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Random search for learning the linear quadratic regulator
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Abstract— Many emerging applications involve control of
systems with unknown dynamics. As a result, model-free
random search techniques that directly search over the space
of parameters have become popular. These algorithms often
exhibit a competitive sample complexity compared to state-of-
the-art techniques. However, due to the nonconvex nature of
the underlying optimization problems, the convergence behavior
and statistical properties of these approaches are poorly under-
stood. In this paper, we examine the standard linear quadratic
regulator problem for continuous-time systems with unknown
state-space parameters. We establish theoretical bounds on the
sample complexity and prove the linear convergence rate of the
random search method.

Index Terms— Linear quadratic regulator, model-free control,
nonconvex optimization, Polyak-Lojasiewicz inequality, random
search method, reinforcement learning, sample complexity.

I. INTRODUCTION

Reinforcement Learning (RL) approaches often perform
well in applications with no control-oriented models [1], [2].
Without even requiring system identification, the class of
model-free RL methods prescribe control action only based
on estimated values of a cost function [3]-[5]. In spite of
empirical success of these techniques, many fundamental
questions surrounding convergence and sample complexity
remain unanswered even for classical control problems,
including the linear quadratic regulator (LQR). In this paper,
we make progress in addressing such challenges with a focus
on the infinite-horizon LQR problem for continuous-time LTI
systems.

The globally optimal solution to the LQR problem can
be obtained by solving the Riccati equation and efficient
numerical schemes with provable convergence guarantees
have been developed [6]. However, computing the optimal
solution becomes challenging when model is not available.
This motivates the use of direct search methods for controller
synthesis. In addition to nonconvexity [7], a major challenge
in model-free settings is that the gradient of the objective
function is unknown so that only zero-order methods can be
used to estimate the gradient.

Despite nonconvexity, for discrete-time LQR, global con-
vergence guarantees for both gradient descent and random
search on the state-feedback gains were provided in [5]. This
result exploited observation that the cost function satisfies
the Polyak-Lojasiewicz (PL) condition. Recent reference [8]
extended this observation to the continuous-time LQR prob-
lem and established linear convergence for gradient descent.
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Extensions to the H ,-regularized LQR [9] and Markovian
jump systems [10] have also been studied.

In this paper, we show that the random search method
can solve the continuous-time LQR problem with unknown
dynamics up to any desired accuracy with high probability
(w.h.p.) in polynomial time. Our results provide upper bounds
on the sample complexity and quantify how the final accuracy
depends on the number of samples and simulation time.

While Reference [5] motivates our work, we study the
continuous-time LQR problem and, compared to [5], we
provide a significant improvement in computational efficiency
by reducing the required simulation time for achieving e-
accuracy from O(poly(1/¢)) to O(log(1/¢)). We also refer
to our more recent works where we established an overall
sample complexity of O(log(1/¢)) in the case of two-point
gradient estimates for both continuous-time [11] and discrete-
time [12] systems.

The paper is structured as follows. In Section II, we revisit
the LQR problem and present the random search method.
In Section III, we highlight the main result of the paper. In
Section IV, we discuss the convergence of gradient descent. In
Section V, we quantify the accuracy of the gradient estimate
used in random search method. In Section VI, we prove
the main convergence result and, in Section VII, we offer
concluding remarks and discuss future directions.

II. PROBLEM FORMULATION
Consider the LTI system

& = Az + Bu, z(0) ~D (1a)

where z(t) € R™ is the state, u(t) € R™ is the control input,
A and B are constant matrices of appropriate dimensions,
and x(0) is a random initial condition with distribution D.
The LQR problem associated with system (1a) is given by

T, u

minimize E [ / (T ()Qu(t) + u (H)Ru(®)) dt| (1b)
0
where () and R are positive definite matrices. For a control-
lable pair (A, B), the solution to (1) is the linear feedback
u=—-K'z = —R'B"P*x

where P* is the unique positive definite solution to the
Algebraic Riccati Equation (ARE)

ATP* + PPA+ Q — PPBR'BTP* = 0. (2

When the model parameters A and B are known, the ARE
can be solved efficiently via a variety of techniques [13]-[16].
However, these techniques are not directly applicable when
the parameters are unknown. One approach to dealing with
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this situation is to use the linearity of the optimal controller
and reformulate the LQR problem as an optimization over
feedback gains,

mingnize F(K) 3)

trace (Q + KTRK)X(K)), KeS§
00 otherwise.

) = {

Here, the function f(K) determines the LQR cost in (1b)
associated with the linear feedback law ©v = — Kz,

S = {KeR™"| A— BK is Hurwitz} 4

)

is the set of stabilizing feedback gains, and for any K € S
X(K) = /Ooe(A_BK)th(A_BK)Ttdt (5)
0

where Q := E[z(0)2T(0)] = 0 is the correlation matrix
associated with the initial condition x(0) ~ D, which we
assume to be positive definite. Moreover, since the optimal
feedback gain K* = R~!BT P* does not depend on the
initial condition, without loss of generality, we assume that
the random initial condition x(0) is uniformly bounded, i.e.,
[|2(0)||]2 < M with probability one. In problem (3), K is the
optimization variable, and (4, B, @Q = 0, R > 0, Q > 0,
M > 0) are the problem parameters.

The formulation of the LQR problem given by (3) has been
studied for both continuous-time [6], [8] and discrete-time
systems [5], [17]. It also represents a building block for several
important control problems including imposing structural
constraints (e.g., sparsity) on the feedback gain matrix [18]-
[20] and optimal sensor/actuator selection [21]-[23].

In this paper, we analyze the convergence properties of
the random search method for solving problem (3) with
unknown model parameters [24], [25]. At each iteration, this
method forms an empirical approximation Vf(K) to the
gradient of the objective function f(K) via simulations of
system (la) for several randomly perturbed feedback gains
K+U;,i=1,...,N; see Algorithm 1. The random search
method then follows the update rule

KM= KF — oaVf(KY), K°ecS (RS)

for some stepsize o > 0.
III. MAIN RESULT

Even though the optimization problem (3) is nonconvex [7],
we demonstrate that, for any desired accuracy, the iterates
of (RS) with a suitably selected set of parameters in Algo-
rithm 1 and a constant stepsize o converge to the optimal
solution w.h.p. in polynomial time.

Theorem 1: There are positive rational functions 7¢(a),
... r5(a), and y(a) < 1 such that for any

e < min{(a — f7) (1 = 7(a)), ro(a)}

if we choose the simulation time 7 and smoothing parameter

Algorithm 1 Gradient estimation

Input: Feedback gain K € R™*™, weight matrices @, R,
distribution D, smoothing constant 7, simulation time 7,
number of random samples V.
for i =1to N do

— Sample a perturbed feedback gain K; := K + Uj,
where U; is uniformly distributed on the sphere S, (0)
of radius r centered at 0.

— Sample an initial condition x;(0) with distribution D.

— Simulate system (la) with the feedback gain K; and
the initial condition x;(0) up to time 7 and construct
fi = / (2T (1)Qx(t) + u” (t)Ru(t)) dt.
end for 0
— mn N ~
Output: The gradient estimate V f(K) := N Z fiUs.

=1

r in Algorithm 1 to satisfy

1
;> log (mnrz(a))’ r< min{L
ri(a) re rs(a

then the iterates of (RS) starting from the initial condition
K% e S ¢ R™*" with f(K°) = a satisfy the error bound

FIER) = f* < (a = f) (v(@)" + (1 =~(a) e

—Neé?
(3d/2)% + de )
Here, d := mnrs(a)/r, f* = f(K*),and N is the number of
simulations in Algorithm 1 that is performed at each iteration.

with probability at least 1—k(mn+1) exp (

The proof of Theorem 1 along with a discussion on the
values of parameters ry, ..., r5, the rate of convergence -,
and the stepsize « are presented in Section VI

IV. SYNTHESIS WITH A KNOWN MODEL

The random search method in (RS) at each iteration calls

Algorithm 1 to estimate the gradient of the objective function
ViK) = Q(RK—BTP(K))X(K). (6)

Here, P(K) is the unique positive definite solution to
(A - BK)'P + P(A - BK) = -Q — KTRK (7)

and X is given by (5) [26]. Note that the existence and
uniqueness of P(K) > 0 is equivalent to the closed-loop
stability, i.e., K € S. Replacing the estimate V f(K*) in (RS)
with V f(K*) yields the gradient descent method

KM = K* — o Vf(K"), K° € S. (GD)

Although nonconvex, the function f has two main properties
that can be used to prove linear convergence of (GD).

A. Smoothness and gradient dominance over sublevel sets

The gradient descent method converges linearly O(~v*) for
some positive v < 1 if the objective function is smooth and
satisfies the Polyak-Lojasiewicz (PL) condition [27]. These
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properties do not hold for the LQR objective function f
uniformly over its domain S. However, restricted to any
nonempty sublevel set S(a) := {K € S|f(K) < a}, the
function f is indeed L-smooth, i.e.,

/ L
FE') = J(K) < (VI(K),K' — K) + 5 |K — K'[;
for all K, K’ € S(a) and it satisfies the PL condition, i.e.,

2u(f(K) = f(K") < VK|

for all K € S(a) [8]. The explicit dependence of the scalars
L > p > 0 on a was established in [8] where it was shown
that L and p are positive rational functions of a. The PL
condition was recently used to show convergence of gradient
descent for LQR problem for discrete-time systems [5].

B. Linear convergence

Our convergence analysis for the random search
method (RS) relies on the convergence of gradient descent.
Although nonuniform, the PL condition along with smooth-
ness of the objective function were used in [8, Theorem 2] to
show linear convergence of the gradient descent method (GD).

Theorem 2: Let L > p > 0 be the smoothness and PL
parameters of the function f over the sublevel set S(a). For
any initial feedback gain K° € S(a), the iterates of gradient
descent (GD) with stepsize « € (0,1/L] satisfy

FIEM) — f(E) < (1 = ap) (F(K*) = f(K7)). 8)
V. GRADIENT ESTIMATION

In this section, we analyze the accuracy of the gradient
estimate V f(K) resulting from Algorithm 1. The problem
of estimating the gradient using function values obtained
via random sampling has received significant attention for
gradient-free optimization [28]. Let U, and U, be random
variables centered at O that are uniformly distributed on the
ball B,.(0) of radius » > 0 and its boundary S, (0), respec-
tively. For the bounded continuous function f: R™*™ — R,

VI(K) = T3 Eu [f(K +U,)U,] ©)

where
F(K) = Ey,[f(K +Up)]

is the r-averaged version of the function f(K) [29, Lemma
2.1]. We use the gradient V f(K) as a tool to upper bound the
gap between the estimate V f(K) produced by Algorithm 1
and the gradient V f(K) via the triangle inequality

IVFA(K) = VE)|r < |V(K) - VI(K)|r +
IVF(K) = Vf(K)|r. (1)

The function f(K), however, is not uniformly bounded over
the domain S. In what follows, we first establish a sufficient
condition for the boundedness of the function f(K + U)
for all U € B,.(0) to ensure that f(K) is well defined and
satisfies (9). Then, we derive upper bounds on the terms
that appear on the right-hand side of (11) and analyze the
accuracy of the gradient estimate.

(10)

A. Local boundedness of the function f(K)

An important requirement for the gradient estimation
scheme in Algorithm 1 is the stability of the perturbed closed-
loop systems, i.e., K +U; € S. Violating such condition leads
to an exponential growth of the state and control signals and
invalidates our proof technique which relies on the premise of
dealing with bounded values of the objective function f(K)
and stable closed-loop systems. In Proposition 1, we establish
a radius within which any perturbation of the feedback gain
K € S remains stabilizing.

Proposition 1: For any feedback gain K € S, we have
(K e R™"||K-K|s <¢} C S

where ¢ := %Amin(ﬂ) (I Bl2 | X (£)|2) "

The proof of Proposition 1 relies on KYP lemma [30, Lemma
7.4] and the small-gain test [30, Theorem 8.2]. These are
standard control-theoretic tools that facilitate stability analysis
of linear systems with uncertain parameters. We omit the
proof due to page limitations.

The sample feedback gains K + U; are stabilizing as long
as the parameter r in Algorithm 1 is smaller that ¢ given by
Proposition 1. Moreover, the r-averaged function f(K) is
well defined and it satisfies (9).

B. Bounding the distance between ¥V f(K) and V f(K)
From the definition of the function f(K) in (10) we have

VHK) = VF(K) = Ey,[Vf(K) = V(K +Up)] (12)

where the random variable U, is uniformly distributed over
the ball B,.(0). Lemma 1 quantifies a Lipschitz continuity
parameter for the gradient V f(K) that allows us to bound the
distance ||V f(K) — Vf(K)||r. We also provide Lipschitz
continuity parameters for the objective function and the ma-
trices X (K') and P(K) that are used in the next subsections.

Lemma 1: For any K € S and K € R™*" such that
I — K||2 < 4, with

{ Amin (€2) Amin (Q) }

T ABlr M trace (X (K)) trace (P(K))

the feedback gain matrix Kes , and

IX(K) = X(K)|r < el K — K] (13a)
f(K) = f(K)| < e]|K-K|, (13b)
IP(K) — P(K)||p < es|K - K||2 (13¢)
IVF(K) =VE)|r < el K- K| (13d)

where X (K') and P(K) are given by (5) and (7), respectively.
Furthermore, the parameters ¢; which only depend on K
and problem data are given by €; := [|X(K)|]2/9, €3 =
2trace(P)(2[|Pll2[Bllr + (6 + 2[K|[2)[|E]l7)/Amin(Q),
o = &|QF, ea = 2(e|[K|2 + 2[X(K)|2)|Rlr +
21 (|| P(K)|2 + 2e3]| X (K)[[2)[| Bl -

Lemma 1 combines the stability margin established in
Proposition 1 with bounds on the norm of inverse Lyapunov
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operator. We omit the proof due to page limitations.

Using Lemma 1, we can bound the right-hand side of
equation (12). This leads to the next proposition.

Proposition 2: For any K € S and r < §, we have
IVf(K)—Vf(K)|r < esr, where f(K) is the r-averaged
version of f(K) and the parameters § and ¢, provided in
Lemma 1 only depend on K and problem data.

Proof: Since ||Upll2 < [|Up||r < r, Lemma 1 implies

that, for » < 9, inequality (13d) holds with K := K + U,.

This yields HVf(K) — Vf(K + Ub)HF < €4||Ub||2 < ey
Taking expectation and using the triangle inequality on (12)
completes the proof. [ ]

C. Bounding the distance between ¥V f(K) and V f(K)
The output V f(K) of Algorithm 1 is a biased estimator

of Vf(K). We next address the resulting bias and variance.

1) Bias: The bias arises from finite-time approximation
in the simulation step of Algorithm 1. To illustrate this, let
us define the 7-truncated versions of the objective function
f(K) and the matrix X (K) in (5) as

fr(K) = trace (Q + K"RK) X, (K)) (14a)

X, (K) ::/ oA=BEEQo(A-BK) t 4t (14p)
0

Using the solution x(t) = (A= B%)t3(0) of the closed-loop
system, it is straightforward to verify that

F+(K) = Eu) [ /0 T(xT(t)Qx(t)—q—uT(t)Ru(t))dt}‘

Thus, based on sampling distribution of the random gains
U; and the initial conditions z;(0) in Algorithm 1, it follows
that the mean value of the gradient estimate V f(K) satisfies

N
E[V/(K)] = v > E[iU]

2N -
=

- (15)
mn
= T2 Ev, [f+(K + Us)Us].
Here, fz is the cost associated with the ith simulation in
Algorithm 1 with the sample feedback gain K + U; and
Uy is uniformly distributed on S,.(0). Now, subtracting (15)
from (9), we can represent the bias term as

VHEK) - E[Vf(K)] =

mn

EUS[(fT(K + Ué) - f(K + Ué)) Ué] (16)

2
r
In Proposition 3, we use this equation to establish an
exponentially vanishing upper bound on the bias.

Proposition 3: For any sublevel set S(a), there are positive
parameters Ra, K3, and 6 such that the output Vf(K) of
Algorithm 1 with K € S(a) and r < 0 satisfies

IVF(K) = EVf(K)|lr < (mnks/r)e ™" (17)

where f(K) is the r-averaged version of the function f(K).

The parameters ks, K3, and 6 are rational functions of a. These

parameters are discussed in the proof; see Appendix A.

2) Variance: We use concentration results to establish a
probabilistic bound on the norm of the random matrix

G = Vf(K) - E[Vf(K)]

where Vf(K) = (mn/(r2N)) S2N_, f; U is the output of
Algorithm 1. In particular, we can express G as the sum of
N zero-mean i.i.d. random matrices, G = Zi Vi,

1 mn - —

Vi =~ (o U — E[VS(K))).

This allows us to employ the Bernstein inequality [31,
Theorem 1.6.2] to show that ||G||r can be made arbitrary
small by choosing a large number of samples N.

Proposition 4: There exists a positive rational function
6(a) such that, for any sublevel set S(a) of the objective
function f(K), the output of Algorithm 1 with r < 6(a),
K € S(a) C R™*™ and N samples satisfies |G||r < € with

.- —N¢?
probability at least 1 — (mn + 1) exp W ,
2r 3r
where [ := 4aM? /Apmin(2) and M upper bounds ||z ]|2.
Proof: See Appendix B. [ ]

D. Total error

_ Herein, we bound the accuracy of the gradient estimate
V f(K) as a function of the parameters in Algorithm 1. From
inequality (11) and the triangle inequality we have

IVFE) = VIE)|r < IVFE) = VAE)|F +

IVA(K) = EVf(E)lr + [IVF(K) = EVF(K)]|lF.
(18)
Theorem 3 combines Propositions 2, 3 and 4 to bound the

terms on the right-hand side of the above inequality. We omit
the proof due to page limitations.

Theorem 3: There exist positive rational functions %(a),
F'(a), 6(a), and 6’(a) such that for any K € S(a), the output
of Algorithm 1 with

1 3mnk'(a) - (a
T > =) log< s >, r < mln{é(a),ﬁ( )}

satisfies |[Vf(K) — Vf(K)||r < e with probability at least

—Né2
1 - (mn+1)exp mn mnle
<(3 l)2+ l )

2r T

where [ := 4a M?/A\uin(2), M is an upper bound on ||zo]2,
and mn is the number of entries in K.

VI. CONTROL SYNTHESIS WITH AN UNKNOWN MODEL

In this section, we analyze the random search algorithm
in (RS). Theorem 3 proves that the parameters in Algorithm 1
can be selected to achieve any desired accuracy for the
gradient estimate with high probability. This allows us to
relate the iterates of (RS) to those of gradient descent (GD)
to deduce convergence of (RS) from the linear convergence

4801

Authorized licensed use limited to: University of Southern California. Downloaded on November 01,2020 at 21:20:53 UTC from IEEE Xplore. Restrictions apply.



of (GD) established in Theorem 2. We use the notation
introduced in Section V to present our main convergence
result. Theorem 4 is a more formal restatement of Theorem 1.

Theorem 4: Let &(a), F'(a), 6(a), and 6'(a) be positive
rational functions as in Theorem 3. Let stepsize o € (0,1/L]
and let v = 1 — au, where L and p are the smoothness and
PL parameters of the function f over its sublevel set S(a).
There are positive rational functions §(a) and & (a) such that
for any K° € S(a) and € < min{(a — f*) (1 — ), &}, if
we choose the simulation time 7 and smoothing parameter r
in Algorithm 1 to satisfy

1 3mnk'e ~
T > —log (W>, r < min{%, o'}
R re 0 e

then the iterates of (RS) satisfy
FIEF) = " < (a= )9 + (1—)7"e

with probability at least

—Ne¢?
1 — k(mn+1)exp = - .
( ) <(3mn152a)2 + mnléxae )

2r T

Here, f* := f(K™), N is the number of samples per iteration,
and [ := 4a M? /Amin(Q2), where M upper bounds ||z ||2.

Proof: For any « € (0,1/L], by Theorem 2
FIE) = 5 < (F(K°) = ")~

where K’ = K° — aV f(K) is the first iteration of gradient

descent method (GD). As we discuss in the proof of

Proposition 3, the constants § and €; in Lemma 1 can be

uniformly lower and upper bounded over the sublevel set S(a)

by positive rational functions §(a) and é(a). By Theorem 3,
we can choose parameters in Algorithm 1 such that

IVF(E®) = VAE) P < ¢/(e2q)

19)

w.h.p. Thus, noting that K’ € S(a), for any ¢ < § &,
IK' =K'l = a|VFA(E®) = V(K2 < ¢/ez <6

w.h.p. By Lemma 1, it follows that |f(K') — f(K')| < €
w.h.p. and, thus, from (19) and the triangle inequality, for
any € < (a — f*)(1 — v), we obtain

JIKY) = < e+ (F(K°) = f*)y < (a — 7). (20)

This implies K remains in S(a) and we can use induction
on the first inequality in (20) to show that w.h.p.

k—1
FIK®) = £ < (F(K?) = )9 + ed A"
1=0

Finally, the probability bound is obtained by applying the
union bound on Theorem 3 for the first k iterations. |

VII. CONCLUDING REMARKS

We establish a bound on the sample complexity of a random
search method for solving the continuous-time LQR problem
that directly searches for the controller over the nonconvex
set of stabilizing feedback gains. Our results demonstrate that

with a simulation time of O(log (1/¢)), the random search
method achieves an accuracy level € at a linear rate provided
that we have enough samples, N = poly (1/¢). In our more
recent work [11], we have improved this result by eliminating
the dependence of N on e.

APPENDIX

A. Bounding the bias: proof of Proposition 3

We first present a technical lemma whose proof is omitted
due to page limitations.

Lemma 2: For any K € § and 7 > 0, the 7-truncated
matrix X, (K) and objective function f,(K) in (14) satisfy

IX(K) - X+ (K)||lp < ke "e" (21a)
f(K) = fr(K) < kge ™7 (21b)

where X (K) is given by (5) and the constants are given by

_IRAXEOBE L ()
)\min(Q)Amin(X(K)) ’

X (K2
rL(1Qll2 + [ Rl KI13)-

It has been shown that over the sublevel set S(a), the
values of || K ||z, trace(X (K)) and 1/ Amin (X (K)) are upper
bounded by linear functions of a [8]. Using these bounds,
it is straightforward to verify that the parameters J and e,
in Lemma 1 can be uniformly lower and upper bounded by
rational functions of a for all K € S(a). Let & and €, be two
of such bounds, i.e., for any § < § and €5 > &, Lemma 1
holds for all K € S(a). Similarly, the parameters ko and K3
in Lemma 2 can also be lower and upper bounded uniformly
over the sublevel set S(2a) by polynomial functions of a.
We also let <9 and k3 be two of such bounds, i.e., for any
ko < Ko and k3 > K3, Lemma 2 holds for all K € §(2a).

If we restrict the smoothing parameter r to satisfy the
inequality r < min{d, a/é}, then from (13b) in Lemma 1
with § := ¢ and €5 := &, it follows that

FIK+Us) = f(K) < &|Us]z < &r < a

K3

(22)

for all K € S(a). Thus, from the triangle inequality we obtain
that K + U, € S(2a) for all Uy € S,-(0) and K € S(a). This
allows us to use Lemma 2 for all feedback gains K + Uy
and k9 := Ko and k3 := K3 to obtain that

IVF(K) = EVAE)]lr <

mnks g1

S E((f (K + U = (K + U U] <

Here, the first inequality follows from applying the triangle
inequality on (16), and the second follows from Lemma 2.

B. Proof of Proposition 4

Since V; are i.i.d., the Bernstein’s inequality [31, Theorem
1.6.2] implies |G||r < € with probability not smaller than

m2n2v’

Ne2pt

mnl'e |1
) )

1 — (mn+1)exp (—( 3N 22

(23)
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where !" and v" are the bounds ||fZUZ - E[fz Ulllr < U,
E[||f; U; — E[f: Ui]||%] < v'. To quantify v" and I’, we can
restrict r to be smaller than a rational function #(a) to ensure

K 4+ U; € §(2a); cf. (22). This allows us to write
If: Ui =Elf; Ullllp < 2r max(fi) <

4ra M?

27 max ((2;(0)T P(K + Uy)a;(0)) < ———

)\min(Q)

where [ := 4a M?/A\pin (). Similarly, for the second term,

=rl

E|If: U~ Ef UIE| = E[I£ UlF] - I Ul
< r?max f2 < r?max ((.Z‘i(O))TP(K+Ui).’L‘i(O))2
< 4d®rPMANE(Q) = (r1/2)%

These bounds in conjunction with (23) complete the proof.
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