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Abstract
Cities are uniquely complex systems regulated by interactions and feedbacks be-
tween nature and human society. Characteristics of human society—including culture, 
economics, technology and politics—underlie social patterns and activity, creating a 
heterogeneous environment that can influence and be influenced by both ecological 
and evolutionary processes. Increasing research on urban ecology and evolutionary 
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1  | INTRODUC TION

Humans construct and modify their surroundings to support the 
demands and desires of society (O’Brien & Laland, 2012). This phe-
nomenon is particularly evident in cities, which are currently home 
to over half of the human population, a percentage predicted to 
rise to 66% by 2050 (UN, 2018). Urban expansion is rapid, with the 
global city footprint projected to double between 2015 and 2050, 
largely due to increased urban and suburban sprawl (Barrington-
Leigh & Millard-Ball, 2020; Huang, Li, Liu, & Seto, 2019; Liu et al., 
2020). As urban areas expand, they are becoming more socially 
heterogeneous, reflecting an influx of diverse people who bring 
myriad cultures from around the world (Qadeer, 1997, 2000; 
Sandercock, 1998). While humans and social processes are affect-
ing all the planet’s biomes (Ellis, 2015), it is in urban ecosystems 
that human density and built habitats are the most pronounced. 
Cities have thus become representative of an urban “anthro-
biome”—a set of ecosystems created and transformed by the peo-
ple and societies that inhabit and depend on them (Alberti, 2008; 
Grimm et al., 2008; Pickett et al., 2001). Cities are unlike any other 
ecosystems because they are quintessentially built by and for one 
species: humans—a highly social, interconnected and omnipresent 
ecosystem engineer (Smith, 2007). As a result, the study of urban 
ecosystems should involve novel approaches by urban ecologists 
and evolutionary biologists to better integrate human social pat-
terns and processes and build a truly synthetic understanding of 
the evolutionary ecology of cities (Figure 1).

Urban ecosystems (Definition: Box 1) are abiotically and bioti-
cally distinct from nonurban areas in that they feature human-built 
structures, a high proportion of impervious surface, reduced veg-
etation cover, elevated pollution levels, and a disproportionately 

large number of exotic species (Grimm et al., 2008; Seto, Sánchez-
Rodríguez, & Fragkias, 2010). They are further characterized by 
altered patterns of connectivity, resource availability, inter- and intra-
specific interactions, temperature, and habitat structure (Groffman 
et al., 2014; Walsh et al., 2005). Unsurprisingly, research has shown 
that these urban drivers have substantial effects on both ecologi-
cal and evolutionary processes (Alberti, 2016; Donihue & Lambert, 
2015; Johnson & Munshi-South, 2017; Szulkin, Munshi-South, & 
Charmantier, 2020). In many cases, the biological community com-
position, population demographics (Parris, 2016), phenotypic traits 

biology has coincided with growing interest in eco-evolutionary dynamics, which en-
compasses the interactions and reciprocal feedbacks between evolution and ecology. 
Research on both urban evolutionary biology and eco-evolutionary dynamics fre-
quently focuses on contemporary evolution of species that have potentially substan-
tial ecological—and even social—significance. Still, little work fully integrates urban 
evolutionary biology and eco-evolutionary dynamics, and rarely do researchers in 
either of these fields fully consider the role of human social patterns and processes. 
Because cities are fundamentally regulated by human activities, are inherently inter-
connected and are frequently undergoing social and economic transformation, they 
represent an opportunity for ecologists and evolutionary biologists to study urban 
“socio-eco-evolutionary dynamics.” Through this new framework, we encourage re-
searchers of urban ecology and evolution to fully integrate human social drivers and 
feedbacks to increase understanding and conservation of ecosystems, their functions 
and their contributions to people within and outside cities.

K E Y W O R D S

adaptation, anthropogenic, coupled human–natural systems, eco-evo, socio-ecological 
systems, urbanization

F I G U R E  1   Urban ecosystems provide an opportunity to 
study contemporary evolution and ecological change inherent 
in eco-evolutionary dynamics (yellow arrows). Eco-evolutionary 
dynamics in urban ecosystems are strongly linked to human society. 
Characteristics of human society likely drive (blue arrows) and are 
impacted by (white arrows) ecological and evolutionary change
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(Merckx, Kaiser, & Van Dyck, 2018) and genetic makeup (Munshi-
South 2012) of urban organisms differ substantially from their non-
urban counterparts.

The structure and composition of urban ecosystems are predom-
inantly a consequence of human society (Definition: Box 1), which 
reflects the complex interplay among culture, economy, politics and 
technology (Avolio et al., 2018; Collins et al., 2000; Grove, Locke, & 
O’Neil-Dunne, 2014; Marzluff, 2008). As a result, urban ecological 

and evolutionary processes are intrinsically influenced by social 
patterns and processes (Figure  2; Grove et al., 2014; Troy, Grove, 
& O’Neil-Dunne, 2012). Not only are human activities an underly-
ing driver of ecological and evolutionary processes in cities, these 
processes feed back to affect human health and well-being through 
nature’s contributions to people (Definition: Box 1; Díaz et al., 2018), 
including both ecosystem (Daily, 1997) and “evosystem” (Faith 
et al., 2010; Faith et al., 2017; Rudman et al., 2017) services and 

BOX 1 Definitions

Urban Ecosystem An ecosystem whose biological and physical characteristics are primarily engineered, modified 
and constructed by humans. In urban ecosystems, human society influences the relationships 
among organisms and between organisms and the physical environment. Urban ecosystems are 
characteristic examples of Coupled Human and Natural Systems (CHANS; Box 2).

Human Society A group of human beings inhabiting and interacting within a common region, sharing and participating 
in the same culture (Tischler, 2006) or self-sufficient system that usually persists longer than the 
lifespan of its individual members (Aberle, Cohen, Davis, Levy, & Sutton, 1950)

Urban Ecology The interdisciplinary study of organismal and ecosystem patterns and processes within and among 
cities and their relationships with human activities. Urban ecology has increasingly incorporated the 
study of ecological interactions with human society in cities through frameworks such as CHANS 
(Box 2)

Urban Evolutionary Biology The study of how urban form and processes shape adaptive (via natural selection) and nonadaptive 
(via mutation, gene flow and genetic drift) evolutionary dynamics that occur within or because of 
cities

Eco-evolutionary dynamics The interactions and feedbacks between ecological and evolutionary processes; both the ecological 
variation that affects evolution and the feedbacks of evolutionary change on ecological processes. 
Ecological and evolutionary feedbacks typically centre on contemporary adaptive evolution of 
ecologically relevant traits that alter how organisms interact and function in their ecosystems, for 
example influencing their productivity, excretion or resource consumption (Hendry, 2017)

Socio-eco-evolutionary 
dynamics

A framework for the integration of social, ecological and evolutionary patterns and processes that 
explicitly features the interactions and feedbacks among human society, ecology and both adaptive 
and nonadaptive evolution. This framework incorporates human social characteristics, such as 
economics, culture and policy, into the study of eco-evolutionary dynamics in urban ecosystems 
(Figures 1 and 2)

Adaptive evolution The process by which natural selection acts on heritable phenotypic trait variation in a population 
leading to the increased survival and reproduction (fitness) of individuals with certain trait values.

Nonadaptive evolution Evolutionary change that is not driven by natural selection, including chance mutation, neutral genetic 
drift (random changes in the frequency of alleles in a population that is more pronounced in small, 
isolated populations) and gene flow (the transfer of genetic information among populations due to 
migration of individuals, gametes, and other propagules.

Nature’s contributions to people 
(NCP)

The essential and often nonreplaceable material and assistance (i.e. food, energy, other resources), 
nonmaterial (i.e. cultural, educational, inspirational) and regulating services (i.e. habitat, climate and 
resource maintenance, hazard protection) provided by nature that benefit human existence and 
well-being. The concept of NCP encompasses and extends the former ecosystem services (Díaz et al., 
2018). Though the new NCP framework does not specifically allude to detrimental feedbacks on 
humans, authors have also acknowledged ecosystem disservices, particularly in urban ecosystems 
(Shackleton et al., 2016). Authors have also recognized evosystem services—benefits to humans 
resulting from evolutionary change (Faith et al., 2010, 2017; Rudman et al., 2017). The concept of 
NCP is central to socio-eco-evolutionary dynamics, as it describes the feedbacks from ecology and 
evolution towards human society (Figure 2)

Evolving metacommunity 
framework

A framework describing the spatial context of eco-evolutionary dynamics that considers sets of local 
communities linked by the dispersal of multiple species (a metacommunity) and the change in species 
interactions with the environment and with each other via evolution. This framework integrates 
community ecology and evolution in local patches with regional dispersal and gene flow among 
regional patches to understand eco-evolutionary interactions at multiple scales (Urban et al., 2008)
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disservices. These processes may further shape and reshape human 
attitudes and behaviours towards the environment and biodiversity 
conservation (Reddy et al., 2017).

As cities have grown, so too has interest in the myriad intersec-
tions between human life and the lives of other species. During the 
last three decades, the field of urban ecology (Definition: Box 1) has 
made large strides in integrating human social dimensions into the 
study of urban ecosystems by fostering new collaborations between 
natural and social scientists. These collaborations have uniquely 
explored how urbanization shapes ecological processes, promot-
ing the understanding of cities as ecosystems where humans play 
a fundamental role in regulating environmental patterns and pro-
cesses (Alberti, 2008; Liu et al., 2007). Studies on urban evolution-
ary biology (Definition: Box 1) have also increased in recent years 
(Johnson & Munshi-South, 2017; Rivkin et al., 2019; Szulkin et al., 
2020). Although some of the earliest work showing evidence of nat-
ural selection focused on urban adaptive evolution (Definition: Box 
1; Kettlewell, 1958), recent advances in molecular techniques and 
a broader understanding of the role of gene flow and neutral evo-
lution have contributed to a wealth of research on how nonadap-
tive evolution (Definition: Box 1)—including patterns of genetic drift 
and gene flow—operates in cities (Miles et al., 2019; Rivkin et al., 
2019; Schmidt, Domaratzki, Kinnunen, Bowman, & Garroway, 2020; 
Szulkin et al., 2020). Increasing research on urban evolutionary bi-
ology has also coincided with the growing field of eco-evolutionary 
dynamics (Definition: Box 1), which aims to understand the interac-
tions and feedbacks between evolutionary and ecological processes 
(Fussmann, Loreau, & Abrams, 2007; Hendry, 2017; Schoener, 2011). 
Researchers of both urban evolutionary biology and eco-evolution-
ary dynamics tend to focus on contemporary evolution in species 
that can have important ecological—or even social—feedbacks (Faith 
et al., 2010, 2017; Rudman et al., 2017); few, however, have exam-
ined the presence and strength of eco-evolutionary dynamics in 
urban ecosystems (Alberti, 2015).

In recent years, interdisciplinary progress has been made show-
ing how social processes influence ecological dynamics (Band et al., 
2005; Liu et al., 2007), how evolutionary dynamics feed back on 
ecology (Fussmann et al., 2007; Hendry, 2017; Pelletier, Garant, & 
Hendry, 2009), and how evolutionary dynamics contribute to society 
(Faith et al., 2010; Palumbi, 2001). However, a general framework for 
addressing the relationships among all three dimensions—social, eco-
logical and evolutionary—is still lacking. In particular, little research 
fully integrates urban evolutionary biology with eco-evolutionary 
dynamics (but see Brans, Jansen, et al., 2017) and rarely do either 
of these fields fully consider the role of human social processes on 
the eco-evolutionary dynamics in cities (but see Schell et al., 2020). 
We argue that cities present an opportunity to integrate the fields 
of social science, ecology, and evolutionary biology for the following 
reasons: (a) urban ecosystems are biotically and abiotically distinct, 
potentially resulting in unique effects on ecological and evolution-
ary dynamics compared to nonurban systems; (b) social patterns 
and processes are concentrated in cities, where they modify the 
ecological stage on which evolution takes place, thereby affecting 

urban eco-evolutionary dynamics; (c) ecological and evolutionary 
processes in cities are likely to feed back on humans and society; 
and (d) these feedbacks might be magnified or dampened depending 
on the social and urban contexts in which they occur.

The goal of this perspective piece is to provide a “socio-eco-evo-
lutionary dynamics” (Definition: Box 1) framework for evolutionary 
ecologists studying urban ecosystems. We highlight the importance 
of integrating social patterns, processes, and responses in research 
on urban ecology, evolutionary biology and eco-evolutionary dy-
namics. Further, we use examples from specific study systems and 
describe how existing frameworks from research in these fields 
may be extended to include social dimensions. We close by laying 
the groundwork for future research on urban socio-eco-evolution-
ary dynamics with a set of empirical and theoretical guidelines and 
questions.

2  | LINKING URBAN SOCIAL PROCESSES 
WITH ECOLOGY AND E VOLUTION

Characteristics of human society—demography, culture, governance, 
economics, and social organization (Odum, 1943; Tipps, 1973)—not 
only govern interactions among humans, but also influence human 
interactions with nature. Humans have always engaged in socio-
ecological and socio-evolutionary relationships, whether through 
hunting and gathering, domestication and agriculture, or the use of 
natural resources to build civilizations and cities (Boivin et al., 2016; 
Sullivan, Bird, & Perry, 2017). Through these relationships, humans 
have not only fragmented and connected species’ populations, but 
also constructed and modified their ecological niches. A wealth of 
research from a diversity of disciplines (e.g. political ecology, cultural 
anthropology, sociology) has revealed the ubiquity of complex inter-
actions between human society and nature through millennia and 
across geographic regions (Boivin et al., 2016; Ellis, 2015; O’Brien 
& Laland, 2012). This research has laid the groundwork for studying 
the interactions among social, ecological, and evolutionary dynamics 
in cities.

2.1 | Social drivers of urban ecology

In recent years, urban ecology has emerged as a unified discipline, 
focusing on the many ways in which urbanization alters abiotic and 
biotic conditions that influence species interactions, patterns and 
processes and how they feed back to people via changes in ecosys-
tem function (Collins et al., 2000; Grimm, Grove, Pickett, & Redman, 
2000). Intraspecific (communication, mating behaviour, within-spe-
cies competition) and interspecific (mutualism, predation, herbivory, 
among-species competition) interactions—including with humans—
can differ significantly between urban and surrounding nonurban 
habitats (Miles, Breitbart, Wagner, & Johnson, 2019; Pereira-Peixoto, 
Pufal, Staab, Feitosa Martins, & Klein, 2016; Rodewald, Shustack, 
& Jones, 2011). Urban ecology has increasingly integrated human 
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social patterns and processes in the study of urban ecosystems 
(Alberti, 2008; Grimm et al., 2000; Marzluff, 2008; Tanner et al., 
2014), recognizing that cities comprise a mosaic of natural and built 
habitats with varying disturbance across space and time (Pickett, 
Cadenasso, Childers, McDonnell, & Zhou, 2016; Savage, Hackett, 
Guénard, Youngsteadt, & Dunn, 2015).

Redefining cities as intrinsically coupled human and natural sys-
tems (also known as CHANS: Box 2) acknowledges not only that 
social decisions shape urban ecosystems, but also that ecological 
changes motivate important human decisions (Liu et al., 2007). 
Decisions and policies made at various social scales—individuals, 
neighbourhoods, businesses, or municipal and national govern-
ments—can both directly regulate and be regulated by urban de-
cision-making and its ecological effects (Pickett et al., 2016). For 
example, planted trees and gardens regulate air filtration and mi-
cro-climates, sump ponds act as stormwater reservoirs, and re-
stored soil and macrophyte communities treat sewage and chemical 
waste via nutrient uptake and bio- and phytoremediation (Jabeen, 
Ahmad, & Iqbal, 2009; Zipperer, Morse, & Gaither, 2011). Parks pro-
vide recreational and cultural amenities that not only benefit people 
and reshape ecological processes, but are fundamentally driven by 
human choices (Ackley, 2014; Bolund & Hunhammar, 1999; Leong, 
Bertone, Bayless, Dunn, & Trautwein, 2016). The CHANS (Box 2) 
literature has provided a useful framework for studying urban ecol-
ogy, but it has yet to incorporate evolutionary biology and eco-evo-
lutionary dynamics.

2.2 | Social drivers of urban evolution

A large body of research has revealed that the historical rise of ag-
gregated human communities and subsequent origin of the first 
cities reflect deep interactions between social and evolutionary 
processes. The advent of the agrarian societies predating modern 
cities is reflected in the genomes of humans and domesticated spe-
cies (O’Brien & Laland, 2012). For the past fifteen thousand years, 
cultural and agricultural practices have led to strong selection on 
numerous species (Driscoll, Macdonald, & O’Brien, 2009; Larson 
& Fuller, 2014) as well as coevolutionary relationships with humans 
(Jackson, 1996; Leach, 2003). For example, coevolution between hu-
mans and crop plants (Perry et al., 2007; Ye, Gao, Wang, Bar-Yosef, 
& Keinan, 2017) and between humans and livestock (Tishkoff et al., 
2007) is associated with the advent of agriculture and the abandon-
ment of nomadic hunter–gatherer lifestyles. For example, genes for 
lactase that enable dairy consumption (Tishkoff et al., 2007), and 
amylase that aid starch consumption (Perry et al., 2007), show geo-
graphically spatial and cultural patterns of balancing selection for 
diverse diets.

Historical and contemporary evolutionary patterns in species 
most closely associated with humans can reflect social, cultural 
and even economic trends and trajectories. Indeed, biologists 
have learned a great deal about evolutionary processes through 
researching social-evolutionary processes such as domestication. 
Darwin (1859) built his argument of evolution by natural selection 

F I G U R E  2   Detailed dynamics among 
social, ecological and evolutionary 
patterns and processes in urban 
systems. Social patterns and processes 
(a) encompass a diversity of political, 
economic, and technological drivers that 
are interrelated with transportation and 
infrastructure, culture and education, 
human population demographics, and 
land/resource use and management. 
Social drivers affect (b) ecology through 
habitat modification; (c) ecology (biotic 
interactions) and evolution (gene flow and 
genetic drift) through altering connectivity 
among habitats; and (d) ecology and 
evolution through selection for preferred 
genotypes and phenotypes. Ecological (e) 
and evolutionary (f) dynamics are linked 
through feedbacks between ecosystems, 
communities, populations, genotypes and 
phenotypes. Ecological and evolutionary 
feedbacks towards society take the 
form of nature’s contributions to people 
(g) including ecosystem services and 
disservices
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through analogy with artificial selection in the domesticated rock 
pigeon (Columba livia) and other animals. Today, evidence suggests 
that some of the pigmentation patterns originally favoured by fancy 
pigeon breeders confer an adaptive advantage for urban pigeons 
(Vickrey et al., 2018), demonstrating the influence of past social 
preferences on the evolutionary history of a species. Domesticated 
dogs (Canis familiarus), which have undergone thousands of years 
of artificial selection, still commonly interbreed with wild coyote 
(Canis latrans; Mahan, Gipson, & Case, 1978) and wolf (Canis lupus; 
Pilot et al., 2018) populations. Studies have shown that dogs are 
often less likely to be neutered and more likely to be abandoned in 

lower-income urban areas following widespread economic down-
turns (Morris & Steffler, 2011). Thus, the observed introgression of 
domestic dog alleles into nearby coyote or wolf populations could 
potentially be the result of socio-economic patterns, though this has 
yet to be directly tested.

Some of the classic examples of adaptation by natural selection 
invoke urban social processes. Pollution and habitat degradation 
often accompany major technological innovations that are later 
followed by policies mitigating their damage. For example, during 
the industrial revolution in the United Kingdom, increasing urban 
activity deposited a layer of dark soot on the bark of surround-
ing trees that selected for rarer melanic variants of the commonly 
light-coloured peppered moth (Biston betularia), which became more 
cryptic and less subject to predation (Cook & Saccheri, 2013; Hof 
et al., 2016; Kettlewell, 1958). The Clean Air Act, enacted in the UK 
in 1956, decreased pollutants, leading to an evolutionary reversal 
whereby light-coloured moths again increased in frequency (Cook & 
Saccheri, 2013). In this iconic natural selection case study, the evo-
lutionary trajectory of urban-adjacent peppered moth populations 
ostensibly reflected human societal patterns of socio-economic and 
technological innovations, their impacts, and environmental policy.

Today, many evolutionary biologists explore how species re-
spond to novel selection pressures in urban environments (Alberti, 
2015; Donihue & Lambert, 2015; Johnson & Munshi-South, 2017; 
Szulkin et al., 2020). These selection pressures can vary over fine 
spatial and temporal scales (Donihue & Lambert, 2015), providing 
a more realistic context for studying in situ evolution. For example, 
populations of killifish (Fundulus heteroclitus) from four cities have 
convergently evolved novel adaptations which confer resistance to 
toxins in response to pollution in urban estuaries (Reid et al., 2016; 
Whitehead, Clark, Reid, Hahn, & Nacci, 2017). In another example, 
white clover (Trifolium repens) has shown repeated phenotypic con-
vergence in the loss of cyanogenesis in response to urbanization 
(Case Study: Box 3a; Johnson et al., 2018; Santangelo, Johnson, & 
Ness, 2018; Thompson, Renaudin, & Johnson, 2016); there is also 
increasing evidence for adaptations to stressors such as urban heat 
islands (Brans & De Meester, 2018; Diamond, Chick, Perez, Strickler, 
& Martin, 2018), which are characteristics that are also reflective of 
income inequality among urban neighbourhoods (Chakraborty, Hsu, 
Manya, & Sheriff, 2019). Researchers have also shown that species 
might be insulated from selection pressures in urban environments 
that exclude their predators (Rebolo-Ifrán, Tella, & Carrete, 2017), 
though little work has evaluated the evolutionary consequences of 
such relaxed pressures.

Most urban evolutionary biology research to date has focused 
on instances of nonadaptive evolution showing, for example, altered 
patterns of gene flow and genetic drift in cities (Bullock et al., 2018; 
Miles, Breitbart, et al., 2019; Schmidt et al., 2020). These genetic 
patterns can reflect human decisions to construct barriers and corri-
dors that impact the dispersal and thus gene flow of both native and 
human-affiliated species such as pests, disease vectors, and invasive 
species (Harris et al., 2016). In particular, overlaying genetic pat-
terns on city maps has led to a more comprehensive understanding 

BOX 2 Coupled Human and Natural Systems 
(CHANS)

Coupled human and natural systems (CHANS) are increas-
ingly pervasive as human activities now influence most nat-
ural processes. Researchers recognize CHANS by explicitly 
acknowledging linked reciprocal interactions between hu-
mans and nature—often characterized by flows of mate-
rial, energy, and information (Liu et al., 2007; McDonnell & 
Pickett, 1993). A critical, yet under-recognized component 
of CHANS is their unexpected feedbacks. These include 
nonlinear responses and threshold conditions in which sys-
tem components transition into alternative states, as well as 
time lags between a stressor and its effects and/or recog-
nition of these effects and the subsequent decisions. Also 
characteristic of CHANS are emergent properties in which 
simultaneous changes across multiple variables produce 
new environmental contexts that cannot be adequately 
characterized by any single variable or be identified in the 
human or natural systems alone (Alberti et al., 2020). Given 
their complex and heterogeneous nature, cities typify 
CHANS. Urban ecologists have increasingly relied on the 
CHANS conceptual frameworks to understand human–na-
ture connections and dynamics embedded within cities. 
Doing so has allowed urban ecologists to move from simply 
studying ecology that occurs within cities to understand-
ing the ecology of cities (Grimm et al., 2008, 2000; Pickett 
et al., 2001). Cities are exemplary CHANS because they 
are characterized by substantial complexity in ecological, 
hydrological and geophysical structure and function across 
scales as well as complex social hierarchies—from individu-
als to households, neighbourhoods, municipalities, regions, 
and nations—with feedbacks occurring within and among 
various ecological and social scales (Grimm et al., 2008, 
2000; Pickett et al., 2001). Because of this complexity, cit-
ies and their components cannot simply be understood by 
measuring human population sizes or densities and require 
a more comprehensive assessment of biophysical and so-
cial conditions.
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of dispersal and relatedness among populations of nuisance species 
(Combs, Puckett, Richardson, Mims, & Munshi-South, 2018), and 
thus an ability to predict future spread of pest species and resis-
tance alleles through neighbourhoods (Rost et al., 2009). There is ev-
idence from genetic analyses of neutral genetic variation that native 
species are negatively affected by urban fragmentation (Delaney, 
Riley, & Fisher, 2010; Van Rossum, 2008), whereas exotic species 
can benefit from the deliberate transportation and establishment by 
humans who favour them for both private and public gardens and 
parks (Colla & MacIvor, 2017; Trusty, Goertzen, Zipperer, & Lockaby, 
2007; Zengeya et al., 2017). Because human decisions and activities 
structure nearly every aspect of urban ecosystems, studying and 
quantifying their consequences and feedbacks will be essential for a 
holistic understanding of evolution in cities .

3  | ECO -E VOLUTIONARY DYNAMIC S IN 
CITIES

The field of eco-evolutionary dynamics emerged from growing evi-
dence of the reciprocal feedbacks between ecological and evolution-
ary processes that are possible when both occur at similar temporal 
and spatial scales (Hairston, Ellner, Geber, Yoshida, & Fox, 2005; 
Hendry & Kinnison, 1999; Reznick & Ghalambor, 2001; Thompson, 
1998). One of the central tenants of eco-evolutionary dynamics 
is that evolutionary trait change within species (intraspecific vari-
ation) not only influences population dynamics (e.g. migration, re-
production), but also interactions between organisms and their 
surroundings, thereby affecting ecological patterns and processes 
like community composition and primary productivity (Des Roches 
et al., 2018; Fussmann et al., 2007; Hendry, 2017). Altered ecological 
conditions can then feed back to cause further evolutionary change. 
Feedbacks are at the centre of experiments and mathematical mod-
els of eco-evolutionary dynamics, which have demonstrated their 
importance and prevalence in controlled laboratory settings as well 
as natural and altered habitats (Abrams & Matsuda, 1997; Bassar 
et al., 2010; Harmon et al., 2009; Loeuille & Leibold, 2008; Palkovacs 
& Post, 2009; Yoshida, Jones, Ellner, Fussmann, & Hairston, 2003). 
Many of these studies have underscored the importance of rapid 
evolution and genetic variation in conservation and management 
strategies for species impacted by anthropogenic threats (Allgeier 
et al., 2020; Merilä & Hendry, 2013; Nadeau & Urban, 2019; Urban 
et al., 2016; Wood, Palkovacs, & Kinnison, 2018; Lambert & Donihue, 
2020). Still, relatively little research has explicitly examined the ex-
istence and role of eco-evolutionary feedbacks in cities (but see 
Brans et al., 2017). Indeed, conservation in cities will benefit greatly 
from a better understanding of urban evolution and how it impacts 
management success (Lambert & Donihue, 2020).

Urban eco-evolutionary feedbacks are particularly relevant be-
cause they have the potential to affect a great number of people 
through ecosystem and “evosystem” services (or “natures contri-
butions to people”) and disservices (Bolund & Hunhammar, 1999; 
Jenerette, Harlan, Stefanov, & Martin, 2011; Pascual et al., 2014). 

These feedbacks, which can extend beyond the boundaries of cit-
ies themselves (Jiang, Deng, & Seto, 2013; Kaufmann et al., 2007; 
Seto et al., 2010), affect species persistence, abundance and pop-
ulation demographics, thereby influencing diverse ecological func-
tions and both beneficial and detrimental ecosystem services (Faith 
et al., 2010). Further, eco-evolutionary feedbacks towards humans 
can be unevenly distributed within and among cities leading to un-
equal distribution of services and disservices across human society 
(Bolund & Hunhammar, 1999; Jenerette et al., 2011; Pascual et al., 
2014). For example, affluent neighbourhoods can have larger, more 
diverse (Jenerette et al., 2011; Oertli & Parris, 2019) and better in-
terconnected green and blue spaces that support more abundant, 
genetically variable and therefore more stable populations of ben-
eficial species such as pollinators (Gill et al., 2016). However, these 
neighbourhoods can also have a higher proportion of non-native 
species in gardens and monoculture lawns that are manicured 
and eradicated of native weeds (Lerman & Warren, 2011; Tallamy, 
2020). Green roofs, which are becoming a common feature of newer 
buildings, can be genetically depauperate and thus harmful to local 
conspecifics and pollinators unless careful consideration is given 
to the initial seed stock (Ksiazek-Mikenas, Fant, & Skogen, 2019). 
Although non-native species might initially boost diversity and eco-
system function (Wilson & Jamieson, 2019), they can become inva-
sive through evolutionary processes such as hybridization (Culley & 
Hardiman, 2009; Rius & Darling, 2014) and introduce novel diseases 
and pests (Chifflet, Guzmán, Rey, Confalonieri, & Calcaterra, 2018; 
Eritja et al., 2005; Juliano & Philip Lounibos, 2005; Salyer, Bennett, & 
Buczkowski, 2014) that negatively affect native species (Godefroid, 
2001; Shochat, Warren, Faeth, McIntyre, & Hope, 2006; Wania, 
Kühn, & Klotz, 2006).

Some of the most important eco-evolutionary feedbacks on peo-
ple living in cities occur through the spread of organisms and genes 
that provide “disservices” such as negative effects on human health 
and well-being (Evans & Wellems, 2002). Again, the burdens of these 
detrimental feedbacks are unevenly distributed across the urban 
landscape. For example, rodenticide resistance in brown rats dispro-
portionately affects the lower socio-economic communities that are 
more burdened by these pests (Case Study Box 3a; Desvars-Larrive 
et al., 2017). In some cases, humans have coevolved with urban pests 
such as mosquitos (Kamdem, Fouet, Gamez, & White, 2017; Sabeti 
et al., 2002) and their malaria-causing pathogens (Case Study Box 3b; 
Evans & Wellems, 2002). Feedbacks from rapidly evolving pest and 
pathogen species may be particularly extreme in cities and neigh-
bourhoods where human hosts are living in concentrated areas, such 
as in lower-income public housing and apartment complexes (Booth 
et al., 2012; Byers, Lee, Patrick, & Himsworth, 2019; Combs et al., 
2018; Koch et al., 2016; Saenz, Booth, Schal, & Vargo, 2012). For ex-
ample, rampant urban bed bug infestations, again usually in lower-in-
come neighbourhoods, are an outcome of higher human density, 
frequent tenant and resident turnover, increased reliance on public 
transportation and the common exchange of second-hand and used 
goods (Booth et al., 2012). Not only does increased turnover and 
human–human contact lead to more frequent colonization of these 
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pests, but it also introduces adaptive alleles conferring resistance to 
common pesticides, thereby further facilitating their spread and per-
sistence (Saenz et al., 2012). Similar transmission of resistance alleles 
has been documented in other pest and pathogen species such as 
head lice (Koch et al., 2016), German cockroaches (Wada-Katsumata, 
Silverman, & Schal, 2013) and malaria (Kamdem et al., 2017). Higher 
connectivity in urban centres can in some cases promote genetic 
diversity and persistence in pest and pathogen populations by fa-
cilitating gene flow, such as with black widow spiders (Miles, Dyer, 
& Verrelli, 2018). Explicitly assessing the responses of organisms to 
features of urban ecosystems such as green space, pollution, waste 
and food availability will improve our understanding of the interface 
among social, ecological and evolutionary dynamics in cities.

Relatively little research has compared the strength of 
eco-evolutionary feedbacks between urban and nonurban eco-
systems (Miles, Breitbart, et al., 2019). In some cases, feedbacks 
might be magnified in urban areas: for example, white clover—a 
common herbaceous plant in urban and parks lawns—has adapta-
tions that likely contribute to its continued persistence in lawns 
and parks (Case Study Box 3c; Johnson et al., 2018; Thompson 
et al., 2016), leading to positive feedbacks for beneficial species, 
such as pollinators and nitrogen-fixing bacteria (Baude et al., 
2016; Larson, Kesheimer, & Potter, 2014). Alternatively, feed-
backs from evolutionary processes may be overshadowed or 
weakened due to external forces: for example, Daphnia—a genus 
of ubiquitous freshwater zooplankton—are known to exert strong 
top-down control on algae and can adapt to increased tempera-
tures in urban ponds (Case Study Box 3d; Brans, Jansen, et al., 
2017). However, disturbances, such as extreme heat waves or ex-
tensive eutrophication following the build-up of nutrient run-off, 
can compromise Daphnia’s capacity to adapt and maintain its al-
gae-controlling ecological function. The loss of this function from 
the system can initiate drastic shifts in the pond ecosystem, in-
cluding the spread of toxic algal blooms (Ger et al., 2016) that not 
only limit the diversity and abundance of insects, amphibians and 
submerged vegetation, but also present a public health concern 
to humans and their pets (Kosten et al., 2012; Thomaz & Cunha, 
2010). Feedbacks from species like white clover and Daphnia may 
be more nuanced, though still broadly important for ecosystem 
function and services in cites.

4  | TOWARDS AN URBAN SOCIO -ECO -
E VOLUTIONARY FR AME WORK

Despite an inherent spatial and temporal heterogeneity of cit-
ies, research on urban ecology and evolutionary biology often 
defaults to simplistic unidimensional, linear or dichotomous 
urban variables (e.g. urban versus nonurban, proportion of built-
up area and other land cover classes, human population density) 
that consider urbanization as a continuous gradient (McPhearson 
et al., 2016; Moll et al., 2019). Although these aggregate prox-
ies are capable of capturing some urban variation, they often fail 

to encapsulate the complexity of urban systems that are driven 
by social and ecological interactions (Alberti et al., 2020; Schell 
et al., 2020). Acknowledging and incorporating spatial and tem-
poral heterogeneity in these interactions will be important for 
studying urban eco-evolutionary dynamics. For example, access 
to food, public transit routes, waste management and green space 
usually varies nonlinearly with urban zoning. Further, historical 
redlining practices that reflect underlying racist policies have led 
to an uneven distribution of infrastructure and social services 
that structure the urban ecosystem in many US cities (Schell et al. 
2020; Grove et al., 2014; Locke et al., 2020; Roman et al., 2018). 
Below, we argue that study of socio-eco-evolutionary dynamics 
in cities requires an approach that addresses and acknowledges 
these complex, multivariate, and heterogeneous stressors. First, 
we describe how existing phenotypic and genomic approaches for 
studying eco-evolutionary dynamics might be extended to include 
the social patterns and processes intrinsic to urban ecosystems. 
Second, we suggest how the coupled human and natural systems 
framework—a central tenant of urban ecology—might incorporate 
evolutionary biology, and by extension, eco-evolutionary dynam-
ics, to help understand socio-ecological processes and feedbacks. 
Finally, we overview the opportunities for studying socio-eco-
evolutionary dynamics, stressing a thorough and systematic iden-
tification of the demographic, cultural, political, economic and 
technological drivers that shape and are shaped by urban ecology 
and evolution.

4.1 | Extending eco-evolutionary dynamics to 
include human society

The concept of the evolving metacommunity (Definition: Box 1) is 
one example of a current framework in evolutionary ecology that 
can be used to study socio-eco-evolutionary dynamics in urban 
ecosystems. This framework considers organisms within networks 
of interconnected populations and communities (Urban & Skelly, 
2006). Biological responses to environmental changes are there-
fore governed by a dynamic interplay between local and regional 
processes, including species sorting, adaptation, dispersal and 
gene flow (Urban & Skelly, 2006). Extending the evolving meta-
community theory to incorporate the effects of humans and social 
dimensions will be an important consideration in studying eco-
evolutionary dynamics in urban ecosystems. In these ecosystems, 
individuals, populations and communities are nested in a mosaic 
of habitats that are interconnected and fragmented by human ac-
tivity and infrastructure. While roads, waterways and built struc-
tures isolate and restrict distribution in some species, they connect 
and disperse others that are more closely associated with humans 
(Miles, Rivkin, et al., 2019).

Humans might also be uniquely incorporated into evolving 
metacommunity models as species themselves. As with other in-
teracting species, human populations are characterized by varying 
abundance and distribution that reflects their interactions with local 
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BOX 3 Urban Socio-Eco-Evo Dynamics Case Studies

(a) Social determinants of rat ecology, evolution, disease transmission and pest management
Brown or “Norway” rats (Rattus norvegicus) have coinhabited with humans for cen-
turies by exploiting food and built structures (Byers et al., 2019; Gardner-Santana 
et al., 2009). Brown rats show adaptive resistance to rodenticide commonly used 
in urban habitats (Desvars-Larrive et al., 2017) and significant genetic differen-
tiation at the city block scale where high-traffic roadways limit gene flow across 
neighbourhoods (Combs, Byers, Himsworth, & Munshi-South, 2019; Combs et al., 
2018; Gardner-Santana et al., 2009; Kajdacsi et al., 2013). Garbage management 
may also influence the population genetic structure of rats such that individuals in 
resource-rich microhabitats are less likely to disperse and thus aggregate with more 
closely related kin within small areas (Gardner-Santana et al., 2009). Unsecured 
food waste, dilapidated structures and overgrown vegetation all promote increases 
in rat infestation in urban areas (Murray et al., 2018; Walsh, 2014). In response to 
societal and economic neglect, low-income communities often have the highest 

aggregation of attractants for brown rats (Byers et al., 2019; Kajdacsi et al., 2013; Murray et al., 2018; Peterson et al., 2020). These 
dynamics intrinsically link wealth inequality and rat urban ecology. Brown rats are notorious reservoirs of multiple zoonotic pathogens 
that have myriad negative health implications for humans (Gardner-Santana et al., 2009; Kajdacsi et al., 2013; Richardson et al., 2017). 
Brown rats’ role as carriers of pathogens underscores the urgent public health priority for socio-eco-evo investigations that inform 
sustained and efficient pest management practices (Byers et al., 2019; Combs et al., 2019). Recent findings show how rats capitalize 
on urban centres and can thus inform pest management strategies (Combs et al., 2019). Disenfranchised communities with reduced 
infrastructure quality should feasibly receive the most targeted and sustained pest control efforts (Peterson et al., 2020). However, 
many of these communities are socially and economically neglected, receiving insufficient waste management and public services 
that would alleviate the conditions that attract brown rats. In combination, these studies demonstrate how social determinants shape 
ecological conditions that promote rat colonization and adaptation, resulting in negative feedbacks to society in one of the few, fully 
articulated examples of socio-eco-evolutionary dynamics in cities.

b) Social landscape drivers and pesticides impact mosquito evolution and disease in cities
Mosquitoes (including Aedes aeqypti and Culpex pipiens) are ubiquitous across the 
globe and are prominent vectors for human disease (e.g. Zika virus, malaria, dengue 
fever, West Nile virus; (Kalluri, Gilruth, Rogers, & Szczur, 2007; Rochlin, Turbow, 
Gomez, Ninivaggi, & Campbell, 2011). Pest management in cities is especially ur-
gent because mosquitoes show accelerated larval growth and increased survivor-
ship in urban environments due to greater densities of suitable breeding locations 
(small volumes of standing water), urban heat islands and reductions in predators 
due to insecticides and unsuitable habitat (Li, Dicke, Harvey, & Gols, 2014; Wilke 
et al., 2019). Insecticide application has also promoted resistance, and challenged 
pest management. Hence, mosquitoes generally tend to experience fitness ben-
efits in cities, increasing the risk of pathogen transmission among humans (Kamdem 
et al., 2017; Medeiros-Sousa, Fernandes, Ceretti-Junior, Wilke, & Marrelli, 2017). 
Variation in urban infrastructure, driven by socio-economics and urban planning, 

can be linked directly to the ecology and evolution of mosquito species. Low-income cities and neighbourhoods have greater rela-
tive proportions of impervious surface cover, leading to more surfaces holding standing water (Ayala & Estrugo, 2014; Rochlin et al., 
2011). Accordingly, impoverished neighbourhoods have larger mosquitoes in better condition, with increased survivorship and repro-
duction (Katz et al., 2019). Recent empirical work further shows that urban residents in low-income neighbourhoods have greater risk 
of mosquito-borne diseases, specifically West Nile virus in Washington, D.C., and Baltimore, Maryland (LaDeau, Leisnham, Biehler, 
& Bodner, 2013) and malaria in cities across sub-Saharan Africa (De Silva & Marshall, 2012). Social drivers may additionally affect the 
rate of coevolutionary change between mosquito-borne diseases (e.g. Plasmodium) and human resistance to those diseases (Ayala 
& Estrugo, 2014). For example, sickle cell anaemia, a disease characterized by malformed red blood cells, is typically lethal in people 
who inherit two copies of an allele with a mutation inhibiting haemoglobin production (Allison, 1954). However, heterozygotes (with 
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just one sickle cell allele) have increased resistance to malaria, leading to the higher prevalence of the allele in urban, suburban and 
rural areas where malaria is common (Evans & Wellems, 2002). As countries in malaria-affected areas continue to urbanize, the close 
coevolutionary association among humans, mosquitos and Plasmodium species may become an increasingly urban issue.

c) Clover evolution, repeated loss of cyanogenesis and urban lawns
The ecology and evolution of white clover (Trifolium repens), a perennial, herbaceous 
plant common in lawns and other human-modified habitats, has been well studied 
in an urban context. Clover exhibits a Mendelian polymorphism for hydrogen cya-
nide production (cyanogenesis), which both defends against herbivores and reduces 
freezing tolerance. White clover repeatedly evolves decreased cyanogenesis in cit-
ies, due to putative selection from colder night-time winter temperatures (Johnson 
et al., 2018; Santangelo et al., 2018; Thompson et al., 2016). White clover’s adap-
tations might in part lead to their high population densities in cities, where they 
feed back on the urban ecosystem and society. In particular, clover’s mutualistic 
rhizobial bacteria influence increase soil nitrogen (Hennig & Ghazoul, 2011) and its 
flowers provide a nectar resource for pollinators (Hicks et al., 2016; Larson et al., 
2014; Theodorou et al., 2017). Still, despite its presence in many lawn seed mixes 
(Bormann, Balmori, & Geballe, 2011), white clover is often considered a weed and 

removed by homeowners, negatively affecting pollinator communities (Baude et al., 2016; Larson et al., 2014). Because of its strong 
association with humans, its importance for nutrient cycling and pollinators, and its evolution in cities, the urban white clover system 
presents an opportunity to study socio-eco-evolutionary dynamics. In particular, research could explore how land use and conver-
sion, homeowner cultural habits, and household income predict clover presence in lawns and thus spatial heterogeneity in pollinator 
resource availability. If clover is removed, policies could encourage the planting of native species to support lost ecosystem functions.

d) Daphnia evolution, eutrophication, urban heat islands and trophic cascades
Daphnia are common zooplankton species in urban, rural and natural freshwater 
ponds and lakes across the globe. They vary in several intraspecific life-history, 
behavioural, and physiological traits that can elicit strong ecosystem-level ef-
fects. D. magna show reduced body size, higher heat tolerance, faster pace 
of life, and altered stress physiology in urban populations compared to rural 
populations, which are most likely adaptations to warmer temperatures (Brans 
& De Meester, 2018; Brans, Jansen, et al., 2017). Smaller average body size in 
urban zooplankton communities that include Daphnia can have cascading ef-
fects on pond ecosystems (Gianuca, Pantel, & De Meester, 2016). While in-
creased Daphnia thermal tolerance allows them to persist and suppress algae 
populations, smaller body size diminishes their capacity to do so (Gianuca et al., 
2016). Reduced top-down effects from primary consumers can result in the 
disappearance of emergent and submerged vegetation, eutrophication, and de-

cline in amphibians, invertebrates and overall pond biodiversity (Blaustein et al., 2011; Huisman et al., 2018; Landsberg, 2002; 
Paerl & Otten, 2013). Algal blooms will likely increase with climate change and urbanization (Paerl & Huisman, 2009; Teurlincx 
et al., 2019; Waajen, Faassen, & Lürling, 2014) causing toxic conditions that are harmful for humans and pets (Huisman et al., 
2018; Reid et al., 2019). Persistence of D. magna in urban and natural ponds is thus crucial for human health and well-being. Yet, 
certain actions taken by humans can directly lead to their demise (Paerl & Huisman, 2009; Teurlincx et al., 2019; Waajen et al., 
2014). For example, fertilizer run-off and removal of submerged vegetation can result in anoxic conditions, fatal to D. magna 
and other zooplankton (Peretyatko, Teissier, De Backer, & Triest, 2009). Further, stocking of zooplanktivorous fish can reduce 
Daphnia abundance and thus their ability to control algae populations (Peretyatko et al., 2009). Shifts towards eutrophic pond 
ecosystems can negatively impact human psychological well-being, hydrological balance, climate mitigation, nutrient retention, 
and bio- and phytoremediation of toxicants from the environment (Reid et al., 2019). Thus, human management, monitoring and 
mitigation of local environmental conditions like warming and nutrient run-off, are crucial for the maintenance of urban pond 
ecosystems (Paerl & Otten, 2013; Peretyatko et al., 2009).

BOX 3 (Continued)

clover population

parks, 
gardens, 
& lawns

colder winter
temperatures

nitrogen
fixation

pollinator
community

herbivore
community adaptive

cyanogeneisis,
temperature
tolerance &

herbivore
defense

Daphnia population

humans & pet recreation, health,
& welbeing

toxic bloom
forming algae

diverse
pond

animals

submerged
vegetation

adaptive
reduced body size,

increased pace of
life & temperature

tolerance

zooplank-
tivorous fish

fertilization of
gardens &
parks

urban
heat
islands



     |  11DES ROCHES et al.

environments. As important ecosystem engineers (Smith, 2007), hu-
mans can impose selection on other species. These other species 
and their adaptations might feed back to affect human densities, 
habitat choices, settlement and movement patterns. At broader spa-
tial scales, urban influences on surrounding environments extend 
well beyond the geographic boundary of a city, making the hierar-
chical structure of the evolving metacommunity theory also helpful 
for studying urban eco-evolutionary dynamics. Including social com-
ponents like transportation infrastructure, neighbourhood cohesion, 
and socio-economic geography may allow for more accurate predic-
tions. For example, a consideration of international travel networks, 
national quarantine and customs policies, and trade embargos can 
help predict the evolution and spread of pathogenic, invasive and 
pest species (Helmus, Mahler, & Losos, 2014; Jones et al., 2008; 
Miles, Rivkin, et al., 2019). While challenging, a thorough incorpo-
ration of human social patterns and processes into ecological and 
evolutionary dynamics will lead to novel insights for understanding 
urban ecosystems.

4.2 | Extending urban coupled human and natural 
systems to include evolution

An additional approach to studying socio-eco-evolutionary dy-
namics in cities is by extending urban ecology’s CHANS models 
(Box 2; Liu et al., 2007) to include evolutionary processes and 
feedbacks. These models have shown that human socio-eco-
nomic and demographic patterns and processes are reflected in 
infrastructure and other abiotic and biotic features of the urban 
ecosystem (Schaider, Swetschinski, Campbell, & Rudel, 2019; 
Tessum et al., 2019). Urban evolution research has simultane-
ously revealed that these same physical and biological character-
istics can influence both the adaptive (Brans & De Meester, 2018; 
Whitehead et al., 2017) and nonadaptive (Combs et al., 2018; 
Munshi-South, 2012) evolution of urban species. Indeed, recent 
work has shown that urban predictor variables that characterize 
socio-economic heterogeneity, such as urban heat islands (Brans 
& De Meester, 2018) and environmental pollutants (Isaksson, 
2015; Reid et al., 2016; Wirgin et al., 2011), can drive physi-
ological and life-history adaptations in organisms. Recent work 
in Baltimore, USA, has shown that tiger mosquitoes (Aedes al-
bopictus) in low-income neighbourhoods tend to have larger wing 
and body sizes—traits linked to increased fecundity, survival and 
ultimately spread of disease (Katz, Leisnham, & LaDeau, 2019). 
The distribution of these human influences is a direct result of 
socially driven urban form underpinned by exacerbating legacies 
of income inequality and segregation over decades and centuries 
(Grove et al., 2018; Roman et al., 2018). Integration of social pro-
cesses and their relevant eco-evolutionary feedbacks may there-
fore serve dual functions: first, by increasing our understanding 
of the value of ecological and evolutionary processes in cities, 
and second, by providing the applied tools to mitigate urban dis-
turbances on ecosystems.

4.3 | Opportunities for studying socio-eco-
evolutionary dynamics

To fully understand urban eco-evolutionary dynamics, we need to 
explicitly identify the mechanisms by which human society influ-
ences ecology, evolution and their feedbacks. Urban ecosystems are 
constantly changing as a result of social decisions and processes such 
as public policies and private landownership. Humans also interact 
dynamically within their communities through multiple networks 
like economic markets and public institutions. For example, urban 
residents depend on large-scale built infrastructures (e.g. as electric 
power, water supply, food distribution and transportation networks) 
that sustain resource flows within and across cities (Childers et al., 
2015). These interactions contribute to unique physical (e.g. sprawl), 
social (e.g. cultural and economic segregation) and economic (e.g. 
land values and use) properties of cities that can affect ecological 
and evolutionary processes on broad scales.

Urban ecosystems are subject to multiple drivers of hu-
man-driven environmental change such that they often experience 
extreme climatic conditions across multiple axes. How different en-
vironmental conditions interact with one another and affect urban 
organisms is highly variable and poorly understood. Consequently, 
the responses of organisms to urbanization often cannot be pre-
dicted based on studies of any environmental condition in isolation. 
For example, researchers showed that bird life-history traits were 
better predicted by a simple model that tested the effect of urban vs 
nonurban habitats compared to models that included four separate 
environmental variables that were each correlated with urbaniza-
tion (temperature, humidity, artificial light and noise). The better fit 
of the simple model suggests that additional unmeasured variables 
account for the differences in life-history along urban–rural gradi-
ents, and thus many ecological, social and evolutionary factors likely 
need to be included to accurately predict traits changes associated 
with urbanization (Sprau, Mouchet, & Dingemanse, 2017; Szulkin, 
Garroway, Corsini et al. 2020).

Landscape transformation, infrastructure development and 
complex social and political networks vary considerably across re-
gions, causing heterogeneity within and among cities that can influ-
ence ecological and evolutionary processes (Alberti et al., 2020). For 
example, variation in land use patterns reflects a complex interplay 
among homeowners’ choices, real estate markets, local businesses 
and policymakers decisions (Alberti, 2008). These interactions can 
affect the arrangement and proportion of built and natural land 
cover, thereby influencing organisms and their habitats. Quantifying 
socio-economic variables can help with the construction and param-
eterization of urban eco-evolutionary dynamics models (McPhearson 
et al., 2016). These variables include the distribution of transporta-
tion networks (i.e. accessible from municipal resources), built infra-
structure (i.e. from urban planning) and land use (i.e. from GIS and 
satellite imagery), as well as attributes of human demographics and 
society (i.e. from census and other survey data). Participatory sci-
ence (also called citizen or community science) efforts in particu-
lar present an important opportunity both for collecting large-scale 
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eco-evolutionary (Cooper, Dickinson, Phillips, & Bonney, 2007) and 
socio-ecological data (Crain, Cooper, & Dickinson, 2014) and for 
promoting science to the general public using surveys, audiovisual 
data collection apps (e.g. SpiderSpotter, Bloomin’ Algae, iNatural-
ist, eBird, iSpot) and other technological platforms (Krasny, Russ, 
Tidball, & Elmqvist, 2014).

The relative predictability of urban sprawl also provides an im-
portant avenue for initiating longitudinal studies that collect base-
line data and track the development and restoration of landscapes 
through time (Etterson et al., 2016). In particular, researchers can 
measure social, ecological and evolutionary parameters at pre-, in-
termediate- and post-urbanization time points and at different lev-
els of biological organization, contrasting urbanized, urbanizing and 
nonurbanizing sites within and across cities. These research strat-
egies can enable reconstruction of population genetic and pheno-
typic diversity and change, as well as community composition and 
species diversity over time. Socio-demographic and socio-economic 
changes can be monitored in parallel to determine potential drivers 
of eco-evolutionary change in cities.

Identifying the underlying sources of phenotypic variation is cru-
cial for assessing the relationships and feedbacks among social, eco-
logical and evolutionary processes in urban ecosystems. Most traits 
are the product of both genetic and environmental factors. As a result, 
purely phenotypic studies can confound the inference of eco-evolu-
tionary dynamics if they do not account for the joint effects of plas-
ticity and genetics on phenotypic variation and fitness (Brans, Jansen, 
et al., 2017; Govaert, Pantel, & De Meester, 2016; Perrier, Caizergues, 
& Charmantier, 2020). In particular, the inference of urban evolution 
in instances of polygenic inheritance necessitates standardized com-
mon garden or reciprocal transplant experiments to evaluate both the 
heritability and the fitness consequences of supposed urban adapta-
tions (Thompson et al., 2016). For example, researchers used recip-
rocal transplants with common ragweed to identify local adaptation 
and divergent selection between populations in urban and nonurban 
habitats (Gorton, Moeller, & Tiffin, 2018). Studies like these can be 
replicated across multiple urban gradients and sampling plots within 
and among different cities and neighbourhoods to test the ubiquity 
and convergence of evolutionary trajectories (Santangelo, Miles, 
Breitbart, et al. 2020). Variance partitioning metrics (Govaert, 2018; 
Govaert et al., 2016; Lajoie & Vellend, 2015) can further help disen-
tangle the relative contributions of plasticity and genetics underlying 
intraspecific trait variation, community ecology and ecosystem pro-
cesses (Brans, Govaert, et al., 2017; Stoks, Govaert, Pauwels, Jansen, 
& Meester, 2016). Such analyses will be essential for understanding 
socio-eco-evolutionary dynamics.

5  | LOOKING FORWARD: FUTURE 
STUDIES IN SOCIO -ECO -E VOLUTIONARY 
DYNAMIC S

Urban ecosystems are fundamentally regulated, transformed and 
interconnected by human activity. Thus, integrating human social 

patterns and processes in urban evolution studies not only presents 
an opportunity for novel research, but is also imperative for accurately 
understanding contemporary ecological and evolutionary dynamics in 
cities. As we move forward, we argue that more fully integrating evo-
lutionary ecology research with the social sciences to address socio-
eco-evolutionary questions is critical because:

BOX 4 Outstanding questions that could be 
addressed using a socio-eco-evolutionary 
framework

Integrating insights from social sciences, ecology and evo-
lutionary biology can help us address critical questions 
about urban systems. This understanding will feed back to 
improve our knowledge and predictions about how eco-
systems respond to global change. Here, we propose ten 
key questions to inform an integrated socio-eco-evolution-
ary framework.
1. How can incorporating methods from the social sciences 
improve our understanding of eco-evolutionary dynamics?
2. How do socio-eco-evolutionary dynamics scale with the 
spatial redistribution and generation lengths of humans 
and associated organisms across space and time?
3. What is the relevance and magnitude of evolutionary 
feedbacks to ecological and social patterns and processes 
in different urban contexts?
4. Can we predict the ways that interspecific interactions 
will influence eco-evolutionary dynamics in cities and the 
ways in which social drivers will modify these dynamics 
and patterns?
5. How important are local dynamics and species identi-
ties to eco-evolutionary dynamics in cities? What are the 
components of a cohesive theory that is relevant to all or 
most urban systems, and when do local ecology, culture 
and politics idiosyncratically shape outcomes?
6. How can eco-evolutionary dynamics feed back to influ-
ence social processes in cities? In what ways can social sys-
tems change in response to evolutionary changes that are 
induced by urbanization?
7. How can this multidimensional framework help us bet-
ter understand the resilience of urban ecosystems to pulse 
disturbances, such as extreme weather events, and ramp-
ing disturbances, such as climate change?
8. What elements of human social constructs (e.g. socio-
economic, cultural, religious, philosophical, political and aes-
thetic) are likely to impact socio-eco-evolutionary dynamics?
9. Under what circumstances are eco-evolutionary pro-
cesses stronger or weaker in urban compared to nonurban 
areas?
10. How do socio-eco-evolutionary changes in cities affect 
the influences of cities on surrounding landscapes?
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•	 Accurate predictions about urban coupled human and natural sys-
tems (CHANS) will require understanding the role of evolution in 
socio-ecological systems over various timescales.

•	 A complete understanding of urban eco-evolutionary dynam-
ics will require an explicit consideration of  social patterns and 
processes.

•	 The world is increasingly urbanized and the effects of cities ex-
tend beyond their borders. Hence, understanding ecological re-
sponses to global change will depend on our ability to address #1 
& 2.

Studies of cities as coupled human and natural systems (CHANS) 
and of eco-evolutionary dynamics have already provided insights 
into how urban ecosystems are likely to change over time. We now 
have the opportunity to leverage these existing bodies of work to 
create an integrative framework that more fully resembles the simul-
taneous social, ecological and evolutionary dynamics in urban eco-
systems. We encourage a new collaboration among social scientists, 
ecologists and evolutionary biologists to develop more sophisticated 
questions and increasingly accurate models of urban systems, and 
garner a greater understanding of dynamics both within and beyond 
city boundaries. Understanding urban evolutionary biology will have 
vast implications for socio-ecological policies such as those relating 
to biodiversity management and ecological restoration as well as 
human health, well-being and equity. Additionally, we suggest spe-
cific, important and timely questions that can be addressed with an 
integrated socio-eco-evolutionary framework (Questions: Box 4).

Cities provide exciting systems to expand our knowledge of 
eco-evolutionary dynamics and their social causes and conse-
quences. Studying the social dimensions of eco-evolutionary dy-
namics in cities will improve our understanding of the complexity 
of urban biological communities, which will be increasingly cru-
cial for conserving and maximizing ecosystem functions and con-
tributions to people within and outside cities. Research on urban 
socio-eco-evolutionary dynamics provides a unique opportunity 
to study evolving metacommunities, the interplay between local 
and regional responses, and the presence and strength of eco-evo-
lutionary feedbacks across multiple taxonomic groups. Just as 
urban ecology grew to consider the social complexity of cities and 
eco-evolutionary dynamics integrated the rapid pace of evolution, 
socio-eco-evolutionary research must recognize the dynamism re-
sulting from the interplay of social, ecological and evolutionary di-
mensions within urban systems.
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