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Urban ecosystems encompass complex feedbacks between 
human activity, built and planted infrastructure, and natural 
landscapes that drive unique biological processes (1–3).  
Interactions between social and natural systems produce  
distinctive biogeochemical and biophysical signatures (4, 5) 
that alter the demography, life histories, diversity, behaviors, 
and distributions of non-human species (6, 7). Resultant 
novel environmental conditions (e.g., urban heat island  
effects, food subsidies, and environmental pollution) can 
drive phenotypic shifts, emigration, or extinction within and 
across animal and plant populations (8, 9). Cities have,  
accordingly, become foci for research addressing biological 
responses to novel, rapidly changing environments (8–13). 
Recent urban ecosystems research can inform sustainable so-
lutions promoting biodiversity, human well-being, and urban 
resilience in the face of global environmental change (3, 14–
16). Leveraging urban ecosystems as conduits of sustainabil-
ity, conservation, and innovation, however, requires a  
comprehensive understanding of the underlying component 
parts, hierarchical structures, and key drivers of urban  
functions (Fig. 1) (3, 7, 16, 17). 

Since its inception, the field of urban ecology has framed 
cities as quintessential socio-ecological systems (i.e., complex 
adaptive systems or coupled human and natural systems), 
where social processes alter ecological properties that  
reciprocally influence human societies (18–20). These forma-
tive urban ecology models placed human decisions and insti-
tutions at the core of urban ecosystems, emphasizing  
the need to quantify spatial and temporal feedbacks within 
cities (17, 21). For example, urban Long-Term Ecological  
Research programs in Phoenix, Arizona and Baltimore,  
Maryland, USA (i.e., the Central-Arizona Phoenix and Balti-
more Ecosystem Study, respectively) have established links 
between social and ecological systems by overlaying habitat 
patch types with demographic information like neighbor-
hood wealth, housing densities, and impervious surface cover 
(2, 3, 10, 16). 

Socioeconomic status has been a standard metric for 
many socio-ecological studies, combining multiple social fac-
tors, including culture, race, occupation, education, and soci-
etal power into a complex aggregated measures (22, 23). 
Many social variables contributing to socioeconomic status 
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and related environmental variability are the result of histor-
ical government and societal actions (24, 25). Recent studies 
have begun to address the varied contributions of several so-
cial factors (e.g., race, sex, age) to ecological heterogeneity in 
cities (25–28). However, social inequality remains understud-
ied as a key driver of ecological and evolutionary change in 
cities (Fig. 1) (15, 21, 24). Social inequality is the unequal dis-
tribution or allocation of wealth and resources to specific so-
cio-cultural groups. Such imbalances contribute to profound 
injustices (i.e., social inequities; Fig. 1) that privilege certain 
individuals over others (29–31). Inequality and inequity dis-
proportionately affect which individuals own and access 
land, functionally restricting the people who become the pri-
mary drivers of urban ecosystem structure and function  
(32, 33). 

Urban social inequality stems from historical and contem-
porary power imbalances, producing deleterious effects that 
are often intersectional, involving race, economic class, gen-
der, language, sexuality, nationality, ability, religion, and age 
(34). For example, various ecological attributes in cities are 
principally governed by the spatial and temporal scale of so-
cial inequities (23). For instance, the uneven distribution of 
urban heat islands (35–39), vegetation and tree canopy cover 
(27, 28, 40, 41), environmental hazards and pollutants (42–
46), access to healthy waterways (47, 48), and the relative pro-
portion of native to introduced species (49, 50) are strongly 
dictated by structural racism and classism (Fig. 1) (21, 31, 32, 
51). Concurrently, the environmental justice literature has 
long articulated the economic, health, and environmental im-
plications of structural racism in cities (52–55). Integrating 
the contributions of social inequities to urban environmental 
structure is therefore crucial for informing our understand-
ing of biological processes in cities (33, 55, 56). 

We provide a transdisciplinary synthesis on how social in-
equities – and specifically, systemic racism – serve as princi-
ple drivers of ecological and evolutionary processes by 
shaping landscape heterogeneity (Fig. 1). Critically, we draw 
on the social and political sciences to specifically stress how 
understanding systemic racism and racial oppression, rooted 
in settler colonialism and white supremacy, is essential for 
advancing urban ecology and evolutionary biology research. 
First, we review the socio-ecological effects of wealth dispar-
ities in cities. Second, we describe how systemic racism drive 
inequitable patterns in wealth, health, and environmental 
heterogeneity, noting that intersectionality with other identi-
ties (e.g., gender, sexual orientation, and Indigeneity) may 
have additive impacts on urban structure (29, 34, 57). We pro-
pose hypotheses linking systemic racism to urban ecological 
and evolutionary patterns and processes. We close by illus-
trating how centering environmental justice and anti-racist 
activism in biological research is a priority for urban conser-
vation (55, 56). 

While we predominantly focus on work from North Amer-
ica, the global ubiquity of social inequality and systemic rac-
ism across cities suggests our synthesis is broadly applicable 
(58–60). Addressing systemic and structural racism both in 
cities and in the scientific community is necessary to compre-
hensively understand urban ecological and evolutionary dy-
namics, conserve biodiversity, improve human health and 
well-being, and promote justice in nature and society. 
 
Socio-ecological effects of wealth 
Variation in household and neighborhood wealth are cur-
rently the most commonly-explored social variables ecol-
ogists use to describe within-city biodiversity patterns, 
especially in residential neighborhoods (26, 61–64). Wealth, 
specifically median household income, has repeatedly 
emerged as a significant explanatory variable for predicting 
urban ecological patterns. One of the most well-known and 
robust hypotheses linking household income and ecology – 
the luxury effect – suggests that urban biodiversity, and plant 
diversity in particular, is positively correlated with neighbor-
hood wealth (61, 63). 

The wealth-biodiversity covariance is predicated on a fun-
damental tenet of urban ecosystems: humans manage urban 
areas and, as ultimate ecosystem engineers, can greatly aug-
ment or remove resource limitations that favor growth and 
abundance of some species over others (32, 61). As a result, 
households with greater discretionary income, capital, higher 
education, and relaxed pressure for essential needs exert 
stronger influence on plant assemblages, establishing a resi-
dential ecological mosaic based on socioeconomics (32, 50, 
62, 65). 

The luxury effect is particularly pronounced in arid ecore-
gions and biomes, and such effects intensify with increasing 
urbanization, vegetation loss, and wider wealth gaps (21, 35). 
Original support for the luxury effect came from Phoenix, Ar-
izona, USA, with observed positive correlations between 
household income and woody perennial diversity (61). Stud-
ies investigating the luxury effect globally have implicated 
wealth as a strong correlate with faunal and floral diversity 
(26, 63), relative vegetation cover (27, 40), species abundances 
(49), and the distribution of abiotic attributes in cities includ-
ing urban heat islands (35, 66) and environmental hazards 
(44). Recent meta-analyses have supported the wealth-biodi-
versity phenomenon yet emphasized that the causal social 
and political mechanisms behind these patterns are seldom 
explored (26, 64). 
 
Vegetation cover and biodiversity 
Affluent urban residential neighborhoods generally have 
greater vegetation cover, canopy cover, and plant diversity 
(27, 63, 67). Public urban forests, recreational parks, and pri-
vate green spaces also tend to be larger and more established 
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with older trees and vegetation that provide greater niche 
space to support biodiversity at other trophic levels (49, 68, 
69). For instance, strong positive correlations exist between 
urban tree cover and household income for 7 major U.S. met-
ropolitan regions (40). General vegetation cover in Los Ange-
les, CA (27) and the distribution of urban forests throughout 
Cook County, Illinois (41) are also positively affected by in-
creasing wealth, as well as several other socioeconomic fac-
tors (e.g., racial composition, education, home ownership). In 
addition, recent work suggests interactive effects between 
housing age and income predict tree biodiversity, with more 
established homes in high-income neighborhoods exhibiting 
greater diversity (27). Lawns are a special case where wealth-
ier residents intensively manage their lawns to be very green 
(70) and have few-to-no species other than turfgrasses (71). 
As a result, some studies find neutral or negative wealth-
plant biodiversity relationships (72, 73). 

Luxury effects customarily scale from the household to 
the neighborhood level. A recent study found that yards in 
wealthier neighborhoods consistently had greater abun-
dances and diversity of flowering plants, trees, and nonnative 
species (65). Similarly, individual homeowners with cost-
driven landscaping priorities primarily (i.e., need for cheaper 
plants) have lawns with higher relative proportions of 
nonnative plant species with lower functional diversity (50). 
These recent studies illustrate how socioeconomics drive var-
iation among individuals and therefore choices at the house-
hold level, which can scale up to affect neighborhood 
biodiversity. These wealth-driven impacts on patterns of pri-
mary producers may have substantial effects on metacommu-
nity composition and dynamics. Luxury effects often scale 
from the residential to the city-wide level, providing cross-
city evidence that wealthier U.S. cities have better resourced 
urban park systems (74). Whether such trends in vegetative 
structure are consistent across cities, or even hold true across 
biomes, remains unexplored. 
 
Impacts on animal communities 
Luxury effects extend beyond primary producers, with recent 
studies suggesting that colonization, species richness, and 
abundance of birds are related to neighborhood wealth (49, 
75–77). Most prior studies address these relationships in birds 
in multiple cities across the globe. For instance, bird commu-
nity richness positively correlates with median household in-
come across multiple urban centers in South Africa (49). 
However, negative income-richness relationships in highly 
urbanized landscapes imply that highly-built yet expensive 
downtown centers can deter or prevent successful coloniza-
tion and persistence (49). Other studies in Phoenix, Arizona 
similarly found that bird diversity was greatest in parks and 
residential yards situated in high-income neighborhoods, a 
pattern which was primarily explained by an increased 

relative abundance of native desert species and proximity to 
undeveloped desert landscapes (75, 76). Further, recent evi-
dence from 45,000 observations of 160 passerine species 
found across U.S. cities show that increasing household in-
come predicts greater abundances of migratory species, as 
well as greater abundances of smaller, shorter-lived birds 
(77). These results are some of the first empirical examples 
linking the luxury effect to evolutionary ecology. 

Few studies address the luxury effect in other animal taxa, 
though evidence implies these effects persist across multiple 
clades. Evidence in coyotes (Canis latrans) and raccoons 
(Procyon lotor) throughout Chicago, Illinois suggests carni-
vores are more likely to colonize and persist in wealthier 
neighborhoods (68). Household income is also a strong pre-
dictor of lizard species richness in Phoenix, Arizona with 
other factors like traffic density and surface temperatures 
having weak effects (78). Evidence from arthropod research 
suggests that richness in high-income neighborhoods across 
North Carolina are greater regardless of vegetation cover at 
the property level (69). 

Wealth-animal richness trends can also extend beyond 
city limits. Red bat (Lasiurus borealis) and evening bat (Nyc-
ticeiu humeralis) activity is positively correlated to house-
hold income, regardless of land cover metrics (79). Activity 
patterns of hoary bats (Lasiurus cinereus), however, decrease 
with neighborhood income, suggesting that luxury effects are 
more salient for some species relative to others (79). 
 
Urban heat islands and air pollution 
Heat is unevenly distributed within a city, where tempera-
tures are typically greatest in lower income compared to 
higher income neighborhoods (35, 36). Low-income neigh-
borhoods have reduced tree and vegetation cover and in-
creased impervious surface cover, which contribute to higher 
surface temperatures in Phoenix, Arizona (35, 66), Baltimore, 
Maryland (36), as well as other cities worldwide (38, 39, 80). 
Given the cooling capacity of trees, apparent luxury effects on 
tree and vegetation cover can significantly impede environ-
mental cooling in low-income neighborhoods, making those 
residents particularly vulnerable to heat-related illnesses (36, 
81). Such wealth-tree-heat axes have emerged in other coun-
tries as well, including Canada (82), Brazil (83), and South 
Africa (84, 85). Heterogeneity in the distribution of urban 
heat islands, and associated health outcomes, is thus a direct 
consequence of the luxury effect (24, 35). 

Other environmental disamenities, especially pollutants, 
also reflect the luxury effect. Air pollution sources are often 
co-located near low-income neighborhoods and, conse-
quently, low-income residents often have higher risk and vul-
nerabilities to air pollutants. For instance, low-income 
residents throughout North Carolina (44) and multiple cities 
in the Northeastern U.S. (86) experience greater exposure to 
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atmospheric particulate matter. Low-income residents also 
experience greater ambient nitrogen dioxide concentrations 
in Montreal, Canada, though some high-income areas in the 
downtown region similarly experience increased ambient 
concentrations of this pollutant (87). Further, meta-analysis 
of data from the American Housing Survey suggests that low-
income households have elevated indoor concentrations of 
nitrogen dioxide and particulate matter (42). 

Work on heat islands and pollution support the idea that 
inequality in neighborhood wealth leads not only to a diver-
sity of environmental hazards but that these hazards com-
pound to create unique, challenging environmental patches. 
 
Limitations of the luxury effect 
The luxury effect is far from universal across systems and 
taxa, and the underlying processes and causal mechanisms 
contributing to emergent wealth-ecology relationships are 
seldom addressed (21, 40). In a meta-analysis of associations 
between wealth and biodiversity, the directional relationship 
(positive, negative, or no relationship) between biodiversity 
and wealth vary drastically based on differences in social con-
ditions, which include cultural norms, individual and com-
munity preferences, and municipal policies (26). A pair of 
similar meta-analyses concluded that relationships between 
income inequality and urban forest cover are not always sig-
nificant, with neighborhood racial composition explaining di-
vergent conditions in vegetation cover (64, 88). 

The history of urban development, individual-level 
choices, and societal norms also distort potential relation-
ships between wealth and biodiversity. For instance, in some 
cities, wealthier neighborhoods may have a higher relative 
proportion of high rises and built downtowns that severely 
limit the amount of vegetated cover, reducing functional hab-
itat space and biodiversity (26). Wealthier neighborhoods 
may also enact policies that reduce vegetation diversity and 
mandate the proliferation of monoculture lawns that yield 
significant environmental homogeneity and serve to similarly 
reduce biodiversity (26). Moreover, refined analytical ap-
proaches may help to disentangle the contribution of wealth, 
culture, and other socioeconomic factors to ecology. For ex-
ample, evidence in New York City suggests residential canopy 
cover is best explained as a signal of social status (the “ecol-
ogy-of-prestige hypothesis”) (32). Hence, the convergence 
among policy, individual choices, and socioeconomic varia-
bles might be better predictors of urban ecological variance 
rather than wealth alone (32). Indeed, recent work assessing 
the plant diversity of residential yards supports this conclu-
sion, suggesting that individual homeowner’s landscaping 
priorities largely dictate private lawn community composi-
tion (50). 

Luxury effects have been primarily explored in terrestrial 
systems, with less work in aquatic habitats. Lack of evidence 

for aquatic luxury effects in urban ponds, lakes, and rivers 
may be due to other abiotic factors regulating waterway 
health that do not necessarily correlate with wealth dispari-
ties (63). Small ponds or lakes are also seldom present in 
lower socioeconomic areas, functionally eliminating poten-
tial studies on aquatic luxury effects. Moreover, riverfront or 
coastal environments have increasingly become hotspots for 
the wealthy, excluding lower-income communities and 
thereby compounding ostensible luxury effects. Urban rivers 
and streams run through and interconnect high- and low-in-
come areas, so downstream habitats may suffer consequences 
of upstream pollution and erosion. 

Characteristically, the luxury effect has also resided at the 
community and ecosystem level, with few studies investigat-
ing how wealth heterogeneity impacts organismal and popu-
lation ecology (68, 79). Prior studies also predominantly 
address patterns but seldom articulate the underlying socio-
political processes that contribute to wealth-ecology relation-
ships. Integrating systemic racism and environmental justice 
should emerge as the next development in socio-ecological 
scholarship. 
 
Beyond wealth: Structural racism, ecology, and  
evolution 
In multiple cases, neighborhood racial composition can be a 
stronger predictor of urban socio-ecological patterns than 
wealth (25, 37, 88). For example, exposure to particulate mat-
ter in cities like Los Angeles (43), Phoenix (46), and through-
out the state of North Carolina (44), is increased for racial 
and ethnic minority groups, especially Black, Latinx (i.e., a 
person of Latin American origin), and Native American pop-
ulations (43, 45). The geographic distribution of urban heat 
islands and tree canopy cover in cities is also stratified by 
race: multiple studies have repeatedly demonstrated that 
land surface temperatures are magnified for racially minori-
tized groups in many U.S. cities (36, 37, 39), with certain ra-
cial groups more vulnerable than others (37, 38). Differential 
pollutant exposure extends to aquatic systems. For example, 
decades of neglected pollution in the Flint River, Michigan, 
led to an ecological disaster for the stream biota and a mas-
sive ongoing humanitarian crisis (47, 48). Pressures to save 
money motivated the local government to switch the predom-
inantly Black community of Flint’s source of drinking water 
from Lake Huron to the polluted river (89). The calamity of 
the polluted Flint drinking water is just one example of a 
larger pattern for minoritized communities bearing the brunt 
of ecosystem disamenities (48). 

Recent studies have begun to reveal some of the underly-
ing structural constructs, especially racism, that contribute to 
urban heterogeneity beyond household income (28, 37, 88). 
However, determining the true influence systemic and struc-
tural racism exerts on ecological dynamics remains a novel 
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area of investigation (28). Studies on the resultant evolution-
ary outcomes are also rare (90). Knowing the relative contri-
bution of structural racism to wealth disparities informs our 
understanding of complex temporal dynamics in cities, which 
is untenable in approaches lacking historical contexts (21, 
24). In addition, incorporating structural racism into biolog-
ical models should improve their predictive value thereby al-
lowing us to better estimate the true effect of urbanization on 
evolutionary and ecological change. Frameworks that  
consider systemic and structural racism as principal drivers 
of urban form advance our ability to predict how and which 
species may acclimatize and evolve for life in cities (Figs. 2 
and 3). 
 
Residential segregation and redlining 
Globally, residential segregation is an especially potent form 
of social stratification, characterized by a physical separation 
of groups within cities and further compounded by the con-
centration of government and ecosystem benefits (30). Criti-
cally, residential segregation shapes ecological conditions 
along multiple environmental axes that cannot be neatly 
characterized by variables such as wealth or impervious sur-
face cover (91). This is particularly important because social 
geographies vary for different racial, ethnic, and cultural 
groups depending on the varying historical forms of discrim-
ination experienced by each minoritized group (31). The im-
pact of structural racism on Black geographies in the U.S. 
have been particularly well documented, with profound leg-
acy effects on urban ecological patterns (21, 24, 27, 92). 

Perhaps one of the most notorious examples of structural 
racism is the U.S. sanctioned policy of “redlining” enacted be-
tween 1933–1968. This policy segregated urban residential 
neighborhoods principally by race and was used to formally 
suppress capital wealth gains of Black Americans (30). Red-
lining graded neighborhoods from most desirable (“A”, out-
lined in green) to hazardous (“D”, outlined in red) based on 
the perceived amenities and disamenities including financial 
riskiness, environmental quality, proximity to industrial fa-
cilities, and racial composition of the neighborhood (Fig. 2) 
(30). Black Americans were refused housing loans and 
walkthroughs in neighborhoods deemed “A” or “B” quality 
and relegated to “C” and “D” areas that received less govern-
mental support. 

Today, the ecological effects of redlining persist. Redlined 
“D” neighborhoods have on average 21 percent less tree can-
opy than “A” neighborhoods. Further, “A” graded areas are 
frequently more uniformly green, have older tree canopy, are 
closer to environmental amenities than redlined “D” neigh-
borhoods (Fig. 2). Though no longer a policy, studies have 
shown that the legacy of redlining remains a key driver of 
contemporary urban landscapes across at least 37 cities in the 
United States (24, 28, 92). 

Ecological effects of structural racism 
Redlining may greatly contribute to the asymmetric distribu-
tion of habitat that structures bottom-up processes influenc-
ing biodiversity (28, 35). Reductions in tree and vegetation 
cover necessarily diminish niche diversity and quality (63, 
93), which frequently coincides with reduced species richness 
of birds, mammals, and arthropods (94–97). By concentrating 
Black Americans and other minoritized communities in ur-
ban centers, redlining often reduced the proximity of segre-
gated areas to undeveloped landscape beyond the urban 
boundary (Fig. 2A) and patterns of segregation may have sub-
sequently created variably permeable urban matrices (Fig. 
2B). Therefore, we may hypothesize that emergent patterns 
of species colonization and extinction vary considerably 
within and among cities as a function of heterogeneous tem-
poral and spatial legacies of racial segregation. A critical 
question is whether the severity and age of residential segre-
gation impacts the number of species co-occurring at a local-
ized site (alpha diversity), a reduction in community 
composition across sites over space and time (beta diversity), 
or city-wide regional biodiversity (Fig. 3 and Table 1). 

Archived redlined maps may prove valuable for predicting 
the spatial distribution of niches across cities (Fig. 2). Be-
cause redlining predicts the age, abundance, and distribution 
of urban tree canopy in many cities, it is likely that such maps 
may also provide substantial resolution to the geographic lo-
cations of potential sink habitats and ecological traps in both 
terrestrial and aquatic environments (98). Though several 
studies have addressed the emergence of source and sink 
habitats (99–102), none have explicitly considered whether 
heterogeneity in pollutants, heat, and other disturbances 
shape their geographic distribution (i.e., Fig. 1A). The legacy 
effects of residential segregation could predict the locality 
and size of potential ecological sinks and traps, thereby help-
ing to identify and predict geographic regions with com-
pounding anthropogenic disturbances that require more 
sustained stewardship (Table 1). 

Recent studies emphasize that the spatial arrangement of 
vegetation cover can drive evolutionary change (103), funda-
mentally linking segregation-driven patterns of vegetation 
cover to shaping evolutionary trajectories of urban popula-
tions. Impervious surface is frequently associated with re-
duced movement of organisms across landscapes and 
therefore lower gene flow, more subdivided populations, and 
lower genetic diversity (104–106). Urban tree cover can ame-
liorate these effects; for example, tree cover facilitates gene 
flow in native white-footed mice in New York (107, 108). In-
creased landcover and habitat connectivity, however, may 
also boost zoonotic disease transmission (e.g., Lyme disease), 
and adaptive management solutions to control disease 
spread may produce additional evolutionary feedbacks (51, 
109). Hypotheses addressing the relative contributions of 
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racial segregation and wealth disparities to tree cover can dis-
associate which socioeconomic attribute best predicts popu-
lation genetic structure and connectivity (Table 1). 
 
Evolutionary impacts of structural racism 
The compounded impacts of heightened edge effects, smaller 
patch sizes, reduced niche diversity, and individual human 
behaviors may predict increased genetic drift in racially mi-
noritized neighborhoods (Fig. 3). Urban development and 
habitat fragmentation are generally expected to increase drift 
and reduce genetic diversity (107, 110), and urban green 
spaces in minoritized communities are customarily frag-
mented (55). Habitat patches may also experience substan-
tially reduced gene flow if adjacent habitats are not proximal 
(i.e., isolation-by-distance) or have significant barriers that 
prohibit successful immigration into a desired habitat (i.e., 
isolation-by-resistance) (107). Reduced tree canopy cover sig-
nificantly reduces gene flow for some species (108), and can-
opy cover is significantly diminished in racially-segregated 
neighborhoods (40). As a result, gene flow of native species 
may be detrimentally impacted, whereas some pest species 
may thrive in previously redlined neighborhoods (69, 90). 
Further, highways and impervious surfaces are significant ur-
ban barriers for a variety of taxa (106, 111, 112), and these built 
structures tend to be more prevalent in racially minoritized 
neighborhoods (37). How other aspects of urban habitats 
(e.g., vacant lots, food availability from pets or waste, home-
less encampments) vary as a function of various forms of 
structural racism impacts gene flow in different taxa remains 
an area worthy of exploration. 

Redlining and similar discriminatory policies (e.g., Jim 
Crow laws) that increased Black Americans’ proximity to pol-
luting industries (45, 92, 113) and heightened exposure to in-
tensified urban heat effects (36, 39) may compound to create 
strong selective pressures that drive adaptive and maladap-
tive evolution (Fig. 3B). Increased pollutant exposure can in-
crease the rate of heritable mutations in mice (114) and 
selection for toxicity-mediating genes and connected signal-
ing pathways in killifish (Fundulus heteroclitus) (115), respec-
tively. Recent studies also provide evidence of rapidly evolved 
thermal tolerance in urban water fleas (Daphnia magna) 
(116, 117), ants (Temnothorax curvispinosus) (118), and dam-
selflies (Coenagrion puella) (119). To our knowledge, no work 
has explicitly explored how either neutral or adaptive evolu-
tionary processes operate as a function of heterogeneity that 
stems from structural racism. 

The lack of effective intervention, water sanitation, medi-
cal access and resources, and trash management programs 
due to structural racism may also shape mutation rates and 
emerging disease dynamics (90, 120). Racially minoritized 
and low-income communities witness increased proximity to 
pest species known to harbor zoonotic diseases (90, 121, 122). 

For instance, brown rat (Rattus norvegicus) abundances neg-
atively correlate with socioeconomic status, in which low-in-
come neighborhoods report greater rat sightings across cities 
globally (123–127). Racially diverse neighborhoods consist-
ently receive inadequate sanitation services that are com-
pounded with aging infrastructure and overgrown 
vegetation, all factors that attract brown rats and other 
nonnative rodent pests (125, 128). Inconsistent administra-
tion of over the counter rodenticides may lead to various lev-
els of immune resistance in local rat populations (129), 
further exacerbating health and disease risks for marginal-
ized communities (130). Societal neglect underpinned by sys-
temic racism may therefore promote the evolution of 
rodenticide immunity that heightens zoonotic disease risks 
in marginalized communities (51). 

Infection and mortality rates from COVID-19, the disease 
caused by the severe respiratory syndrome coronavirus 2 
(SARS-CoV-2), is disproportionately high for Latinx, Indige-
nous, and Black communities relative to other racial groups 
in the United States (91, 113, 131–135). Over decades of gov-
ernment policy and economic development, cities have dis-
proportionately situated environmental hazards (e.g., 
petrochemical industries, waste facilities, major roadways, 
etc.) near predominantly Black and Indigenous communities 
(43, 46). Such forms of environmental racism have substan-
tially compromised neighborhood air quality and respiratory 
health of minoritized communities (43, 87). Recent evidence 
linking air pollution exposure with COVID-19 mortality risk 
(134, 136) thus indicates direct links among environmental 
racism, air quality, and disproportionate death rates for Black 
and Indigenous communities. This epidemiological phenom-
enon is further compounded by reduced access to adequate 
healthcare, heightened risks of concomitant health comor-
bidities (cardiovascular disease, hypertension, diabetes, etc.), 
and increased densities (133). Communities with higher hu-
man densities can lead to increased viral mutation rates, 
which subsequently increases the likelihood of viral host 
jumping (120). A terrifying – though plausible and understud-
ied (137) – hypothesis is that mutation rates in pathogens like 
SARS-CoV-2 are greatest in racially minoritized and low-in-
come communities, creating a pernicious socio-evolutionary 
loop between increasing virulence and the uneven distribu-
tion of social and health inequities in Black communities. 
 
Intersecting forms of inequality 
Understanding the mechanisms shaping urban inequality 
and thus urban eco-evolutionary patterns and processes re-
quires incorporating intersectional theories of inequality and 
evaluating accessibility to different spaces (34, 138, 139). The 
term “intersectionality” emphasizes that various marginal-
ized identities of an individual or community more broadly 
intersect, compound, and interact, which ultimately impact 
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the magnitude and severity of experienced social inequities 
(Fig. 1) (57). For example, discrimination for a queer Black 
woman in the United States may be intensified relative to in-
dividuals with similar racial, gender, and sexual orientation 
identities alone. Translating the concept of intersectionality 
onto the urban landscape can provide a more holistic under-
standing of the patterns and processes shaping urban ecosys-
tems. For instance, we may hypothesize that characteristic 
differences between Indigenous ecological practices and for-
estland managers may contribute to variance in native spe-
cies richness and community complexity. (140, 141). Similarly, 
we may predict that gender differences in land cultivation 
and homeownership shape plant species assemblages and 
species turnover rates. Further, vegetation removal and in-
creased nighttime lighting to deter LGBTQIA+ communities 
(95) may have subsequent effects on disturbance regimes and 
local biodiversity that reduce habitat value for multiple spe-
cies. Though such empirical links are currently speculative 
and not well established, integration of various inequities in 
cities may provide additional resolution to understanding 
how social drivers impact urban ecology and evolution. While 
our focus has been on racism and classism, we recognize the 
need for and encourage intersectional approaches in urban 
ecology. 
 
Centering justice in urban ecology and conservation 
The origins of environmentalism in the United States were 
heavily influenced by white men who expressed racist per-
spectives in their efforts to protect nature. Writings by early 
environmentalists like Aldo Leopold, John Muir, Madison 
Grant, Gifford Pinchot, and Theodore Roosevelt, argued that 
nature is most pristine without human influence but should 
be reserved for white men as a resource for personal improve-
ment (142–144). These early arguments greatly contributed 
to the exclusion of Black, Indigenous, and non-white immi-
grant communities from outdoor spaces and environmental 
narratives (145), despite these communities shouldering the 
brunt of environmental and climate crises, and leading effec-
tive movements for environmental and climate justice (53, 
146, 147). White-led environmental and climate movements 
have long marginalized issues of racial justice when crafting 
policy and legislation (148). In addition, such movements 
have traditionally considered structural violence to be unre-
lated to environmental issues, yet state-sanctioned police 
brutality (149, 150), environmental degradation (113), and the 
climate crisis (53, 147) all reinforce patterns of racial segrega-
tion and criminalization of minoritized people in urban pub-
lic spaces (151, 152). 

Black, Indigenous, Latinx, and immigrant communities 
possess cultural knowledge, ongoing land and water rela-
tions, and effective practices for community and ecological 
revitalization, honed through generations of struggle with 

and for the land (140, 141). Systemic racism in environmental 
policy excludes communities from ecocultural relations with 
urban ecosystems, urban planning processes, and urban  
ecological restoration (153, 154). As a result, these communi-
ties find their longstanding and effective practices of manag-
ing and advocating for lands, waters, and species limited. 
When judges, elected officials, planners, scientists, and others 
who hold power in environmental governance work  
in solidarity with frontline communities, urban organisms,  
ecosystems, and human communities move toward  
regeneration (155–157). 

Racist research and conservation approaches must be 
challenged and redesigned to include justice, equity, and in-
clusion (24, 157–159). To do so, ecologists, biologists, and en-
vironmentalists must reimagine what is considered an 
ecological or conservation issue. Increasing economic oppor-
tunities, bolstering public transportation infrastructure, in-
vesting in affordable housing and healthcare, and 
strengthening voting rights and access are issues rarely con-
sidered by mainstream environmental organizations. Yet, 
such societal initiatives reduce carbon emissions, dampen en-
vironmental hazards, enhance public health, and expand eco-
nomic mobility of marginalized communities. Moreover, 
reallocating municipal funds to initiatives improving home 
ownership for minoritized communities reduces displace-
ment and promotes local stewardship, which in turn impacts 
overall public and environmental health. Such paradigm 
shifts will be essential as accumulating evidence suggests in-
come inequality predicts biodiversity loss (63, 160). Centering 
racial and environmental justice that drives equitable policy 
changes are thus inextricably linked to urban conservation 
and ecological restoration initiatives (157, 159). 

Improving green infrastructure and greenspace access, 
paired with policies that shield against displacement, can 
greatly improve community health and wealth (54, 161). Ex-
posure and access to quality natural space in cities improves 
physical and mental health (162), and buffers against health 
comorbidities experienced by minoritized groups (31, 92, 161). 
Justice-centered applications of ecological and evolutionary 
tools can further spotlight convergences among social ineq-
uities and environmental disamenities (e.g., ecological mod-
eling of habitat sinks and sources) to identify areas of high 
conservation and restoration need. Equitable restoration of 
urban habitat patches and infrastructure necessarily im-
proves landscape connectivity and refugia to support success-
ful colonization of native species, guards against local 
extinctions, and increases urban biodiversity (159). Hence, 
equity-based ecological restoration will benefit both human 
and non-human communities (163, 164), but only if the foun-
dation of such initiatives are rooted in anti-racist practices 
(156, 165). The maintenance of societal integrity should in 
turn lead to capital gains for minoritized communities that 
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translate to ecological stability that positively impacts species 
diversity in cities. 

As urban ecologists and evolutionary biologists, we have 
a responsibility to implement anti-racist strategies that inter-
rogate systems of oppression in how we perform our science. 
This necessarily means eradicating efforts that perpetuate in-
equities to knowledge access, neglect local community partic-
ipation, or exploit community labor in the pursuit of 
academic knowledge (i.e., the practices of colonial and para-
chute science). Concurrently, increasing representation of in-
dividuals of diverse identities is inherently just and enhances 
our scholarship (166, 167). By directly including a diversity of 
scholars and incorporating an understanding of systemic rac-
ism and inequality, we can more holistically study urban eco-
systems. We will not be able to successfully assess how racism 
and classism shape urban ecosystems – nor address their con-
sequences – without a truly diverse and inclusive scientific 
community. 
 
Conclusion 
The decisions we make now will dictate our environmental 
reality for centuries to come, as illustrated by modern policies 
like the Green New Deal proposal (168) and Paris Climate 
agreement (169). Such an endeavor is timely as we face a 
global pandemic that is both affected by and exacerbates the 
latent structural inequities underpinning modern cities, di-
rectly threatening environmental health and biodiversity 
conservation (170, 171). Concurrently, our contemporary fight 
for civil rights in the wake of unjust murders and continued 
racial oppression of Black and Indigenous communities 
stresses the need to interrogate and abolish systemic racism. 
The insidious white supremacist structures that perpetuate 
racism throughout society compromise both public and envi-
ronmental health, solidifying the need to radically dismantle 
systems of racial and economic oppression. 

Consequently, our capacity to understand urban ecosys-
tems and non-human organisms necessitates a more thor-
ough integration of the natural and social parameters of our 
cities. We cannot generalize human behavior in urban eco-
systems without dealing with systemic racism and other in-
equities. Further, incorporating environmental justice 
principles into how we perform and interpret urban ecology 
and evolution research will be essential, with restorative and 
environmental justice serving as the foundation for effective 
ecological restoration and conservation (158, 159, 163). Doing 
so is both our civic responsibility and conservation impera-
tive for advancing urban resiliency in the face of unrelenting 
global environmental change (172). 
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Fig. 1. Structural racism and classism underpin landscape heterogeneity in cities. (A) Conscious and unconscious 
systemic biases and stereotypes contribute to shaping institutional policies that drive and exacerbate racist and 
classist structures in urban systems (e.g., law enforcement, residential segregation, and gentrification). The 
emergent properties of these structural inequalities have profound impacts on multiple attributes across the urban 
landscape, including impervious surface cover, urban heat islands, green space and tree cover, environmental 
pollutants, resource distribution, and disease dynamics. These physical and biological characteristics have known 
impacts on the ecological patterns and evolutionary processes of urban organisms. (B) Incorporating environmental 
justice principles and civil rights into ecological and evolutionary applications is an urgent priority for positively 
impacting the long-term success of urban conservation and sustainability. (C) Definitions of key terms to understand 
the interconnectedness of racism, classism, and intersectionality to system inequality. 
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  Fig. 2. The practice of redlining in the United States functionally segregated 
neighborhoods by race and class. The highest rated neighborhoods (graded “A”) were 
wealthier, predominantly white, and are outlined in green. The lowest rated 
neighborhoods (graded “D”) were poorer, predominantly Black, and are outlined in red. 
Demographics of intermediate ranked neighborhoods - graded “B” and “C” - were 
intermediate. Segregation practices like redlining leave lasting marks on urban 
landscapes. (A) Redlined neighborhoods still have substantially lower green space 
(trees, parks, lawns, etc.) relative to higher graded neighborhoods. Although this 
pattern is consistent across cities, there is substantial variation among neighborhoods 
and between cities, seen in the comparison of Birmingham, AL and Baltimore, MD. 
Other environmental amenities, such as urban water bodies in Minneapolis, MN, are 
also segregated. (B) Historically greenlined or redlined neighborhoods are positioned 
differently relative to contemporary urban boundaries and access to natural areas 
outside the urban landscape. In Minneapolis, MN, and Baltimore, MD redlined 
neighborhoods are concentrated in the city center, far from the urban periphery. These 
cities have also grown in the past 50 years, meaning that human and non-human 
residents of redlined neighborhoods must travel further to get out of the city. In 
contrast, the city extent of Birmingham, AL has grown minimally, and redlined areas 
are near forested lands. Note that in the background maps, white represents roads, 
pale gray represents ex-urban land, gray represents urban land, and dark gray 
represents water. Redlining data are from the Mapping Inequality collaborative project: 
https://dsl.richmond.edu/panorama/redlining/. 
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Fig. 3. Conceptual diagram illustrating how 
between-city differences in segregation may 
produce disparate ecological and evolutionary 
outcomes. (A) In hypothetical City 1, green space is 
more evenly distributed and continuous across 
green- to red-lined districts (Fig. 2) relative to City 2. 
(B) Between-city differences in connectivity may 
result in different selective gradients that contribute 
to varying distributions of genetic or phenotypic trait 
values of species found across redlining districts 
(“A” through “D”). (C) Both cities have near-
identical species diversity and composition in “A” 
districts, and species diversity and composition 
declines from “A” to “D” designated neighborhoods; 
however within each redlining jurisdiction, City 2 has 
substantially less species diversity in “B,” “C,” and 
“D” districts relative to City 1, potentially as a result 
of differences in habitat distributions. (D) Food webs 
may be more diverse and interconnected across 
districts in City 1, but are more simplified across 
districts in City 2, due to the relative differences in 
structural and functional habitat connectivity. 
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Table 1. Key novel questions integrating 
systemic racism, ecology, and evolution. A 
proposed list of potential research ques-
tions that integrate social heterogeneity, 
ecology, and evolution in urban systems. 
Identified questions could inform practition-
ers, planning professionals, and elected offi-
cials on how such processes in cities can be 
leveraged for positive social change in cities. 
Columns and corresponding dots denote 
the primary research focus of each question 
(purple = ecological; gold = evolutionary). 
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