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Abstract— Many emerging applications involve control of
systems with unknown dynamics. As a result, model-free
random search techniques that directly search over the space
of parameters have become popular. These algorithms often
exhibit a competitive sample complexity compared to state-of-
the-art techniques. However, due to the nonconvex nature of
the underlying optimization problems, the convergence behavior
and statistical properties of these approaches are poorly under-
stood. In this paper, we examine the standard linear quadratic
regulator problem for continuous-time systems with unknown
state-space parameters. We establish theoretical bounds on the
sample complexity and prove the linear convergence rate of the
random search method.

Index Terms— Linear quadratic regulator, model-free control,
nonconvex optimization, Polyak-Lojasiewicz inequality, random
search method, reinforcement learning, sample complexity.

I. INTRODUCTION

Reinforcement Learning (RL) approaches often perform

well in applications with no control-oriented models [1], [2].

Without even requiring system identification, the class of

model-free RL methods prescribe control action only based

on estimated values of a cost function [3]–[5]. In spite of

empirical success of these techniques, many fundamental

questions surrounding convergence and sample complexity

remain unanswered even for classical control problems,

including the linear quadratic regulator (LQR). In this paper,

we make progress in addressing such challenges with a focus

on the infinite-horizon LQR problem for continuous-time LTI

systems.

The globally optimal solution to the LQR problem can

be obtained by solving the Riccati equation and efficient

numerical schemes with provable convergence guarantees

have been developed [6]. However, computing the optimal

solution becomes challenging when model is not available.

This motivates the use of direct search methods for controller

synthesis. In addition to nonconvexity [7], a major challenge

in model-free settings is that the gradient of the objective

function is unknown so that only zero-order methods can be

used to estimate the gradient.

Despite nonconvexity, for discrete-time LQR, global con-

vergence guarantees for both gradient descent and random

search on the state-feedback gains were provided in [5]. This

result exploited observation that the cost function satisfies

the Polyak-Lojasiewicz (PL) condition. Recent reference [8]

extended this observation to the continuous-time LQR prob-

lem and established linear convergence for gradient descent.
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Extensions to the H∞-regularized LQR [9] and Markovian

jump systems [10] have also been studied.

In this paper, we show that the random search method

can solve the continuous-time LQR problem with unknown

dynamics up to any desired accuracy with high probability

(w.h.p.) in polynomial time. Our results provide upper bounds

on the sample complexity and quantify how the final accuracy

depends on the number of samples and simulation time.

While Reference [5] motivates our work, we study the

continuous-time LQR problem and, compared to [5], we

provide a significant improvement in computational efficiency

by reducing the required simulation time for achieving ε-
accuracy from O(poly(1/ε)) to O(log(1/ε)). We also refer

to our more recent works where we established an overall

sample complexity of O(log(1/ε)) in the case of two-point

gradient estimates for both continuous-time [11] and discrete-

time [12] systems.

The paper is structured as follows. In Section II, we revisit

the LQR problem and present the random search method.

In Section III, we highlight the main result of the paper. In

Section IV, we discuss the convergence of gradient descent. In

Section V, we quantify the accuracy of the gradient estimate

used in random search method. In Section VI, we prove

the main convergence result and, in Section VII, we offer

concluding remarks and discuss future directions.

II. PROBLEM FORMULATION

Consider the LTI system

ẋ = Ax + Bu, x(0) ∼ D (1a)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input,

A and B are constant matrices of appropriate dimensions,

and x(0) is a random initial condition with distribution D.

The LQR problem associated with system (1a) is given by

minimize
x, u

E

[
∫

∞

0

(xT (t)Qx(t) + uT (t)Ru(t)) dt

]

(1b)

where Q and R are positive definite matrices. For a control-

lable pair (A,B), the solution to (1) is the linear feedback

u = −K?x = −R−1BTP ?x

where P ? is the unique positive definite solution to the

Algebraic Riccati Equation (ARE)

ATP ? + P ?A + Q − P ?BR−1BTP ? = 0. (2)

When the model parameters A and B are known, the ARE

can be solved efficiently via a variety of techniques [13]–[16].

However, these techniques are not directly applicable when

the parameters are unknown. One approach to dealing with
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this situation is to use the linearity of the optimal controller

and reformulate the LQR problem as an optimization over

feedback gains,

minimize
K

f(K) (3)

f(K) :=

{

trace
(

(Q+KTRK)X(K)
)

, K ∈ S
∞, otherwise.

Here, the function f(K) determines the LQR cost in (1b)

associated with the linear feedback law u = −Kx,

S := {K ∈ R
m×n | A − BK is Hurwitz} (4)

is the set of stabilizing feedback gains, and for any K ∈ S

X(K) :=

∫

∞

0

e(A−BK)t Ωe(A−BK)T t dt (5)

where Ω := E[x(0)xT (0)] � 0 is the correlation matrix

associated with the initial condition x(0) ∼ D, which we

assume to be positive definite. Moreover, since the optimal

feedback gain K? = R−1BTP ? does not depend on the

initial condition, without loss of generality, we assume that

the random initial condition x(0) is uniformly bounded, i.e.,

‖x(0)‖2 ≤ M with probability one. In problem (3), K is the

optimization variable, and (A, B, Q � 0, R � 0, Ω � 0,

M > 0) are the problem parameters.

The formulation of the LQR problem given by (3) has been

studied for both continuous-time [6], [8] and discrete-time

systems [5], [17]. It also represents a building block for several

important control problems including imposing structural

constraints (e.g., sparsity) on the feedback gain matrix [18]–

[20] and optimal sensor/actuator selection [21]–[23].

In this paper, we analyze the convergence properties of

the random search method for solving problem (3) with

unknown model parameters [24], [25]. At each iteration, this

method forms an empirical approximation ∇f(K) to the

gradient of the objective function f(K) via simulations of

system (1a) for several randomly perturbed feedback gains

K + Ui, i = 1, . . . , N ; see Algorithm 1. The random search

method then follows the update rule

Kk+1 := Kk − α∇f(Kk), K0 ∈ S (RS)

for some stepsize α > 0.

III. MAIN RESULT

Even though the optimization problem (3) is nonconvex [7],

we demonstrate that, for any desired accuracy, the iterates

of (RS) with a suitably selected set of parameters in Algo-

rithm 1 and a constant stepsize α converge to the optimal

solution w.h.p. in polynomial time.

Theorem 1: There are positive rational functions r0(a),
. . ., r5(a), and γ(a) < 1 such that for any

ε ≤ min{(a − f?) (1− γ(a)), r0(a)}

if we choose the simulation time τ and smoothing parameter

Algorithm 1 Gradient estimation

Input: Feedback gain K ∈ R
m×n, weight matrices Q, R,

distribution D, smoothing constant r, simulation time τ ,

number of random samples N .

for i = 1 to N do

– Sample a perturbed feedback gain Ki := K + Ui,

where Ui is uniformly distributed on the sphere Sr(0)
of radius r centered at 0.

– Sample an initial condition xi(0) with distribution D.

– Simulate system (1a) with the feedback gain Ki and

the initial condition xi(0) up to time τ and construct

f̂i :=

∫ τ

0

(xT (t)Qx(t) + uT (t)Ru(t)) dt.

end for

Output: The gradient estimate ∇f(K) :=
mn

r2N

N
∑

i=1

f̂i Ui.

r in Algorithm 1 to satisfy

τ ≥
1

r1(a)
log

(

mnr2(a)

rε

)

, r ≤ min{
ε

r3(a)
, r4(a)}

then the iterates of (RS) starting from the initial condition

K0 ∈ S ⊂ R
m×n with f(K0) = a satisfy the error bound

f(Kk) − f? ≤ (a − f?) (γ(a))k + (1− γ(a))−1ε

with probability at least 1−k(mn+1) exp

(

−Nε2

(3d/2)2 + dε

)

.

Here, d := mnr5(a)/r, f? = f(K?), and N is the number of

simulations in Algorithm 1 that is performed at each iteration.

The proof of Theorem 1 along with a discussion on the

values of parameters r0, . . ., r5, the rate of convergence γ,

and the stepsize α are presented in Section VI.

IV. SYNTHESIS WITH A KNOWN MODEL

The random search method in (RS) at each iteration calls

Algorithm 1 to estimate the gradient of the objective function

∇f(K) = 2
(

RK −BTP (K)
)

X(K). (6)

Here, P (K) is the unique positive definite solution to

(A − BK)TP + P (A − BK) = −Q − KTRK (7)

and X is given by (5) [26]. Note that the existence and

uniqueness of P (K) � 0 is equivalent to the closed-loop

stability, i.e., K ∈ S . Replacing the estimate ∇f(Kk) in (RS)

with ∇f(Kk) yields the gradient descent method

Kk+1 := Kk − α∇f(Kk), K0 ∈ S. (GD)

Although nonconvex, the function f has two main properties

that can be used to prove linear convergence of (GD).

A. Smoothness and gradient dominance over sublevel sets

The gradient descent method converges linearly O(γk) for

some positive γ < 1 if the objective function is smooth and

satisfies the Polyak-Lojasiewicz (PL) condition [27]. These
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properties do not hold for the LQR objective function f
uniformly over its domain S. However, restricted to any

nonempty sublevel set S(a) := {K ∈ S|f(K) ≤ a}, the

function f is indeed L-smooth, i.e.,

f(K
′

) − f(K) ≤ 〈∇f(K),K ′ − K〉 +
L

2
‖K − K ′‖2F

for all K, K ′ ∈ S(a) and it satisfies the PL condition, i.e.,

2µ (f(K) − f(K?)) ≤ ‖∇f(K)‖2F

for all K ∈ S(a) [8]. The explicit dependence of the scalars

L > µ > 0 on a was established in [8] where it was shown

that L and µ are positive rational functions of a. The PL

condition was recently used to show convergence of gradient

descent for LQR problem for discrete-time systems [5].

B. Linear convergence

Our convergence analysis for the random search

method (RS) relies on the convergence of gradient descent.

Although nonuniform, the PL condition along with smooth-

ness of the objective function were used in [8, Theorem 2] to

show linear convergence of the gradient descent method (GD).

Theorem 2: Let L > µ > 0 be the smoothness and PL

parameters of the function f over the sublevel set S(a). For

any initial feedback gain K0 ∈ S(a), the iterates of gradient

descent (GD) with stepsize α ∈ (0, 1/L] satisfy

f(Kk+1) − f(K?) ≤ (1 − αµ)
(

f(Kk) − f(K?)
)

. (8)

V. GRADIENT ESTIMATION

In this section, we analyze the accuracy of the gradient

estimate ∇f(K) resulting from Algorithm 1. The problem

of estimating the gradient using function values obtained

via random sampling has received significant attention for

gradient-free optimization [28]. Let Ub and Us be random

variables centered at 0 that are uniformly distributed on the

ball Br(0) of radius r > 0 and its boundary Sr(0), respec-

tively. For the bounded continuous function f : Rm×n → R,

∇f̄(K) =
mn

r2
EUs

[f(K + Us)Us] (9)

where

f̄(K) := EUb
[f(K + Ub)] (10)

is the r-averaged version of the function f(K) [29, Lemma

2.1]. We use the gradient ∇f̄(K) as a tool to upper bound the

gap between the estimate ∇f(K) produced by Algorithm 1

and the gradient ∇f(K) via the triangle inequality

‖∇f(K) − ∇f(K)‖F ≤ ‖∇f(K) − ∇f̄(K)‖F +

‖∇f̄(K) − ∇f(K)‖F . (11)

The function f(K), however, is not uniformly bounded over

the domain S . In what follows, we first establish a sufficient

condition for the boundedness of the function f(K + U)
for all U ∈ Br(0) to ensure that f̄(K) is well defined and

satisfies (9). Then, we derive upper bounds on the terms

that appear on the right-hand side of (11) and analyze the

accuracy of the gradient estimate.

A. Local boundedness of the function f(K)

An important requirement for the gradient estimation

scheme in Algorithm 1 is the stability of the perturbed closed-

loop systems, i.e., K+Ui ∈ S . Violating such condition leads

to an exponential growth of the state and control signals and

invalidates our proof technique which relies on the premise of

dealing with bounded values of the objective function f(K)
and stable closed-loop systems. In Proposition 1, we establish

a radius within which any perturbation of the feedback gain

K ∈ S remains stabilizing.

Proposition 1: For any feedback gain K ∈ S , we have

{K̂ ∈ R
m×n | ‖K̂ −K‖2 < ζ} ⊂ S

where ζ :=
1

2
λmin(Ω) (‖B‖2‖X(K)‖2)

−1
.

The proof of Proposition 1 relies on KYP lemma [30, Lemma

7.4] and the small-gain test [30, Theorem 8.2]. These are

standard control-theoretic tools that facilitate stability analysis

of linear systems with uncertain parameters. We omit the

proof due to page limitations.

The sample feedback gains K +Ui are stabilizing as long

as the parameter r in Algorithm 1 is smaller that ζ given by

Proposition 1. Moreover, the r-averaged function f̄(K) is

well defined and it satisfies (9).

B. Bounding the distance between ∇f(K) and ∇f̄(K)

From the definition of the function f̄(K) in (10) we have

∇f(K) − ∇f̄(K) = EUb
[∇f(K)−∇f(K + Ub)] (12)

where the random variable Ub is uniformly distributed over

the ball Br(0). Lemma 1 quantifies a Lipschitz continuity

parameter for the gradient ∇f(K) that allows us to bound the

distance ‖∇f(K) − ∇f̄(K)‖F . We also provide Lipschitz

continuity parameters for the objective function and the ma-

trices X(K) and P (K) that are used in the next subsections.

Lemma 1: For any K ∈ S and K̂ ∈ R
m×n such that

‖K̂ −K‖2 < δ, with

δ :=
1

4 ‖B‖F
min

{

λmin(Ω)

trace (X(K))
,

λmin(Q)

trace (P (K))

}

the feedback gain matrix K̂ ∈ S , and

‖X(K̂) −X(K)‖F ≤ ε1‖K̂ −K‖2 (13a)

|f(K̂) − f(K)| ≤ ε2‖K̂ −K‖2 (13b)

‖P (K̂) − P (K)‖F ≤ ε3‖K̂ −K‖2 (13c)

‖∇f(K̂) −∇f(K)‖F ≤ ε4‖K̂ −K‖2 (13d)

where X(K) and P (K) are given by (5) and (7), respectively.

Furthermore, the parameters εi which only depend on K
and problem data are given by ε1 := ‖X(K)‖2/δ, ε3 :=
2 trace(P )(2 ‖P‖2‖B‖F + (δ + 2‖K‖2)‖R‖F )/λmin(Q),
ε2 := ε3‖Ω‖F , ε4 := 2(ε1‖K‖2 + 2‖X(K)‖2)‖R‖F +
2ε1(‖P (K)‖2 + 2ε3‖X(K)‖2)‖B‖F .

Lemma 1 combines the stability margin established in

Proposition 1 with bounds on the norm of inverse Lyapunov
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operator. We omit the proof due to page limitations.

Using Lemma 1, we can bound the right-hand side of

equation (12). This leads to the next proposition.

Proposition 2: For any K ∈ S and r < δ, we have

‖∇f(K)−∇f̄(K)‖F ≤ ε4r, where f̄(K) is the r-averaged

version of f(K) and the parameters δ and ε4 provided in

Lemma 1 only depend on K and problem data.

Proof: Since ‖Ub‖2 ≤ ‖Ub‖F ≤ r, Lemma 1 implies

that, for r < δ, inequality (13d) holds with K̂ := K + Ub.

This yields ‖∇f(K) − ∇f(K + Ub)‖F ≤ ε4‖Ub‖2 ≤ ε4 r.
Taking expectation and using the triangle inequality on (12)

completes the proof.

C. Bounding the distance between ∇f̄(K) and ∇f(K)

The output ∇f(K) of Algorithm 1 is a biased estimator

of ∇f̄(K). We next address the resulting bias and variance.

1) Bias: The bias arises from finite-time approximation

in the simulation step of Algorithm 1. To illustrate this, let

us define the τ -truncated versions of the objective function

f(K) and the matrix X(K) in (5) as

fτ (K) := trace
(

(Q + KTRK)Xτ (K)
)

(14a)

Xτ (K) :=

∫ τ

0

e(A−BK)t Ωe(A−BK)T t dt. (14b)

Using the solution x(t) = e(A−BK)tx(0) of the closed-loop

system, it is straightforward to verify that

fτ (K) = Ex(0)

[
∫ τ

0

(xT (t)Qx(t) + uT (t)Ru(t)) dt

]

.

Thus, based on sampling distribution of the random gains

Ui and the initial conditions xi(0) in Algorithm 1, it follows

that the mean value of the gradient estimate ∇f(K) satisfies

E
[

∇f(K)
]

=
mn

r2N

N
∑

i=1

E

[

f̂i Ui

]

=
mn

r2
EUs

[fτ (K + Us)Us].

(15)

Here, f̂i is the cost associated with the ith simulation in

Algorithm 1 with the sample feedback gain K + Ui and

Us is uniformly distributed on Sr(0). Now, subtracting (15)

from (9), we can represent the bias term as

∇f̄(K) − E[∇f(K)] =

mn

r2
EUs

[(fτ (K + Us)− f(K + Us))Us]. (16)

In Proposition 3, we use this equation to establish an

exponentially vanishing upper bound on the bias.

Proposition 3: For any sublevel set S(a), there are positive

parameters κ̄2, κ̄3, and θ such that the output ∇f(K) of

Algorithm 1 with K ∈ S(a) and r < θ satisfies

‖∇f̄(K) − E [∇f(K)]‖F ≤ (mnκ̄3/r) e
−κ̄2τ (17)

where f̄(K) is the r-averaged version of the function f(K).
The parameters κ̄2, κ̄3, and θ are rational functions of a. These

parameters are discussed in the proof; see Appendix A.

2) Variance: We use concentration results to establish a

probabilistic bound on the norm of the random matrix

G := ∇f(K) − E [∇f(K)]

where ∇f(K) = (mn/(r2N))
∑N

i=1 f̂i Ui is the output of

Algorithm 1. In particular, we can express G as the sum of

N zero-mean i.i.d. random matrices, G =
∑

i Vi,

Vi :=
1

N
(
mn

r2
f̂iUi − E [∇f(K)]).

This allows us to employ the Bernstein inequality [31,

Theorem 1.6.2] to show that ‖G‖F can be made arbitrary

small by choosing a large number of samples N .

Proposition 4: There exists a positive rational function

θ(a) such that, for any sublevel set S(a) of the objective

function f(K), the output of Algorithm 1 with r < θ(a),
K ∈ S(a) ⊂ R

m×n, and N samples satisfies ‖G‖F ≤ ε with

probability at least 1 − (mn + 1) exp

(

−Nε2

(mnl
2r )2 + mnlε

3r

)

,

where l := 4aM2/λmin(Ω) and M upper bounds ‖x0‖2.

Proof: See Appendix B.

D. Total error

Herein, we bound the accuracy of the gradient estimate

∇f(K) as a function of the parameters in Algorithm 1. From

inequality (11) and the triangle inequality we have

‖∇f(K) − ∇f(K)‖F ≤ ‖∇f(K) − ∇f̄(K)‖F +

‖∇f̄(K) − E[∇f(K)]‖F + ‖∇f(K) − E[∇f(K)]‖F .
(18)

Theorem 3 combines Propositions 2, 3 and 4 to bound the

terms on the right-hand side of the above inequality. We omit

the proof due to page limitations.

Theorem 3: There exist positive rational functions κ̄(a),
κ̄′(a), θ̄(a), and θ̄′(a) such that for any K ∈ S(a), the output

of Algorithm 1 with

τ ≥
1

κ̄(a)
log

(

3mnκ̄′(a)

rε

)

, r < min{
ε

θ̄(a)
, θ̄′(a)}

satisfies ‖∇f(K) − ∇f(K)‖F ≤ ε with probability at least

1 − (mn+ 1) exp

(

−Nε2

( 3mnl
2r )2 + mnlε

r

)

where l := 4aM2/λmin(Ω), M is an upper bound on ‖x0‖2,

and mn is the number of entries in K.

VI. CONTROL SYNTHESIS WITH AN UNKNOWN MODEL

In this section, we analyze the random search algorithm

in (RS). Theorem 3 proves that the parameters in Algorithm 1

can be selected to achieve any desired accuracy for the

gradient estimate with high probability. This allows us to

relate the iterates of (RS) to those of gradient descent (GD)

to deduce convergence of (RS) from the linear convergence
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of (GD) established in Theorem 2. We use the notation

introduced in Section V to present our main convergence

result. Theorem 4 is a more formal restatement of Theorem 1.

Theorem 4: Let κ̄(a), κ̄′(a), θ̄(a), and θ̄′(a) be positive

rational functions as in Theorem 3. Let stepsize α ∈ (0, 1/L]
and let γ = 1− αµ, where L and µ are the smoothness and

PL parameters of the function f over its sublevel set S(a).
There are positive rational functions δ̄(a) and ε̄2(a) such that

for any K0 ∈ S(a) and ε ≤ min{(a− f?) (1− γ), δ̄ε̄2}, if

we choose the simulation time τ and smoothing parameter r
in Algorithm 1 to satisfy

τ ≥
1

κ̄
log

(

3mnκ̄′ε̄2α

r ε

)

, r < min{
ε

θ̄ ε̄2α
, θ̄′}

then the iterates of (RS) satisfy

f(Kk) − f? ≤ (a − f?) γk + (1− γ)−1ε

with probability at least

1 − k (mn+ 1) exp

(

−Nε2

( 3mnlε̄2α
2r )2 + mnlε̄2αε

r

)

.

Here, f? := f(K?), N is the number of samples per iteration,

and l := 4aM2/λmin(Ω), where M upper bounds ‖x0‖2.

Proof: For any α ∈ (0, 1/L], by Theorem 2

f(K ′) − f? ≤
(

f(K0) − f?
)

γ (19)

where K ′ = K0 − α∇f(K) is the first iteration of gradient

descent method (GD). As we discuss in the proof of

Proposition 3, the constants δ and ε2 in Lemma 1 can be

uniformly lower and upper bounded over the sublevel set S(a)
by positive rational functions δ̄(a) and ε̄2(a). By Theorem 3,

we can choose parameters in Algorithm 1 such that

‖∇f(K0)−∇f(K0)‖F ≤ ε/(ε̄2α)

w.h.p. Thus, noting that K ′ ∈ S(a), for any ε ≤ δ̄ ε̄2,

‖K1 −K ′‖2 = α‖∇f(K0)−∇f(K0)‖2 ≤ ε/ε̄2 ≤ δ̄

w.h.p. By Lemma 1, it follows that |f(K1) − f(K ′)| ≤ ε
w.h.p. and, thus, from (19) and the triangle inequality, for

any ε ≤ (a− f?)(1− γ), we obtain

f(K1)− f? ≤ ε +
(

f(K0) − f?
)

γ ≤ (a − f?) . (20)

This implies K1 remains in S(a) and we can use induction

on the first inequality in (20) to show that w.h.p.

f(Kk)− f? ≤
(

f(K0) − f?
)

γk + ε
k−1
∑

i=0

γi.

Finally, the probability bound is obtained by applying the

union bound on Theorem 3 for the first k iterations.

VII. CONCLUDING REMARKS

We establish a bound on the sample complexity of a random

search method for solving the continuous-time LQR problem

that directly searches for the controller over the nonconvex

set of stabilizing feedback gains. Our results demonstrate that

with a simulation time of O(log (1/ε)), the random search

method achieves an accuracy level ε at a linear rate provided

that we have enough samples, N = poly (1/ε). In our more

recent work [11], we have improved this result by eliminating

the dependence of N on ε.

APPENDIX

A. Bounding the bias: proof of Proposition 3

We first present a technical lemma whose proof is omitted

due to page limitations.

Lemma 2: For any K ∈ S and τ > 0, the τ -truncated

matrix Xτ (K) and objective function fτ (K) in (14) satisfy

‖X(K)−Xτ (K)‖F ≤ κ1 e
−κ2τ (21a)

f(K)− fτ (K) ≤ κ3 e
−κ2τ (21b)

where X(K) is given by (5) and the constants are given by

κ1 :=
‖Ω‖F ‖X(K)‖22

λmin(Ω)λmin(X(K))
, κ2 :=

λmin(Ω)

‖X(K)‖2

κ3 := κ1(‖Q‖2 + ‖R‖2‖K‖22).

It has been shown that over the sublevel set S(a), the

values of ‖K‖F , trace(X(K)) and 1/λmin(X(K)) are upper

bounded by linear functions of a [8]. Using these bounds,

it is straightforward to verify that the parameters δ and ε2
in Lemma 1 can be uniformly lower and upper bounded by

rational functions of a for all K ∈ S(a). Let δ̄ and ε̄2 be two

of such bounds, i.e., for any δ ≤ δ̄ and ε2 ≥ ε̄2, Lemma 1

holds for all K ∈ S(a). Similarly, the parameters κ2 and κ3

in Lemma 2 can also be lower and upper bounded uniformly

over the sublevel set S(2a) by polynomial functions of a.

We also let κ̄2 and κ̄3 be two of such bounds, i.e., for any

κ2 ≤ κ̄2 and κ3 ≥ κ̄3, Lemma 2 holds for all K ∈ S(2a).

If we restrict the smoothing parameter r to satisfy the

inequality r < min{δ̄, a/ε̄2}, then from (13b) in Lemma 1

with δ := δ̄ and ε2 := ε̄2, it follows that

f(K + Us)− f(K) ≤ ε̄2 ‖Us‖2 ≤ ε̄2 r ≤ a (22)

for all K ∈ S(a). Thus, from the triangle inequality we obtain

that K+Us ∈ S(2a) for all Us ∈ Sr(0) and K ∈ S(a). This

allows us to use Lemma 2 for all feedback gains K + Us

and κ2 := κ̄2 and κ3 := κ̄3 to obtain that

‖∇f̄(K) − E[∇f(K)]‖F ≤

mn

r2
E[(fτ (K + Us)− f(K + Us)) ‖Us‖F ] ≤

mnκ̄3

r
e−κ̄2τ .

Here, the first inequality follows from applying the triangle

inequality on (16), and the second follows from Lemma 2.

B. Proof of Proposition 4

Since Vi are i.i.d., the Bernstein’s inequality [31, Theorem

1.6.2] implies ‖G‖F ≤ ε with probability not smaller than

1 − (mn+ 1) exp
(

−
(m2n2v′

Nε2r4
+

mnl′ε

3Nε2r2
)

−1)
(23)
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where l′ and v′ are the bounds ‖f̂iUi − E[f̂i Ui]‖F ≤ l′,
E[‖f̂i Ui − E[f̂i Ui]‖

2
F ] ≤ v′. To quantify v′ and l′, we can

restrict r to be smaller than a rational function θ(a) to ensure

K + Ui ∈ S(2a); cf. (22). This allows us to write

‖f̂i Ui − E[f̂i Ui]‖F ≤ 2 r max(f̂i) ≤

2 r max
(

(xi(0))
TP (K + Ui)xi(0)

)

≤
4 r aM2

λmin(Ω)
= r l

where l := 4 aM2/λmin(Ω). Similarly, for the second term,

E

[

‖f̂i Ui − E[f̂i Ui]‖
2
F

]

= E

[

‖f̂i Ui‖
2
F

]

−‖E[f̂i Ui]‖
2
F

≤ r2 max f̂2
i ≤ r2 max

(

(xi(0))
TP (K + Ui)xi(0)

)2

≤ 4a2r2M4/λ2
min(Ω) = (r l/2)2.

These bounds in conjunction with (23) complete the proof.
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quadratic control via reduction to expert prediction,” in Proc. Mach.

Learn. Res., vol. 89. PMLR, 2019, pp. 3108–3117.

[5] M. Fazel, R. Ge, S. M. Kakade, and M. Mesbahi, “Global convergence
of policy gradient methods for the linear quadratic regulator,” in Proc.

Int’l Conf. Machine Learning, 2018, pp. 1467–1476.

[6] B. Anderson and J. Moore, Optimal Control; Linear Quadratic Methods.
New York, NY: Prentice Hall, 1990.

[7] J. Ackermann, “Parameter space design of robust control systems,”
IEEE Trans. Automat. Control, vol. 25, no. 6, pp. 1058–1072, 1980.

[8] H. Mohammadi, A. Zare, M. Soltanolkotabi, and M. R. Jovanović,
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