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Abstract

Transfer learning has emerged as a powerful technique for improving the perfor-
mance of machine learning models on new domains where labeled training data
may be scarce. In this approach a model trained for a source task, where plenty of
labeled training data is available, is used as a starting point for training a model on
a related target task with only few labeled training data. Despite recent empirical
success of transfer learning approaches, the benefits and fundamental limits of
transfer learning are poorly understood. In this paper we develop a statistical
minimax framework to characterize the fundamental limits of transfer learning in
the context of regression with linear and one-hidden layer neural network models.
Specifically, we derive a lower-bound for the target generalization error achievable
by any algorithm as a function of the number of labeled source and target data
as well as appropriate notions of similarity between the source and target tasks.
Our lowerbound provides new insights into the benefits and limitations of transfer
learning. We further corroborate our theoretical finding with various experiments.

1 Introduction

Deep learning approaches have recently enjoyed wide empirical success in many applications
spanning natural language processing to object recognition. A major challenge with deep learning
techniques however is that training accurate models typically requires lots of labeled data. While for
many of the aforementioned tasks labeled data can be collected by using crowd-sourcing, in many
other settings such data collection procedures are expensive, time consuming, or impossible due to the
sensitive nature of the data. Furthermore, deep learning techniques often are brittle and do not adapt
well to changes in the data or the environment. Transfer learning approaches have emerged as a way
to mitigate these issues. Roughly speaking, the goal of transfer learning is to borrow knowledge from
a source domain, where lots of training data is available, to improve the learning process in a related
but different target domain. Despite recent empirical success the benefits as well as fundamental
limitations of transfer learning remains unclear with many open challenges:

What is the best possible accuracy that can be obtained via any transfer learning algorithm? How
does this accuracy depend on how similar the source and target domain tasks are? What is a good
way to measure similarity/distance between two source and target domains? How does the transfer
learning accuracy scale with the number of source and target data? How do the answers to the above
questions change for different learning models?

At the heart of answering these questions is the ability to predict the best possible accuracy achievable
by any algorithm and characterize how this accuracy scales with how related the source and target
data are as well as the number of labeled data in the source and target domains. In this paper we take
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a step towards this goal by developing statistical minimax lower bounds for transfer learning focusing
on regression problems with linear and one-hidden layer neural network models. Specifically, we
derive a minimax lower bound for the generalization error in the target task as a function of the
number of labeled training data from source and target tasks. Our lower bound also explicitly captures
the impact of the noise in the labels as well as an appropriate notion of transfer distance between
source and target tasks on the target generalization error. Our analysis reveals that in the regime
where the transfer distance between the source and target tasks is large (i.e. the source and target
are dissimilar) the best achievable accuracy mainly depends on the number of labeled training data
available from the target domain and there is a limited benefit to having access to more training data
from the source domain. However, when the transfer distance between the source and target domains
are small (i.e. the source and target are similar) both source and target play an important role in
improving the target training accuracy. Furthermore, we provide various experiments on real data
sets as well as synthetic simulations to empirically investigate the effect of the parameters appearing
in our lower bound on the target generalization error.

Related work. There is a vast theoretical literature on the problem of domain adaptation which is
closely related to transfer learning (1; 2; 3; 4; 5; 6; 7). The key difference is that in domain adaptation
there is no labeled target data while in transfer learning a few labeled target data is available in
addition to source data. Most of the existing results in the domain adaptation literature give an
upper bound for the target generalization error. For instance, the papers (8; 9) provide an upper
bound on the target generalization error in classification problems in terms of quantities such as
source generalization error, the optimal joint error of source and target as well as VC-dimension of
the hypothesis class. A more recent work (10) generalizes these results to a broad family of loss
functions using Rademacher complexity measures. Related, (11) derives a similar upper bound for
target generalization error as in (8) but in terms of other quantities. Finally, the recent paper (12)
generalizes the results of (8; 10) to multiclass classification using margin loss.

More closely related to this paper, there are a few interesting results that provide lower bounds for
the target generalization error. For instance, focusing on domain adaptation the paper (13) provides
necessary conditions for successful target learning under a variety of assumptions such as a covariate
shift, similarity of unlabeled distributions, and existence of a joint optimal hypothesis. More recently,
the paper (14) defines a new discrepancy measure between source and target domains, called transfer
exponent, and proves a minimax lower bound on the target generalization error under a relaxed
covariate-shift assumption and a Bernstein class condition. (15) provides a minimax lower bound for
a related multi-task learning setting in sparse linear regression. (11) derives an information theoretic
lower bound on the joint optimal error of source and target domains defined in (8). Most of the above
results are based on a covariate shift assumption which requires the conditional distributions of the
source and target tasks to be equal and the source and target tasks to have the same best classifier. In
this paper, however, we consider a more general case in which source and target tasks are allowed
to have different optimal classifiers. Furthermore, these results do not specifically study a neural
network model. To the extent of our knowledge this is the first paper to develop minimax lower
bounds for transfer learning with neural networks.

2 Problem Setup

We now formalize the transfer learning problem considered in this paper. We begin by describing the
linear and one-hidden layer neural network transfer learning regression models that we study. We
then discuss the minimax approach to deriving transfer learning lower bounds.

2.1 Transfer Learning Models

We consider a transfer learning problem in which there are labeled training data from a source and a
target task and the goal is to find a model that has good performance in the target task. Specifically,
we assume we have nS labeled training data from the source domain generated according to a source
domain distribution (xS ,yS) ∼ P with xS ∈ Rd representing the input/feature and yS ∈ Rk the
corresponding output/label. Similarly, we assume we have nT training data from the target domain
generated according to (xT ,yT ) ∼ Q with xT ∈ Rd and yT ∈ Rk. Furthermore, we assume that

the features are distributed as xS ∼ N (0,ΣS), xT ∼ N (0,ΣT) with ΣS and ΣT ∈ Rd×d denoting
the covariance matrices. We also assume that the labels yS/yT are generated from ground truth
mappings relating the features to the labels as follows

yS = f(θS ;xS) +wS and yT = f(θT ;xT ) +wT (2.1)
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where θS and θT are the parameters of the function f and wS ,wT ∼ N (0, σ2
Ik) represents

source/target label noise. In this paper we focus on the following linear and one-hidden layer
neural network models.

Linear model. In this case, we assume that f(θS ;xS) ∶= f(WS ;xS) =WSxS and f(θT ;xT ) ∶=
f(WT ;xT ) =WTxT where WS ,WT ∈ Rk×d are two unknown matrices denoting the source/target

parameters. The goal is to use the source and target training data to find a parameter matrix ŴT with

estimated label ŷT = ŴTxT that achieves the smallest risk/generalization error E[∥yT − ŷT ∥2`2].
One-hidden layer neural network models. We consider two different neural network models where
in one the hidden-to-output layer is fixed and in the other the input-to-hidden layer is fixed. Specifi-
cally, in the first model, we assume that f(θS ;xS) ∶= f(WS ;xS) = V ϕ(WSxS) and f(θT ;xT ) ∶=
f(WT ;xT ) = V ϕ(WTxT ) where WS ,WT ∈ R`×d are two unknown weight matrices, V ∈ Rk×` is
a fixed and known matrix, and ϕ is the ReLU activation function. Similarly in the second model, we
assume that f(θS ;xS) ∶= f(VS ;xS) = VSϕ(WxS) and f(θT ;xT ) ∶= f(VT ;xT ) = VTϕ(WxT )
with VS ,VT ∈ Rk×` two unknown weight matrices and W ∈ R`×d a known matrix. In both cases the

goal is to use the source and target training data to find the unknown target parameter weights (ŴT

or V̂T ) that achieve the smallest risk/generalization error E[∥yT − ŷT ∥2`2]. Here, ŷT = V ϕ(ŴTxT )
in the first model and ŷT = V̂Tϕ(WxT ) in the second.

2.2 Minimax Framework for Transfer Learning

We now describe our minimax framework for developing lower bounds for transfer learning. As with
most lower bounds, in a minimax framework we need to define a class of transfer learning problems
for which the lower bound is derived. Therefore, we define (PθS

,QθT
) as a pair of joint distributions

of features and labels over a source and a target task, that is, (xS ,yS) ∼ PθS
and (xT ,yT ) ∼ QθT

with the labels obeying (2.1). In this notation, each pair of a source and target task is parametrized
by θS and θT . We stress that over the different pairs of source and target tasks, ΣS ,ΣT , and σ2 are
fixed and only the parameters θS and θT change.

As mentioned earlier, in a transfer learning problem we are interested in using both source and

target training data to find an estimate θ̂T of θT with small target generalization error. In a minimax

framework, θT is chosen in an adversarial way, and the goal is to find an estimate θ̂T that achieves the

smallest worst case target generalization risk supE
∼ source and target

samples

[EQθT
[∥yT − ŷT ∥2`2]]. Here, the

supremum is taken over the class of transfer problems under study (possible (PθS
,QθT

) pairs). We
are interested in considering classes of transfer learning problems which properly reflect the difficulty
of transfer learning. To this aim we need to have an appropriate notion of similarity or transfer
distance between source and target tasks. To define the appropriate measure of transfer distance we
are guided by the following proposition (see Section 7.1 for the proof) which characterizes the target
generalization error for linear and one-hidden layer neural network models.

Proposition 1 Let QθT
be the data distribution over the target task with parameter θT according to

one of the models defined in Section 2.2. The target generalization error of an estimated model with

parameter θ̂T is given by:

• Linear model:

EQθT
[∥ŷT − yT ∥2`2] = ∣∣Σ 1

2

T (ŴT −WT )T ∣∣2F + kσ2 (2.2)

• One-hidden layer neural network model with fixed hidden-to-output layer:

EQθT
[∥ŷT − yT ∥2`2] ≥ 1

4
σ2

min(V )∣∣Σ 1

2

T (ŴT −WT )T ∣∣2F + kσ2 (2.3)

• One-hidden layer neural network model with fixed input-to-hidden layer:

EQθT
[∥ŷT − yT ∥2`2] = ∣∣Σ̃ 1

2

T (V̂T −VT )T ∣∣2F + kσ2 (2.4)

Here, Σ̃T ∶= [12 ∥ai∥`2 ∥aj∥`2
√

1−γ2

ij
+(π−cos−1(γij))γij

π
]
ij

where ai is the ith row of the matrix

WΣ
1

2

T and γij ∶=
a

T
i aj∥ai∥`2∥aj∥`2 .

3



Proposition 1 essentially shows how the generalization error is related to an appropriate distance
between the estimated and ground truth parameters. This in turn motivates our notion of transfer
distance/similarity between source and target tasks discussed next.

Definition 1 (Transfer distance) For a source and target task generated according to one of the
models in Section 2.2 parametrized by θS and θT , we define the transfer distance between these two
tasks as follows:

• Linear model and one-hidden layer neural network model with fixed hidden-to-output layer:

ρ(θS ,θT ) = ρ(WS ,WT ) ∶= ∣∣Σ 1

2

T (WS −WT )T ∣∣F (2.5)

• One-hidden layer neural network model with fixed input-to-hidden layer:

ρ(θS ,θT ) = ρ(VS ,VT ) ∶= ∣∣Σ̃ 1

2

T (VS −VT )T ∣∣F (2.6)

where Σ̃T is defined in Proposition 1.

With the notion of transfer distance in hand we are now ready to formally define the class of pairs of
distributions over source and target tasks which we focus on in this paper.

Definition 2 (Class of pairs of distributions) For a given ∆ ∈ R+, P∆ is the class of pairs of
distributions over source and target tasks whose transfer distance according to Definition 1 is less
than ∆. That is, P∆ = {(PθS

,QθT
)∣ ρ(θS ,θT ) ≤∆}.

With these ingredients in place we are now ready to formally state the transfer learning minimax risk.

RT (P∆) ∶= inf
θ̂T

sup(PθS
,QθT

)∈P∆

E
SPθS

∼P
1∶nS
θS

[E
SQθT

∼Q
1∶nT
θT

[EQθT
[∥yT − ŷT ∥2`2]]] (2.7)

Here, SPθS
and SQθT

denote i.i.d. samples {(x(i)S ,y
(i)
S )}nS

i=1 and {(x(i)T ,y
(i)
T )}nT

i=1 generated from

the source and target distributions. We would like to emphasize that ŷT as defined in section 2.1, is a
function of samples (SPθS

, SQθ
).

3 Main Results

In this section, we provide a lower bound on the transfer learning minimax risk (2.7) for the three
transfer learning models defined in Section 2.1. As with any other quantity related to generalization
error this risk naturally depends on the size of the model and how correlated the features are in the
target model. The following definition aims to capture the effective number of parameters of the
model.

Definition 3 (Effective dimension) The effective dimension of the three models defined in Section 2.1
are defined as follows:

• Linear model: D ∶= rank(ΣT )k − 1,

• One-hidden layer neural network model with fixed hidden-to-output layer: D ∶= rank(ΣT )` − 1,

• One-hidden layer neural network model with fixed input-to-hidden layer: D ∶= rank(Σ̃T )k − 1.

Our results also depend on another quantity which we refer to as the transfer coefficient. Roughly
speaking these quantities are meant to capture the relative effectiveness of a source training data from
the perspective of the generalization error of the target task and vice versa.

Definition 4 (Transfer coefficients) Let nS and nT be the number of source and target training data.
We define the transfer coefficients in the three models defined in Section 2.1 as follows

• Linear model: rS ∶= ∥Σ 1

2

SΣ
−

1

2

T ∥2 and rT ∶= 1.

• One-hidden layer neural net with fixed output layer: rS ∶= ∥Σ 1

2

SΣ
−

1

2

T ∥2 ∥V ∥2 and rT ∶= ∥V ∥2.

• One-hidden layer neural net model with fixed input layer: rS ∶= ∥Σ̃ 1

2

S Σ̃
−

1

2

T ∥2 and rT ∶= 1. Here,

Σ̃S ∶= [12 ∥ci∥`2 ∥cj∥`2
√

1−γ̃2

ij
+(π−cos−1(γ̃ij))γ̃ij

π
]
ij

where ci is the ith row of WΣ
1

2

S and γ̃ij =

c
T
i cj∥ci∥`2∥cj∥`2 and Σ̃T are defined per Proposition 1.
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In the above expressions ∣∣ ⋅ ∣∣ stands for the operator norm. Furthermore, we define the effective
number of source and target samples as rSnS and rTnT , respectively.

With these definitions in place we now present our lower bounds on the transfer learning minimax
risk of any algorithm for the linear and one-hidden layer neural network models (see sections 6 and 7
for the proof).

Theorem 1 Consider the three transfer learning models defined in Section 2.1 consisting of nS and
nT source and target training data generated i.i.d. according to a class of source/target distributions
with transfer distance at most ∆ per Definition 2. Moreover, let rS and rT be the source and target
transfer coefficients per Definition 4. Furthermore, assume the effective dimension D per Definition
3 obeys D ≥ 20. Then, the transfer learning minimax risk (2.7) obeys the following lower bounds:

• Linear model: RT (P∆) ≥ B + kσ2.

• One-hidden layer neural network with fixed hidden-to-output layer: RT (P∆) ≥ 1
4
σ2

min(V )B+kσ2.

• One-hidden layer neural network model with fixed input-to-hidden layer: RT (P∆) ≥ B + kσ2.

Here, σmin(V ) denotes the minimum singular value of V and

B ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ2D
256rTnT

, if ∆ ≥
√

σ2D log 2

rTnT

1
100

∆2[1 − 0.8 rTnT∆2

σ2D
], if 1

45

√
σ2D

rSnS+rTnT
≤∆ <

√
σ2D log 2

rTnT

∆2

1000
+

6
1000

Dσ2

rSnS+rTnT
, if ∆ < 1

45

√
σ2D

rSnS+rTnT

(3.1)

Note that, the nature of the lower bound and final conclusions provided by the above theorem are
similar for all three models. More specifically, Theorem 1 leads to the following conclusions:

• Large transfer distance (∆ ≥√Dσ2 log 2

rTnT
). When the transfer distance between the source and

target tasks is large, source samples are helpful in decreasing the target generalization error until

the error reaches σ2D
256rTnT

. Beyond this point, by increasing the number of source samples, target

generalization error does not decrease further and it becomes dominated by the target samples. In
other words, when the distance is large, source samples cannot compensate for target samples.

• Moderate distance ( 1
45

√
σ2D

rSnS+rTnT
≤ ∆ <

√
σ2D log 2

rTnT
). The lower bound of this regime sug-

gests that if the distance between the source and target tasks is strictly positive, i.e ∆ > 0, even
if we have infinitely many source samples, target generalization error still does not go to zero
and depends on the number of available target samples. In other words, source samples cannot
compensate for the lack of target samples.

• Small distance (∆ < 1
45

√
σ2D

rSnS+rTnT
). In this case, the lower bound on the target generalization

error scales with 1
rSnS+nT rT

where rSnS and rTnT are the effective number of source and target

samples per Definition 4. Hence, when ∆ is small, the target generalization error scales with the
reciprocal of the total effective number of source and target samples which means that source
samples are indeed helpful in reducing the target generalization error and every source sample
is roughly equivalent to rS

rT
target samples. Furthermore, when the distance of source and target

is zero, i.e. ∆ = 0, the lower bound reduces to 6
1000

Dσ2

rSnS+rTnT
. Conforming with our intuition,

in this case the bound resembles a non-transfer learning scenario where a combination of source
and target samples are used. Indeed, the lower bound is proportional to the noise level, effective
dimension and the total number of samples matching typical statistical learning lower bounds.

4 Experiments and Numerical Results

We demonstrate the validity of our theoretical framework through experiments on real datasets
sampled from ImageNet as well as synthetic simulated data. The experiments on ImageNet data allow
us to investigate the impact of transfer distance and noise parameters appearing in Theorem 1 on the
target generalization error. However, since the source and target tasks are both image classification,
they are inherently correlated with each other and we cannot expect a wide range of transfer distances
between them. Therefore, we carry out a more in-depth study on simulated data to investigate the
effect of the number of source and target samples on the target generalization error in different
transfer distance regimes. Full source code to reproduce the results is available at (16).
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Figure 2: Train and test loss of a one-hidden layer network trained on cat breeds dataset.

Our next set of experiments focuses on checking whether the transfer distance is indicative of transfer
target risk/generalization error. To this aim we use a very simple transfer learning approach where
we use only source data to train a one-hidden layer network as described before and measure its
performance on the target tasks. Note that the network has never seen examples of the target dataset.
Figure 2 depicts how train and test loss evolved over the training process. We stop after 10 epochs
when validation losses on target tasks have more or less stabilized. The results closely match our
expectations from Theorem 1. Based on Table 1 the noise level of ground truth models for big cats,
butterflies and planes are about the same and therefore their test loss follows the same ordering
as their distances from the source task (see Table 1). Moreover, even though dog breeds has the
lowest distance from the source task, it is also the noisiest. The lower bound in Theorem 1 includes
an additive noise term, and therefore the change in ordering between dog breeds and butterflies is
justified by our theory and demonstrates the effect of the target task noise level on generalization.

Theoretical lower bounds for the ImageNet experiments. In order to plot the theoretical lower
bounds, first we estimate the parameters appearing in the bounds. Then using those parameters we
depict the lower bounds in Figure 3. In Figure 3 each plot consists of two lower bounds, namely a
crude bound (presented in Theorem 1) and a more precise bound presented in the proofs.

4.2 Numerical Results

In this section we perform synthetic numerical simulations in order to carefully cover all regimes of
transfer distance from our main theorem, and show how the target generalization error depends on
the number of source and target samples in different regimes.

Experimental setup 1. First, we generate data according to the linear model with parameters
d = 200, k = 30, σ = 1,ΣS = 2 ⋅ Id,ΣT = Id. Then we generate the source parameter matrix
WS ∈ Rk×d with elements sampled from N (0,10). Furthermore, we generate two target parameter

matrices WT1
and WT2

∈ Rk×d for tasks T1 and T2 such that WT1
=WS+M1 and WT2

=WS+M2

where the elements of M1,M2 are sampled from N (0,10−3) and N (0,3.6 × 105) respectively.
Similarly for the one-hidden layer neural network model when the the output layer is fixed, we set the
parameters k = 1, ` = 30, d = 200, σ = 1,ΣS = 2 ⋅ Id,ΣT = Id and V = 1k×`. We also use the same
WS ,WT1

,WT2
as in the linear model. We note that the transfer distance between the source task

to target task T1 is small but the transfer distance between the source task to target task T2 is large
(ρ(WS ,WT1

) = .0183 and ρ(WS ,WT2
) = 116.694).

Training approach 1. We test the performance of a simple transfer learning approach. Given nS
source samples and nT target samples, we estimate ŴT by minimizing the weighted empirical risk

min
W

1

2nT

nT

∑
i=1

∥f(W ;x
(i)
T ) − y(i)T ∥2`2 + λ

2nS

nS

∑
j=1

∥f(W ;x
(j)
S ) − y(j)S ∥2`2 (4.1)

We then evaluate the generalization error by testing the estimated model ŴT on 200 unseen test data
points generated by the target model. All reported plots are the average of 10 trials.

Results 1. Figure 4 (a) depicts the target generalization error for target tasks T1 and T2 for the linear
model for different nS values with λ = 1 and nT = 50. Figure 4 (b) depicts the target generalization
error for tasks T1 and target T2 for the linear model for different nT values with the number of source
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Figure 3: Theoretical lower bounds and experimental upper bounds.

0 100 200 300 400 500

0

2

4

6

8

⋅105

nS

G
en

er
al

iz
at

io
n

E
rr

o
r

Small transfer distance

Large transfer distance

(a) Linear model with nT = 50
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(b) Linear model with nS = 50
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(c) Neural network model with nT = 50
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(d) Neural network model with nS = 50

Figure 4: Target generalization error for a linear model ((a) and (b)) and a neural network model with
fixed hidden-to-output layer ((c) and (d)).
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Figure 5: Target generalization error for a linear model (a) and a neural network model with fixed
hidden-to-output layer (b).

samples fixed at nS = 50. Here, we set λ = 1 for target task T1, where the transfer distance from
source is small, and λ = .001 for target task T2, where the transfer distance from source is large.
Figures 4 (c) and 4 (d) have the same settings as in Figures 4 (a) and 4 (b) but we use a one-hidden
layer neural network model with fixed hidden-to-output weights in lieu of the linear model.

Figures 4 (a) and (c) clearly demonstrate that when the transfer distance between the source and
target tasks is large, increasing the number of source samples is not helpful beyond a certain point.
In particular, the target generalization error starts to saturate and does not decrease further. Stated
differently, in this case the source samples cannot compensate for the target samples. This observation
conforms with our main theoretical result. Indeed, when the transfer distance ∆ is large, B is lower

bounded by σ2D
256rTnT

which is independent of the number of source samples nS . Furthermore, these

figures also demonstrate that when the transfer distance is small, increasing the number of source
samples is helpful and results in lower target generalization error. This also matches our theoretical
results as when the transfer distance ∆ is small, the target generalization error is proportional to

Dσ2

rSnS+rTnT
.

Figures 4 (b) and (d) indicate that regardless of the transfer distance between the source and target
tasks the target generalization error steadily decreases as the number of target samples increases. This
is a good match with our theoretical results as nT appears in the denominator of our lower bound in
all three regimes.

To further investigate the effect of transfer distance between the source and target on the target
generalization error we consider another set of experiments below.

Experimental setup 2. For the linear model, we use the parameters d = 50, k = 30, σ = 0.3,ΣS = 2 ⋅
Id, and ΣT = Id. We generate the target parameter WT ∈ Rk×d with entries generated i.i.d.N (0,10).
To create different transfer distances between the source and target data we then generate the source
parameter WS ∈ Rk×d as WS = WT + i ⋅M where the elements of the matrix M are sampled
from N (0,10−4) and i varies between 1 and 140000 in increments of 400. Similarly for the one-
hidden layer neural network model when the the output layer is fixed, we pick parameter values
k = 1, ` = 30, d = 50, σ = 0.3,ΣS = 2 ⋅ Id, and ΣT = Id and set all of the entries of V equal to one.
Furthermore, we use the same source and target parameters WS and WT as in the linear model.

Training approach 2. Given nS = 300 and nT = 20 source and target samples we minimize
the weighted empirical risk (4.1). In this experiment we pick λ ∈ {0, 1

4
, 1
2
, 3
4
,1} that minimizes a

validation set consisting of 50 data points created from the same distribution as the target task. Finally
we test the estimated model on 200 unseen target test data points. The reported numbers are based on
an average of 20 trials .

Results 2. Fig. 5 depicts the target generalization error as a function of the transfer distance between
the source and target in the linear and neural network models. This figure clearly shows that when the
transfer distance is small, the generalization error has a quadratic growth. However, as the distance
increases the error saturates which matches the behavior of ∆ predicted by our lower bounds.
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Broader Impact

While our work is theoretical/foundations in nature let us discuss a few ways in which it may have
broader impacts. In this paper, we characterize a lower bound for transfer learning in the context of
linear models and one-hidden layer neural networks. More specifically, we provide a lower bound
for target generalization error in terms of the number of source and target tasks and an appropriately
defined transfer distance between the source and target tasks. Given the amount of effort dedicated to
data collection, curation, and storage, a precise understanding of the amount of data needed may help
utilize a variety of resources more effectively. Moreover, our results may guide practitioners to when
there is no hope of knowledge transfer from one domain to another. This may help avoid unwarranted
generalizations from one situation/environment to unrelated instances. On the other hand, it is worth
emphasizing that this paper focuses on shallow linear/neural network models and does not capture
more realistic Deep Neural Network (DNN) models typically used in practice. Therefore, one has to
be cautious in over-interpreting the results of this paper for general DNN models.
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6 Proof outline and proof of Theorem 1 in the linear model

In this section we present a sketch of the proof of Theorem 1 for the linear model. The proof for the
neural network models follow a similar approach and appear in Sections 7.5 and 7.7.

Note that by Proposition 1, the generalization error is given by

EQθT
[∥ŷT − yT ∥2`2] = ∣∣Σ 1

2

T (ŴT −WT )T ∣∣2F + kσ2.

Therefore, in order to find a minimax lower bound on the target generalization error, it suffices to find
a lower bound for the following quantity

RT (P∆;φ ○ ρ)
∶= inf

ŴT

sup(PWS
,QWT

)∈P∆

E
SPWS

∼P
1∶nP
WS

[E
SQWT

∼Q
1∶nQ

WT

[φ(ρ(ŴT (SPWS
, SQWT

),WT ))]]
(6.1)

where φ(x) = x2 for x ∈ R and ρ is per Definition 1. By using well-known techniques from the
statistical minimax literature we reduce the problem of finding a lower bound to a hypothesis testing
problem (e.g. see (17, Chapter 15)). Since we are estimating the target parameter, i.e. WT , to
apply this framework we need to pick N pairs of distributions from the set P∆ such that their target
parameters are 2δ-separated by the transfer distance per Definition 1. To be more precise, we pick N
arbitrary pairs of distributions from P∆ :(P

W
(1)
S

,Q
W
(1)
T

), ..., (P
W
(N)
S

,Q
W
(N)
T

)
such that

ρ(W (i)
T ,W

(j)
T ) ≥ 2δ for each i ≠ j ∈ [N] × [N] (2δ-separated set)

and

ρ(W (i)
S ,W

(i)
T ) ≤∆ for each i ∈ [N] (as they belong to P∆)

With these N distribution pairs in place we can follow a proof similar to that of (17, Proposition 15.1)
to reduce the minimax problem to a hypothesis test problem. In particular, consider the following
N -array hypothesis testing problem:

• J is the uniform distribution over the index set [N] ∶= {1,2, ...,N}
• Given J = i, generate nS i.i.d. samples from P

W
(i)
S

and nT i.i.d. samples from Q
W
(i)
T

.

Here the goal is to find the true index using nS + nT available samples by a testing function ψ from
the samples to the indices.

Let E and F be random variables such that E∣{J = i} ∼ P
W
(i)
S

and F ∣{J = i} ∼ Q
W
(i)
T

. Furthermore,

let ZP and ZQ consist of nS independent copies of random variable E and nT independent copies of
random variable F , respectively. In this setting, by slightly modifying the (17, Proposition 15.1) we
can conclude that

RT (P∆;φ ○ ρ) ≥ φ(δ) 1
N

N

∑
i=1

Prob(ψ(ZP, ZQ) ≠ i)
where

ψ(ZP, ZQ) ∶= argmin
n∈[N] ρ(ŴT ,W

n
T ).

Furthermore, by using Fano’s inequality we can conclude that

RT (P∆;φ ○ ρ) ≥ φ(δ) 1
N

N

∑
i=1

P{ψ(ZP, ZQ) ≠ i}
≥ φ(δ)(1 − I(J ; (ZP, ZQ)) + log 2

logN
)

≥ φ(δ)(1 − I(J ;ZP) + I(J ;ZQ) + log 2
logN

)
≥ φ(δ)(1 − nSI(J ;E) + nT I(J ;F ) + log 2

logN
) . (6.2)
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Here the third inequality is due to the fact that given J = i, ZP and ZQ are independent. To continue
further, note that we can bound the mutual information by the following KL-divergences

I(J ;E) ≤ 1

N2
∑
i,j

DKL(PW
(i)
S

∣∣P
W
(j)
S

)
I(J ;F ) ≤ 1

N2
∑
i,t

DKL(QW
(i)
T

∣∣Q
W
(j)
T

). (6.3)

In the next lemma, proven in Section 7.2, we explicitly calculate the above KL-divergences.

Lemma 1 Suppose that P
W
(i)
S

and P
W
(j)
S

are the joint distributions of features and labels in a

source task and Q
W
(i)
T

and Q
W
(j)
T

are joint distributions of features and labels in a target task as

defined in Section 2.1 for the linear model. Then DKL(PW
(i)
S

∣∣P
W
(j)
S

) = ∣∣Σ 1
2

S
(W (i)

S
−W

(j)
S
)T ∣∣2F

2σ2 and

DKL(QW
(i)
T

∣∣Q
W
(j)
T

) = ∣∣Σ 1
2

T
(W (i)

T
−W

(j)
T
)T ∣∣2F

2σ2 .

In the following two lemmas, we use local packing techniques to further simplify (6.2) using (6.3)
and find minimax lower bounds in different transfer distance regimes. We defer the proof of these
lemmas to Sections 7.3 and 7.4.

Lemma 2 Assume ∆ ≥
√

σ2D log 2

rTnT
, where nT is the number of target samples and D and rT are

defined per Definitions 3 and 4. Then we have the following lowerbound

RT (P∆;φ ○ ρ) ≥ σ2D

256rTnT

. (6.4)

Furthermore, if ∆ <
√

σ2D log 2

rTnT
then

RT (P∆;φ ○ ρ) ≥ 1

100
∆2 (1 − 0.8rTnT∆2

σ2D
) . (6.5)

Lemma 3 Assume we have access to nS source samples as well as nT target samples and the

transfer distance obeys ∆ ≤ 1
45

√
σ2D

rSnS+rTnT
, where D, rS , and rT are per Definitions 3 and 4. Then,

RT (P∆;φ ○ ρ) ≥ ∆2

1000
+

6

1000

Dσ2

rSnS + rTnT
. (6.6)

The proof of the lower bound in Theorem 1 is complete by combining Lemmas 2 and 3.

7 Appendix A

7.1 Calculating the Generalization Errors ( Proof of Proposition 1)

• Linear model:

By expanding the expression we get

EQθT
[∥ŷT − yT ∥2`2] = E[∥ŴTxT −WTxT −wT ∥2`2]

= E[∥ŴTxT −WTxT ∥2`2] + kσ2

= E[xT
T (WT − ŴT )T (WT − ŴT )xT ] + kσ2

= E[trace(xT
T (WT − ŴT )T (WT − ŴT )xT )] + kσ2

= E[trace((WT − ŴT )T (WT − ŴT )xTx
T
T )] + kσ2

= trace((WT − ŴT )T (WT − ŴT )E[xTx
T
T ]) + kσ2

= trace((WT − ŴT )T (WT − ŴT )ΣT ) + kσ2

= ∣∣Σ 1

2

T (WT − ŴT )T ∣∣2F + kσ2 (7.1)
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• One-hidden layer neural network model with fixed hidden-to-output layer:

By expanding the expression we obtain

EQθT
[∥ŷT − yT ∥2`2] = E[∥V ϕ(ŴTxT ) −V ϕ(WTxT )∥2`2] + kσ2

≥ σ2
min(V )E[∥ϕ(ŴTxT ) −ϕ(WTxT )∥2`2] + kσ2 (7.2)

Let A = ŴTΣ
1

2

T ,B =WTΣ
1

2

T , and x =Σ
−1

2

T xT . So x ∼N (0, Id). Moreover, let A =

⎡⎢⎢⎢⎢⎣
αT

1

⋮

αT
`

⎤⎥⎥⎥⎥⎦ and

B =

⎡⎢⎢⎢⎢⎣
βT
1

⋮

βT
`

⎤⎥⎥⎥⎥⎦. Since E[∥ϕ(ŴTxT ) −ϕ(WTxT )∥2`2] = ∑`
i=1 E[∣ϕ(αT

i x) − ϕ(βT
i x)∣2], it suffices

to find a lower bound for the following expression

E[∣ϕ(aTx) −ϕ(bTx)∣2]
where a and b are two arbitrary vectors in Rd, ϕ is the ReLU activation function, and x ∼N (0, Id).
We have

E[∣ϕ(aTx) −ϕ(bTx)∣2] = E[∣ϕ(aTx)∣2] + E[∣ϕ(bTx)∣2] − 2E[ϕ(aTx)ϕ(bTx)]. (7.3)

Now we calculate each term appearing on the right hand side.

Since aTx ∼ N(0, ∥a∥2`2), we have

E[∣ϕ(aTx)∣2] = E[∣ReLU(aTx)∣2]
= ∫

+∞

0

t2√
2π ∥a∥`2 e

−t2

2∥a∥2
`2 dt

=

∥a∥2`2
2

.

Similarly, E[∣ϕ(bTx)∣2] = ∥b∥2`2
2

. To calculate the cross term note that aTx and bTx are jointly
Gaussian with zero mean and covariance matrix equal to

[ ∥a∥2`2 aT b

aT b ∥b∥2`2 ] .
Therefore, we have (e.g. see (18))

2E[ϕ(aTx)ϕ(bTx)] = 2E[ReLU(aTx)ReLU(bTx)]
= ∥a∥`2 ∥b∥`2

√
1 − γ2 + (π − cos−1(γ))γ

π
(7.4)

where γ ∶= a
T
b∥a∥`2∥b∥`2 .

Plugging these results in (7.3), we can conlude that

E[∣ϕ(aTx) −ϕ(bTx)∣2] = ∥a∥2`2
2
+
∥b∥2`2
2
− ∥a∥`2 ∥b∥`2

√
1 − γ2 + (π − cos−1(γ))γ

π

=
1

2
∥a − b∥2`2 − ∥a∥`2 ∥b∥`2

√
1 − γ2 − γ cos−1(γ)

π
. (7.5)
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We are interested in finding a universal constant 0 < c < 1
2

such that E[∣ϕ(aTx) − ϕ(bTx)∣2] ≥
c ∥a − b∥2`2 . Using (7.5) and dividing by ∥a∥`2 ∥b∥`2 this is equivalent to finding 0 < c < 1

2
such that

(1
2
− c) ∥a∥2`2 + ∥b∥2`2 − 2aT b∥a∥`2 ∥b∥`2 +

γ cos−1(γ) −√1 − γ2

π
≥ 0

Next note that by the AM-GM inequality we have

(1
2
− c)∥a∥2`2 + ∥b∥2`2 − 2aT b∥a∥`2 ∥b∥`2 +

γ cos−1(γ) −√1 − γ2

π

≥ (1
2
− c)2 ∥a∥`2 ∥b∥`2 − 2aT b∥a∥`2 ∥b∥`2 +

γ cos−1(γ) −√1 − γ2

π

= (1
2
− c)(2 − 2γ) + γ cos−1(γ) −

√
1 − γ2

π

= (1 − γ)[(1 − 2c) + 1

π
⋅
γ cos−1(γ) −√1 − γ2

1 − γ
].

Therefore, it suffices to find 0 < c < 1
2

such that the R.H.S. of the above is positive. It is easy to

verify that h(γ) ∶= γ cos−1(γ)−√1−γ2

1−γ
≥
−π
2

for −1 ≤ γ < 1. This in turn implies that the R.H.S. above

is positive with c = 1
4

.

In the case when ∥a∥`2 = 0 or ∥b∥`2 = 0 ( let us assume ∥b∥`2 = 0), (7.3) reduces to

E[∣ϕ(aTx) −ϕ(bTx)∣2] = E[∣ϕ(aTx)∣2]
=

∥a∥2`2
2

≥
1

2
∥a − b∥2`2

≥
1

4
∥a − b∥2`2 .

Plugging the latter into (7.2) we arrive at

EQθT
[∥ŷT − yT ∥2`2] ≥ σ2

min(V )E[∥ϕ(ŴTxT ) −ϕ(WTxT )∥2`2] + kσ2

≥
1

4
σ2

min(V )∣∣Σ 1

2

T (ŴT −WT )T ∣∣2F + kσ2,

concluding the proof.

• One-hidden layer neural network model with fixed input-to-hidden layer:

By expanding the expression we get

EQθT
[∥ŷT − yT ∥2`2] = E[∥V̂Tϕ(WxT ) −VTϕ(WxT )∥2`2] + kσ2.

If we denote E[ϕ(WxT )ϕ(WxT )T ] = Σ̃T , then similar to (7.1) we obtain

EQθT
[∥ŷT − yT ∥2`2] = ∣∣Σ̃ 1

2

T (V̂T −VT )T ∣∣2F + kσ2. (7.6)

Therefore, it suffices to calculate Σ̃T . Let WΣ
1

2

T =

⎡⎢⎢⎢⎢⎣
aT
1

⋮

aT
`

⎤⎥⎥⎥⎥⎦ and x =Σ
−1

2

T xT (so x ∼N (0, Id)). By

(7.4) we obtain that

Σ̃T = [1
2
∥ai∥`2 ∥aj∥`2

√
1 − γ2ij + (π − cos−1(γij))γij

π
]
ij

(7.7)

where γij ∶=
a

T
i aj∥ai∥`2∥aj∥`2 .
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7.2 Calculating KL-Divergences for the Linear Model (Proof of Lemma 1)

First we compute the KL-divergence between the distributions P
W
(i)
S

(xS ,yS) and P
W
(j)
S

(xS ,yS):
DKL(PW

(i)
S

(xS ,yS),PW
(j)
S

(xS ,yS)) =DKL(PW
(i)
S

(xS),PW
(j)
S

(xS))
+ E[DKL(PW

(i)
S

(yS ∣xS),PW
(j)
S

(yS ∣xS))].
The marginal distributions P

W
(i)
S

(xS) and P
W
(j)
S

(xS) are equal so their KL-divergence is zero. The

conditional distributions P
W
(i)
S

(yS ∣xS) and P
W
(j)
S

(yS ∣xS) are normally distributed with covariance

matrix σ2
Ik and with mean respectively equal to W

(i)
S xS and W

(j)
S x. Therefore,

DKL(PW
(i)
S

(yS ∣xS),PW
(j)
S

(yS ∣xS)) = ∥W
(i)
S xS −W

(j)
S xS∥2

`2

2σ2
.

This in turn implies that

DKL(PW
(i)
S

(xS ,yS),PW
(j)
S

(xS ,yS)) = E[∥W (i)
S xS −W

(j)
S xS∥2

`2
]

2σ2
=
∣∣Σ 1

2

S (W (i)
S −W

(j)
S )T ∣∣2F

2σ2
,

where the last equality follows similarly to the proof of Proposition 1 in the linear case.

A similar calculation also yields

DKL(QW
(i)
T

(xT ,yT ),QW
(j)
T

(xT ,yT )) = ∣∣Σ
1

2

T (W (i)
T −W

(j)
T )T ∣∣2F

2σ2
.

7.3 Lower Bound for Minimax Risk When ∆ ≥
√

σ2D log 2

rTnT
and ∆ <

√
σ2D log 2

rTnT
( Proof of

Lemma 2)

Consider the set

{η ∶ η =Σ 1

2

TW
T
T for some WT ∈ Rk×d and ∣∣η∣∣F ≤ 4δ}

where δ > 0 is a value to be determined later in the proof. Furthermore, let {η1, ..., ηN} be a 2δ-

packing of this set in the F -norm. Since dim(range(Σ 1

2

TW
T
T ))= rk in which WT is regarded as an

input, this set sits in a space of dimension rk, where r =rank(ΣT ). Hence we can find such a packing
with logN ≥ rk log 2 elements.

Therefore, we have a collection of matrices of the form ηj = Σ
1

2

T (W (i)
T )T for some W

(i)
T ∈ Rk×d

such that

∥Σ 1

2

T (W (i)
T )T ∥

F

≤ 4δ for each i ∈ [N]
and

2δ ≤ ∣∣Σ 1

2

T (W (i)
T −W

(j)
T )T ∣∣F ≤ 8δ for each i ≠ j ∈ [N] × [N].

So by Lemma 1 we get

DKL(QW
(i)
T

,Q
W
(j)
T

) ≤ 32δ2

σ2
for each i ≠ j ∈ [N] × [N].

Then set δ ≤ ∆
8

. We can choose P
W
(1)
S

= ... = P
W
(N)
S

with W
(1)
S = ... = W

(N)
S and

∣∣Σ 1

2

T (W (1)
S )T ∣∣F = 4δ . So they satisfy the condition

ρ(W (i)
S ,W

(i)
T ) ≤ 8δ ≤∆ for each i ∈ [N].

Figure 6 illustrates this configuration. So having samples from P
W
(i)
S

does not contain any informa-
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Therefore, using (6.2) and (6.3) we arrive at

RT (P ;φ ○ ρ) ≥ φ(u∆)[1 − nS

32∥Σ 1
2

S
Σ
−
1
2

T
∥2∆2(u+1)2
σ2 + nT

2∆2(5+4u)2
σ2 + log 2

rk log 2
]

= (u∆)2[1 − nSrS
32∆2(u+1)2

σ2 + nT rT
2∆2(5+4u)2

σ2 + log 2

rk log 2
].

The above inequality holds for every u ≥ 0. Maximizing the expression above over u we can conclude

if ∆ ≤
√

σ2(rk−1) log 2
32nSrS+50nT rT

then

RT (P ;φ ○ ρ) ≥ (u∆)2[1 − nSrS
32∆2(u+1)2

σ2 + nT rT
2∆2(5+4u)2

σ2 + log 2

rk log 2
]

where u =
3∆(4nSrS+nT rT )+√∆2[16(nSrS)2+25(nT rT )2+32nSrSnT rT ]+4(nSrS+nT rT )(rk−1)σ2 log 2

16∆(nPrP+nQ) .

Now, we need to simplify the above expressions. First note that

(u∆) ≥ (3∆
16
+

√
∆2 + 4 Dσ2 log 2

nSrS+nT rT

16
),

so

(u∆)2 ≥ ∆2
+ 2.7 Dσ2

nSrS+nT rT

256
. (7.10)

Moreover,

1 −
nSrS

32∆2(u+1)2
σ2 + nT

2∆2(5+4u)2
σ2 + log 2

rk log 2
≥ 1 −

[nSrS + nT rT ]32∆2( 5
4
+u)2

σ2 + log 2

D log 2

and

∆(5
4
+ u) ≤ 2∆ + 1

16

√
25∆2 +

4 log 2Dσ2

nSrS + nT rT
.

Since ∆ ≤ 1
45

√
σ2D

nSrS+nT rT
,

∆2(5
4
+ u)2 ≤ (4 + ( 5

16
)2)∆2

+
1

4
∆

√
25∆2 +

4 log 2Dσ2

nSrS + nT rT

≤ (4 + ( 5
16
)2) 1

452
Dσ2

nSrS + nT rT
+

1

4 × 452

√
252 + 452 × 4 log 2

Dσ2

nSrS + nT rT

≤ 0.012
Dσ2

nSrS + nT rT
.

Hence,

1 −
[nSrS + nT rT ]32∆2( 5

4
+u)2

σ2 + log 2

D log 2
≥ 1 − 0.56 −

1

D

≥ 0.39.

Therefore, we arrive at

RT (P ;φ ○ ρ) ≥ ∆2

1000
+

6

1000

Dσ2

nSrS + nT rT
. (7.11)
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7.5 Proof of Theorem 1 (One-hidden layer neural network with fixed hidden-to-output
layer)

By Proposition 1, the generalization error is bounded from below as

EQθT
[∥ŷT − yT ∥2`2] ≥ 1

4
σ2

min(V )∣∣Σ 1

2

T (ŴT −WT )T ∣∣2F + kσ2.

Therefore, it suffices to find a lower bound for the following quantity:

RT (P∆;φ ○ ρ)
∶= inf

ŴT

sup(PWS
,QWT

)∈P∆

E
SPWS

∼P
1∶nP
WS

[E
SQWT

∼Q
1∶nQ

WT

[φ(ρ(ŴT (SPWS
, SQWT

),WT ))]]
where φ(x) = x2 for x ∈ R and ρ is defined per Definition 1. The rest of the proof is similar to the
linear case as the corresponding transfer distance metrics are the same. We only need to upper bound
the corresponding KL-divergences in this case. We do so by the following lemma.

Lemma 4 Suppose that P
W
(i)
S

and P
W
(j)
S

are the joint distributions of features and labels in

a source task and Q
W
(i)
T

and Q
W
(j)
T

are joint distributions of features and labels in a target

task as defined in Section 2.1 in the one-hidden layer neural network with fixed hidden-to-output

layer model. Then DKL(PW
(i)
S

∣∣P
W
(j)
S

) ≤ ∥V ∥2∣∣Σ 1
2

S
(W (i)

S
−W

(j)
S
)T ∣∣2F

2σ2 and DKL(QW
(i)
T

∣∣Q
W
(j)
T

) ≤
∥V ∥2∣∣Σ 1

2

S
(W (i)

T
−W

(j)
T
)T ∣∣2F

2σ2 .

Furthermore, we also note that since in this case WS ,WT ∈ R`×d, the definition of D is slightly
different from that in the linear case. In this case D = rank(ΣT )` − 1.

7.6 Bounding the KL-Divergences in the Neural Network Model (Proof of Lemma 4)

First we compute the KL-divergence between the distributions P
W
(i)
S

(xS ,yS) and P
W
(j)
S

(xS ,yS)
DKL(PW

(i)
S

(xS ,yS),PW
(j)
S

(xS ,yS)) =DKL(PW
(i)
S

(xS),PW
(j)
S

(xS))
+ E[DKL(PW

(i)
S

(yS ∣xS),PW
(j)
S

(yS ∣xS))].
The marginal distributions P

M
(i)
S

(xS) and P
M
(j)
S

(xS) are equal so their KL-divergence is zero. The

conditional distributions P
M
(i)
S

(yS ∣xS) and P
M
(j)
S

(yS ∣xS) are normally distributed with covariance

matrix σ2
Ik and with mean respectively equal to V ϕ(W (i)

S xS) and V ϕ(W (j)
S xS). Therefore, we

obtain

DKL(PW
(i)
S

(yS ∣xS),PW
(j)
S

(yS ∣xS)) = ∥V ϕ(W
(i)
S xS) −V ϕ(W (j)

S xS)∥2
`2

2σ2
.

Then we have

DKL(PW
(i)
S

(xS ,yS),PW
(j)
S

(xS ,yS)) = E ∥V ϕ(W (i)
S xS) −V ϕ(W (j)

S xS)∥2
`2

2σ2

≤
∥V ∥2 ∣∣Σ 1

2

S (W (i)
S −W

(j)
S )T ∣∣2F

2σ2
.

Since ReLU is a Lipschitz function. Similarly we get

DKL(QW
(i)
T

(xT ,yT ),QW
(j)
T

(xT ,yT )) = E∣∣V ϕ(W (i)
T xT ) −V ϕ(W (j)

T xT )∣∣2F
2σ2

≤
∥V ∥2 ∣∣Σ 1

2

T (W (i)
T −W

(j)
T )T ∣∣2F

2σ2
.
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7.7 Proof of Theorem 1 (One-hidden layer neural network model with fixed input-to-hidden
layer)

By Proposition 1, the generalization error is EQθT
[∥ŷT − yT ∥2`2] = ∣∣Σ̃ 1

2

T (V̂T −VT )T ∣∣2F + kσ2 so it

suffices to find a lower bound for the following quantity

RT (P∆;φ ○ ρ) ∶= inf
V̂T

sup(PVS
,QVT

)∈P∆

E
SPVS

∼P
1∶nP
VS

[E
SQVT

∼Q
1∶nQ

VT

[φ(ρ(V̂T (SPVS
, SQVT

),VT ))]]
Where φ(x) = x2 for x ∈ R and ρ is defined per Definition 1. Inherently, this case is the same as the
linear model except that the distribution of the features has changed which was calculated in (7.7).
The rest of the proof is similar to the linear case with the difference that ΣS ,ΣT should be replaced

by Σ̃S , Σ̃T .

8 Appendix B

In this section we apply our theorem on DomainNet clipart and DomainNet sketch datasets to find a
lower bound for target generalization error.

DomainNet dataset. First we pass the images of DomainNet-Clipart and DomainNet-Sketch through
a ResNet-101 network pretrained on ImageNet with the fully connected top classifier removed and
use the extracted features instead of the actual images.

Training. We trained a one-hidden layer neural network with 2048 input neurons, 40000 hidden
neurons, and 345 output neurons for DomainNet-Clipart and DomainNet-Sketch dataset. We tuned
the number of hidden neurons in order to get the best performance on the test dataset. We used MSE
loss with one-hot encoded labels for training the networks. the trained network on DomainNet-Clipart
has 98.4% train accuracy and 65.7% test accuracy and and the one trained on DomainNet-Sketch has
98.9% train accuracy and 51.2% test accuracy. Then we used the trained weights to estimate/calculate
the parameters appearing in our lower bound. The noise levels are calculated based on the average loss
of the trained ground truth models on the test dataset (note that this average loss equals kσ2

= 345σ2).
Moreover, we estimated/calculated rs, rT , and the transfer distance, i.e. ∆ as reported in Table 2.

∆ kσ2 rS rT σ2
min(V )

202.15 .54 2.247 2.58 .249

Table 2: Estimated parameters of Theorem 1 for DomainNet clipart and Sketch datasets.

Lower bound. Using the values of Table 2, we get that ∆ ≥
√

Dσ2 log 2

rTnT
. Theorem 1 gives a lower

bound for the generalization error which is illustrated in Figure 8. In Figure 9 we plot an upper
bound for this dataset. The upper bound is obtained by empirical risk minimzation simply over target
samples. In Table 3 we provide some exact values of upper and lower bound.

Number of target samples Lower bound Upper bound

5000 0.5424 1.0076
8150 0.5415 0.8573

15500 0.5408 0.7518
22150 0.5405 0.7266

Table 3: Some examples of exact values of lower and upper bound.
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Figure 8: Theoretical lower bound on target generalization error as a function of the number of target
samples for DomainNet dataset.
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Figure 9: Upper bound on target generalization error as a function of the number of target samples
for DomainNet dataset. The upper bound is obtained by simply minimizing the empirical risk over
target samples.
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