f(K) is the infinite-horizon version of ∇f(K) of Algorithm 1 and ∇̂f(K) is an unbiased

estimate of ∇f(K). The fact that E[∇̂f(K)] = ∇f(K) follows from EU1
[vec(U1)vec(U1)

T ] = I

and Exi,Ui

[
vec(∇̂f(K))

]
= EU1

[〈∇f(K), U1〉 vec(U1)] = vec(∇f(K)).

Local boundedness of the function f(K): An important requirement for the gradient estimation

scheme in Algorithm 1 is the stability of the perturbed closed-loop systems, i.e., K ± rUi ∈ S;

violating this condition leads to an exponential growth of the state and control signals. Moreover,

this condition is necessary and sufficient for ∇̃f(K) to be well defined. It can be shown that for

any sublevel set S(a), there exists a positive radius r such that K + rU ∈ S for all K ∈ S(a) and

U ∈ R
m×n with ‖U‖F ≤ √

mn. In this paper, we further require that r is small enough so that

K ± rUi ∈ S(2a) for all K ∈ S(a). Such upper bound on r is provided in Lemma 1.

6
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Lemma 1 For any K ∈ S(a) and U ∈ R
m×n with ‖U‖F ≤ √

mn, K + r(a)U ∈ S(2a), where

r(a) := c̃/a for some constant c̃ > 0 that depends on the problem data.

Note that for any K ∈ S(a) and r ≤ r(a) in Lemma 1, ∇̃f(K) is well defined since the feedback

gains K + rUi are all stabilizing. We next establish an upper bound on the difference between

the output ∇f(K) of Algorithm 1 and the unbiased estimate ∇̂f(K) of the gradient ∇f(K). We

accomplish this by bounding the difference between these two quantities and ∇̃f(K) through the

use of the triangle inequality

‖∇̂f(K) − ∇f(K)‖F ≤ ‖∇̃f(K) − ∇f(K)‖F + ‖∇̂f(K) − ∇̃f(K)‖F . (8)

Proposition 2 provides an upper bound on each term on the right-hand side of the above inequality.

Proposition 2 For any K ∈ S(a) and r ≤ r(a), where r(a) is given by Lemma 1,

‖∇̃f(K)−∇f(K)‖F ≤
√
mnmaxi ‖xi‖2

r
κ1(2a) e

−τ/κ2(2a)

‖∇̂f(K)− ∇̃f(K)‖F ≤ (rmn)2

2
`(2a) max

i
‖xi‖2

where `(a) > 0, κ1(a) > 0, and κ2(a) > 0 are polynomials of degree less than 5.

The first term on the right-hand side of (8) corresponds to a bias arising from the finite-time simulation.

Proposition 2 shows that although small values of r may result in a large ‖∇̃f(K) − ∇f(K)‖F ,

because of the exponential dependence of the upper bound on the simulation time τ , this error can be

controlled by increasing τ . In addition, since ∇̂f(K) is independent of the parameter r, this result

provides a quadratic bound on the estimation error in terms of r. It is also worth mentioning that the

third derivative of the function fx0(K) is utilized in obtaining the second inequality.

4.2. Correlation of ∇̂f(K) and ∇f(K)

To show that the events Mi in (6) hold with high probability, we exploit the problem structure to

isolate the dependence of ∇̂f(K) on the random initial conditions xi into a zero-mean random

vector. In particular, for any given feedback gain K ∈ S and initial condition x0 ∈ R
n, we have

∇f(K) = EX , and ∇fx0(K) = EXx0 , where E := 2(RK − BTP (K)) ∈ R
m×n is a fixed

matrix, X = −A−1
K (Ω), and Xx0 = −A−1

K (x0x
T
0 ). This allows us to write

∇̂f(K) =
1

N

N∑

i=1

〈EXxi , Ui〉Ui =
1

N

N∑

i=1

〈E(Xxi −X), Ui〉Ui +
1

N

N∑

i=1

〈∇f(K), Ui〉Ui.

It is now easy to verify that E[〈E(Xxi −X), Ui〉Ui] = 0 and E[〈∇f(K), Ui〉Ui] = ∇f(K). We

next present our key technical result in Proposition 3 that allows us to show that with enough samples

N = Õ(n), the inner product of the zero-mean term and the gradient ∇f(K) can be controlled with

high probability. This result is the key for analyzing the probability of the event M1 in (6). The

analysis for the event M2 follows similar steps; see Mohammadi et al. (2019b) for details.

Proposition 3 Let X1, . . . , XN ∈ R
n×n be i.i.d. random matrices according to M(xxT ), where

x ∈ R
n is a random vector whose distribution obeys Assumption 1 and M is a linear operator, and

7
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let X := E[X1] = M(I). Also, let U1, . . . , UN ∈ R
m×n be i.i.d. random matrices with vec(Ui)

uniformly distributed on the sphere
√
mnSmn−1. For any E ∈ R

m×n and δ, β > 0,

P

{∣∣∣∣∣
1

N

N∑

i=1

〈E (Xi −X) , Ui〉 〈EX,Ui〉
∣∣∣∣∣ ≤ δ‖EX‖F ‖E‖F

}
≥ 1− C ′N−β − 4Ne−

n
8

if N ≥ Cβ4κ4(n/δ2) log6N (‖M∗‖2 + ‖M∗‖S)2 , where ‖ · ‖S denotes the spectral induced norm.

5. Computational experiments

We consider a mass-spring-damper system with s = 10 masses, where we set all spring and damping

constants as well as masses to unity. In state-space representation (1a), the state vector x = [ pT vT ]T

contains the position and velocity of masses and the dynamic and input matrices are given by

A =

[
0 I

−T −I

]
, B =

[
0
I

]

where 0 and I are s× s zero and identity matrices, and T is a Toeplitz matrix with 2 on the main

diagonal and −1 on the first upper and lower sub-diagonals. In this example, the A-matrix is Hurwitz

and the objective of control is to optimize the LQR cost with Q and R equal to identity. We also let

the initial conditions xi in Algorithm 1 be standard normal and use N = n = 2s samples.

Figure 1(a) illustrates the dependence of the relative error ‖∇̂f(K)−∇f(K)‖F /‖∇̂f(K)‖F
on the simulation time τ for K = 0 and two values of smoothing parameter r = 10−4 (blue) and

r = 10−5 (red). We observe an exponential decrease in error for small values of τ . In addition, the

error does not pass a saturation level which is determined by the smoothing parameter r > 0. We

also observe that as r decreases, this saturation level becomes smaller. These observations are in

harmony with the results established in Proposition 2.

Figure 1(b) illustrates the convergence curve of the random search method (RS) with stepsize

α = 10−4, where the parameters of Algorithm 1 are r = 10−5 and τ = 10. This figure demonstrates

linear convergence for (RS), as established in Theorem 1.

‖∇̂
f
(K

)
−

∇
f
(K

)‖
F

‖∇̂
f
(K

)‖
F

τ
(a)

f
(K

k
)
−
f
(K

?
)

f
(K

0
)
−
f
(K

?
)

k
(b)

Figure 1: (a) The bias in gradient estimation as a function of the simulation time τ ; (b) the conver-

gence curve of the random search method (RS).
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