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Abstract

Contemporary machine learning applications often involve classification tasks with
many classes. Despite their extensive use, a precise understanding of the statistical
properties and behavior of classification algorithms is still missing, especially in
modern regimes where the number of classes is rather large. In this paper, we take a
step in this direction by providing the first asymptotically precise analysis of linear
multiclass classification. Our theoretical analysis allows us to precisely character-
ize how the test error varies over different training algorithms, data distributions,
problem dimensions as well as number of classes, inter/intra class correlations
and class priors. Specifically, our analysis reveals that the classification accuracy
is highly distribution-dependent with different algorithms achieving optimal per-
formance for different data distributions and/or training/features sizes. Unlike
linear regression/binary classification, the test error in multiclass classification
relies on intricate functions of the trained model (e.g., correlation between some of
the trained weights) whose asymptotic behavior is difficult to characterize. This
challenge is already present in simple classifiers, such as those minimizing a square
loss. Our novel theoretical techniques allow us to overcome some of these chal-
lenges. The insights gained may pave the way for a precise understanding of other
classification algorithms beyond those studied in this paper.

1 Introduction

Multiclass classification is fundamental to a large number of real-world machine learning applica-
tions that demand the ability to automatically distinguish between thousands of different classes.
Applications include essentially any problem with categorical outputs spanning natural language
processing [SVL14], where a seq2seq decoder has to choose the correct word token, reinforcement
learning [JGP16, MXSS20], where the agent has to choose the correct action, to recommendation
systems, where the model should recommend the correct movie out of many other options. For
instance, YouTube’s recommendation system is modeled as an extreme multiclass problem with more
than a million classes where each video corresponds to a viable class [CAS16].

The growing list of applications motivate an in-depth exploration of multiclass classification algo-
rithms. Despite their extensive use however, a precise understanding of the statistical properties and
behavior of classification algorithms is still missing with many open questions: What is the total
and per class test accuracy? How does this quantity depend on various problem parameters such as
data distributions, problem dimensions, etc.? What is the highest test accuracy achievable by any
algorithm? What is the best algorithm for each scenario? Which algorithm achieves the highest
accuracy on rare or minority classes? How does the answer to the above question change in modern
regimes where the number of classes is large?

Asymptotic analysis in modern high-dimensional regimes where the number of training data and
feature sizes grow in tandem with each other provides a promising setting for precisely quantifying the
accuracy of classification algorithms as a function of problem variables and resolving the questions
above. However, despite the rich literature on precise high-dimensional estimation and more recently
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binary classification, multiclass classification is an under-explored venue possibly due to the difficulty
of capturing the intricate dependencies between the classes even for relatively simple linear classifiers.

Contributions. We initiate a precise asymptotic study of linear multiclass classification in the
modern high-dimensional regime, where the sizes of the training data and of the feature vectors
grow large at a proportional rate. A key promise of such a precise analysis is that it allows us
to accurately compare between different classification algorithms and data models. Compared to
linear regression/binary classification, we identify the following crucial challenge: the test accuracy
in multiclass classification relies on intricate cross-correlations between the trained weights of
the classifier. This has two consequences that drive our analysis. First, in order to obtain sharp
asymptotics on the test error of any classifier, it is a prerequisite to precisely quantify the asymptotics
of these cross-correlations. Second, the test error does not depend on the correlations in closed-form
expressions. Thus, to compare between different classifiers, we need efficient numerical and analytic
means to evaluate the test error in terms of the correlation matrices. Interestingly, we show that
these challenges are already present in simple classifiers, such as minimizing the square loss, and in
stylized distributional settings, such as Gaussian features. Our contributions are as follows:

o We study two different data models: a Gaussian Mixtures Model (GMM) and a Multinomial Logit
Model (MLM) with Gaussian features. For each one of them, we provide a precise characterization of
total and class-wise test accuracy for three different training algorithms: (i) a least-squares (LS) based
classifier, (ii) a weighted least-squares (WLS) based classifier, and (iii) a simple per class averaging
(Avg) estimator. For the least-squares based classifiers, we develop a new technique to overcome the
technical challenge of characterizing the limiting behavior of the weights’ cross-correlations. For the
per class averaging classifier, we show that it is Bayes optimal for a GMM with equal priors.

o We discuss efficient means of evaluating the test accuracy as a function of the weights’ cross-
correlations. This, together with the derived asymptotic formulae for the latter, lead to the first precise
high-dimensional characterization of how the total/class-wise accuracy varies for different algorithms,
data distributions, problem dimensions as well as number of classes, the inter/intra class correlations
and class priors. For special problem geometries, we derive precise conditions on the data distribution
and on the relative size of the training set over which each of the two studied algorithms dominates.

e We present and discuss numerical simulations that corroborate our theoretical findings. For
instance, with an eye towards making classification algorithms more fair/equitable, we use our precise
characterization of the class-wise accuracy to demonstrate how different algorithms behave in the
presence of rare/minority classes. We also empirically compare the algorithms studied in this paper
to other popular losses such as cross-entropy minimization. This allows us to better understand the
performance of various algorithms in modern regimes of large number of classes.

Related Work. There is a classical body of algorithmic work on multiclass classification, e.g., [CSO1,
LLWO04, WWO98, BB99, DB94] and several empirical studies of their comparative performance
[RKO4, Fiir02, ASS00, PMO05]. A more recent extension of this line of work investigates the effect
of the loss function in deep neural networks [HYS16, GCOZ17, KS18, BEH20]. Algorithms for
extreme multiclass problems with huge number of classes has also been studied in several [CAL13,
YHR"16, DCO20, RCY"19, KMS15] works. On the theory front, numerous works have investigated
consistency [Zha04, LLWO04, TB07, PSG13, PS16] and finite-sample behavior [KP*02, Gue02,
ASS00, LLY*18, CKMY 16, LDBK15, Maul6, LDZK19] of multiclass classification algorithms.
Our work differs from this literature in that we are interested in precise characterizations of the test
accuracy rather than order-wise bounds. Here we focus on linear classifiers, but we consider the
modern high-dimensional regime in which both the sample size and the features’ dimension are large.

Specifically, our theoretical approach to linear multiclass classification fits in the rapidly grow-
ing literature on sharp high-dimensional asymptotics of convex optimization-based estimators
[Don06, Sto09, OH10, CRPW12, ALMT13, DMMI11, BM12, ALMT13, Stol3, OTH13, TOH15,
Kar13, EK18, DM16, ORS17, TXH18, TAH18, MM18, WWM19, CM19, HL.19, BKRS19, ASH19,
JSH20]. Most of this line of work studies linear models and regression problems. More recently
there has been a surge of interest in sharp analysis of a variety of methods tailored to binary classifi-
cation models [TAH15, Hual7, CS18, SC19, MLC19b, MLC19a, KA19, SAH19, TPT20b, DKT19,
MRSY 19, LS20, MKLZ20, Lol20, TPT20a]. Nevertheless, none of these prior works have yet con-
sidered multiclass classification settings. Our paper unveils the salient features of the multiclass
setting and shows that corresponding results from the binary setting do not directly apply here.
We emphasize that this is the case even for seemingly simple one-vs-all (OVA) classifiers, such as



minimizing the square-loss, that involve training a single binary classifier per class [RK04]. The
key technical tool behind our sharp analysis is the convex Gaussian min-max Theorem (CGMT)
[TOH15, Stol3]. However, a “naive" application of the CGMT on the original optimization of the
classifier does not allow us to compute all the necessary correleations between the classfier’s weights
to precisely capture the total/class-wise errors. Instead, our key idea is to formulate an artificial
optimization problem, which captures the missing correlations and at the same time conveniently
allows us to leverage the CGMT.

Notation. We use [k] to denote {1,...,k}. We use boldface lowercase letters x,y, p, . . . to denote
vectors and boldface uppercase letters X, Y, M, ... for matrices. We write e, for the /-th standard
basis vector in R¥. We also write I &, Okxp and 1y, for the k x k identity and all-zeros matrices and the
k x 1 all-ones vectors. For a vector ¢ € R¥ we write arg max ¢ to denote the index of its largest entry,
Le., argmax ¢ = arg max ) ¢;. The superscript ¥ denotes pseudoinverse. We use Q(x) for the tail
of a standard Gaussian (Q-function). Finally, we reserve variables Gy, G, ..., Gy (Y (0,1) to
denote i.i.d. standard Gaussians.

2 Problem formulation

We focus on multiclass classification problems with k classes. Specifically, we assume the training
data consists of n feature/label pairs {(xz;,Y;)}, with x; € R representing the features and Y; €
{1,2,...,k} the associated labels representing one of k classes. It will be convenient to also model
the labels as one-hot encoded vectors y; € R* representing one of & classes with one-hot encoding,
i.e., y; = ey,. Therefore, when convenient we shall use {(x;,y;)}, to represent the training data.
Throughout, we shalluse X = [1 @2 ... @,]eRP™ andY =[y1 ¥y2 ... Yn]eRF™,
to denote the matrix of features and their labels aggregated into a matrix, respectively. We shall
also use Yy € R™ to denote the /-th row of Y. In our analysis we focus on training linear classifiers.
Specifically, we use W = [wy;  wy - 'wk]T € RF*? and b € R to denote the weights and biases
of this linear model, respectively. The overall input-output relationship of the classifier in this case is
a function that maps an input vector & € R? into an output of size k via & — Wz + b € R¥, where a
training algorithm is used to train the corresponding weights W € R¥*? and biases b € R*. Next we
detail the data models and training algorithms that are formally studied in this paper. We end this
section by discussing how the test error can be calculated for the different data models.

2.1 Data Models

In our theoretical analysis we assume the training data {(x;,Y;)}1, (alternatively {(x;,y;)}},) are
generated i.i.d. according to (x,Y)/(x,y). We consider two models for the distribution of (x,y)
which we detail next. In both models we shall use mean/regressor vectors { tts } ?:1 € R? and aggregate
them into columns of a matrix of the form M := [p1  po ... pg]e€ R In the first model,

these vectors represent the mean of the features conditioned on the class, i.e., gty = £ [m\Y = E],
whereas in the second model these vectors can be viewed as regressor coefficients. We shall refer to
{pe} ’Z:l/M as “mean” vectors/matrix in both models. We denote the Grammian matrix of means as
Sppu=M T M . Furthermore, we shall use ju¢ := || ¢, to denote the norm of the mean vector ;.

Gaussian Mixture Model (GMM). In this model each example (x,Y") belongs to class £ € [k]
with probability 7y, i.e., P{Y = ¢} =m,. Weletw =[m 72 ... 7Tk]T € R* denote the vector of
priors which of course obeys 7t > 0 and 177 = 1. Also, we model the class conditional density of an

example in class £ with an isotropic Gaussian centered at a mean vector gt,. In particular, we say that
a data point (x,Y") (or its one-hot encoded representation (x,y)) follows the GMM model when

P{Y=(}=n, and x=py+z, 2~N(0,0%I,). 2.1

We note that for a training set summarized by the feature and label matrices X and Y with columns
generated i.i.d. according to the above distribution we have: X = MY + Z where Z ¢ R¥”" is a
Gaussian noise matrix with i.i.d. A'(0,0?) entries.

Multinomial Logit Model (MLM). In this model we assume that feature vectors « are distributed
i.i.d. N (0, I;) and that the conditional density of the class labels is given by the soft-max function.
Concretely, we say that a data point («,Y") (or its one-hot encoded representation (x, y)) follows
the multinomial logit model when

x~N(0,1,) and P{Y={|x}= e““’”w)/ > elkis@), (2.2)
Jjelk]
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2.2 Classification algorithms

As mentioned earlier, in this paper we focus on training linear classifiers of the form x — Wx + b
with W e R**? denoting the weights and b € R the offset values.

Least-squares (LS). In this approach we train a linear classifier x — W x + b via a least-squares fit

WX +b17 - Y|

to the training data: (W, b) := argminw p 5= Y1 [Wa; + b -y, sz =L

Class averaging (Avg). This approach uses the following weight and offset values W = %YX T
and b := %Yl. Let ny be the number of training data from class ¢ then, equivalently, @, =

o (n%] Yy, mi) and by = L. Therefore, this classifier picks weights according to the empirical

mean of features of each class multiplied by the relative frequency of that class and the offset value
as the fraction of data points from that class. We note that this algorithm has the same classification
performance as the outcome of the ridge-regularized least-squares with infinite regularization.

Weighted Least-squares (WLS). This is a variation of the Least-squares approach where we fit a
weighted least squares loss of the form (W,B) == argminw p ﬁ || (WX +b17 - Y) DH?D . Here,
D e R™" is a diagonal matrix with the ith diagonal entry equal to D,; = w, when the i-th data point
is from class £ (i.e. Y; = £) and wy > 0, £ € [k] denote the weights. Aggregating the weights into a
vector of the form w = w1 ws ... wi]” € R¥ we can rewrite D in the form D = diag (YTw).
In this approach the loss associated to data points to class ¢ is weighted by a factor w?. For instance,
if the class priors are known, a natural choice might be wy = 1/,/7;. Such a weighted approach

allows the classification algorithm to focus on rare/minority classes which are not well represented in
the training data.

Cross-entropy (CE). In this approach the best weight/offset values are determined by fitting a
25:1 o{Tp.i)+by

cross entropy loss (W, D) := arg minyy p % i 1og( ) Theoretical analysis for CE

(Wy, ,&;)+by.
e 7 i
is substantially more involved and we defer it to future work. Nevertheless, we compare with this
classifier in our numerical simulations.

2.3 Class-wise and total test classification error

Let W, b denote the parameters of a trained classifier. Now consider a fresh data sample (z,Y)
generated according to the same distribution as the training data. Once, we have learned the parameters

W,E of the classifier, the class Y’ predicted by the classifier is made by a winner takes it all strategy,

as follows, Y = arg IMAaX (] (@), x) +Ej. Therefore, the classification error condition on the the
true label being ¢, which we shall refer to as the class-wise test error, is equal to

Peje :=P{Y # Y|V = c} = P{(@,, ) + b. < max (@;,z) + b, }. (2.3)

]#C

Correspondingly, the fotal classification error is given by

=P{V+Y}= F{arggxel[ak)]({('lﬁj,m) +h)# Y}} - P{(@y, ) + by < max (@, ) +B;}). 24

For both the GMM and MLM, the classification error depends on the vector of intercepts b e RF and
the following key “correlation” matrices: X, o := WWT and Ywu=WM.

GMM. In model (2.1), the test error probability is explicitly given by
P.=P { arg max (crg +b+ Zw}uey) + Y}7 where g ~ N (0,24 1), (2.5)
and Y is independent of g with probability mass function P{Y = ¢} = m,, L€ [k].

MLM. In model (2.2), the test error probability is explicitly given by

- pi b
P.=Piargmax (g+b)+Y(h);, where [g]NN 0,[ 7" w’“] ; 2.6
{argmax (g+b) + Y (h)} AR ST ) 2.6)

and P{Y'(h) = (} = ™ [¥ ;i ™, Le[k].



Calculating the class-wise/total misclassifcation errors. The identities (2.5) and (2.6) (see Section
D.1 for a proof) as well as similar ones for the class-wise test error demonstrate that the total/class-
wise errors only depend on the correlation matrices X, o, and X, ., the offset values b and the the
class conditional means. For instance, as we show in the supplementary for GMM the class-wise
errors are given by

Pee=1-P{SY?2>t.}, 2.7

where z is a Gaussian random vector distributed as A'(0, 0%I}_1), S, € RF=D*(*=1) i5 3 symmetric
matrix such that its 4, j element is given by [S.];; := (@W. — W;, W. — ;) and &, € RF-1 a vector

with entries [t.]; := (@W; — W, pe) + (R - b.). Similarly, based on (2.7) the total classification
error in GMM is equal to P, = Zéf:l T Pee = 1- Zf:l e P {Scl/2 z 2 tc}. As also detailed in
the supplementary, the class-wise/total test errors for MLM similarly depends on quantities of the
form P{Az >t} with z a standard Gaussian random vector, A and ¢ depending only on correlation
matrices, conditional means and classifier offset-values; see Section D.3. There are a variety of
algorithmic approaches to calculate P{Az > ¢t} once A and ¢ are known based on Monte Carlo
methods. Analytic bounds on this quantity have also been studied in the literature, e.g., [HHO3, SL80];
see more details in Section D.

2.4 High-dimensional regime

This paper derives sharp asymptotic formulae for the class-wise and total classification error of
averaging and (weighted) LS algorithms for GMM and MLM. We defer all our proofs to the appendix.
All our results hold in the following high-dimensional regime with finite k.

Assumption 1 We focus on a double asymptotic regime where n,d — oo at a fixed ratio vy = d/n > 0.

For the (weighted) least-squares classifier, we focus here in the overdetermined regime v < 1.
However, our approach is also directly applicable to regularized (or min-norm) LS/WLS in the
overparameterized regime vy > 1.

For a sequence of random variables &), 4 that converges in probability to some constant c in the
. . . P . L
limit above, we simply write &), 4 — c. For a random vector/matrix v, 4/V,, q and a deterministic

. . P P .
vector/matrix ¢/C, the expressions v,, 4 — c and V,, 4 — C are to be understood entry-wise.

3 Results for Gaussian Mixture Model

In this section we discuss the asymptotics of the intercepts/correlation matrices for the averaging and
the LS classifiers for the GMM. The derived formulas can be directly plugged in (2.5) and (2.7) to
obtain asymptotics for the total and class-wise test error, respectively. We end this section by also
characterizing the Bayes optimal estimator in this model when priors are balanced 7y = 1/k, ¢ € [k].
Additional results on the performance of Weighted LS are deferred to the appendix.

3.1 Class averaging classifier

Proposition 3.1 Consider data generated according to GMM in an asymptotic regime with any -y > 0.
For the averaging estimator discussed in Section 2.2, the following high-dimensional limits hold

’l;iwr, Swp i>diag(71') D Y (3.1a)
w,w L, yo? - diag(m) + diag(m) - 2, . - diag(m) . (3.1b)

The above result allows us to precisely characterize the behavior of the averaging estimator in the
high-dimensional regime. Let us consider a few special cases.

Two classes. Consider the special case with two classes with class priors 7, = 1 -9 =: 7. In this case
we can compute the class-wise misclassification probabilities Pj; and P explicitly. Specifically

using (3.1), we have Sy = |71 — (1 - 7)pa Hi+’yc72 and tq = (1-2m)+(1-m) {1, peo)—7 |1 HZ .



7THM1”?2—(1—77)(H1,l-¢2)+277—1
VIrpi-(=-m)pz |7, +702
of equal priors ™ = m; = w9 = 1/2, antipodal and equal energy of the means, i.e., 1 = —p2 and

Substituting the latter two in (2.7) we arrive at Py L Q(

) - In the case

p:= |pally, = |p2l,,. we can use the above to conclude that P,y = Pys = 5 Pe = 2Q( u2}+irr2 )-
This formula recovers the result of [MKILZ20] for this special case. Also, as mentioned in [MKLZ20],
the formula matches the Bayes optimal error computed in [LM19] for Gaussian mean vectors. This
shows that the class averaging method is Bayes optimal in this very simple setting. In Section 3.3,
we generalize this result to multiple classes: we show that the average estimator is (asymptotically)

Bayes optimal for balanced classes and equal-energy Gaussian means for any k > 2.

Orthogonal means, equal priors and equal energy. Next we focus on a special case with orthogo-
nal means (u;, ;) =0, i # j € [k] of equal energy 1% := |, ||§2 and of equal priors 7; = 7 = 1/ for

) . . . e P
i € [k]. In this case, the class-wise miss-classification error converges to P, — 1 - [P{Si/ 22> t},

2
where S, = m(mp? +vo?)(Ip_q + lk_ll;f_l) and t = —7p?1,_;. Defining UAvg = ”7, /m ,
after some algebraic manipulations the total classification error of the averaging estimator in this case

is given by P = Pe Avg Zop {Go +maxex-1] Gj 2 uAvg}, where Gy, ..., Gr-1 g N(0,1).

3.2 Least-squares classifier

This section focuses on characterizing the intercepts and correlation matrices for the least-squares
classifier. To present our results, we assume that the Grammian matrix has eigenvalue decomposition

Suu=M"M=vvT >0y, VeRFT 1< k. (3.2)
with ¥ a diagonal positive-definite matrix and V' an orthonormal matrix obeying VIV = I,..

Theorem 3.2 Consider data generated according to GMM in an asymptotic regime with v < 1. In
addition to (3.2), define the following two positive (semi)-definite matrices: P := diag(m) — wn’ >
Ojxsc and A := 021, + VT PVE > 0,.,. Then, for the least-squares linear classifier (W,B) the
following limits are true asymptotically

b L r-PvsA'svTr, B,,— PVZAT'EVT, (3.3a)

P Y -1 -1 Y T
Yww > — _PiPVEA (A T 1 )mvTP. 3.3b
e Ueer ( (1-7)o? /) (330

The above result allows us to precisely characterize the behavior of the least-squares classifier
in the high-dimensional regime. In Section H.2, we specialize (3.3) to the case of orthogonal
means. Compared to the weight vectors @;, 4 € [k] of the class averaging classifier that are also
(asymptotically) orthogonal when means are orthogonal, this is not the case for LS. We show next
that these spurious correlations only hurt the classification error when classes are balanced.

Proposition 3.3 Consider the case of orthogonal, equal energy-means %, ,, = ulIy, balanced priors

m = 1]k, i € [k] and v < 1. Setting urg := %Mﬁ, it holds that P, 1s LN IP{GO +

maxex-1]Gj 2 uLs}. Specifically, since urs = Uavg\/1—7 < Uavg the averaging estimator
strictly outperforms LS for all 0 < v < 1 and k > 2 in this setting.

3.3 Bayes estimator for the balanced Gaussian Mixture Model

To check how far the above algorithms are from the lowest misclassification error achievable by
any algorithm in this section, we consider a Bayesian setting with Gaussian mean vectors and
we derive the Bayes-optimal risk for the case of equal priors. Recall that the Bayes estimator

Y = argmaxyep P{Y = ¢| X, Y, x} minimizes the risk P, = P{Y # Y} = Ex y oy [1[Y # V]].

Proposition 3.4 Consider p; i N(O,%Id) and m; = 1/k for all i € [k]. Set upayes ‘=

2
B 1 .
T T Then, the Bayes risk converges to P {Go +maxyer-1] G > uBayes}.



Under Gaussian prior, the means are asymptotically orthogonal and equal-energy. As shown earlier,

in this setting, P¢ Avg i P {GO +maXpe[x-1) Gy > uAvg}. But, uavg = UBayes- Thus, the averaging
method is (asymptotically) Bayes optimal for equal-norm, orthogonal means and balanced classes.
An analogous result was’ derived in [LM 19, MKLZ20], but only for binary classification.

4 Results for Multinomial Logit Model

In this section we discuss the asymptotics of the intercepts/correlation matrices for MLM. We present
results for arbitrary mean-vectors as well as special cases where the means are mutually orthogonal.
Recall the eigenvalue decomposition of the Grammian X, ,, = VX2V 7T in (3.2). In order to state

. . . . . aqe . - 2
our results, it is convenient to introduce the following probability vectors in R¥ and R*":
eVZ‘.g

(evzg) (evzg)T
w:=[F [71%16‘/29

2

(1§ev>9)

Note that 7r and IT are the first and second moments of the soft-max mapping of V3g ~ N (0,3, ,,).
eT

In fact, for the MLM in (2.2) it holds that P{Y = ¢} = E[P{Y = £|@}] = E[ $rvmn ] = e, £ € [K]
k

since M Tz is distributed as V' Xg. Thus, 7 is the vector of class priors (which explains the slight
abuse of notation here in relation to our notation for the class priors of the GMM).

]ele and H::[E[ ]eRka, where g ~ N (0,1,.). (4.1)

4.1 Class averaging classifier

Proposition 4.1 Consider data generated according to MLM in an asymptotic regime with any v > 0.
For the averaging classifier; the following high-dimensional limits hold

bLn, S (diag(m)-TI) -3, , . (4.22)
S — 7 - diag(w) + (diag(m) - TI) - X, ,, (diag(w) - TI) . (4.2b)

Using Gaussian decomposition in (2.6) and checking from (4.2) that X, ,, — ZJM,’MZ)T »7 i

B,
~ - diag () the test error obtains the following explicit form:
Pe ave — P{argmax {\/7 - diag(v/7) - g + (diag(m) ~TI)- VE - g+7} = V(g)}, (4.3)

where G~ N'(0,1;), g ~ N'(0, 1) and P{Y (g) = ¢} = ¢ VD95, 1,1¢% VD9 ce[k].

4.2 Least-squares classifier

This section focuses on characterizing the intercepts and correlation matrices for the least-squares
classifier. We also use the result to characterize conditions under which LS outperforms averaging.

Theorem 4.2 Consider data generated according to MLM in an asymptotic regime with 0 < v < 1.
Recall the notation in (4.1). For the LS classifier, the following high-dimensional limits hold.

[ T, Zwpu i (diag(m) -1II) -3, 4, (4.4a)
1-2

Y w £, T v (diag(w) - 71'71'T) + T 7. (diag(w) -1II) - X, ,, - (diag(w) - II) . (4.4b)
vy -

It is interesting to observe that (4.4a) is identical to (4.2a). However, the cross-correlations in 3., ,
differ. We prove below that this leads to an improved performance of the LS classifier for large
sample sizes. First, Theorem 4.2 can be used to check that

Ywaw — Dw,pu2

P . . .
“7“257“ — % (dlag(r) -l — (diag(w) - II) X, ,, (diag(7) - H)) .

Thus, the only change in the test-error formula compared to (4.3) is the term «y - diag(7) substituted
by the matrix above.



Proposition 4.3 Assume orthogonal, equal-energy means X, ,, = p* Iy, k > 2. Let 7y, = ( k‘ik)z ( 1-
[ 020G

2
m] ) € (0,1). Then, with probability 1 as n — 00, Pe 15 < Pe avg <= 7 < V4.

5 Numerical Results

This section validates our theory via numerical experiments and provides further insights on multiclass
classification. See also Section A for more extensive experiments. We study the class-wise/total test
misclassification error in both GMM and MLM for different sample sizes, number of classes and
class priors. In line with Section 2.2 we consider four algorithms: (i) Averaging (Avg), (ii) LS, (iii)
Weighted LS (WLS) with the ith class weighted by wf = 1/my, (iv) Cross-Entropy (CE).

Figures 1 and 2 focus on GMM with k = 9 classes, d = 300 and ||p; |7, = 15. To model different class
prior probabilities, we use the distribution 71 = o = w3 = 0.5, 74 = 0.5, 715 = 0.5, 16 = 0.25, 77 =
0.25, g = 0.25, m9 = 1/21. We consider three scenarios: (a) orthogonal means, equal prior (7; = 1/9);
(b) orthogonal means, different prior; (c) correlated means with pairwise correlation coefficient equal
t0 0.5 (i.e., (i, 5}/ ([ p2illg, | 1250 ,,) = 0.5 for i # j) and different priors as discussed above. Figure
1 shows the test miss-classification errors as a function of «y := d/n. In all scenarios our theoretical
predictions are a near perfect match to the empirical performance. In scenario (a), class-wise
averaging achieves the lowest error as predicted by Proposition 3.4. However, in scenario (b) where
the means have different norms the averaging method has higher misclassification error compared
with CE, LS and WLS for large sample sizes (small y). We note that both LS and WLS achieve
lower errors compared with CE as the sample size grows. Scenario (c) is similar to (b). However, due
to class correlations, the errors are uniformly higher. Figure 2 shows the corresponding class-wise
miss-classification errors for the smallest «y in Figure 1 (v = 0.117). In scenario (a), errors are equal
which is expected given the equal class priors. In scenarios (b) and (c) however, due to different
priors, large classes 7,8,9 achieve best accuracy. The performance difference is most visible for the
averaging approach. LS mitigates this issue to some extent, while WLS creates the flattest class-wise
errors suggesting that it can reduce the miss-classification error on small/minority classes.

Figure 3 focuses on orthogonal classes with varying number of classes k& where ||p; H,?Z =15 and
d € {50,100,200} with kd/n = kv fixed at kv = 20/11. It plots the ratio of the empirical error
probability and our theoretical prediction as k grows until £ = d. Two observations are worth
mentioning here. (1) The accuracy of our predictions noticeably improves as the problem dimension
d,n grow as expected given the asymptotic nature of our analysis. Interestingly, the convergence
appears to be noticeably faster (as a function of d) for the LS rather than the Averaging classifier. (2)
Our theoretical results formally require that k is fixed while d (and n) grow large. Yet, the presented
experimental results suggest that they might also hold for large k£ under the shown scaling. This is a
fascinating research question that we believe is worth investigating further.

Figure 4 provides experiments on MLM with k = 9 orthogonal classes. Unlike GMM, CE achieves
the best performance in MLM. In Figure 4 (a), classes have same norms | ;| ¢, = 10, while in Figure
4 (b) we have quadrupled the norms of classes 7,8,9 and doubled the norms of classes 4,5,6. This
disparity between the norms seems to help improve the CE accuracy, but hurt LS/averaging accuracy
for small ~y. Finally, Figure 4 (c) shows the class-wise probability of error associated with (b) for
v =0.117 and demonstrates that LS outperforms averaging.

6 Future Directions

This work aims at initiating a precise asymptotic study of multiclass classifiers that provides a
promising setting for resolving a rich set of open questions regarding the (comparative) performance
of classification algorithms as a function of the involved problem variables. As mentioned, even
understanding the statistical performance of one-vs-all multiclass classifiers does not follow directly
from the existing literature on binary classifiers. Extending the results of this paper to the one-vs-
all logistic and SVM classifiers would allow for a principled comparison among these different
choices. A possibly more challenging, albeit mathematically intriguing and practically relevant
task, is characterizing the asymptotics of more complicated (non-separable) losses, such as the
cross-entropy loss. For this, even characterizing the asymptotic behavior of the correlations 3, ,,



requires new ideas. The previously mentioned study of “extreme multiclass classification” in which

the number of classes k is very large is another fascinating direction.
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Broader Impact

In this paper we develop a precise and asymptotically exact understanding of the statistical behavior
of a variety of classification algorithms. In particular we precisely, characterize how the total and
class-wise accuracy varies under different training algorithms, data distributions, problem dimensions,
inter/intra class correlations and class priors. Despite being theoretical/foundational in nature it
has potential for broader practical impact. In particular, our precise characterization of class-wise
accuracy allows us to understand how different training algorithms impact accuracy of machine
learning algorithms on rare/minority classes. Such a precise understanding may help guide the
development of more fair/equitable algorithms. On the flip side, such insights may potentially also be
used nefariously enabling the marginalization of rare/minority classes by developing algorithms that
reduce their class-wise accuracy.
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of X . GMM with orthogonal means and (a) equal priors, different strengths; (b)
different priors, different strengths; (c) different priors, equal strengths. See text for

details.

A Additional Numerical Results

In this section, we provide further numerical experiments.

First, in Figure 5 we investigate the question: When does least-squares provably outperform averaging?
Our Proposition 4.3 provides a fundamental transition point in sample complexity above which
least-squares is provably better than averaging under MLM. In Figure 5, we visualize -, as a function
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of different number of classes as well as different levels of mean energy. Least-squares outperform
averaging in the region below the lines displayed in Figure 5. Our key message is that least-squares
work better when the sample complexity is higher and the problem is less noisy. As the number
of classes k increase, the problem becomes more difficult/noisy and we require a larger sample
complexity to ensure classifier achieves a similar amount of accuracy as small k. Following this
intuition, as k increases, 7, shifts smaller due to larger sample requirement. Similarly energy p
directly controls the noise level of the problem, i.e., larger x4 results in a larger signal-to-noise ratio.
Thus, as we increase i, 7. increases as well because same test accuracy can be achieved with smaller
sample size.

Second, Figure 6 provides further experiments on the class-wise probabilities of the MLM model
with k = 9 classes for v = 0.1. Classes 1,2,3 have norms | ;| ¢, = 15, while we have quadrupled
the norms of classes 7,8,9 and doubled the norms of classes 4,5,6. In scenario (a) the means are
orthogonal and in scenario (b) the means are highly correlated. The WLS shown corresponds to the
following choice of weights: w? = 1/, ¢ € [k], where 7, is the (th entry of the vector 7 in (4.1).
The theoretical predictions for the class-wise error probabilities are computed using formula (D.7).
As was the case for the GMM in Figure 2, we see that WLS creates the flattest class-wise errors.

Finally, in Figure 7 we investigate the following question: 7o what extent pairwise class correlations
are necessary for performance prediction? Specifically, we consider a GMM setup with k = 5 classes
and orthogonal means under three scenarios: (a) 71 = Mg = T3 = ™4 = 75, 4 |1 ||g2 =4 p2 HeQ =
2| psly, = 20maly, = lmsly, = 4v/3; (0) dmy = dmy = 2w = 2wy = 75, 4, = 4| psal,, =
2|3l =20 pall,, = lpsl,, = 4V/3; (©) 4y = 4my = 273 = 2my = w5, | pall,, = |12y, = lsl,, =
lpeally, = lpsly, = /3. The solid lines are exact performance predictions based on our theory for
averaging and least-squares estimators. The dashed lines are the theoretical upper bounds, which
do not require the knowledge of cross-correlations between the classes (i.e., off-diagonal entries
of X, w are unknown). These bounds are calculated by applying a union bound to the class-wise

probabilities P|c, ¢ € [k] in (D.1) and further appropriately bounding the off-diagonal entries of
X w,w in terms of the self-correlations of the classes, i.e., only the diagonal entries of 32, ,,. Please

see Section D.4.3 for details. Overall, the bounds shown only depend on B, Yw,pu and diag(Emw),
which can all be obtained by studying the properties of isolated least-squares on individual classes
without understanding their pairwise relations. While this suggests a simpler method to calculate
theoretical bounds, there is a visible gap between such upper bounds and exact bounds and this gap is
particularly more visible in the third scenario (c), where the bound becomes vacuous for LS. The
gap remains visible in scenarios (a) and (b). At least, in these two cases comparing the bounds for
averaging and LS to each other reveals the transition in performance gain between the two estimators.
However, the cross-point of the curves does not coincide with the true one. This empirical study
emphasizes the fact that pairwise correlations are indeed critical for exact asymptotic analysis and
naive approaches cannot reproduce, in general, the results of our sharp analysis.

B Additional Results on Weighted Least-squares classifiers

B.1 WLS for GMM
We now focus on characterizing the intercepts/correlation matrices for the WLS classifier.

Theorem B.1 Consider data generated according to GMM and v < 1. Consider a wetghted LS
ngz _

define P := dzag(ﬂ') F7L 2 O and A = 021, + VT PV'E > 0, with the entries of 7 given

classifier with weights D = diag(w, . . . ,wy) and let ) be the unique solution to Z? 1 ~. Also

by 7y = 1 il W . Then, for the WLS linear classifier (W b) the following asymptotic limits hold
? Lx-pPvsAlsvTz, S L pvsAalsvT, (B.1a)
S %P + PVEA- (A 1 £I )EVTP + "CQ (B.1b)
o o?

2
Here, ¢ := 7/(77 2146:1 %) and Q € R** is a known matrix depending on various problem
4

parameters. Its precise value is given in (J.18).
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Surprisingly, the effect of the weights is essentially equivalent to adjusting the class priors from 7
to 7t defined in the theorem (modulo the extra additive term in the cross correlation matrix X, q).
This shows that weighted LS has similar performance to an un-weighted LS applied to a model
with different class priors 7. This characterization allows us to precisely understand how different
weighting schemes can alter test accuracy for rare/minority classes.

B.2 WLS for MLM

Theorem B.2 predicts the asymptotic performance of weighted least-squares for data generated
according to MLM.

Theorem B.2 Consider data generated according to MLM and ~ < 1. Consider a weighted LS

2
TeWy _

classifier with weights D = diag(w, . . . ,wy) and let ) be the unique solution to Z?ﬂ o2 = Also
4
2
define vector v € R* with entries given by v, = %wff; " and matrix
4
A=E [(I/T’U) ggT] -3V (diag(w) - ) vv’ (diag(w) —-TI) VE > 0, (B.2)

where v € R¥ is a random vector with entries V; = eefvzg/zh[k] e V29 for g ~ N(0,1,.). Then,
for the WLS linear classifier (W,B) the following asymptotic limits hold
[ diag(v)m - diag(v) (I, - 7TVT) (diag(m) - VIA''SVT (diag(w) -II) v.
(B.3a)
S —> diag(v) (I, - wv'") (diag(w) -TI) VEATEZVT (B.3b)
The corresponding formula for the asymptotic limit of the cross-correlation matrix 2y, o is given in

(K.38) in Section K.

Of course, the theorem above includes Theorem 4.2 as a special case. Indeed, we show how setting
wp = 1, £ € [k] recovers the solution for (un-weighted) LS. First, solving for 7 simply gives 7 = % -1.

Thus, v = 1;. Also, observe in (4.1) that (diag(7) - II) 1 = 0 and 17v = 1. Thus, (B.2) reduces
to A = E[gg”] = I,.. With these, it can be readily checked that (B.3a) and (B.3b) simplify to the
expressions in (4.4a).

The term £ [(VT'U) ggT] in (B.2) can be computed using Monte Carlo sampling. It is also possible to
slightly simplify the calcuations involved using Gaussian integration by parts as shown in Lemma C.3.
As mentioned, the formula that predicts X, ., is given in (K.38). While somewhat more complicated
than formulae (B.3), the expression that we provide is also explicit. Numerical simulations shown in
Figure 6 in Section A validate the accuracy of the theoretical predictions of the theorem.

C Preliminaries
In this section we gather a few preliminary results that will be used later on in our proofs.

C.1 Slepian’s inequality
Lemma C.1 (Slepian’s inequality [LT91]) Let g ~ N(0,S) and g ~ N(0, R) such that for all
i,7 € [k]:
S = Ry;, and Sij > Rij-
Then, for any t € R* it holds that
[P{ U {g; th}} < [P{ U {g; th}} ~
Jjelk] jelk]

Equivalently, letting z ~ N'(0, I,),
1-P{S"2z <t} <1-P{RVz<t}.
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C.2 Gaussian integration by parts

We say that a function F': R™ — R is of moderate growth if for each ¢ > 0,

lim N F(x)exp (—c HZIZHZ) =0.

Hsz2_’

The following result is a direct application of Gaussian integration by parts; for instance, see [FR13,
Prop. 8.29].

Lemma C.2 (Gaussian integration by parts (GIP) ) Let g ~ N(0,1,.) and function f : R" - R
such that f and all its first and second order partial derivatives are of moderate growth. Then, the
following statements are true:

(i) E[f(9)g9] =E[Vf(g)].
(i) E[f(9)g9” | =E[f(9)] I, +E[V?f(g)].

The following is a corollary of Lemma C.2 applied to the soft-max function.

Lemma C.3 (GIP for the Softmax) Let g ~ N'(0,., I,.) and random vector v = [V}, Vs, ..., Vi]¥
with entries:

eVZg 6&EVEQ
U:Wa W:W, ée[k] (Cl)
: je

Further recall the notation of w and Il in (4.1). The following statements are true:
(i) E[v] =.
(ii) Forallie[r],le[k]

Elg:Ve] = (e?EVTEZ)ﬂ’[ - eiTEVT Z e;IL;;,
jelk]

and in matrix form:
E ['ng] = (diag(m) -II) VX.

(iii) Forall ¢ € [k] let sy : R* — R denote the soft-max function: s;(x) = . Then,

el
Yiepy €t
E[Vigg"] = mel, + STV E[V?s(VEg)| VE.

C.3 Block matrix inversion

Lemma C.4 (Block matrix inversion) Let T = [ I;% g] be an invertible block matrix. Then
1 f]_ A7 (f - <b)
G O P s ©

where A = A - %bbT > 0 is the Schur complement.

D Calculating and bounding the missclassification error

D.1 Proof of (2.5) and (2.6)

GMM. Starting from (2.4) and using the fact that &; = py + 2 = Mey + z, z ~ N(O0, azIk), we
have that

P.=P { arg max{(w;, Mey) + (W;, z) +Bj} # Y}},
Je[k]
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or, in matrix-form:
P.=P { argmax{W Mey + Wz + b} # Y}}

Recall that 3., ,, := W M and note that W z is a zero-mean Gaussian vector with covariance matrix
acWwT = 0'22“,,,,1, in order to conclude with the desired formula in (2.5).

MLM. Recall from (2.2) that « ~ N (0,I;) and Y is distributed such that P{Y = ¢ | x} =
e‘““”)/zje[k] el#i®) Let g = W and h = M . In this notation, (2.4) becomes

P.=P {argmax (g+b)+ Y} ,
with P{Y = ¢ |} = eh’Z/Zje[k] eli. To complete the proof of (2.6), it is easy to check that [fg,,]

L . . . P> b
defined above is jointly Gaussian with zero-mean and covariance matrix [ElT"’w Ew’” ] .
Mo

D.2 Class-wise and total miss-classification error for GMM

The class-wise miss-classification error for GMM is given by

Pee =P (3j #c : (@, - @), z) < (Wj - Do, pe) + (b; —be)) (D.1)
=1-P(Vj#c: (@ —@j,2) > (B; - @, pe) + (B, - D)), (D.2)

where we used that @ = p. + z. Let S, € RF=1*(5=1) pe 3 symmetric matrix and ¢, € R*! a vector
with entries:

[te]j = (@) — @e, pre) + (B ~be) j#ce[k] (D.3a)
[Sc]ij = (1’17C — ﬁ)‘j,ﬁic - 1’171-), 1,] #CE€ [k] (D.3b)

Then, we can rewrite (D.2) as
Pee:=1-P {501/2 z> tc}, (D.4)
where the inequality in the rightmost expression applies entry-wise.

Further, by using the law of total probability we have

P, = Zk:ﬁcFe|C: Zk:wc(l—[l’{Scl/sztc}).
=1

c=1

D.3 Class-wise and total miss-classification error for MLM

In this section, we derive an explicit formula for the class-wise error for MLM. Recall (2.6):

N Ew.w Ew,
P.=P{argmax (g+b)#Y(h)}, where [’gl] NN(O, [25’“ s, Z] ),

and P{Y (h) = ¢} = ehf/Zje[k] elhi. ¢ e [k]. Using Gaussian decomposition we can write g =
G+Zw .2l hwhere G ~ N(0k, By o = Bw u X}, ;B i) Using this, we have
P =P {argmax (§+ B X}, ,h+b) Y (h)}
= P{argmax (§+Zw ,X}, ,h+b) 2V (h)}
> Eng[P{Y(h)=c} 1 {argmax (§+Xw, .2}, ,h+b) #c}]

celk]
= Z [Ehgl (1 [11{F. + [BwnS) hle +be > G + [Bw,, 3, b +b]})]
[k] Z e[k ] j#c
h
=y [Eh[ = (1-Ponor ) (S22 t(R)}) |, (D.5)
celk] 256
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where in the last line

[te(h)]; =bj —be+ [BwwZ], Wbl — [BwwS) ke, j#celk] (D.6a)
[S)ig=(ec— €)' (Buww—BwnZl  Swp) (ec—e), i,j#celk]. (D.6b)

Further recalling the decomposition P, = ¥ [P{ Y+Y|Y = c} P {Y = ¢} and noting that

P{Y = ¢} = o [P{Y = clz}| = Ea

1
(1+%.c e(ujuc)Tw)] - e

we can see from (D.5) that the class-wise error probabilities can be calculated as follows:

= 1 ehe
[Pe\c = [P{Y * Y|Y = C} = ;C [Eh,NN(Ok,EH,‘L) I:W (1 - EPZN,/\/(O,IK._l) {Scl/2z > tc(h)}):l )
{D.7)

where 7. is the ¢ entry of the vector 7 in (4.1) and S, t.(h) are defined in (D.6).

D.4 Evaluating and bounding tail probabilities of multivariate Gaussians

In Sections D.3 and D.2, we expressed the class-wise probability of missclassification error for both
GMM and MLM in the following convenient form for z ~ AV (0, I},_1),

1-P{AY?z <t} = [P{ U {@lz> ti}} . (D.8)

1e[k-1]

Here, A > 0 ¢ RF-Dx(h=1) ¢ ¢ RF-1 are appropriate coefficient matrices (see (D.4) and (D.5))

and @; denotes the ith row of the matrix A'/2. For example, (D.8) maps to (D.4) for A < S, and
t < (-t.).

The formulation above is convenient both in our theoretical analysis, as well as, in simulations. In
the rest of this section, we briefly discuss some relevant tools that allow to further simplify or bound
expressions in the form of (D.8).

D.4.1 A special case: Rank-one update of Identity

First, we discuss the case where the coefficient matrix A and vector ¢ in (D.8) take the special form
A o< I +117 and t o 1. This special case appears in some of the stylized symmetric problem
settings studied in this paper, such as classification problems with orthogonal and equally-balanced
means.

Lemma D.1 Let A = I, + 1,1} and g ~ N'(0, A). Then, for any t € R,

1-P{g<tly} =P{Go+ max G > t}, Go,Gi,...,Gr “N(0,1). (D.9)
1€
Proof For each i € [n], we can decompose g; = G + G;, where G, Gy, . .., Gy are iid standard

normals. Indeed, it can be readily checked from this that E[g?] = 2 and E[g;g;] = E[GZ] =1, i # j,
which is consistent with g ~ A/(0, A). Thus, we can write

1-P{g <1y} = P{maxg; >t} = P{Go + max G, > t},
i€[k] i€[k]

which completes the proof. n

D.4.2 Slepian’s bound

When the matrix A does not have the special structure assumed by Lemma D.1, it is not possible
in general to provide simple expressions as the one in (D.9). Yet, it might be possible to obtain
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upper bounds of the same simple form. Such simple bounds can be useful for theoretical interpreta-
tions of otherwise complicated formulae, or can provide efficient means for quick (but, non-tight)
implementations.

In this section, we discuss Slepian’s inequality (see C.1) as a useful tool in this direction. Assume that
a = min, jegx] Aqj > 0. To begin, note that A > (diag(A) —al) +all”, where the inequality holds
element-wise and equality is true for the diagonal elements. Then, one can apply Slepian’s Lemma
C.1 to upper bound the conditional probability of error in (D.8) with the following simple bound:

1-P{AY?g <t} < 1—[P{((diag(A) —al) +a11T)1/Qg gt}
<P{ U {Go+GIAL Ja-12[tlfa}},  Go,Gu,...,Gr ¥ N(0,1).
Jelk]

In the second line above, we used the Gaussian decomposition of Lemma D.1.
D.4.3 Simple bounds for GMM

Union bound. Of course, it is also possible to apply (a simpler) union bound to upper bound the tail
probability in (D.8). Here, we show explicitly the result of applying union bound to the class-wise
error probabilities of the GMM. Specifically, consider (D.1). An application of the union bound leads
to the following:

Pee =P (3j # ¢ : (@, - @}, z) < (Wj - Do, pe) + (b; —be)) (D.10)
< Y Py {|®; ~ @el,, G < (@) ~ @, pe) + (b ~be) }
Jj#c
D b.-b:
Z Q( 710]#%) + A,\])
jze |@. - @], |@. - @],
-[t.];
= ZQ(” (D.11)
je [Sclj;

< (k‘ - 1) . Q (dmin)a

where in (D 11) .S'c,tc are defined in (D.3) and in the last line we denote dunin :=

min;z { /\/ it

Union bound without knowledge of cross-correlations (w;,w;), ¢ # j. It is worth noting that
the upper bound in (D.11) requires knowledge of the cross-correlations (@;, @.), j # ¢, i.e., of
the off-diagonal entries of X, .,. Thankfully, our analysis allows predicting these values. For
comparison, we ask wether it is possible to further upper bound the class-wise error probability if
only the diagonal entries of 2y, 4 (i.e., the norms |@;],_,j € [k]) were known. A simple answer

to this questions is as follows. Observe that \/[S.];; = |@. - @;|,, <|@.[,, + |@;],, - Thus, if

[tc]; <0 then the jth term in (D.11) is further upper bounded by Q (ti]ﬂ)

[@ele, +1;1,

] .
Pee < Zm Q ( B 5T ) ift. <0,
otherwise.

Unfortunately, this bound becomes non-trivial for the class-wise probability of error only if
[t.]; <0 < (We, pe) + be > (@j, ) + bj forall j # c.

Intuitively, this assumes a regime wherethe weight vector @, corresponding to class c aligns better
with the corresponding mean vector g4 than the rest of the weight vectors @, j # c. This emphasizes
the important role of the cross-correlation matrix 3., ., (including the off-diagonals) for accurate
performance prediction. For an illustration, we have implemented this bound and have compared it to
our sharp predictions in Figure 7.

Oracle lower bound. For completeness, we briefly discuss an oracle lower bound for the class-wise
probability of error in GMM. Specifically, assume that the means p;, i € [n] are known. Then
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the problem of classifying a new sample x is a k-ary hypothesis testing problem with Gaussian
conditionals. Denote Pgenie, Bayes the Bayes error of this hypothesis testing problem. Clearly
Pgenie,Bayes 15 a lower bound on the error of any classifier that is trained on data. The paper
[WBW™16] further lower bounds Pgenie Bayes i terms of the Bayesian probability of errors between
every two classes as follows:

Pe > [Pgenle Bayes 2 Zﬂ'z genie,ij (D.12)
7¢j
2 Z { 0 ( i = iy, . log(mi/7;) ) R ( lpi = willy,  log(mi/m;) )
k= 7Tz+7TJ 2 lees = ml, 2 ||Hi—ﬂj\|e2

where Pgenie ij i the Bayesian error between classes ¢ and j with priors — - and —

last equality we have used the well-known formula for the Bayesian probabﬂlty of blnary Gaussmn
hypothesis testing. In the case of equal priors the genie lower bound above simplifies to

Z Q( [ ei - HJ|[2) D1

l*j

Note that, in contrast to (D.13), our analysis allows for precise evaluations of the missclassification
error P..

E The Class-averaging estimator

E.1 Proofs for GMM

E.1.1 GMM: Proof of Proposition 3.1

. P
The first statement (3.1a) follows directly from the fact that %1TYi = 7+ — ;. For the next two
statements note that

i, it

1 1 1 & 1
i, :*MYY;"’*ZY;:*ZH]'(Y;'TYE)"'*ZY;: fZYz, (E.D
n n n

n o}
where in the last line we used orthogonality of the rows Y of the matrix Y':

(Y:,Y;)=0,Vi#je[k] (E.2)
To conclude simply use the facts that for all 4 € [k]:

i n@ P

) =%—>7Ti-

(i) ZY; ~o|Yil,, g with g; ““ N'(0, 1) because of (E.2).

lgile,

P P
(iii) ﬁ — /7 and \f (9i I‘I‘J> — 0.

E.2 Proofs for MLM
E.2.1 Proof of Proposition 4.1

Let us define g ~ N(0, I,.) and random vector v = [Vi, Vs, ..., V3. ]T with entries:

V=g eeiTvz:g _
:W, Vﬁm, i€[k]. (E.3)
We will prove the following three statements:
-5 Efw] (E.4a)
Sy~ E[0g" |2V (E.4b)
Sww i v -diag(E[v]) + E [ng] -E [gvT] . (E4c)
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These lead to (4.2) using Lemma C.3. Therefore, in what follows, we prove (E.4)

For the intercepts by, ¢ € [k] it holds that

— 1 h,
b= -17Y; LP{Y:K}:E[eh]7
n Zje[k] €

where h ~ N (04, X,,,,). To deduce the first statement in (E.4a), note that h D Vig.
Continuing with the vectors @, ¢ € [k], recall that wy = 1 XYy = & Yise[n] Ti,[Ye]i,- Consider the
singular decomposition

T
vy

T
M=USVT =[uy uy ... u,]diag(oy,00,...,00) "2 |,
T

v,

with U € R™", 3 € R™", and V' € R®" where r =rank(M) < k. Decompose X € R¥" a
X =UUTX + P*X with P* = I, - UU”. With this notation we compute

1 1L 1
(wepe) = = 3 @i e Yeli= = 30 3 (2] wy) - (pew)[Yeli+ — 3 (e Pra)[Ye);
M ie[n] ”Fu [n] M ieln]
P ( e, VEg)
— Y (el VZe))E 9 avsg
j=1 eek] €Y
Z [Veg;] (el =V7e.). (E.5)

Here, we have recognized that for every i € [n] : UTx; ~ g, and also, conditioned on a;: [Y7]; ~
Bern (e“fTwT‘/Ze, e“fT'wi) and p} z; = e, VEU z; ~ e]/ VXg,{ € [k]. This shows the second
statement in (E.4b) when expressed in matrix form.

We proceed similarly with the proof of the last statement in (E.4c) as follows:

(wow)=— Y alw, (Yl [Y,

ig€[n],ice[n]

1 - 1 T
=2 Y (@lu) (@)Y, Y.+ = Y (Ptay,) (Pla,) [Vl [Yeli
N7 j=1ige[n] ice[n] "7 igen] iceln]
For iy = i, =i € [n] note that
1 T T P
) > 2o (g (] wy) [Yeli[Ye]i — 0,
n i€[n] j=1
while, for i, # i,
1 r P (eerE_q) (eeZVEg)
— (@l wj)[YVeli, () u)[Ye)i, — Y E|gi — o |E|9 — e
n2 W;[n]; et o\ Uy Z:l J e cchVZg J el ]eel,vzg
= > E[Vig,]E[g;V.] = e/ E[vg"]- E[gv" ]e,
Jj=1
Furthermore,

1 9 P et Vg )
~ 3 |Pa, (Yo :[Y.)? — -1, E l(w)] = ~- el diag(E[v])e..
l'e

ie[n] [k] e

Combining the last two displays results in (E.4b), as desired.
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E.2.2 Orthogonal means

Here, we specialize the general result of Proposition 4.1 to the special case of orthogonal means:
(Ki, pj) = 0,Vi # j. Recall the notation y; = |, ,7 € [k]. Then, in this case the parameters in
(4.1) are simply given by the following

e[tiGi e/—LiGie:“'jGj
Jie[k] and ILj;:=E[————], i,je[k].  (E6)

=Lk > G0
Zée[k] eHete (ZEs[k] eueGe)

Specifically, (4.3) can be equivalently expressed as
Peoavg — P ( argmax {7 diag() - g + (diag(m) ~1T) - g} # Y(g)) (E.7)
€

=P(U{vme-Gezv my gy +(ey —en)” (diag(w) -II) Bg + (my —7)} ), (EB)
jY

EHCQC
Doe[r) €M€9¢

where gagl'l\’dN(OaIk)v P (Y(g) = C) = and 3 = diag(,uh .. a,LLk)

F On the Bayes risk of GMM: Proof of Proposition 3.4

Without loss of generality in this proof we assume o = 1. The general result follows by simply
replacing (4, 0) with (£,1) and using the proof for o = 1. Recall that the feature vectors x1,..., T,
of the training data set are given by:

x;=My; +z;, ie[n],

where the matrix of means M € R** has iid Gaussian entries with variance p?/d, z; N (0,1,)
and y; I Unif (e1,...,ex) with e; denoting the 4" canonical vector in R¥. By definition here the
Bayes estimator is the maximum-likelihood (ML) estimator. By applying the law of total probability
and by successive application of the Bayes rule we have the following chain of reformulations of the
ML.:

'gn-#l =arg max P {y =€j | Xa Ya mn+1}
e;, je[k]

= arg m;n[(k]/P{y:ej|M,X7Y,:cn+1}P{M|X,Y,mn+1}dM
ej, je
/P{:nml|y:ej,M,X,Y}~P{y:ej|M,X7Y}
arg max
ej, je[k] P{wn+1|M7X7Y}

P{M|X,Y, ,@p.} dM

s g [ Pl ly=end) 5 2 &

= argejjfl]aé?k] / P{x,.1|y=e;, M} m dM

= arg ej;}rl]aé)[{k] [ P{x,.|y=e;, M}P{M | X,Y}dM (F2)

=arg_max_ f P{an |y=e;, M} P{X | M,Y}P{M}dM (F3)
To arrive in (F1) we used that P(y=e;| M,X,Y) = m Vj € [k] and

P(xp|ly=€e;,M,X)Y) = P(xp+1|y=e;,M). Also, (F2) follows by recognizing
that P(x,+1 | X,Y) > 0 is independent of the variable of integration M and of the optimization
variable j. For the same reasons, in (F.3) we have ignored the normalizing term P(X|Y").

Recalling that z,,.1 ~ N (0,1;), we have that P (41 |y = €;, M) o exp (— |Zns1 — 12 ||32 /2)
where o< hides constant positive terms. Moreover, the posterior probability of the mean matrix given

26



the training data is given by

| X - MY}, | M]3,
P(X|M,Y)-P(M) o< exp B E— - exp _2(,u2/d)

i Jasell, i - pel7,
o< exp| - . expl ———=1) ¢, (F4)
H{ ( 2ty ) L 2
where we denote by C. the collection of training samples that belong to class c € [k], i.e. C. = {i €

[n]]yi=ec}.

With these the objective function of the ML rule in (F.3) becomes:

k

T :argm[az)]( Z(j,C;n{n+1})-[[Z(c.C.), (E.5)
jelk 1
c#j

where for £ € [k] and a subset A c [n + 1] we denote

3 el Eym
10 o) -5 2

By completing the squares and invoking a gaussian integral it can be shown that

2T TR
600\ D | R 5 e
@ [ [ D S e - S e S e
N | (G + -1 S ol - o T )
A (4, 1A R
N Qe P 2 (4 +1aln) (\ 12 )%' @il - ;\( ;4 d

J*i

Using this in (F.5) we have that

1 d/n 2
7 = T(7) - - -
Gn+1 = argmax (4) -exp 2(d/n " Wl) (( 2z ) |7, - Az, > we))),

102 oy LeCy
(F.6)
where £(n.) = ”L/;L + 22, ce[k]and
k —zgfm((f(”c)—i) Sieccl®ilz, =% Siec. (@i Zpec, wﬂ)) W(é(n]‘) Ticc; 27, ~% Tiec, (i Zec; m4%))
Z(j) = He 0+ e e 04
c;j

‘We conclude that

N . 1 d/n 2
Yn+1 = arg%{%{ log (Z(j)) - m {( 2 T, ) melHez n<wn+1, Z a:e)}

T K 0eC;
argmax log (Z(j)) + L 2(w > @) (E7)
= X ——————{ (1, o) .
jelk] 2 (‘f{—f + "jn”) nt (eC;
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Next, we evaluate the objective in (F.7) in the asymptotic limit n,d — oo,n/d = . First, since
nefn 2, m, note that Z(j) — Z(¢) L, 0 forall ¢, j € [k]. Moreover, note that
1 1
(@1, Y ) = —(MYns1 + Zne1, 05 5+ ) 2e)
n (eC; n (eC;
n; n; 1 1

= LMyt ) + —2(zne1, ) + — Y (MYni1, ze) + — Y (Zni1, )

n n M yec; N yec;

(E.8)
For each one of the four terms in (F.8), we have the following by the CLT:
n; P
#(Mynﬂv /J’l> - 7T:u2<yn+1v ej)
n; D
) BN (O, 772
n

1 P
— > (Mypi1,2¢) — 0

M pec;

1 (D)

= > (zn1,20) — N(0,77),
n ZEC]‘

where in the last line we used the fact that iz P (0,7).

1 »
Vg SEEC
Therefore, in the asymptotic limit, the Bayes estimator is the solution to:

Yner = arg max 12 (Yoi1,e5) + /1 (mp2 +7) Gy, Gu,..., G ¥ N(0,1). (F.9)

e;,jelk]

As such, the probability of error is

Pe=P{Uns1 # Yns1} = [P’{wu2 +/m(mp? +7) Gy < eﬁ]&é{)ﬁ]\/w(wu? +9) Gg}

=P sp2 T L F.1
(oo a2\ | 10

G Proof outline for least-squares: key ideas and challenges

In this section, we provide a proof sketch for the analysis of the multiclass least-squares (LS) classifier.

Specifically, we discuss our approach towards specifying the high-dimensional limits of the key
quantities needed to evaluate the classification error: b, 3, ., and, 3, .,. For simplicity, we focus
here on the performance of the LS classifier GMM. We note that our proofs for the MLM and the
Weighted Least-Squares (WLS) classifiers follow the same general strategy, but in some parts require
more involved and intricate analysis and derivations. Our proof follows the following general steps;
see the appendix for complete details and derivations.

Step I: Decomposing the loss across classes. Recall from Section 2.2 that the multiclass LS
classifier produces a linear classifier  — Wz + b via a least-squares fit to the training data:

— =~ 1 2
(W,b) := %HWX+b1£—YHF. (G.1)
Notice that the objective function above is separable. That is,
1 T 2 1 & T 2
o WX +b1; -Y|, = %Zzl | X" we +bel, - Y, -
Hence, for each ¢ € k],

_ 1
(@y,by) = arg min — | X wy + b1, - i, . (G.2)
we,be 2N L2
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This decomposition is convenient for analysis as it is easier to compute the statistical properties of
the simple single-output LS in (G.2) compared to the multi-output objective in (G.1). Indeed, as
we show, in Step I1I, this simplification will eventually allow us to compute the high-dimensional
behavior of the following key quantities for all £ € [k]: (i) the intercept by, (ii) the mean-correlations
(We, pre), c € [k], (iii) the norm || @e|,, .

Step II: Reduction to an Auxiliary Optimization (AO) problem via CGMT. To calculate the high-
dimensional statistical behavior of (G.2) we use the Convex Gaussian min-max Theorem (CGMT)
[Stol13, TOH15] framework. We provide a brief introduction of the CGMT machinery in Section G.1.
Roughly stated, this framework allows us to replace a Primary Optimization (PO) problem of the
form (G.2) with an Auxiliary Optimization (AO) problem that is simpler to analyze, but is predictive
of the behavior of the latter. For instance, for the PO in (G.2) in the GMM, after some algebraic
manipulations, the AO problem takes the form

2
1f .1 TasT L .7
2(11‘21151[ %HaneHngrY M wg+bg1n—YgH£2+%Jh wy +, (G.3)

where (), := max(0,2) and g € R and h € R? are two independent Gaussian random vectors
distributed as N'(0, I,,) and (0, I ;).

Step III: Simplification of the AO and computing X, ,, and b. In this step we carry out a series
of intricate calculations to further simplify (G.3) and characterize its various asymptotic properties.
At a high-level, we follow the principled machinery introduced in [TOH15, TAH18], organizing our
analysis in three intermediate steps: (a) Scalarization; (b) Convergence analysis; and (c) Deterministic
analysis. We note that each one of these intermediate steps for the multiclass setting is more involved
than in previously considered regression and binary classification settings. The detailed derivations
are deferred to the Appendix H.1. At the end of this analysis step, we have computed the high-
dimensional behavior of the intercepts by, ¢ € [k], the mean-correlations (@, ), ¢, c € [k], the
norms | @e|,, , £ € [k] and the LS training loss ”XT'&?g +byl, - Y}g||£2. In particular, for GMM

these calculations allow us to conclude the following limits for all £ € [k]:

oL (1-(e-m)TVEATSV R),  MTw, S n VARV (¢ -7),
G4
and
2 P Y 2 T -1 -1 Y T
lwely, — Ww(l -m) +7; (eq—m) VIA (A - (1—7)02L) SV (er-m).

where A := 021, + VT PV > 0, and P := diag(w) - wx?l.

Expressing (G.4) in matrix form leads to (3.3a) in Theorem 3.2. Thus, it remains to prove (3.3b), i.e.,
to determine the high-dimensional limit of £, .,. Note that (G.5) already determines the diagonal
entries of X, .,. However, thus far, our analysis treats the optimization of each classifier @y, ¢ € [k]
independently and provides no information for the cross-correlation (@, @.), £ # ¢ € [k]

Step IV: Computing 3., ., and capturing cross-correlations. The final and most involved part
of our analysis is characterizing the asymptotic behavior of X, ,,. To see why this is particularly
challenging note that the reduction from (G.1) to (G.2) “breaks" the dependence of all W, Wa, . .., Wy,
on the same feature matrix X . Capturing this dependence is crucial in determining the “cross-
correlations" (@py, W.), £ # c. As noted in Section 2.3 the matrix X, ., is needed to calculate the
class-wise and total miss-classification errors. Unfortunately, the CGMT is not directly applicable
to the multi-output LS optimization in (G.1). Our idea to circumvent this challenge builds on the
following simple observation: the vector Wy, = W, + W, is itself the solution to another simple
single-output LS problem.

Lemma G.1 For { # ¢ € [k], let @y, @, be the { and c-th row of W which is the solution to the
multi-output least-squares minimization (G.1). Denote Wy . = W, + W,. Then, Wy . is a minimizer in
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the following single-output least-squares problem:

1
Wy,c = arg%i}} o |Ye+ Y.~ XTw - bl"”i :

Thanks to Lemma G.1, we can use the CGMT to characterize the limiting behavior of |, + @.|| o
These calculations are similar to (but, in certain cases, such as for weighted least-squares, more
involved than) those in Steps II and III above. Now note that an asymptotic characterization of
| @ + @.|,, immediately yields the asymptotic characterization of (@, @) as
2 2 2
@+ @y, - @y, - @,
(wea wc) = 9 )
and || @], , |®@.],, are already computed in Step IV (cf. (G.5)). For the GMM, the analysis in this
step allow us to calculate the asymptotic behavior of 3, ,, as promised in (3.3b) in Theorem 3.2:

P Y -1 -1 Y T
X — ——————P+PVIA T |AT-—I. |2V P.
o (1-7)o? " ( (1-7)o02 7)

(G.6)

G.1 Background on the CGMT

The CGMT is an extension of Gordon’s Gaussian min-max inequality (GMT) [Gor88]. In the context
of high-dimensional inference problems, Gordon’s inequality was first successfully used in the study
oh sharp phase-transitions in noiseless Compressed Sensing [Sto09, CRPW 12, ALMT13, Sto09].
More recently, [Stol13] (see also [ALMT13, Sec. 10.3]) discovered that Gordon’s inequality is
essentially tight for certain convex problems. A concrete and general formulation of this idea was
given by [TOH15] and was called the CGMT.

In order to summarize the essential ideas, consider the following two Gaussian processes:
Xwu = u! Gw +Y(w,u), (G.7a)
Yo = [w]y, g u+ [uly, B w+ p(w,u), (G.7b)

where: G € R™¢, g e R”, h € R%, they all have entries iid Gaussian; the sets S,, c R? and S,, c R"
are compact; and, 1) : R% x R™ - R. For these two processes, define the following (random) min-max
optimization programs, which are refered to as the primary optimization (PO) problem and the
auxiliary optimization AO:

®(G) = min m%X KXw,us (G.8a)

WES, UESy
¢(g,h) = min max Yy, 4. (G.8b)
WES, UES,,

If the sets S,, and S, are convex and bounded, and 1 is continuous convex-concave on Sy, X Sy,
then, for any v € R and ¢ > 0, it holds [TOH15, Thm. 3]:

P(P(G)-v|>t)<2P(|¢(g,h) -v|>1). (G.9)
In words, concentration of the optimal cost of the AO problem around ¢ implies concentration of the
optimal cost of the corresponding PO problem around the same value ¢*. Asymptotically, if we can

show that ¢(g, h) i q*, then we can conclude that (G) L, q*. Moreover, starting from (G.9)
and under appropriate strict convexity conditions, the CGMT shows that concentration of the optimal
solution of the AO problem implies concentration of the optimal solution of the PO around the same

value. For example, if minimizers of (G.8b) satisfy |w(g,h)|,, L, o for some a* > 0, then, the

same holds true for the minimizers of (G.8a): |wa(G)],, L, o*. Thus, one can analyze the AO to
infer corresponding properties of the PO, the premise being of course that the former is simpler to
handle than the latter.

In [TAH18], the authors introduce a principled machinery that allows to (a) express a quite general
family of convex inference optimization problems in the form of the PO and (b) properly analyze
the corresponding AO. In particular, the analysis of the AO is performed in three intermediate steps.
First, the (random) optimization over vector variables is simplified to an easier optimization over
only few scalar variables, termed the “scalarized AO". After the scalarization step, it is possible
to establish (uniform) convergence of the scalarized AO to a deterministic min-max optimization
problem over only a few scalar variables. The convergence step is followed by the analysis of the
latter deterministic problem, which leads to the desired asymptotic characterizations.
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H Least-squares for GMM

H.1 Proof of Theorem 3.2
H.1.1 Computing X, ,

The LS classifier solves:

. koo 1
wealliB, 3 ||WX w017 -Y |, ;15%2 o | X w, +bel, - Yo,
IR | T gT T 2
_;5}% %”Y M we+ Z we+ b1, - Yy,
Define
Lpo (we,by) = 2i YT M w+ Z"w, + b1, - Y (H.1)
n 2

Identifying the AO. To continue further note that by duality we have

1 Il
min Lpo (we,by) = min max — STYT"MTwy + 8T ZTw, +bs™1, - 7Y, - —2|.
wy,by wy,by s n 2

Note that the above is jointly convex in (wy,b¢) and concave in s and the Gaussian matrix Z is
independent of everything else. Thus, the objective is in the form of (G.7a) and so we consider the
corresponding Auxiliary Optimization (AO) problem:

1 S
min max L (7Y "M i+ fwil, g"s + 0 |sl,, hTwe+ bisTL, - sV - 100 ),
we,be 5 M C2 2 9

where g € R™ and h € R? are independent Gaussian random vectors with i.i.d. A(0, 1) entries.
Maximizing over the direction of s and setting its norm 3 = | s|,, we arrive at

1 B2
= YT m”™ bel, - Y, hlw, - =
min max — ([3 o well,, g+ wy +beL, - Yo, +BohTw, 5
o1 T agT T, \?
= min %(HUHUMHZZQ+Y M w;+ b1, = Ye|, +ohTw)

2
1
= (mm —||0ng\|z2g+YTMng+bg Yg||£2+

T

Scalarization of the AO. For convenience, define

1
ﬁJhT’UJZ)

+

-Yi,, + %hng. (H.2)

(5140@ = mln = ||O'Hw€‘|g g+YTMT’wg+bg1

\/_

To continue, consider the singular value decomposition
M=USVT =[uy uy ... u,]diag(o1,00,...,0.)| %2 |, (H.3)

with U € R”", ¥ e R™", and V' € R¥*" where r =rank (M) < k. We further decompose wy in its
projections on the orthogonal columns w4, ..., u, of U:

T
— 1
wy = Z Q;U; + QoWy,
i=1
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where |w}|, =1and UTw} =0, ap > 0 and we denote
e, ¢
o = u?wg,i e[r]. (H.4)

T . .
We also define = [@1 a2 ... «ag] . In this notation, we have

- . 1 2 T
Grodg )= min —=|ov/ojr lalf,g YTV Bar b, Y
s hTu; aoa T
+) o0 —— min (h" w;

s 1 2 T
- o™ T Hm fod+lall, g+ ¥ VEa+b1, -vi|

12

hTuz IA ],
+ 2, Qo -0 ) H.5
Z e%y NG (H.5)
where in the second line we denote h* the projection of h onto the complement subspace of the span
of ui,...,u, and we recalled that |wy [, =1and (w;,u;)=0,i¢€[r].
Convergence of the AO. First, note that
1
—|[Y"VZa+ba, YZHI = HYT (VZa-eg) +bl, ||Z
n
== HYT (VSa-e)|, +b%+ 2p1TYT (VSa - e)
n 2 n
=trace ((VZa - e,g)T diag (E, @, ey %) (VZa - eg))
n° n n
+bp +2b [ 22 L E](VEa-e)

Thus
1
— ||YTVZa +bel,, — YgHZ L, trace ((VZa ~ ;)" diag (7) (VEa - eg))
n ‘
+b7 + 20T (VEa - eg)
=" (ZVTdiag(m)VE) a-2ma’ =V e + 200" TV
+b5 —ngﬂ'g+ﬂ'g.

At this point, observe that we have reduced the AO to an optimization problem over only r + 2 scalar
variables. Using the law of large numbers, the fact that |h*[,, concentrates around v/d - r and
(d-r)/n i 7, as well as the limit calculation above, it is not hard to see that for fixed «, by and
a=[ai,...,a.]T € R", the objective function in (H.5) converges to the following:

,Dé(aOan)Z)

= \/oz%o'2 +aT (J2Ir + EVTdiag(ﬂ')VE) oa-2aT (W@EVTeg - ngVTTI') + b% - 2bz7‘d’g + Ty
- a0/, (H.6)
We will show in the next paragraph that the argument inside the square-root in (H.6) is a convex

quadratic over (ayg, o, by) (see (H.19)). Thus, the function Dy (v, &, by) is jointly convex. Using
uniform convergence of convex functions over compact sets [AG82, Cor.. II.1], we arrive at

¢AOZ(th)—’ min  Dy(ag, a, by). (H.7)

ap>0,a,by

Deterministic Analysis. Here, we analyze the deterministic scalar minimization on the RHS of
(H.7). Define

T T T
AL +2X‘c/h§g(w)vz 2‘; ] nd Ce:[zvl eg]’ (H8)
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and observe that we can write

Dy(ag, o, by) = \/agoQ + T + [aT bg] A [;] - QWCET [;] —apo/7. (H.9)

First, note that the matrix A is positive definite. This can be checked by computing the Schur
complement of A:

A =0l +ZVTPVE =01, + 2V (diag(w) - wn” ) VE > 0, (H.10)

Positive definiteness above holds because P := (diag(ﬂ') - 7r7rT) > Q. Thus the term under the
square-root in (H.9) is a strictly convex quadratic. Thus, Dy is jointly convex in its arguments.

To simplify the RHS of (H.7) we proceed by minimizing Dy (v, c, by) over (e, by) which from
Lemma (C.3) is equal to

al_ [ 1 oAt o]l I -ZVvTir|[zvTe,
b | =T T 2Ty 1| of  1||oT 1 1
. I 01{A™" 0|[-=VT (7 -e)
“M-mTve 1] o7 1 1
~ ~AISVT (7 -e)
s 1 +mlVEATISVT(m—e)) | (H.1D)

Thus, the minimum value attained is

~m [~ (m-e)" VE 1] [AOT1 O] [_EVT (m—e0)

1 1
Using the above, (H.7) reduces to

ba0.4(g,h) £, mir(lJ \/a(2)02 + Ty — T2 (1 + (- eZ)T VEAIZVT (7 - eg)) - apo/7.
o>
(H.12)
Setting the derivative with respect to oy to zero we arrive at

a002

=o\/7.

\/04302 + Ty — T (1 +(m-e) VEAISVT (7 - eg))
Thus,

1
=~ /%\/ﬂ@ (1-m¢) 72 (m - ) VEAISVT (7 - ). (H.13)

Plugging the latter into (H.12) we arrive at

pa0,(g,h) Rl V1 —7\/@ (1-m) -7 (m—e)) VEAISVT (1 -e).

Asymptotic predictions. First, from (H.11) the bias term converges as follows:
b Lo (147" VEATSV (1 -e))).
Thus,
b L diag(m) (14 + (w17 - L,) VAV 7).
Recall from (H.4) that o = U T w,. Thus, the correlations (g;, wy), i € [k] converge as follows:

MTw, = VEUTw, 5> VSa = -n,VEA"SVT (1 -e,). (H.14)

Here, convergence applies element-wise to the entries of the involved random vectors. Moreover, from
the analysis above we can predict the limit of the norm ||wp| ,, . For this, note that [w, HZ =ai+ala.

Thus,
Jwe?, 2> —L (1 -m) + 73 (m—e) VEAT (Al - 7IT) VT (m-e) .

(1-7)o? (1-7)o?
(H.15)
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H.1.2 Computing >, ,,

In the previous section we used the CGMT to predict the bias by, the correlations (g, @y), i[k]
and the norm |@,||,, for all £ € [k] members of the multi-output classifier. Here, we show how to
compute the limits of the cross-correlations (., @, ), ¢ # j € [k].

Lemma H.1 For { # j € [k], let W, W; be solutions to the least-squares minimization

= . 1 2 1 2
(W, wj,be,bj) =arg min {%“Y}—Xng—bgln”eQ+2—n||Yj—Xij—bj1n||€2}.

we,w;j,be,bj

Denote @ j = Wy + W; and by j = by +bj. Then, (@, ;,by ;) is a minimizer in the following
least-squares problem:

-~ o1 T 2
(wg’j,bg,j):arg%{g%“Yg+Y}—X w—blnHZ2 . (H.16)
Proof Clearly the minimization in (H.16) is convex. Thus, it suffices to prove that i@, + @, satisfies
the KKT conditions. First, by optimality of @,, we have that
X (Y- X"w,-De1,) =0
Similarly, for @;:
X (Y;-X"w; -b;1,) =0.
Adding the equations on the above displays we find that
X (Yo +Y; - X7 (@ + @) - (b +be)1,) = 0.

Recognize that this coincides with the optimality condition for (H.16). Thus, the proof is complete. B

Thanks to Lemma H.1, we can use the CGMT to characterize the limiting behavior of | @, + @; |, .
Observe that this immediately gives the limit of (@,, @, ) since

—~ —~ 2 —~ 12 —~ |2
e+ @5, - @, - |@;1,,

(W, @) = 5 (H.17)

The analysis of (H.16) is very similar to that of (H.1); thus, most details are omitted. Similar to (H.5)
we can relate (H.16) with the following AO problem:

- . 1
Gronsah)= min o o[R 18170+ YTVEB b Y-,
08,5

B020,8eR™
L hT’U,i H hl HZQ

+O'i:216i \/ﬁ _0'60 \/ﬁ )

lo

(H.18)

where we have decomposed
-
wy =Y Biug + fowg
i=1
with ||'wt%’j ||€2 =1and UTwl%’j =0,.

Using a calculation similar to the one leading to (H.9) we can show that (H.18) converges point-wise
in B9, B8 =[B1,-..,0r],be; to the following:

Dy(Bo,B,bej) = \/ﬂSOQ +mp+mi+ BT beyl A[bi‘] - 2d€TJ [ & ] - Boo/q,  (H.19)

be,;
where A is as in (H.8) and we have further defined
dé . I:TQEVTeg + ’/TjEVTEj:I
J = :

Ty + T
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Thus, similar to (H.11) we can compute the minimizer of the deterministic objective in (H.19):

[ B ] _ [ -ATlzvT (7Tg(71' —65) +7Tj(7r - ej)) (H.20)

bej T+ + L VEATEVT (m(m - ef) + (7 —€5)) |

and

= 1
o = p / %\/ﬂ'e +m5 = (mg+m;)2 = (mo (0 —eg) +m; (7 - e) VEAISVT (ny (7 —eg) +m; (- e;)),
(H21)

where recall that A is as in (H.10).

- - P .. . . .
From the CGMT, we have that || @, + @, Hi — B2+ ﬂHZ . Combining this with the calculations
above, we conclude that

@0+ @17, = o5 (e m) (=)
+(mp(mw—ep)+mj(m— ej))T vzAa (A‘1 - (1_77)02I7.) SVT (g (7 - ep) + 7 (0 - €j))
(H.22)
Finally, using (H.22) and (H.15) in (H.17) it follows that
(we, ;) —> 7y (-(1_:)02 +(m—e)TVEAT (A1 - (1_77)021) v (x - ej)) .
(H.23)

H.2 Orthogonal means

Here, we specialize the asymptotic predictions of Theorem 3.2 to the case of orthogonal means
(pispj) =0, 1%

Corollary H.2 (Orthogonal means) Consider the case of orthogonal means, i.e. (p;, p;) =0,Vi #
Jj and ~y < 1 with Euclidean norms given by j1; = | ;| ,,. Define the following parameters for i € [k]:

k
pii=mio’ (o +mpi)  and 57::,01‘02/(02—2”7:,01‘#?)
i-1

Then, the following asymptotic limits hold for the least-squares classifier; for all i, j € [k]:

-~ P . p 1
bi — fi, (Wi, pj) — ;(L'j = Bi)pjt (H.24a)

O . I e N e 1 72 Lij, v 1 5 5
Ww;, Wj > iP5 - P — iPi g — + it i L
( i) 04»3 B; ;ZI:PZW 045 P51 04ﬁgp H ((1_7),0 —aPik )

(H.24b)

Furthermore, if the means have equal norms p := p; and the classes are balanced: m; = 1]k, i € [k],

2
then, setting upg := %\ /ﬁ, it holds that

Pe=P{Go+ e, Gy>uis), Go,Ghy...,Groy “N(0,1). (H.25)
JELRk—

(1-7)o%2 o2

Proof This is a direct corollary of Theorem 3.2. Indeed, (H.24) can be derived from (3.3) after
substituting V' = I, 3 = diag(p1, o, - . ., g ) and some algebra steps that we omit for brevity.

Instead, we outline below how to conclude (H.25) from (H.24). Assume that p; = p, Vi € [k] and
m; =7 = 1]k, Vi € [k]. Recall from (2.7) that P (error|y =e;) = 1-P (83/2 z> t), and using

(H.24) it can be checked that

2
m WY gl T T

S, = + I, +1;.1 and t=-
1+7r,u2(1+7w2 1—7)( ke Leli) 1+ mp?

2
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Thus, setting

1-
uLs i= . SURY vt (H26)
7ru2+(i)(1+7w2) p? +

1-y

and applying Lemma (D.1), the probability of error is given by the advertised expression. [ ]

I Least-squares for MLM

1.1 Proof of Theorem 4.2

L1.1 Computing >, ,

Assume that X, Y are generated from the MLM.

Fix any ¢ € [k]. The classifier parameters @y, by minimize the following objective function
Lpo (we,be) = 5= | XTwe +bel,, - YgHZ .

2n

Identifying the AO. To continue further note that by duality we have

2
1 s
min Lpo (wy,bg) = min max — (STXng +bsT1, -sTY, - ||&) , @D
wy,by wp,by s n 2

and the optimization is jointly convex in (wy, by) and concave in s. Here, note that Y, depends on the
Gaussian matrix X . Thus, before applying the CGMT, we need to break this dependence as follows.
Consider the singular value decomposition

M=USVT =[u; wuy ... w.]diag(c1,00,...,0.)| "2 |, 12)

with U € R, 3 e R™", and V' € R¥*" where r =rank(M) < k. For every i € [n], we decompose
x; in its projection on the subspace spanned orthogonal columns u, .. ., u, as follows:

z, =UUTX, + P*X; =Ug; + P*x;,
where P+ = I, —UUT, and we denote

G=[G1 g - Gn], §i=UTx;eR"ie[n]. (L3)
Recalling that x; ~ N'(0, I;) note that
gi~N(0,I,) and g; L P'z;. 1.4)
Further recall that for all 7 € [n], conditioned on ;
ePi T el VEGi
[Y;]; ~ Bern (th e ) ~ Bern (Z[re[k] TvEs, ) , (1.5)

where we used (I.3) and the SVD decomposition of M. In this notation, we can rewrite the PO as
follows:

2
. 1 ~ Isll,
min max — | sT XTP'w, + sTGTUTwy + bysT1, - sTY, - —=
we,by 8 M 2

From (I.4) and (I.5) notice that Y; depends only on G and G is independent of X7 P*. Therefore,
the corresponding Auxiliary Optimization (AO) problem becomes

2
1 ~ s

miil max (|Pl'wf le, g's+ Isll,, R Prw,+ s"GTU wy + bys™ 1, - s7Y, - L JZQ ) )
we,0¢ s n

(1.6)
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where g € R™ and h € R? are iid Gaussian vectors independent of everything else.

Scalarization of the AO. Maximizing over the direction of s and denoting its norm 3 = | s|| 0, 20
we arrive at

2
- pt GT'u”T bel, - Yy T Pl - -
i g (1Pl GO w0t i P

- min i(HHPl’wszg-kéTUT'wg+bgln—Yg”z +hTleg)2
n 2 +

’w[,b[ 2
1 1 ?
_ L ~TrrT L T pL
= 2(3%1[ 1P wel,, g+ G U wg + b1, }Q\\e2+\/ﬁh P W)+
(L7)

In the remaining, we focus in the inner minimization above. Let us denote
a=U"w, and ag=|P'w, .

Notice that @ 1 P*w, and thus the orthogonal decomposition w, = Ua + P*w,. With this
observation, we can optimize over the direction of P wy in (I.7) by aligning it with — P h. With
this, the minimization in (I.7) reduces to the following

1 ~
min NG |eog + GTa +b,1, |P R, . (1.8)

a,a020,b,

1
Vel =e0 7
Convergence of the AO. First, we argue on point-wise convergence of the objective function in
(18). Fix @, aq and b,. From the WLLN, - | P*h,, L, /yand

n

1 ~ 1
- |aog + G a+ b1, - YeHZ = > (aogi +a’ i + by - [}/E]i)2 LE [(OéoGo +a’g+by - Ye)z] ;

i=1
1.9)
where the expectation is over g ~ N'(0,., I}.) (with some abuse of notation) and
eei V=g
Y, ~Bern(V;) and V= W. (1.10)
Therefore, point-wise on a, oy and by, the objective of the AO converges to
Di(ag, e, by) = \/[E [(aOGO +aTg+ b, - Yg)Q] - /- (I.11)

Next, with an argument based on convexity and compactness similar to that in “Convergence analysis
of the AO" in Section H it can be argued that the convergence above is uniform. Thus,

(1.8) 2> min  Dy(ao, o, by). (1.12)
s0¢

020,

Deterministic analysis of the AO. Here, we solve the deterministic minimization problem in (1.12).
Optimization over by is straightforward. By setting

be = E[Y,] = E[V],

we now have to optimize

min \/a%+[E[(aTg—Yg)2] —(E[Ve])® - a0 /7. (1.13)

ap20,
By direct differentiation and first-order optimality, we compute the optimal values as follows:
a; = [E[ngZ] =E[g;Ve], je[r], (1.14)

T

(VarYz Z [9;Ve]) )—1_77([ - (EV)? - X (Elg,i)) ) (115)

o
Il
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Asymptotic Predictions. From the analysis above, we conclude with the following limits about the
solution by, wy of the PO:

b > E[Vi] (1.16a)
(pte, @) —> eTVSE[gVe], ce[k] (L.16b)

| @7, — Z [g;Ve])® + 7([ 2] - (E[Ve])? Z [g;Ve]) ) (1.16¢)

1

e GUIRGID) ) =

r

E[g;Ve])”. (1.16d)

Recall the notation in (4.1). Note that E[V;] = 7,. Moreover, using Gaussian integration by parts
Lemma C.3, it can be shown that E[V;g] = SV 7 (diag(7) - IT) e,. Using these and writing and in
matrix form, we arrive at (4.4a).

I.1.2 Computing >, ,,

Here, we prove (4.4b). Specifically, we compute the correlations (@, @.), £ # c € [k] by following
the strategy of Section H.1.2. Specifically, in view of Lemma H.1 we need to study the following PO:

2
1 s
min max — (STXTw-i-bsTln ~sT(V+Y) - H |‘2) (L17)
wb s N 2

which is minimized by @, + w.. Thus the analysis will lead us to an asymptotic formula for
| @ + @.|,,. This when combined with the formulae for @,/ ,, and |@, ,, in (I.16d) will give the
desired.

The analysis of (I.17) is almost identical to the analysis of (I.1) in the previous section. Specifically,
without repeating all the details for brevity, it can be shown that the AO of (I.17) converges to the
following (cf. (I.11):

Di(ag, a,by) = \/[E [(aOGO +aTg+b, - Y&c)z] - a7, (1.18)
where as before Go ~ N (0,1),g ~ N (0,, I,.), only now (1.10) is modified to:
eeZVEg
Yo . ~Bern(V. +V,) and as before: V= ————. (1.19)

Z?’:l eewr' Vg
With these, it can be shown that

T

YV(EE[VﬁVf] (E[V. +V2])? Z gg(Vc+Vz)])2)

o P <
|@e+ @elle, — Y (Elg; (Ve+ Vo))" +
J=1

Combining this with (I.16d), we conclude that for £ ¢ € [k]:
= P 1-2
(@, @) —> ——1 Z Elg;V.] E[g;Vi] - ﬁ E[V.]E[V]. (1.20)

This shows (4.4b) after applying Gau551an integration by parts and expressing it in matrix form; see
Lemma C.3.

1.2 Orthogonal means and equal-energy

Here, we use Theorem 4.2 to prove that, in contrast to the GMM, in the MLM under orthogonal
and equal-energy means: LS outperforms the averaging classifier for large enough sample sizes.
Assuming orthogonal means of equal energy pu:

7 =mi1y = (1/k) 1, (1.21)
1_k2H2 21Gy
“— 700 and Ty = E[——

= (T - o) I + 01,17 with IO, = —
k(k-1) (Seeny 47 )
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Then,

P
S0~ B p By B — 7 (L= i) (1.22)

where we defined
pi=my - p?(my -y + )% and ¢ = (] + 5, p%k - 2p°Thh (g - Ty + T0)). (1.23)

Thus, similar to (4.3) and with the same notation,

Pers — F argmaX{\/ pIk_qlklk) -G+ - (diag(m) - H)g}¢Y(g)} (1.24)

In (I.24) (as well as in (4.3)), note that the matrices multiplying g and g have all the form of a rank
one update of a (scaled) identity matrix. It turns out that we can exploit this structure to simplify the
formulae for the test error even further. Importantly, this lets us directly compare P, 1.5 and P, Avg Of
the two classifiers. These are detailed in Section 1.3.

LI.3 Proof of Proposition 4.3

In (E.7) and (1.24), we showed the following limits for orthogonal means of equal-energy p > 0:

IPeAVg—>IP(argmax{7 - Iy - g+,u((71'1—Hu) I, +T1101%1 ) g}q&Y )

Pe,Ls i [P(argmax{\ /1 77 (pIx —qlle)l/Q g+ p (= TIhy) - I + 214 17) 'Q} # Y(g))7

Le[k]

where P(Y (g) =/¢) = % and we have further used (I.21) and the notation in (1.23).

We compare the expression on the RHS in the above display by applying Lemma I.1 below with the
following substitutions

g<g, h<g, c(h)<Y(g)
p2<—%(W1—M2(W1—H11+H12)2)7 q
D1 < YT, q1 < 0.

jy (7] + T3k — 24 Thyg () - Ty + L)),

This shows that with probability 1, Pcrs < Peave if and only if py < p1 < v < v =

p?(my —TIyy + H12)2 /7\'1. To retrieve (2?), recall that 71 = 1/k and kTI;; + (k? - k)II15 = 1. The
only thing left to prove is that v, < 1. To see this note that p, > 0 from positive semi-definiteness of
the Schur matrix in (I.23). It takes simple algebra to conclude that p; > 0 = ~, < 1.

Lemma L1 Letk >2, g ~N(0,I) h ~ N (0, I,), and discrete random variable c(h) such that
P(c(h)=¥¢) = ehf/ Y jek] eli. Consider the function F : Ryg x R — [0, 1] defined as follows

F(p,q)=P (argmax {(pI;C - qlklz)l/Qg + (aIk - Blklf)l/Q h} * c(h)) ,
such that pIy, — qlklf > 0 and fixed oIy, — 51y 1{ > 0. Then, the following statements are true.
1. F(p,q) =P (argmax{\/p-g+/ah} #c(h)).
2. For 0 <py <py and any q1 < 5, q2 < B2, it holds that F(pz,q2) < F'(p1,q1)-
Proof Fix any p > 0,q < %. Denote T := (pIk - qlle) and S := (aIk - ﬂlklg)l/Q for conve-

nience. It can be checked that T" := (\/ﬁlk + 7W1klg) and S := (\/EIk + 7W1k1£)'

From these, it follows directly that

F(p,q) = ﬂ’(argmax{\/ﬁg-r\/ah} qtc(h)).

This shows the first statement.
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Next, we show the second statement. Using the distribution of ¢(h) and symmetry we have the
following chain of equalities:

1-F(p,q) = U’{arggrel[aﬁ{\/ﬁg+\/ah} :c(h)}

=k-E f-]l{argmax{\/p?-g-k\/ah} :k}]

=k-E L' [1 1{\/]3'9j+\/5hj<\/1_?'gk+\/ahk}l

Y jefr] €™ je[k-1]

[ o hi, - /ah;
kT 67’1 I ﬂ{gj<gk+\/m}
ielk1 €Y jefk-1] VP

-k-E e I1 Q(gk+\/ahj_\/ahk

)l =k-G(Vp), (125

| Zjeti) € jei-1) VP
where in the last line we used the rotational symmetry of the Gaussian distribution:
ahyg—+/ah, ah:—</ah
I]D{g] <gk+\/_k\/_]|h17~~~7hk}:[P{gj >gk+\/_j\/_k|h1,...,hk} ,
VP VP

and the fact that g4, . .., gi_1 are independent.

Next, we will show that the function G(-) defined above is strictly decreasing in (0, co). Towards this

goal, using Q'(z) = —\/%e’ﬁ/z = —¢(z) and using the shorthand

ij = h] _hka ] € [k]a

we may compute the derivative of G at any s > 0 as follows:

dg(s P a Hy; a Hy; o Hi.;
d(): 5 [7;1.'(/5(9/&4'\/— k)\/_zk Q(ngr\/_ky)
o iefe1] | Zjerky €™ & $ jrie[k—1] S
1 o Hy; o Hy; aHy;
R R D T B PRE
ie[k—1] Ljelk] € FI s o jrie[k-1] §
@
= > LQ[E[HM-Ai (gr {Hrj}Yjetre-11)] (1.26)
ie[k-1] 3
where in the last line we have defined
1 Va Hy; Va Hy;
Ai Gk {Hij ) jer-11) = 75— g+ —— ) Q(gk+ )
( o) = T e ( - mel[Tk—l] s

Next, we use Gaussian integration by parts (GIBP) to further simplify the expression in (1.26). Fix
any i € [k — 1]. Then, by (GIBP):

Ai = E[Hyi - Ai (gr, {Hj Y jero-1)) ] (1.27)
T Chl Y 3 ] N [L . 3 ]
_E[Hki][E[deiAz (gr, {Hr;s} jerr-11) +€EU§I]E[HM Hy] E dHMA’ (g {Hr;j}jere-17)
L+
:2[5[ d Ai (gis {Hj }jern )]+ > [EI:LAi (grs {Hi;j}jere )] (1.28)
dei ) J JE[ - ] Ze[k_]_] de:f ’ J 475[ - ] ?

L+
TermlI

TermlII

where in the second line, we used the fact that b ~ A/(0, I},) to compute

E[Hy;]=2, and E[HyHy=1, £+4, Le[k-1].
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We now compute the derivatives in (I.28). First, for any £ € [k - 1], £ # i,

dA; (ge, {Hrj }jerr-11) eflre ¢(g . Vo Hy;
= o gp + YK
dHpe (1+ ¥ jel1] eflri) s jeie[k—1]
« 1 o Hy; aH,
—i'ﬁ'éb(gw\/_ k)_¢(gk+\/_ kf). I Q(gw
s + Y je[k-1] € s s j#(,0)ek=1]

= TermlII(a), + TermII(b), (1.29)

ot

Thus,

Termll = E[TermlI(a),] + E[TermlII(b),] =: E [TermlII(a)] + N;, (1.30)
(+ie[k-1]

where we defined

+ Vot ‘
Ni:—\/a'[E M > ]{¢(gk+\/o_‘Hk@). I1 Q(ngr\/aSH’W)} <0.

s L+ Yjer-11 €™ pilne s 3#(i,0)e[k-1]
(L.31)
and we remark for later use that
E[Termll(a)]= )  [E[TermlI(a),] <0. (L32)
L#ie[k-1]
Second, it holds that
dA; (gr {Hijjetr-11) eflri Vo Hy; Va Hy;
1 =- 2-¢(gk+ ) [1 Qlog+—
ki (1+ 2 je[k-1] eflrs) § jie[k-1] 8
Va Hy;
+d¢(gk+ =) . I1 Q(g +ﬁij)
dHy; L+ ¥je-1€™ juiepin) 5
eHwi o Hy; H
= 3 '¢(gk + 7\/_ u ) - JI @ (gk va kj) =: TermI(a)
(1+Z CH"7) 8 j#ie[k-1]
Va Va Hy; Va Hy; 1 \/_ Vo Hyj
_yv- Ny ook . . =: TermlI(b
ol ¢(gk A ) S mg 1]Q 9k + —— erml(b),

(L33)
= TermlI(a) + TermI(b),

where in the penultimate line we used the fact that ¢’(x) = —z¢(x). Consider the two terms in (1.33).
Clearly,

E[TermI(a)] < 0. (1.34)
For the second term we observe that:
E[TermI(b)] = —@ E [(gk + \/‘_“Sm“) - Ai (gr, {Hij } jepi-11) (1.35)
=S [ A (g (e 0)] - E g A (g )]
=5 Ai- @ E{gi - Ai (gr: {Hij}jepn-11)] - (1.36)
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Moreover, using again GIBP, E[g?] = 1, E[gxHy;] = 0, j € [k] and the fact that ¢/ (z) = —z¢(z),

E [gk -A; (g;w {Hy, }je[k—1])] _r [dAi (Qk, {ij}jé[k-]) ]
dgr

- F [(gk 4 Vol ) - Ai (gr, {Hk:j}je[k—l])]

S
aH 1 a Hy; a Hy;

-2 [E¢(gk+\/_ M)-l er'¢(gk+\/_ k) [1 Q(Qk"'\/_J)

teielo-1] 8 + Ljelk-1] € 5 J#(i0)ek-1] §
= 2 E[TermI(b)] + %Ni (1.37)
where, we have recalled (I.35) and (I.31). Using (I.37) in (I.36), we find that

N,
E[TermI(b)] = - - 4; - E[TermI(b)] - N; = E[TermI(b)] = _% A= A3)
S S

We are now ready to put things together:
A; =2 Terml + TermlII by (1.28)
=2[E[TermlI(a)] + 2 E[TermI(b)] + E[TermII(a)] + V; by (1.30)
o
=2[E[TermlI(a)] - ) - A; = N; + E[TermlII(a)] + N; by (1.38)

52

=5 (2E[TermI(a)] + E[TermII(a)])

<0 by (I.34) and (1.32).
From this, (1.26) and (1.27), we have shown that G is strictly decreasing in (0, o0). Recalling the

definition of G in (1.25), this implies that F'(p, q) is strictly increasing in p > 0, as desired to complete
the proof. [ ]

J Weighted LS for GMM (Proof of Theorem B.1)
J.1 Computing ¥, ,,
The WLS estimator solves:

. 1 2 &1 2
min o (WX +b1) —Y)DHF = Z: min —— |D (X w, +b,1,, _YK)HZZ

WeRkxd beRk

=3 min = [D (YT M wy + 27w, 4 b1, - V)

Define

Lpo (wy,b) = % D (YT M w, + Z"w, + b1, - Yy) a.1

2
e, -

Identifying the AO. By duality we have

wy, by u,awebe 5N

2
1 u
Hliil Lpo (wpe,by) = min  max — (sTDYTMng +8'DZ%w, +bysTD1,, - sT DY, - sTu + |2|€2)

Note that the above is jointly convex in (u, wy, by) and concave in s. Thus, we consider the Auxiliary
Optimization (AO) problem

m max — | sTDYT pmT . 2
1
inb - (S erel é”“ " Ds + H SHZz ¢ +bes" D1, - s DY@—sTu+”2|Z2)7
u,wye,bp s n g D o|D h* w 1
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where g € R™ and h € R? are independent Gaussian random vectors with i.i.d. A’(0,1) entries.
Moreover, we carry out a change of variable s - Ds to arrive at

2

1 u

min  max — | "Y' M w, + 0 |we|,, g7 s+0|s|,, A we+bs"1, -s"Y - sT D u+ m .
wawe,by 8N 2 2 2

Simplification of the AO. Maximizing over the direction of s and setting its norm 3 = ||s|,, above
we arrive at

2
1 u
min max max —|BsTYTMTw;+ 08 |w, g7 s+ oBhTw, +bBsT 1, - BsTY, - BsT D tu + Julz,
w,we,be P20 sis,,=1 N 2 2

2
_ . 1 T T —1 T ”uHZQ
_ug};lgl}bg rggg{ n(ﬁ ”Y M wg+0"|wg‘|ézg+bgln—}/g—D u“€2+0',3h 'wg+T

2

L U

=min max min — ﬁHYTMT'wg+a||wg||L, g+b[1n—lfg—D_1u” +gﬂhTwe+& .
uby, B20 we N 2 L2 2

To continue, consider the singular value decomposition

M=USVT =[u; wy ... u,]diag(o1,09,...,0,) , J.2)

with r := rank(M) < k and define the variable « = UTw, and o, = Ul'w, where U, is the
orthogonal complement of the columns of U. With these definitions the above optimization problem
reduces to

1
min max min min — (ﬁ HYTVZa +0y/ HaH? + HaJ\? g+bl,-Y,-D'u
ub, B0 o o, n 2 2

Decomposing the optimization over c, in terms of its direction and norm g = |, |, we arrive at

u
+ofhTUa+0Bh U, a, + ”—r
2 Z

£-

w,by B0 e ap20 n 2

. . . 1 T 2 2 -1 T T Hu”4
min max min min — | S||Y " VXa+o HO‘HZZ +oig+bl,-Y,-D ul| +0Bh ' Ua-ocapf ||Ul h||€2+
L2

rnTU

Since UT h is r < k dimensional in our asymptotic regime the term -~ can be ignored. Also

replacing 8 with 3/+/n we thus arrive at

2
. . . B H T 2 5 -1 H 1 T lully,
min max min min NG Y VEa+o\/|al, +a5g+bil, Y, - D u W \/ﬁaaoﬁ HUl hHe2 o,
2
=min max min min min — YTVEa+0\/HaH? +a2g+bl,-Y,-D'u +&
u,by  B>0 a ap>0 >0 2nT 2 lo
2
1 luly
-— U'n|, +—=
LoooslUTn],, + ot
T 2 L BT
=min max min min min min — (Y VIa+o\/|a|j, +a3g+bil, - Y, - D u|| +=—
by B>0 a  ao20 720 u  2nt 2 05
2
1 T luly,
_ ﬁaaoﬂ |UTh|,, + o

Setting the derivative with respect to w to zero we arrive at
_ B -1 B -2 - T 2 2
u==D"(I+=D Y ' VEa+oy/|al, +ajg+bil, -Ye| .
T T
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Plugging the latter into the above the AO simplifies to

BT

-1
1
min max min min min QLtrace (tT (I + ED_2) t) - —=oapf HUlTth )
T

by B20 a «ap20 T>0 ™ ﬁ
where

t=YTVSa+o\/|al}, +adg+bl, - Y=Y (VEa-e)+o\/|al], +aZg+bl,

To continue note that in our asymptotic regime we have
1 T P
NG ”UL h”ez — V7
and the cross terms can be ignored so that in an asymptotic sense

ltrace (tT (I + ﬂD_2)_1 t)

n T

= %0'2 (HQHZ +a(2))trace((1+ fD_Q)_l)
B

-1
s (YT (VEa-e)+bel,)" (I + fD’Q) (Y (VEa-e/)+b1,)
n T

Therefore we arrive at
be B0 a 120 apx0 2Tn

-1
min max min min min iGQ(HOLHZ +a(2))trace((I+ éD_2) )—aaoﬁﬁ+ 62—7
T

+ i
2™
which can be rewritten in the form

B

-1
(Y (VEa-e)+ bgln)T (I + ;D‘Q) (Y'(VEa-e)+b1,),

: . : B o 2 B -2 - BT
min max min min —o° |||, trace| I+ =D +—
by B0 o 120 27Tn 2 T 2

-1

. % (YT (VEa-ef) + bgln)T (I + ngz) (YT (VEa-ey) + b[].n)
-1

+ %UQQgtrace ((I + gD_Q) ) —apo B/ -

To continue further we shall assume D = diag (YTw). Note that in this case

-1 n T 2 k 2 k 2
1trace((1+ﬁp_z) )zlz(yiw): e Wi P, T
.

n ”i:l(y;fw)2+§ e=1”w§+§ é:1w§+§'
Also,
Loy T B o\ r
—(Y"(VEa-e) +b1,) (I+7D ) (YT (VEa-e)+bl,)
n T
1 T B oo\ 1
=—(VZa-ey) Y(I+ =D ) Y  (Via-e)
n T
2 -1 b2 -1
+ =b1” (I + ED*) YT (VEa-ep) + “trace ((I + éD’Q) )
n T n T
P T ;. 71'1(4}% ’/Tgwg Wkw%
— (VXa-e¢y)" diag 5 T 3 (VEZ«a-e)
w% + b= UJ% + b CL)]% + -
mw? Tows TEwh 2 L ﬂ—éwg
+2bé[w%+§ wg+§ e w§+§:|(vza—65)+bz ;w?_,’_g .
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Next define
A(n) = o2 (TFTV(T])) I +xV7Tdiag (w)diag (v(n))VE XZVTdiag(v(n))
Ea w7 diag (1)) VE ="v(n)
Cpi= [EVITW] 7 1.3)

where

1]
v(n)=—|«n|. J.4)
gl

‘We thus arrive at

min min max max min ﬁ(mw(g) +[a” bé]A(é)[l(;] 27rZw(ﬂ) [ge])

a be o0 B>0 70 27 T
%B (71' V(ﬂ))ag—aooﬁﬁ+%.
T

Deterministic Analysis of the AQ. Setting the derivative of the above with respect to «g to zero we

arrive at
2y (w7 u(ﬂ))ao—aﬂ\/_ R
o (v (D)
Note that the above objective has the form
r

f (g) — oo By + £

with
T « M 2/ T 2
£y =" (w4 [0 v A [] -2l []) + Do (x7v) @

Thus setting the derivatives with respect to S and 7 to zero, we have

R (L )

and
SrE)eee - or(l)

72 T/ 2
Combining the latter two we conclude that 7 V( ) = 1. Thus, n = 1s the solution to 77w () = 1.
To calculate 7 and hence oy we calculate f” which is equal to

7' =3 () +[aT b A 2] - 2manimrel [2]) + 3o (v () o + Doad(x"v/ ()

2
m 87 Tl
+ D (min +[a” o] 4[] - 2maire? [])
where
w?
1
(wi+m)?
Wa
V'(n) =—- =] Wi+mn)?
ol Y
u}2
k
(wi+n)?
A1) = (nTv'(n)) I + =V T diag (m) diag (v'(n)) VE EVTdiag (v'(n))
Ea o diag (' (1)) VE L0
I:EVTGZ:I
Cy = 1
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Now note that at the optimal point we have
2

' =5 =20 (x"v(m) ad.

Thus from the above we can conclude that

b= sy (T + a7 0 A 2] e [2])
ey (i o WA O[] 2mwioned [7]).

Thus the AO optimization problem reduces to

o o >
min min o5 (WW + [aT be] A [be] B QMWC%F [bf]) ’

bg (e

where 7 is the solution to

k ﬂjcd? _
Wi+ ’
and
A(y) = o?I, +XVTdiag(mov)VE 2VT (mov)
= (rov)' VE 1
T
= [EVI ef] , 1.5)
with
wi
wf;n
V= 1 wgin
Yl o..
2
Wi
w2+

First, note that the matrix A is positive definite. This can be checked by computing the Schur
complement of A:

A=’ +XVIPVE =61, + ZVT (diag(ﬂ' ov)-(mrov)(ro u)T) VE > 0. (1.6)

Positive definiteness above holds because P := (diag(ﬂ' ov)-(rov)(roe U)T) > Ogxx. Thus

the objective is a strictly convex quadratic and is jointly convex in its arguments. We proceed by
minimizing the objective over (a, by) which is equal to

a ~AISVT(rov-e)
== Ale, = ) .
[bg] s e ”W[u(w@y)T VEAEVT (rov-e) a7

Thus, the minimum value attained is

Al o|[-zvT -
- mv; |- (mov-e) VX 1][ o” 1][ 2V (7r1®1/ eé)] J3.8)
= —n2)? (1 +(mov-e) vEATZVT (ﬂ@u—eg)).
Thus the objective reduces to
% (T(gl/g (1 = merp) - ng/g (rov- eg)T VEA~lZVT (mrov- eg)) ) J.9)
Therefore,
1
2 - 1- —t2t (rov-e) VEATSV (rov -
il no2 (7T’ (1)) (WW( meve) =TV (T OV —e) (mrov ez))
1 ’ T ’ 87 ’ T|™
- W (WVE(W) + [a bZ] A'(n) [bz] = 2mvy(n)ey [be]) )
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where

~ -1 T
|:a:|:m e[ “ATYVH(rov-ep) (1.10)

1+ (rov) VEA'SV (rov-e)

and

1| %2
v'(n)=-—| @i+n)?
Y

TV’(n)) I + 2V Tdiag (w)diag (v'(n)) VE ZVTdiag (v'(n)) =

o[ (m
Aln) - w7 diag (' (7)) V'E v (n)

To continue note that

movp(n) + [aF b A'(n) [a] - 2my(n)e; [O;]

=m)(n) + miviet AT A () A ey - 21 vct A ey

Thus,
1 T _
ap == no2(xTv'(n)) (WW (A -m) - v (mov-e) VEA'ESV (rov- 6@))
1 2.2 T -1 -1 2 T a1
T 2T (n) (mevy(n) + mjvic, AT A () A ey - 2mjvivee; A ey)
= 4 ) (ﬂ-fyé(l—ﬂ'lyg)—ﬂ'?ug (ﬂ@V—eg)T vEATlzvT (ﬂ-@y_ee))
(Zl 1(w? +n)2)
. o (mevy(n) +mivie; ATV A () A™ e - 2mivpveci A7 er)
(Ze 1 (w? +n)2)
:% (WW (1-mwy) -V (moOV - e)  VEATSVT (rov- eg))
+ @ S (mevi(n) + mjvic] AT A (n) A g - 2mvjmee] A7 ey)
where ( := ﬁ
(z[ 1 (w2 e+7f)2)

Asymptotic predictions. First, from (J.7) the bias term converges as follows:
by 2, Tely (1 +(rov) vEATSV (rov- 6@)) .
Thus,
b5 (I, - PVEAT'SVT) (rov) .
Recall that a = U7 wy. Thus, the correlations (u;, wy), i € [k] converge as follows:

M w, =VEUTw, 5 VE@ = -muVEA'SVT (rov-e). (.11

Here, convergence applies element-wise to the entries of the involved random vectors. Moreover, from

the analysis above we can predict the limit of the norm ||wp|,, . For this, note that [w, 1> ., = Op+a’a.
Thus,

ngHi2 L%mw(l —m) + v (MO V- eg)T vA~ (A’l - %Ir) SVvi(rov-e)
o o
+ Z—g (mevy(n) + mivic] AP A/ A ey - 2 v AMey) . (J.12)
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J.2 Computing >, ,,

In the previous section we used the CGMT to predict the bias by, the correlations (pi, @), i[k]
and the norm |@,||,, for all £ € [k] members of the multi-output classifier. Here, we show how to
compute the limits of the cross-correlations (g, @, ), ¢ # j € [k].

Lemma J.1 For( # j € [k] let W, @, be solutions to the least-squares minimization (2?), i.e.,
(mﬁamjabé7bj)

. 1 2 1 2
=arg min {% HD (Ye - X" w, —bzln)Hé2 + o ”D (YJ - X w; - bjl")”zz}'

we,wj,be,b;
Denote Wy ; = Wy + W; and by j := by + bj. Then, (We,;,be ;) is a minimizer in the following

least-squares problem:

_ 1
(1,3,5¢,5) = argmin — | D (Y, + Y; - X w - o1,)|,. (1.13)

Proof Clearly the minimization in (J.13) is convex. Thus, it suffices to prove that @, + W; satisfies
the KKT conditions. First, by optimality of iw,, we have that

XD (Y- XT@, ~b1,) =0
Similarly, for @;:
XD*(Y; - X"w; -;1,) = 0.
Adding the equations on the above displays we find that
XD (Yo +Y; - X7 (@; + @) - (b; + b)1,) = 0.
Recognize that this coincides with the optimality condition for (J.13). Thus, the proof is complete. B

Thanks to Lemma J.1, we can use the CGMT to characterize the limiting behavior of | @, + @, |, .
Observe that this immediately gives the limit of (@, @,) since
2 _ 2 _ 2
|@e + ;1 - @y, - @51,

(W, W) = 5 . (J.14)

The analysis of (J.13) is very similar to that of (H.1). In particular we use the following decomposition
wy ;= Y Biug + fowy ;,
i=1

with ijj “e =1and UTw,%j = 0,.. This allows us to arrive at
g, ,

min min max max min
B by, @20 B0 7120

o2 (2 a2 oo (o) [2)
o (w70 (2)) 8- soopva+
where A(n) and ¢, are as in (J.3) and v(n) is as in (J.4).

Setting the derivative of the above with respect to ay to zero we arrive at

B - -

oA (xTv (%))

Note that the above objective has the form

o(2)-oonva+ .
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with

o) =5 (meve () + mywy () + 187 beJ A ) [ | -2 mavn e mws )™ [ ])
0 (o) .

Thus, the derivatives with respect to $ and 7 to zero we have

(S SR [ RS L) e S ey

and

Ao(@)ef - 2wl
27 \r) 2 T
Combining the latter two we conclude that 77w (g) = 1. Thus, n = g is the solution to 77w (1) = 1.

To calculate T and hence 3, we calculate ¢’ which is equal to
g (1) 2% (mw () +mvs () + (BT bes] A(n) [bi] = 2(move () eo + w505 (n) ¢)" [beﬁj])
+ 207 (wTu() B + S o8 (x" v ()
o D (rin + mw )+ [87 v G |,f -2 (rvi ey )" [, )

Here, we have

@Fen?
1 2
V'(n) =— | WE+m)?
v ..
2
Wi
(wi+n)?
A(n) = o (nTv'(n)) I + VT diag () diag (' (n)) VE VT diag (v'(n)) w
= wTdiag (v/(1)) VS =TV’ (n)
— [szeg]
Cy = 1 .

Now note that at the optimal point we have

2

g'(n) = % = %02 (="v(n)) B3 .-
Thus from the above we can conclude that
53 == m (WW (n) + TV (n) + [5T be,j] A(n) I:blfj] -2 (mevp (n) e + TjVj (n) Cj)T [bfj])
1
oy (T i o)+ (87 bl A [ |2 (i e mvie)"[)] ).

Thus, the AO problem reduces to
i min 1 Lo [gT .A[B]_Q T[ﬁ])
Igl[lfl ngn 5 (ﬂ'gl/g + v+ [ﬁ bg}]] bes (mevees + miv;cy) bejl)’
where 7 is the solution to
k 2

Z Wy

. -
=1Wy 1
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Thus, similar to (J.10) we can compute the minimizer of the deterministic

Bl ~AT'EVT (mu(rov -e) + v (T ov-e;))
boj| | meve + v+ (o I/)T VEATSVT (mp(mov-e) + v (mov-e;))
=14_1 (71'[1/@6@4-71']‘1/]‘6]‘) (JIS)
and
w
(wi+n)?
/ L[ —=
v'(n)=-—| (Wi+n)?
wi
(wi+n)?
A(n) = o? (TI'TV,(T])) I + 2V Tdiag (w)diag (v'(n)) VE EVTdiag (v'(n)) =
)= wldiag (v'(n)) VE wTv'(n) '

To continue note that
! ! ! ! ! T
mevi(n) + w0 +[87 bes] A [P -2 (i e emps i e) [0 ]

’ ’ / / T 1 47 _
= mp(n) + mvs () + (v (n) co + mivh (n) ¢5) AT A/ () A7 (mvp () e + 7505 () €;)

! ! T - ! !
-2 (7T¢I/€ () e+ TV (n) cj) Al (wuf (n)ee+ V] (n) cj) .

Thus,
By =- m (WW (n) +mv; () +[BT bej;]A(n) [bfj] ~2 (e (n) e + v () €5)" [bfj])
o] LR AN M POl Pl EECAGESE G el

202(77@1/@ +mv; — (Teve + 7TjVj)2
- (m(mrov—ep)+mv; (ToOV- ej))T VEAT'SVT (mpy (mov -ef) + mjv; (mov-e;)) )
n _ -
23 mevy(n) + vl () + (meve (n) ¢ + w05 () €5) " AT A/ () AT (mowe () €0 + w5 () €5)

- 2(mowg (n) co + ;v (n) Cj)T A (mevp () eo + v () €5) ) :

where ¢ := ——————. From the CGMT, we have that | @, + HZ i B2+ H,BH?2 . Combining
7\ (w;;meﬂ)
this with the calculations above, we conclude that
2 P C
|@e +@;ll,, — —5 (meve+mjvy) (L= meve = mjv5)

+(m (rov-ep) +mv;(TOV - ej))T vzA (A_l - %Ir) SV (rue (mov-e)) +mjvj (Tov-e;))
o

+ g;}(ﬂﬂ/é(n) + 1w () + (meve (n) e + vy () €5) AT A/ () AT (v () e + w5 (0) €5)

~2(mev) (n) o+ v (n) €)' A (v (n) eo + vy (1) €5) ) : (J.16)
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Finally, using (J.16) and (J.12) in (J.14) it follows that

P
<w€ij) -

TV V5 (—é +(rov- eg)T VEAT! (A_l - ULI

+ CU’/T[IJ[IT]I/]C AtA' A ey - CZ
o

/ / T A-1
o e (vev; + vprj)e; A” e

+(mrov-e) VAT (A’l - 42

T T
:| A—lAIA—l [EV

=TTV (—p

n r(Zv?
+§7Tgl/g71'jl/j ej 1T

vt
17

_n
- — e (vevi + ;) | e ( [
Putting everything together we arrive at

P
S —>%
g

P+ PVEA-l(A-1 - il,‘)EVTP +
g

where

5 T)EVT (W@V—ej))

IT) svi(rov- ej))

(J.17)

ak T
Q :=diag (m o V') + diag (m o v) [21‘; ] (A'A’A™) |:21‘; ] diag (m o v)

. A=Vl sV, . vl
—diag (wov') 1T A 17 diag (w o v) — diag (w o v) 1T A

and as mentioned earlier

A :=A'(n) = [0 ( nldiag (v/(n)) VE

wldiag (v(n)) VI

Vv

T
1T ] diag (mov')

Tl/’(n)) I +xV7Tdiag (w)diag(v'(n)) VE XVTdiag(v'(n))w

() ]

A=Ay = [02 (7Tv(n)) I + =V T diag () diag (v(n)) VE ZVTdiag(u(n))w] '

Let us end by simplifying @ to this aim

7 v(n)

a[zvT] I oj[Aa! I —EVT~ svT] .
A 1[ 17 ]dmg(ﬂ@u): _#Tvs 1| or ][ 1T diag (w o v)
I o][Aa! svT( I 717)] 4 (row)
“|-#Tve 1| o7 aglmov
7 I o1[Aal=vT(I- 7r1T) di
“|l#Tvs 1 1T iag (w O V)
[ ‘1EVT(I 7r1T) .

T |FvEatEvT(1-71T) +17 diag (m o v)
~ AT'SVT (diag(F) - 777
| -FTVEATISVT (diag(F) - 77 T) + 7

Thus, defining 7' = w ® v’ we have

. NP Y o7 EVT
diag(mov') 1T A 1T diag (m o v) = diag (m o V")

AT'SVT (diag(F) - 777

~FTVEAT'EVT (diag(F) - 7#77) +7

= (diag (7') - ~’~T) VEAT'EVT (diag(F) - 77" ) + 77
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Using the above and recalling 7' = 7w © v’ we arrive at
Q =diag(7')
. AT'EVT (diag(F) - 77T ]T , [ AT SV (diag(F) - 777
-FTVEATEVT (diag(F) - 77") + 7L ~-FIVEATEVT (diag(7') - 777) + 7
~ (diag (') -7 #®") VEAT'ZVT (diag(7) - 77" ) -7 7"
~ (diag (%) - 77" ) VEAT'SVT (diag(7') - 7#7") - 77" (.18)
where

A - [02 (F71) I +2V T diag (7)) VE szﬁ']

7TV #T1
[T+ 2V diag(F) VD BVTRE
- 7V 1|

Using the above the cross-correlation matrix 3, ., is given by

S L%P +PVSAT (AT - %IT)ZVTP + %7@.
o o o
K Weighted LS for MLM (Proof of Theorem B.2)
Let D := D™ .= diag(Dy,...,D,) be a diagonal matrix with non-zero diagonal entries. In

particular, assume that the diagonal entries of D are distributed D; “ D where the random variable
D may depend on the entries of the matrix of response variables Y. Here, we focus on the following
setting:

D=3 diag(w;Y;), w;>0, je[k] (K.1)
Jelk]
Specifically, for (K.1), we have D; D with D = w Yy + Yiete[i) wiYi, where for all c € [k]:
T eeZVZ]g
P([Y1, Yz, Yl =) = Vo= o——pm (K2)

Z?’:l eerr Vg ’

MM?T =v3?V7T and g ~N(0,1,).
With these, we consider the weighted least-squares (WLS) solution for £ € [k]:

= . 1 T 2
(,,0) = arg%lﬁlﬁpo (w,b) := o ||D (X w+bl,, - Yf)”ez ,
where D is as in (K.1). In fact, it is convenient to rewrite the above as follows:
n L r T T T T Hu“?
(W, b) = arg mgn max — |s DX w+bs' D1,s" DY, -s" u+ Tz . (K.3)
w,b,u s n

Identifying the AO. The PO in (K.3) is very similar to (I.1). In particular, following step by step
the same decomposition trick as in Section H.1.1, it can be shown that the AO corresponding to (K.3)
becomes (cf. (1.6))

'wg,b[,'u, S

2
1 ~ u
min  max — (|le4|é2 g"Ds+|Ds|, h" P*w,+s"DG"U w; +bys" D1, - s" DY, - u" s + |2|62) :
n

where we use the same notation as in Section H.1.1 for P+, U, (~;, g and h. Recall also the relation
of Y; to G in (1.5).

52



Scalarization of the AO. We start the process of simplifying the AO by setting 3 := | Ds| 0 / NZD
and optimizing over the direction of D's to equivalently write the AO as

2
1 ~TrrT -1 T pL lul
wrl{lé?u rrﬁl%c T (ﬂ ||HP w4\|l2g+ G U wy+bl,-Y,-D u”z2 +Bh* P wg) + 727
(K.4)
Next, focus on the minimization over w,. Let us denote
a=U"w;, and ag=|P'w, .

Notice that @ L P*w, and thus the orthogonal decomposition w, = Ua + P*w,. With this
observation, note that the optimal direction of P wy in (K.4) aligns with P h for all values of (3.
Therefore, (K.4) reduces to

2
min max L(ﬁ ||aog+G a+bl, Yg—D_luH - Bag | P*hl| )+ Hqu (K.5)

a,qp20,by,u 520 \/_ L2 £ on '
Continuing let us denote ¢ := apg + G"a + b1, - Y, for convenience and rewrite ||t - D‘luHe2 as
follows

-1 -1,,12

”t_D u”ez . T ”t_D u”gQ

————2 =mir 2
Vn 0 2 21n

Note that the resulting minimization is convex in u and concave in 8. Also, by considering the

bounded AO (such that 5 is bounded; see [DKT19, Sec. A]), we can flip the order of min-max and

optimize over w first. In particular, w minimizes the following strictly convex quadratic

1 1
mm{ (B |ID |, + = |ul? _ﬁtTD-lu): —uT(éD_QJrIn)u——ﬂ tTD-lu}.
2 2T 2n T

ul,, "
In particular,

_ﬁ B -2 - 1, _ -1, T - ~T
wu="(5D2+1| D't=(D +ED (cog+GTa+be1, - Y,)

T\T

Putting things together, the new objective function of (K.5) becomes

min max R(a,aq,be,T,3) (K.6)

a,a0>0,bp,7>0 (320

T 1 Ba
D) - iPal,.

Convergence of the AO After having simplified the AO into an optimization problem over r + 4
variables, we are ready to study its asymptotic behavior. First, we argue on point-wise convergence

of R in (K.6). Fix a, ag, by, 7 and 5. From the WLLN, ﬁ HPthe2 N /7 and as in (1.9)

where R(a, a, b, 7, B) = % " % 12, - %tT (1 .

1 n
1812, = -3 (aogi + a7gi + by - [¥2]:)" o E[ (oG + aTg 4 b - Y27,

i=1
where the expectation is over g ~ A/(0,., I,.) (with some abuse of notation) and

eeZVEg

Y, ~Bern(V;) and V;= (K.7)

Z;l':l eerVEg’

Furthermore,

5 2 2
ltT (I+I )’ li (cogi+a”gi+bo—-[Ye]i)™ p E (0Go+a’g+by-Yy)
n B no L+ Zd; 1+ 3D?
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Therefore, point-wise on a, ag, by, T and 3, the objective R of the AO converges to

D b T L B El(anGo+aTg+br-v)) ] - 2 E (a0Go +ag + b - Vi)'
(0, @, by, T, 3) ~—7+§ [(ao ota g+0p-— z) ]_E 1+%D2 - Bao/y
2
Br 1 _|D?(aoGo+aTg+by-Yy)
= — 7[ —
2 "2 1+ D2 Baovy
2
Br 1 _[(awGo+a¥g+b,-Y;)
A - . K.8
2 "2 D2+ (7/B) Paovy (K.8)

We note that the function above is jointly convex in (g, &, b, 7) and concave in .

K.1 Computing ¥, ,

It can be checked that the first order optimality conditions of Dy (v, a, be, 7, ) with respect to 3
and 7 > 0 are given as follows:

(CV,(]GO + aTg +by— }/2)2
B=L B=0, (K.9)
(D2 +(7/B))
B z L (a0G0+aTg+b¢—Yg)2
00T G+ E D1 (I8 : (K.10)

Thus, at optimality either 3 = 0 or 7 = a9 /7. In what follows, consider the solution 7 = ag /7. We
will show that this leads to the true saddle point of D.

Moreover, by denoting 1 := g and recalling from (K.7) that Y; = Bern(V};), we can express
De(ag, e, by, 7, 3) as follows

Br o 1 1y » [a] T [a] 1 |
Lo —— |- - b, 1-A(n)- - TEl—e
9 + 9 D2+1/y 5a0ﬁ+2[a Z] (n) Y (n) by +2 D2+ 1/n|
where
99" g
A(’r]) = l[[D_Z;l/n] [E[D_Zl*‘l/n:l‘l (K.11a)
[E[D‘zﬂ/n] [E[D‘2+1/n]
. Y,
ce () = [E[ 52547 ] (K.11b)
we have the following first-order optimality conditions for «g, @ and by:
[g;] =A™ (n)-ee () (K.12)
a0 =BT / El—t (K.13)
0= VY D2+1/n]| '
Rearranging (K.13) and using 7 = o/ gives the following equation for 7:
1 T=a 1
20V S L (K.14)
B D2+1/n D2+1/n

Thus, the optimal values of a and b, are found by (K.12) for 7 the positive solution of the equation
in (K.14). To solve for «g, we combine (K.13) and (K.9) which leads to

1Y (aTg+b-Y2)”
[ ]):E[(D_m/m? ] ®.15)

54

ag (’7772 -E




where we have also used the RHS of (K.14). Next, we specialize these findings to the special structure
of the weighting matrix D in (K.1).

Applying weighting (K.1). Assume (K.1) holds. In this case, Equation (K.14) that determines the
value of 17 > 0 becomes

2

F(n):= L=y, (K.16)
( iez[lzc] wi +1

™Ww,

where we have recalled the notation in (4.1) 7r; := E[V;] > 0, i € [k]. It can be easily checked by
direct differentiation that ) — F is strictly decreasing in (0, c0). Also, using Yie[k] i = 1 the range
of Fin (0, 00) is (0, 1). Thus, it follows that (K.16) has a unique solution for all v € (0, 1).

Also, in this case we can write (K.11) in the following more convenient form:

A@)=Y ( win )[E[[‘{] lg" 1vi] (K.17)

1€[k] wi2+77

e (n) ::( s )E[[ﬁ’]w]. (K.18)

For convenience let us define vectors v := v(n), 7 = 7 (1) € R* with entries:

2
7’\1:%‘ =TT 1 d =TV (K19)
7wl

Because of (K.16), notice that 7 is a probability vector, i.e.

T

%’le:ﬂ' v=1.

With the notation above, it holds

A(n)=7-n- :Zfifj]lﬁ;.m[g[[‘&?ggTT]] i 1 [[Vig]]
SR B S A B
R :uT Eii[es,;irv))_g 1917;]V2 e (diagl( ™t V] (K2D)
ce(n) = |~ [E;[f;/zg]]
- iEVT (diag(%) -10) v, eg] (K.22)

where we have also used the fact that E[V;g] = SV T (diag(7) — II) e;, i € [k] and recalled the
notation

v=[V,....,Vi]".
Using (K.30) and (K.31), we conclude from (K.12) the following expressions for a and b:
a=A"'SVT (diag(w) -TI) - v - (ep — wov), (K.23)
by =7, v’ (diag(sr) - IT) vzA~lzvT (diag(m) —-II) - vy - (ep — mev), (K.24)

where we defined

A=E[(v"v)gg" |-V (diag(m) - M) vv” (diag(m) - II) VE > 0,4, (K.25)
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Finally, we show how to compute « using (K.15). The RHS in (K.15) can be computed as
[a” b A [g; ] [a b] A, [52 ] “2fa” b+
+

iten) (w2 +1/n)’ (wp + 1/n)°

=P A2 {[aT b ( 5 ygzi) [;] “ola” b]uiE+ Wg},
ie[k] -
where a, by are as in (K.23) and (K.24). Also, note that
2
1 it
E(\ =5——| |=7° — =242 nTdiag(v)r =42 Tl
(D2+1/77) ] ze%c] (W22+77)2

Put together, we have the following expression for a:

R U {[aT be](zugzi)[gg]-zw bg]ul?’c“g+7wu£2}

(/y-7Tv) iek]
1 T (i _ 2
Roe R (G R MR G I MR B
(K.26)
where a, by are as in (K.23), (K.24) and we have also defined
- [ E [(VTdiag(V)v) ggT] VT (diag(m) - II) diag(l/)u] (K.27)
v1diag(v) (diag(w) -TI) VE vTdiag(v)m ' '

Asymptotic Predictions. Writing (K.24) in vector form we find that
b % - diag(v) (I - ") (diag(w) - TN VEA'SV7 (diag(m) - M)v.  (K.28)
Also, recalling that €7 ., ,, = @7 UXVT > "XV and using (K.23):
Sy —> diag(v) (I, - mv") (diag(w) - TN VEA RV (K.29)
Finally, for the magnitudes of the weight vectors, recall that || @, HZ iR Ha||§2 + 2. Thus, to find

the limiting values of the norms, we can combine (K.26) and (K.23)-(K.24). For convenience, we
summarize the final expression here. Define the following'

A E[(v"v)gg”] SV7T (diag(w) -II) v (K.30)
vl (diag(w) -TI) VE 1
T .
cp = [EV (dlag(zr) - H) vy ez:| ) (K.31)
s
Further recall the matrix A’ in (K.27).
_ P _ . 2
H’weHZ — [AT'ZVT (diag(w) - TI) - v - (e - MV)H@
1 _ _ _ ~

+ m . {Cg‘A 114,14 1Cé - QVEC?A 16[ + Ty - I/g} . (K32)

Remark K.2 Consider the special case w; = 1, i € [k]. We show how the above recovers the
solution for (un-weighted) LS. First, note that in this case (K.16) simply gives n = % — 1. Thus,
v =1; and ® = 7. Also, recall that (diag(m) -TI) 1, = 0 and 1Tv = 1. Thus, (K.25) simply
gives A = E[gg”] = I,.. With these, it can be readily checked that (K.28) and (K.23) simplify to
the expressions in (4.4a). Similarly, A = A’ = I,.,1 and (K.26) reduces in this case to (1.1.1). For
general weight coefficients, such simplifications do not seem possible and one needs to compute the
matrix £ [(I/T’U) ggT] that appears in the definitions of A, A and A'. We note that this calculation
can be somewhat simplified by applying Gaussian integration by parts similar to lemma C.3.

"Note the slight abuse of notation compared to the definitions in (K.30) and (K.30). This “renaming" should
not be confusing as the constant v - n (that is different between the two definitions) cancels when computing

[;ﬁ] = A e, (see (K.12)).
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K.3 Computing >, ,,

In this section, we use Lemma H.1 to compute the cross-correlations (@, W;), j # £ € [k]. Specif-
ically, the analysis of (J.13) is almost identical to the analysis of (K.3) in the previous section.
Specifically, without repeating all the details for brevity, it can be shown that the AO of (J.13)
converges to MiNg ay>0,6,,7>0 Maxgso D(a,,bs, T, 3) where D(a, o, by, 7, 3) is as in (K.8)
only with Y} substituted by Y} .:

T
e®i Vg

Yo ~Bern(V. +V;) and as before: V= i=4,c. (K.33)

ZZ’:l eerVEg’

Thus, what changes in the calculations above is in (K.18) and (K.35), where we now have instead

o () B (]

and

[a” b A, [52] ) [a” b] A, [,j;] “ofa” by
i#{€,cle[k] (w;Q + 1/77)2 (‘%2 +77)2

[a” b)) A. [;‘;] ~2[a” b]E, +m.

(wg2 +1/n)?

respectively. With these and following mutatis-mutandis the steps and the notation in the previous
section, we find the following asymptotic expression for the magnitude of wy + W.:

(K.35)

+

)

.y — P - . 2
| @, + wcH?2 — HA '>v7T (diag(w) - II) - (v - (€ - wev) + v, - (€0 — 7\'@/))”62
P

(1/y-7"v)

We may now combine this with (K.32) to conclude with the following asymptotic limits for the
cross-correlations for all £ # ¢ € [k]:

{(ce +e)TATTA' A (ep+ ) - 2 (vpey + uccc)T AN (vpep +vee,) + Ty vp + T uc} .

(@, @) —> v, (€0 )" (diag(n) -TI) VEA SV (diag(r) - ) vy (e - mv)

1 T A-1 g7 41 T 4-1
+ A7) {cfAT A" A ) - 20l AT ey} (K.36)
=v, (e, - mr) (diag(w) -TI) VEA2EVT (diag(w) - II) vy (e - mov)
1 T -1 A7 4-1 -1
o=y (G (AT AAT 2w A : K.37
* (1/y-7Tv) {ee ( v AT e (K.37)

In matrix form, we have
S —> diag(v) (I - wv") (diag(w) - T1) VEA XV (diag(r) - ) (I - va”) diag(v)

Y o _I%TV) { [diag(v) (diag(m) -TH VS 7] Al A'A™ [EVT <diag(’;>; D diag(")] }
1
O

1 . .
+ W{dmg(u) dlag(ﬂ')}. (K.38)

vt (diag(t)T— IT) diag(v)

™

{diag(u) [diag(v) (diag(w) -I)VE 7] A™! [ ]diag(u)}
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