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Urban areas are dynamic ecological systems defined by interdependent biological, physical, and social
components. The emergent structure and heterogeneity of the urban landscape drives the biotic outcomes
observed, and such spatial patterns are often attributed to the unequal stratification of wealth and power in
human societies. Despite these patterns, few studies effectively consider structural inequalities as drivers
of ecological and evolutionary outcomes, instead focusing on indicator variables such as neighborhood
wealth. We explicitly integrate ecology, evolution, and social processes to emphasize the relationships
binding social inequities, specifically racism, and biological change in urbanized landscapes. We draw on
existing research to link racist practices - including residential segregation - to the observed heterogeneous
patterns of flora and fauna observed by urban ecologists. As a result, urban ecology and evolution
researchers must consider how systems of racial oppression affect the environmental factors driving
biological change in cities. Conceptual integration of the social and ecological sciences has amassed
considerable scholarship in urban ecology over the past few decades, providing a solid foundation for
incorporating environmental justice scholarship into urban ecological and evolutionary research. Such an
undertaking is necessary to deconstruct urbanization’s biophysical patterns and processes, inform
equitable and anti-racist initiatives promoting justice in urban conservation, and strengthen community

resilience to global environmental change.

Urban ecosystems encompass complex feedbacks between
human activity, built and planted infrastructure, and natural
landscapes that drive unique biological processes (I-3).
Interactions between social and natural systems produce
distinctive biogeochemical and biophysical signatures (4, 5)
that alter the demography, life histories, diversity, behaviors,
and distributions of non-human species (6, 7). Resultant
novel environmental conditions (e.g., urban heat island
effects, food subsidies, and environmental pollution) can
drive phenotypic shifts, emigration, or extinction within and
across animal and plant populations (8, 9). Cities have,
accordingly, become foci for research addressing biological
responses to novel, rapidly changing environments (8-13).
Recent urban ecosystems research can inform sustainable so-
lutions promoting biodiversity, human well-being, and urban
resilience in the face of global environmental change (3, 14-
16). Leveraging urban ecosystems as conduits of sustainabil-
ity, conservation, and innovation, however, requires a
comprehensive understanding of the underlying component
parts, hierarchical structures, and key drivers of urban
functions (Fig. 1) (3, 7, 16, 17).
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Since its inception, the field of urban ecology has framed
cities as quintessential socio-ecological systems (i.e., complex
adaptive systems or coupled human and natural systems),
where social processes alter ecological properties that
reciprocally influence human societies (18-20). These forma-
tive urban ecology models placed human decisions and insti-
tutions at the core of urban ecosystems, emphasizing
the need to quantify spatial and temporal feedbacks within
cities (17, 2I). For example, urban Long-Term Ecological
Research programs in Phoenix, Arizona and Baltimore,
Maryland, USA (i.e., the Central-Arizona Phoenix and Balti-
more Ecosystem Study, respectively) have established links
between social and ecological systems by overlaying habitat
patch types with demographic information like neighbor-
hood wealth, housing densities, and impervious surface cover
(2, 8, 10, 16).

Socioeconomic status has been a standard metric for
many socio-ecological studies, combining multiple social fac-
tors, including culture, race, occupation, education, and soci-
etal power into a complex aggregated measures (22, 23).
Many social variables contributing to socioeconomic status
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and related environmental variability are the result of histor-
ical government and societal actions (24, 25). Recent studies
have begun to address the varied contributions of several so-
cial factors (e.g., race, sex, age) to ecological heterogeneity in
cities (25-28). However, social inequality remains understud-
ied as a key driver of ecological and evolutionary change in
cities (Fig. 1) (15, 21, 24). Social inequality is the unequal dis-
tribution or allocation of wealth and resources to specific so-
cio-cultural groups. Such imbalances contribute to profound
injustices (i.e., social inequities; Fig. 1) that privilege certain
individuals over others (29-3I). Inequality and inequity dis-
proportionately affect which individuals own and access
land, functionally restricting the people who become the pri-
mary drivers of urban ecosystem structure and function
(32, 33).

Urban social inequality stems from historical and contem-
porary power imbalances, producing deleterious effects that
are often intersectional, involving race, economic class, gen-
der, language, sexuality, nationality, ability, religion, and age
(34). For example, various ecological attributes in cities are
principally governed by the spatial and temporal scale of so-
cial inequities (23). For instance, the uneven distribution of
urban heat islands (35-39), vegetation and tree canopy cover
(27, 28, 40, 41), environmental hazards and pollutants (42-
46), access to healthy waterways (47, 48), and the relative pro-
portion of native to introduced species (49, 50) are strongly
dictated by structural racism and classism (Fig. 1) (21, 31, 32,
51). Concurrently, the environmental justice literature has
long articulated the economic, health, and environmental im-
plications of structural racism in cities (52-55). Integrating
the contributions of social inequities to urban environmental
structure is therefore crucial for informing our understand-
ing of biological processes in cities (33, 55, 56).

We provide a transdisciplinary synthesis on how social in-
equities - and specifically, systemic racism - serve as princi-
ple drivers of ecological and evolutionary processes by
shaping landscape heterogeneity (Fig. 1). Critically, we draw
on the social and political sciences to specifically stress how
understanding systemic racism and racial oppression, rooted
in settler colonialism and white supremacy, is essential for
advancing urban ecology and evolutionary biology research.
First, we review the socio-ecological effects of wealth dispar-
ities in cities. Second, we describe how systemic racism drive
inequitable patterns in wealth, health, and environmental
heterogeneity, noting that intersectionality with other identi-
ties (e.g., gender, sexual orientation, and Indigeneity) may
have additive impacts on urban structure (29, 34, 57). We pro-
pose hypotheses linking systemic racism to urban ecological
and evolutionary patterns and processes. We close by illus-
trating how centering environmental justice and anti-racist
activism in biological research is a priority for urban conser-
vation (55, 56).
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While we predominantly focus on work from North Amer-
ica, the global ubiquity of social inequality and systemic rac-
ism across cities suggests our synthesis is broadly applicable
(568-60). Addressing systemic and structural racism both in
cities and in the scientific community is necessary to compre-
hensively understand urban ecological and evolutionary dy-
namics, conserve biodiversity, improve human health and
well-being, and promote justice in nature and society.

Socio-ecological effects of wealth

Variation in household and neighborhood wealth are cur-
rently the most commonly-explored social variables ecol-
ogists use to describe within-city biodiversity patterns,
especially in residential neighborhoods (26, 61-64). Wealth,
specifically median household income, has repeatedly
emerged as a significant explanatory variable for predicting
urban ecological patterns. One of the most well-known and
robust hypotheses linking household income and ecology -
the luxury effect - suggests that urban biodiversity, and plant
diversity in particular, is positively correlated with neighbor-
hood wealth (61, 63).

The wealth-biodiversity covariance is predicated on a fun-
damental tenet of urban ecosystems: humans manage urban
areas and, as ultimate ecosystem engineers, can greatly aug-
ment or remove resource limitations that favor growth and
abundance of some species over others (32, 61). As a result,
households with greater discretionary income, capital, higher
education, and relaxed pressure for essential needs exert
stronger influence on plant assemblages, establishing a resi-
dential ecological mosaic based on socioeconomics (32, 50,
62, 65).

The luxury effect is particularly pronounced in arid ecore-
gions and biomes, and such effects intensify with increasing
urbanization, vegetation loss, and wider wealth gaps (21, 35).
Original support for the luxury effect came from Phoenix, Ar-
izona, USA, with observed positive correlations between
household income and woody perennial diversity (61). Stud-
ies investigating the luxury effect globally have implicated
wealth as a strong correlate with faunal and floral diversity
(26, 63), relative vegetation cover (27, 40), species abundances
(49), and the distribution of abiotic attributes in cities includ-
ing urban heat islands (35, 66) and environmental hazards
(44). Recent meta-analyses have supported the wealth-biodi-
versity phenomenon yet emphasized that the causal social
and political mechanisms behind these patterns are seldom
explored (26, 64).

Vegetation cover and biodiversity

Affluent urban residential neighborhoods generally have
greater vegetation cover, canopy cover, and plant diversity
(27, 63, 67). Public urban forests, recreational parks, and pri-
vate green spaces also tend to be larger and more established
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with older trees and vegetation that provide greater niche
space to support biodiversity at other trophic levels (49, 68,
69). For instance, strong positive correlations exist between
urban tree cover and household income for 7 major U.S. met-
ropolitan regions (40). General vegetation cover in Los Ange-
les, CA (27) and the distribution of urban forests throughout
Cook County, Illinois (4I) are also positively affected by in-
creasing wealth, as well as several other socioeconomic fac-
tors (e.g., racial composition, education, home ownership). In
addition, recent work suggests interactive effects between
housing age and income predict tree biodiversity, with more
established homes in high-income neighborhoods exhibiting
greater diversity (27). Lawns are a special case where wealth-
ier residents intensively manage their lawns to be very green
(70) and have few-to-no species other than turfgrasses (71).
As a result, some studies find neutral or negative wealth-
plant biodiversity relationships (72, 73).

Luxury effects customarily scale from the household to
the neighborhood level. A recent study found that yards in
wealthier neighborhoods consistently had greater abun-
dances and diversity of flowering plants, trees, and nonnative
species (65). Similarly, individual homeowners with cost-
driven landscaping priorities primarily (i.e., need for cheaper
plants) have lawns with higher relative proportions of
nonnative plant species with lower functional diversity (50).
These recent studies illustrate how socioeconomics drive var-
iation among individuals and therefore choices at the house-
hold level, which can scale up to affect neighborhood
biodiversity. These wealth-driven impacts on patterns of pri-
mary producers may have substantial effects on metacommu-
nity composition and dynamics. Luxury effects often scale
from the residential to the city-wide level, providing cross-
city evidence that wealthier U.S. cities have better resourced
urban park systems (74). Whether such trends in vegetative
structure are consistent across cities, or even hold true across
biomes, remains unexplored.

Impacts on animal communities

Luxury effects extend beyond primary producers, with recent
studies suggesting that colonization, species richness, and
abundance of birds are related to neighborhood wealth (49,
75-77). Most prior studies address these relationships in birds
in multiple cities across the globe. For instance, bird commu-
nity richness positively correlates with median household in-
come across multiple urban centers in South Africa (49).
However, negative income-richness relationships in highly
urbanized landscapes imply that highly-built yet expensive
downtown centers can deter or prevent successful coloniza-
tion and persistence (49). Other studies in Phoenix, Arizona
similarly found that bird diversity was greatest in parks and
residential yards situated in high-income neighborhoods, a
pattern which was primarily explained by an increased
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relative abundance of native desert species and proximity to
undeveloped desert landscapes (75, 76). Further, recent evi-
dence from 45,000 observations of 160 passerine species
found across U.S. cities show that increasing household in-
come predicts greater abundances of migratory species, as
well as greater abundances of smaller, shorter-lived birds
(77). These results are some of the first empirical examples
linking the luxury effect to evolutionary ecology.

Few studies address the luxury effect in other animal taxa,
though evidence implies these effects persist across multiple
clades. Evidence in coyotes (Canis latrans) and raccoons
(Procyon lotor) throughout Chicago, Illinois suggests carni-
vores are more likely to colonize and persist in wealthier
neighborhoods (68). Household income is also a strong pre-
dictor of lizard species richness in Phoenix, Arizona with
other factors like traffic density and surface temperatures
having weak effects (78). Evidence from arthropod research
suggests that richness in high-income neighborhoods across
North Carolina are greater regardless of vegetation cover at
the property level (69).

Wealth-animal richness trends can also extend beyond
city limits. Red bat (Lasiurus borealis) and evening bat (Nyc-
ticeiu humeralis) activity is positively correlated to house-
hold income, regardless of land cover metrics (79). Activity
patterns of hoary bats (Lasiurus cinereus), however, decrease
with neighborhood income, suggesting that luxury effects are
more salient for some species relative to others (79).

Urban heat islands and air pollution

Heat is unevenly distributed within a city, where tempera-
tures are typically greatest in lower income compared to
higher income neighborhoods (35, 36). Low-income neigh-
borhoods have reduced tree and vegetation cover and in-
creased impervious surface cover, which contribute to higher
surface temperatures in Phoenix, Arizona (35, 66), Baltimore,
Maryland (36), as well as other cities worldwide (38, 39, 80).
Given the cooling capacity of trees, apparent luxury effects on
tree and vegetation cover can significantly impede environ-
mental cooling in low-income neighborhoods, making those
residents particularly vulnerable to heat-related illnesses (36,
8I). Such wealth-tree-heat axes have emerged in other coun-
tries as well, including Canada (82), Brazil (83), and South
Africa (84, 85). Heterogeneity in the distribution of urban
heat islands, and associated health outcomes, is thus a direct
consequence of the luxury effect (24, 35).

Other environmental disamenities, especially pollutants,
also reflect the luxury effect. Air pollution sources are often
co-located near low-income neighborhoods and, conse-
quently, low-income residents often have higher risk and vul-
nerabilities to air pollutants. For instance, low-income
residents throughout North Carolina (44) and multiple cities
in the Northeastern U.S. (86) experience greater exposure to
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atmospheric particulate matter. Low-income residents also
experience greater ambient nitrogen dioxide concentrations
in Montreal, Canada, though some high-income areas in the
downtown region similarly experience increased ambient
concentrations of this pollutant (87). Further, meta-analysis
of data from the American Housing Survey suggests that low-
income households have elevated indoor concentrations of
nitrogen dioxide and particulate matter (42).

Work on heat islands and pollution support the idea that
inequality in neighborhood wealth leads not only to a diver-
sity of environmental hazards but that these hazards com-
pound to create unique, challenging environmental patches.

Limitations of the luxury effect

The luxury effect is far from universal across systems and
taxa, and the underlying processes and causal mechanisms
contributing to emergent wealth-ecology relationships are
seldom addressed (21, 40). In a meta-analysis of associations
between wealth and biodiversity, the directional relationship
(positive, negative, or no relationship) between biodiversity
and wealth vary drastically based on differences in social con-
ditions, which include cultural norms, individual and com-
munity preferences, and municipal policies (26). A pair of
similar meta-analyses concluded that relationships between
income inequality and urban forest cover are not always sig-
nificant, with neighborhood racial composition explaining di-
vergent conditions in vegetation cover (64, 88).

The history of urban development, individual-level
choices, and societal norms also distort potential relation-
ships between wealth and biodiversity. For instance, in some
cities, wealthier neighborhoods may have a higher relative
proportion of high rises and built downtowns that severely
limit the amount of vegetated cover, reducing functional hab-
itat space and biodiversity (26). Wealthier neighborhoods
may also enact policies that reduce vegetation diversity and
mandate the proliferation of monoculture lawns that yield
significant environmental homogeneity and serve to similarly
reduce biodiversity (26). Moreover, refined analytical ap-
proaches may help to disentangle the contribution of wealth,
culture, and other socioeconomic factors to ecology. For ex-
ample, evidence in New York City suggests residential canopy
cover is best explained as a signal of social status (the “ecol-
ogy-of-prestige hypothesis”) (32). Hence, the convergence
among policy, individual choices, and socioeconomic varia-
bles might be better predictors of urban ecological variance
rather than wealth alone (32). Indeed, recent work assessing
the plant diversity of residential yards supports this conclu-
sion, suggesting that individual homeowner’s landscaping
priorities largely dictate private lawn community composi-
tion (50).

Luxury effects have been primarily explored in terrestrial
systems, with less work in aquatic habitats. Lack of evidence
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for aquatic luxury effects in urban ponds, lakes, and rivers
may be due to other abiotic factors regulating waterway
health that do not necessarily correlate with wealth dispari-
ties (63). Small ponds or lakes are also seldom present in
lower socioeconomic areas, functionally eliminating poten-
tial studies on aquatic luxury effects. Moreover, riverfront or
coastal environments have increasingly become hotspots for
the wealthy, excluding lower-income communities and
thereby compounding ostensible luxury effects. Urban rivers
and streams run through and interconnect high- and low-in-
come areas, so downstream habitats may suffer consequences
of upstream pollution and erosion.

Characteristically, the luxury effect has also resided at the
community and ecosystem level, with few studies investigat-
ing how wealth heterogeneity impacts organismal and popu-
lation ecology (68, 79). Prior studies also predominantly
address patterns but seldom articulate the underlying socio-
political processes that contribute to wealth-ecology relation-
ships. Integrating systemic racism and environmental justice
should emerge as the next development in socio-ecological
scholarship.

Beyond wealth: Structural racism, and
evolution

In multiple cases, neighborhood racial composition can be a
stronger predictor of urban socio-ecological patterns than
wealth (25, 37, 88). For example, exposure to particulate mat-
ter in cities like Los Angeles (43), Phoenix (46), and through-
out the state of North Carolina (44), is increased for racial
and ethnic minority groups, especially Black, Latinx (i.e., a
person of Latin American origin), and Native American pop-
ulations (43, 45). The geographic distribution of urban heat
islands and tree canopy cover in cities is also stratified by
race: multiple studies have repeatedly demonstrated that
land surface temperatures are magnified for racially minori-
tized groups in many U.S. cities (36, 37, 39), with certain ra-
cial groups more vulnerable than others (37, 38). Differential
pollutant exposure extends to aquatic systems. For example,
decades of neglected pollution in the Flint River, Michigan,
led to an ecological disaster for the stream biota and a mas-
sive ongoing humanitarian crisis (47, 48). Pressures to save
money motivated the local government to switch the predom-
inantly Black community of Flint’s source of drinking water
from Lake Huron to the polluted river (89). The calamity of
the polluted Flint drinking water is just one example of a
larger pattern for minoritized communities bearing the brunt
of ecosystem disamenities (48).

Recent studies have begun to reveal some of the underly-
ing structural constructs, especially racism, that contribute to
urban heterogeneity beyond household income (28, 37, 88).
However, determining the true influence systemic and struc-
tural racism exerts on ecological dynamics remains a novel

ecology,
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area of investigation (28). Studies on the resultant evolution-
ary outcomes are also rare (90). Knowing the relative contri-
bution of structural racism to wealth disparities informs our
understanding of complex temporal dynamics in cities, which
is untenable in approaches lacking historical contexts (21,
24). In addition, incorporating structural racism into biolog-
ical models should improve their predictive value thereby al-
lowing us to better estimate the true effect of urbanization on
evolutionary and ecological change. Frameworks that
consider systemic and structural racism as principal drivers
of urban form advance our ability to predict how and which
species may acclimatize and evolve for life in cities (Figs. 2
and 3).

Residential segregation and redlining

Globally, residential segregation is an especially potent form
of social stratification, characterized by a physical separation
of groups within cities and further compounded by the con-
centration of government and ecosystem benefits (30). Criti-
cally, residential segregation shapes ecological conditions
along multiple environmental axes that cannot be neatly
characterized by variables such as wealth or impervious sur-
face cover (91). This is particularly important because social
geographies vary for different racial, ethnic, and cultural
groups depending on the varying historical forms of discrim-
ination experienced by each minoritized group (31). The im-
pact of structural racism on Black geographies in the U.S.
have been particularly well documented, with profound leg-
acy effects on urban ecological patterns (21, 24, 27, 92).

Perhaps one of the most notorious examples of structural
racism is the U.S. sanctioned policy of “redlining” enacted be-
tween 1933-1968. This policy segregated urban residential
neighborhoods principally by race and was used to formally
suppress capital wealth gains of Black Americans (30). Red-
lining graded neighborhoods from most desirable (“A”, out-
lined in green) to hazardous (“D”, outlined in red) based on
the perceived amenities and disamenities including financial
riskiness, environmental quality, proximity to industrial fa-
cilities, and racial composition of the neighborhood (Fig. 2)
(30). Black Americans were refused housing loans and
walkthroughs in neighborhoods deemed “A” or “B” quality
and relegated to “C” and “D” areas that received less govern-
mental support.

Today, the ecological effects of redlining persist. Redlined
“D” neighborhoods have on average 21 percent less tree can-
opy than “A” neighborhoods. Further, “A” graded areas are
frequently more uniformly green, have older tree canopy, are
closer to environmental amenities than redlined “D” neigh-
borhoods (Fig. 2). Though no longer a policy, studies have
shown that the legacy of redlining remains a key driver of
contemporary urban landscapes across at least 37 cities in the
United States (24, 28, 92).
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Ecological effects of structural racism

Redlining may greatly contribute to the asymmetric distribu-
tion of habitat that structures bottom-up processes influenc-
ing biodiversity (28, 35). Reductions in tree and vegetation
cover necessarily diminish niche diversity and quality (63,
93), which frequently coincides with reduced species richness
of birds, mammals, and arthropods (94-97). By concentrating
Black Americans and other minoritized communities in ur-
ban centers, redlining often reduced the proximity of segre-
gated areas to undeveloped landscape beyond the urban
boundary (Fig. 2A) and patterns of segregation may have sub-
sequently created variably permeable urban matrices (Fig.
2B). Therefore, we may hypothesize that emergent patterns
of species colonization and extinction vary considerably
within and among cities as a function of heterogeneous tem-
poral and spatial legacies of racial segregation. A critical
question is whether the severity and age of residential segre-
gation impacts the number of species co-occurring at a local-
ized site (alpha diversity), a reduction in community
composition across sites over space and time (beta diversity),
or city-wide regional biodiversity (Fig. 3 and Table 1).

Archived redlined maps may prove valuable for predicting
the spatial distribution of niches across cities (Fig. 2). Be-
cause redlining predicts the age, abundance, and distribution
of urban tree canopy in many cities, it is likely that such maps
may also provide substantial resolution to the geographic lo-
cations of potential sink habitats and ecological traps in both
terrestrial and aquatic environments (98). Though several
studies have addressed the emergence of source and sink
habitats (99-102), none have explicitly considered whether
heterogeneity in pollutants, heat, and other disturbances
shape their geographic distribution (i.e., Fig. 1A). The legacy
effects of residential segregation could predict the locality
and size of potential ecological sinks and traps, thereby help-
ing to identify and predict geographic regions with com-
pounding anthropogenic disturbances that require more
sustained stewardship (Table 1).

Recent studies emphasize that the spatial arrangement of
vegetation cover can drive evolutionary change (103), funda-
mentally linking segregation-driven patterns of vegetation
cover to shaping evolutionary trajectories of urban popula-
tions. Impervious surface is frequently associated with re-
duced movement of organisms across landscapes and
therefore lower gene flow, more subdivided populations, and
lower genetic diversity (104-106). Urban tree cover can ame-
liorate these effects; for example, tree cover facilitates gene
flow in native white-footed mice in New York (107, 108). In-
creased landcover and habitat connectivity, however, may
also boost zoonotic disease transmission (e.g., Lyme disease),
and adaptive management solutions to control disease
spread may produce additional evolutionary feedbacks (51,
109). Hypotheses addressing the relative contributions of
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racial segregation and wealth disparities to tree cover can dis-
associate which socioeconomic attribute best predicts popu-
lation genetic structure and connectivity (Table 1).

Evolutionary impacts of structural racism

The compounded impacts of heightened edge effects, smaller
patch sizes, reduced niche diversity, and individual human
behaviors may predict increased genetic drift in racially mi-
noritized neighborhoods (Fig. 3). Urban development and
habitat fragmentation are generally expected to increase drift
and reduce genetic diversity (107, 110), and urban green
spaces in minoritized communities are customarily frag-
mented (55). Habitat patches may also experience substan-
tially reduced gene flow if adjacent habitats are not proximal
(i.e., isolation-by-distance) or have significant barriers that
prohibit successful immigration into a desired habitat (i.e.,
isolation-by-resistance) (107). Reduced tree canopy cover sig-
nificantly reduces gene flow for some species (108), and can-
opy cover is significantly diminished in racially-segregated
neighborhoods (40). As a result, gene flow of native species
may be detrimentally impacted, whereas some pest species
may thrive in previously redlined neighborhoods (69, 90).
Further, highways and impervious surfaces are significant ur-
ban barriers for a variety of taxa (106, 111, 112), and these built
structures tend to be more prevalent in racially minoritized
neighborhoods (37). How other aspects of urban habitats
(e.g., vacant lots, food availability from pets or waste, home-
less encampments) vary as a function of various forms of
structural racism impacts gene flow in different taxa remains
an area worthy of exploration.

Redlining and similar discriminatory policies (e.g., Jim
Crow laws) that increased Black Americans’ proximity to pol-
luting industries (45, 92, 113) and heightened exposure to in-
tensified urban heat effects (36, 39) may compound to create
strong selective pressures that drive adaptive and maladap-
tive evolution (Fig. 3B). Increased pollutant exposure can in-
crease the rate of heritable mutations in mice (774) and
selection for toxicity-mediating genes and connected signal-
ing pathways in Killifish (Fundulus heteroclitus) (115), respec-
tively. Recent studies also provide evidence of rapidly evolved
thermal tolerance in urban water fleas (Daphnia magna)
(116, 117), ants (Temnothorax curvispinosus) (118), and dam-
selflies (Coenagrion puella) (119). To our knowledge, no work
has explicitly explored how either neutral or adaptive evolu-
tionary processes operate as a function of heterogeneity that
stems from structural racism.

The lack of effective intervention, water sanitation, medi-
cal access and resources, and trash management programs
due to structural racism may also shape mutation rates and
emerging disease dynamics (90, 120). Racially minoritized
and low-income communities witness increased proximity to
pest species known to harbor zoonotic diseases (90, 121, 122).
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For instance, brown rat (Rattus norvegicus) abundances neg-
atively correlate with socioeconomic status, in which low-in-
come neighborhoods report greater rat sightings across cities
globally (123-127). Racially diverse neighborhoods consist-
ently receive inadequate sanitation services that are com-
pounded with aging infrastructure and overgrown
vegetation, all factors that attract brown rats and other
nonnative rodent pests (125, 128). Inconsistent administra-
tion of over the counter rodenticides may lead to various lev-
els of immune resistance in local rat populations (129),
further exacerbating health and disease risks for marginal-
ized communities (130). Societal neglect underpinned by sys-
temic racism may therefore promote the evolution of
rodenticide immunity that heightens zoonotic disease risks
in marginalized communities (51).

Infection and mortality rates from COVID-19, the disease
caused by the severe respiratory syndrome coronavirus 2
(SARS-CoV-2), is disproportionately high for Latinx, Indige-
nous, and Black communities relative to other racial groups
in the United States (91, 113, 131-135). Over decades of gov-
ernment policy and economic development, cities have dis-
proportionately situated environmental hazards (e.g.,
petrochemical industries, waste facilities, major roadways,
etc.) near predominantly Black and Indigenous communities
(43, 46). Such forms of environmental racism have substan-
tially compromised neighborhood air quality and respiratory
health of minoritized communities (43, 87). Recent evidence
linking air pollution exposure with COVID-19 mortality risk
(134, 136) thus indicates direct links among environmental
racism, air quality, and disproportionate death rates for Black
and Indigenous communities. This epidemiological phenom-
enon is further compounded by reduced access to adequate
healthcare, heightened risks of concomitant health comor-
bidities (cardiovascular disease, hypertension, diabetes, etc.),
and increased densities (133). Communities with higher hu-
man densities can lead to increased viral mutation rates,
which subsequently increases the likelihood of viral host
jumping (120). A terrifying - though plausible and understud-
ied (137) - hypothesis is that mutation rates in pathogens like
SARS-CoV-2 are greatest in racially minoritized and low-in-
come communities, creating a pernicious socio-evolutionary
loop between increasing virulence and the uneven distribu-
tion of social and health inequities in Black communities.

Intersecting forms of inequality

Understanding the mechanisms shaping urban inequality
and thus urban eco-evolutionary patterns and processes re-
quires incorporating intersectional theories of inequality and
evaluating accessibility to different spaces (34, 138, 139). The
term “intersectionality” emphasizes that various marginal-
ized identities of an individual or community more broadly
intersect, compound, and interact, which ultimately impact
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the magnitude and severity of experienced social inequities
(Fig. 1) (67). For example, discrimination for a queer Black
woman in the United States may be intensified relative to in-
dividuals with similar racial, gender, and sexual orientation
identities alone. Translating the concept of intersectionality
onto the urban landscape can provide a more holistic under-
standing of the patterns and processes shaping urban ecosys-
tems. For instance, we may hypothesize that characteristic
differences between Indigenous ecological practices and for-
estland managers may contribute to variance in native spe-
cies richness and community complexity. (140, 141). Similarly,
we may predict that gender differences in land cultivation
and homeownership shape plant species assemblages and
species turnover rates. Further, vegetation removal and in-
creased nighttime lighting to deter LGBTQIA+ communities
(95) may have subsequent effects on disturbance regimes and
local biodiversity that reduce habitat value for multiple spe-
cies. Though such empirical links are currently speculative
and not well established, integration of various inequities in
cities may provide additional resolution to understanding
how social drivers impact urban ecology and evolution. While
our focus has been on racism and classism, we recognize the
need for and encourage intersectional approaches in urban
ecology.

Centering justice in urban ecology and conservation
The origins of environmentalism in the United States were
heavily influenced by white men who expressed racist per-
spectives in their efforts to protect nature. Writings by early
environmentalists like Aldo Leopold, John Muir, Madison
Grant, Gifford Pinchot, and Theodore Roosevelt, argued that
nature is most pristine without human influence but should
be reserved for white men as a resource for personal improve-
ment (142—144). These early arguments greatly contributed
to the exclusion of Black, Indigenous, and non-white immi-
grant communities from outdoor spaces and environmental
narratives (145), despite these communities shouldering the
brunt of environmental and climate crises, and leading effec-
tive movements for environmental and climate justice (53,
146, 147). White-led environmental and climate movements
have long marginalized issues of racial justice when crafting
policy and legislation (748). In addition, such movements
have traditionally considered structural violence to be unre-
lated to environmental issues, yet state-sanctioned police
brutality (149, 150), environmental degradation (113), and the
climate crisis (563, 147) all reinforce patterns of racial segrega-
tion and criminalization of minoritized people in urban pub-
lic spaces (151, 152).

Black, Indigenous, Latinx, and immigrant communities
possess cultural knowledge, ongoing land and water rela-
tions, and effective practices for community and ecological
revitalization, honed through generations of struggle with
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and for the land (140, 141). Systemic racism in environmental
policy excludes communities from ecocultural relations with
urban ecosystems, urban planning processes, and urban
ecological restoration (153, 154). As a result, these communi-
ties find their longstanding and effective practices of manag-
ing and advocating for lands, waters, and species limited.
When judges, elected officials, planners, scientists, and others
who hold power in environmental governance work
in solidarity with frontline communities, urban organisms,
ecosystems, and human communities move toward
regeneration (155-157).

Racist research and conservation approaches must be
challenged and redesigned to include justice, equity, and in-
clusion (24, 157-159). To do so, ecologists, biologists, and en-
vironmentalists must reimagine what is considered an
ecological or conservation issue. Increasing economic oppor-
tunities, bolstering public transportation infrastructure, in-
vesting in affordable housing and healthcare, and
strengthening voting rights and access are issues rarely con-
sidered by mainstream environmental organizations. Yet,
such societal initiatives reduce carbon emissions, dampen en-
vironmental hazards, enhance public health, and expand eco-
nomic mobility of marginalized communities. Moreover,
reallocating municipal funds to initiatives improving home
ownership for minoritized communities reduces displace-
ment and promotes local stewardship, which in turn impacts
overall public and environmental health. Such paradigm
shifts will be essential as accumulating evidence suggests in-
come inequality predicts biodiversity loss (63, 160). Centering
racial and environmental justice that drives equitable policy
changes are thus inextricably linked to urban conservation
and ecological restoration initiatives (157, 159).

Improving green infrastructure and greenspace access,
paired with policies that shield against displacement, can
greatly improve community health and wealth (54, 161). Ex-
posure and access to quality natural space in cities improves
physical and mental health (162), and buffers against health
comorbidities experienced by minoritized groups (31, 92, 161).
Justice-centered applications of ecological and evolutionary
tools can further spotlight convergences among social ineq-
uities and environmental disamenities (e.g., ecological mod-
eling of habitat sinks and sources) to identify areas of high
conservation and restoration need. Equitable restoration of
urban habitat patches and infrastructure necessarily im-
proves landscape connectivity and refugia to support success-
ful colonization of native species, guards against local
extinctions, and increases urban biodiversity (159). Hence,
equity-based ecological restoration will benefit both human
and non-human communities (163, 164), but only if the foun-
dation of such initiatives are rooted in anti-racist practices
(156, 165). The maintenance of societal integrity should in
turn lead to capital gains for minoritized communities that
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translate to ecological stability that positively impacts species
diversity in cities.

As urban ecologists and evolutionary biologists, we have
a responsibility to implement anti-racist strategies that inter-
rogate systems of oppression in how we perform our science.
This necessarily means eradicating efforts that perpetuate in-
equities to knowledge access, neglect local community partic-
ipation, or exploit community labor in the pursuit of
academic knowledge (i.e., the practices of colonial and para-
chute science). Concurrently, increasing representation of in-
dividuals of diverse identities is inherently just and enhances
our scholarship (166, 167). By directly including a diversity of
scholars and incorporating an understanding of systemic rac-
ism and inequality, we can more holistically study urban eco-
systems. We will not be able to successfully assess how racism
and classism shape urban ecosystems - nor address their con-
sequences - without a truly diverse and inclusive scientific
community.

Conclusion

The decisions we make now will dictate our environmental
reality for centuries to come, as illustrated by modern policies
like the Green New Deal proposal (168) and Paris Climate
agreement (169). Such an endeavor is timely as we face a
global pandemic that is both affected by and exacerbates the
latent structural inequities underpinning modern cities, di-
rectly threatening environmental health and biodiversity
conservation (170, 171). Concurrently, our contemporary fight
for civil rights in the wake of unjust murders and continued
racial oppression of Black and Indigenous communities
stresses the need to interrogate and abolish systemic racism.
The insidious white supremacist structures that perpetuate
racism throughout society compromise both public and envi-
ronmental health, solidifying the need to radically dismantle
systems of racial and economic oppression.

Consequently, our capacity to understand urban ecosys-
tems and non-human organisms necessitates a more thor-
ough integration of the natural and social parameters of our
cities. We cannot generalize human behavior in urban eco-
systems without dealing with systemic racism and other in-
equities. Further, incorporating environmental justice
principles into how we perform and interpret urban ecology
and evolution research will be essential, with restorative and
environmental justice serving as the foundation for effective
ecological restoration and conservation (158, 159, 163). Doing
so is both our civic responsibility and conservation impera-
tive for advancing urban resiliency in the face of unrelenting
global environmental change (172).
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Environmental Justice
Equal access to environmental
services and protection from
disservices in all places where
people live, work, learn, and play.

Ecological & evolutionary
patterns & processes

Landscape heterogeneity

Disease dynamics

Resource distribution

Environmental pollutants

Civil Urban

Green space & tree cover( : )
rights conservation

Urban heat islands

Social Justice
Fair and equitable (re)distribution
of power, opportunities,
resources, and wealth

Residental
- Law K’segregaﬁon‘*
Structural Racism /2 ¢ 08t Resource

: o allocation
& Classism A, n representatio

Systemic biases

C Definitions

Inequality: Unequal distribution of wealth and resources across social groups.
Inequity: Unjust allocation of resources driven by power dynamics discrimination, stereotypes, and systemic biases.

Racism: Stereotypical norms that disadvantage communities of color (typically Black, Asian, Latinx, and Indigenous
groups) including the interdependent forces of “predjudice plus power,” that dictate how racial inequalities persist
even after elimination of racist actors or policies.

Classism: Discriminatory actions based on wealth, income, or social class, usually directed at barring people from
working class backgrounds from accessing benefits and social spaces dominated by middle or upper classes.

Intersectionality: The intersection, interaction, and compounding of marginalized identities, causing individuals and
communities at such intersections to experience greater social inequities

Fig. 1. Structural racism and classism underpin landscape heterogeneity in cities. (A) Conscious and unconscious
systemic biases and stereotypes contribute to shaping institutional policies that drive and exacerbate racist and
classist structures in urban systems (e.g., law enforcement, residential segregation, and gentrification). The
emergent properties of these structural inequalities have profound impacts on multiple attributes across the urban
landscape, including impervious surface cover, urban heat islands, green space and tree cover, environmental
pollutants, resource distribution, and disease dynamics. These physical and biological characteristics have known
impacts on the ecological patterns and evolutionary processes of urban organisms. (B) Incorporating environmental
justice principles and civil rights into ecological and evolutionary applications is an urgent priority for positively
impacting the long-term success of urban conservation and sustainability. (C) Definitions of key terms to understand
the interconnectedness of racism, classism, and intersectionality to system inequality.
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Fig. 2. The practice of redlining in the United States functionally segregated
neighborhoods by race and class. The highest rated neighborhoods (graded “A™”) were
wealthier, predominantly white, and are outlined in green. The lowest rated
neighborhoods (graded “D") were poorer, predominantly Black, and are outlined inred.
Demographics of intermediate ranked neighborhoods - graded “B” and “C” - were
intermediate. Segregation practices like redlining leave lasting marks on urban
landscapes. (A) Redlined neighborhoods still have substantially lower green space
(trees, parks, lawns, etc.) relative to higher graded neighborhoods. Although this
patternis consistent across cities, there is substantial variation among neighborhoods
and between cities, seen in the comparison of Birmingham, AL and Baltimore, MD.
Other environmental amenities, such as urban water bodies in Minneapolis, MN, are
also segregated. (B) Historically greenlined or redlined neighborhoods are positioned
differently relative to contemporary urban boundaries and access to natural areas
outside the urban landscape. In Minneapolis, MN, and Baltimore, MD redlined
neighborhoods are concentrated in the city center, far from the urban periphery. These
cities have also grown in the past 50 years, meaning that human and non-human
residents of redlined neighborhoods must travel further to get out of the city. In
contrast, the city extent of Birmingham, AL has grown minimally, and redlined areas
are near forested lands. Note that in the background maps, white represents roads,
pale gray represents ex-urban land, gray represents urban land, and dark gray
represents water. Redlining data are from the Mapping Inequality collaborative project:

https:.//dsl.richmond.edu/panorama/redlining/.
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Fig. 3. Conceptual diagram illustrating how
between-city differences in segregation may
produce disparate ecological and evolutionary
outcomes. (A) In hypothetical City 1, green space is
more evenly distributed and continuous across
green- to red-lined districts (Fig. 2) relative to City 2.
(B) Between-city differences in connectivity may
result in different selective gradients that contribute
to varying distributions of genetic or phenotypic trait
values of species found across redlining districts
("A" through “D"). (C) Both cities have near-
identical species diversity and composition in “A”
districts, and species diversity and composition
declines from “A" to “D" designated neighborhoods;
however within each redlining jurisdiction, City 2 has
substantially less species diversity in “B,” “C,” and
“D" districts relative to City 1, potentially as a result
of differences in habitat distributions. (D) Food webs
may be more diverse and interconnected across
districts in City 1, but are more simplified across
districts in City 2, due to the relative differences in
structural and functional habitat connectivity.
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Table 1. Key novel questions integrating
systemic racism, ecology, and evolution. A
proposed list of potential research ques-
tions that integrate social heterogeneity,
ecology, and evolution in urban systems.
Identified questions could inform practition-
ers, planning professionals, and elected offi-
cials on how such processes in cities can be
leveraged for positive social change in cities.
Columns and corresponding dots denote
the primary research focus of each question
(purple = ecological; gold = evolutionary).
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Key Questions

Research Focus

1. How does biodiversity vary with the degree of residential segregation within a

city?

2. Does socioeconomic and racial stratification predict the locality of ecological

traps and source-sink dynamics within cities?

3. How does the severity of economic and racial segregation influence connectivity,

dispersal, gene flow, and genetic isolation?

4. Does equitable urban greening increase the probability of rescue effects of native

species and ecological specialists?

5. Do cities with increasing homelessness rates have reduced species occupancy

rates?

6. Is functional or structural connectivity reduced in cities with more pronounced

economic or racial segregation?

7. Are rates of local adaptation or maladaptation higher for urban organisms in

redlined neighborhoods?

8. How has urban renewal and associated displacement impacted habitat

fragmentation and ecological disturbances?

9. Does carbon sequestration and soil microbial density differ as a function of

neighborhood segregation?

..O..GQ@.

10. Does selection for non-dispersing seeds in plants vary with socioeconomic and

demographic predictors?

11. Do numerical responses in predator-prey or pollinator-plant dynamics vary

across redlining categories?

12. Is natural selection along multiple ecological conditions strongest in redlined or

low-income neighborhoods?

13. How do sublethal effects (e.g., life-history traits, physiology) vary as a function

of pollution proximity and segregation in cities?

14. Are rates of zoonotic disease transmission accelerated or dampened by

residential segregation and/or urban renewal?

15. Can improvements to public transportation infrastructure and greenways

improve habitat connectivity?

16. Do anti-displacement policies affect ecological stability and integrity over time?

17. Are cities with smaller economic inequality indices (e.g., the Gini coefficient)

more biodiverse relative to others?

18. Does remediating pollution (air, soil, water) in marginalized neighborhoods

enhance biodiversity and organismal abundances?

O....BQ.O
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