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Resource contingency planning aims to mitigate the effects of unexpected disruptions in supply chains.
While these failures occur infrequently, they often have disastrous consequences. This paper formulates the
resource allocation problem in contingency planning as a two-stage stochastic optimization problem with a
risk-averse recourse function. The solution method proposed relies on an inexact proximal bundle method
with subgradient approximations through a scenario reduction mechanism. The paper extends the inexact
oracle to a more general risk-averse setting, and proves that it meets the requirements of the oracle in
the inexact bundle method, ensuring convergence to an optimal solution. The practical performance of the
developed inexact bundle method under risk aversion is investigated for our resource allocation problem. We
create a library of test problems and obtain their optimal values by applying the exact bundle method. The
computed solutions from the developed inexact bundle method are compared against these optimal values,
under different coherent risk measures. Our analyses indicate that our inexact bundle method significantly
reduces the computational time of solving the resource allocation problem in comparison to the exact bundle

method, and is capable of achieving a high percentage of optimality within a much shorter time.
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1. Introduction
This paper studies the optimal allocation of resources to reduce the risk of demand unfulfillment
due to demand spikes, supply interruptions, or tie-line disruptions. Such network disruptions can
arise due to various man-made and natural disasters, such as severe weather, fires, traffic accidents,
or sabotage. Resource contingency planning is one of the proactive strategies to mitigate such
uncertainties and to be prepared to withstand disruptions in supply chains (Tomlin 2006, Snyder
et al. 2006). An optimal allocation of these resources to different areas in a network is critical to
achieve lower costs of failure and higher reliability. While the frequency of network disruptions due
to disasters can be rare, they can lead to severe supply chain interruptions. Hence, decision makers
should take into account such risks when allocating additional resources.

For various disaster management strategies, the reader is referred to Gupta et al. (2016). The

addition of reserve capacity in the supply chain for contingency planning is studied in Kleindorfer
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and Saad (2005), Matta (2016), Parajuli et al. (2017), Avlov et al. (2019), where network optimiza-
tion tools are used. For a recent review on contingency planning and resilient strategies in supply
chains, see Behzadi et al. (2020). Grass and Fischer (2016) reviews the literature on contingency
planning in disaster management by two-stage stochastic programming. The existing literature
primarily focuses on minimizing the expected failure cost, e.g., see Cui et al. (2010), Guo et al.
(2016), Chen et al. (2017), Moreno et al. (2018), Avlov et al. (2019) and the references therein.
Noyan (2012) considers the risk-averse two-stage stochastic optimization model for disaster man-
agement and discusses the importance of incorporating a risk measure to derive optimal decisions
computed from the Benders-decomposition method. A risk-averse model is studied in Alem et al.
(2016) where a heuristic solution approach is proposed. As it is pointed out in Alem et al. (2016),
computational challenges are the primary barrier in the risk-averse models for such two-stage logis-
tic problems since the number of decision variables would depend on the number of scenarios,
which is potentially large in the presence of down-side risk measures. The present paper aims to
address this challenge by proposing a computationally tractable approach for the resource location
problems arising in contingency planning.

This resource allocation problem lends itself to the class of two-stage stochastic optimization
problems with a risk-averse recourse function. Let (€2, F, P) be a probability space, where (2 is the

sample space, F is a o-algebra on 2, and P is a probability measure on 2. We consider the case

of a finite probability space with a potentially very large number of elementary events wy,--- ,wy
occurring with probabilities p;,---,px. Consider a stochastic optimization problem of the form:
. o T
min p(z):=c z+p(Qz,w)), (1)

where p is a risk measure and Q(z,w) is the optimal value of the second-stage problem

Q@,w) :=min  q(y,w) )
s.t. T(z,w)+ R(y,w) <0.

Here, X CR™, ) CR™, and ¢ € R". In the second-stage problem (2), ¢ is a real-valued function on
R™ x €2, and T and R are vector-valued functions on R™ x 2 and R™ x {2, respectively.

In this paper, we focus on coherent risk measures (Artzner et al. 1999) and convex finite-valued
second-stage optimal value functions. The convexity of Q(-,w) together with the convexity and
monotonicity of the coherent risk measures p imply that ¢ is a proper convex function, e.g., see
Proposition 6.8 in Shapiro et al. (2014). In addition, ¢(-) is subdifferentiable over the interior of
its domain, see Theorem 6.11 in Shapiro et al. (2014). However, the function ¢(x) is generally

nondifferentiable and the problem (1) becomes a nonsmooth optimization problem.
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One approach for solving convex minimization problems with a nonsmooth objective function
is the bundle method; see Hiriart-Urruty and Lemarechal (1993) and Section 7.4 in Ruszczyn-
ski (2006) for details on the bundle method, and see Nesterov (2018) for an overview on nons-
mooth convex optimization. For a survey on applications of the bundle method and comparisons
to alternative methods, see Mékeld (2002) and references therein. Méakel& et al. (2013) compares
implementations of bundle-type methods against subgradient methods for nonsmooth optimization
problems and have found its efficiency and outperformance. The method has been successfully
applied to regularized risk minimization (Teo et al. 2010), machine learning (Le et al. 2008),
two-stage stochastic linear problems (Ruszczynski 1986, Ruszczyanski and Swietanowski 1997),
two-stage stochastic quadratic programming (Liu and Sen 2020), risk-averse two-stage stochastic
linear programming (Miller and Ruszczyski 2011), and risk-averse multistage stochastic optimiza-
tion (Ruszezynski 2010, Collado et al. 2012). Two recent specialized bundle methods for multistage
stochastic programs are given in Asamov and Powell (2018), van Ackooij et al. (2019).

The approach iteratively builds linearizations for ¢(x) around a projection point and includes a
cutting-plane model using the piecewise maximum of linearizations. At iteration k, given the finite
set of information {Z7, ¢(z7), ¢’ € 0p(Z?)};e, for some index set J, C {1,---,k}, the proximal
bundle method constructs a piecewise-linear approximation of ¢, denoted by ¢*(x), in terms of 77,
©(77), and ¢g’. The approximate function ¢* is used to construct a master optimization problem.
Then, an optimal solution of the master problem 77! is found, the objective ¢(z71!) is evaluated,
a subgradient in dp(Z7!) is obtained, and the algorithm continues into the next iteration.

This method requires evaluations of the objective function ¢(z?) and consequently computing
Q(77,w) for all w € Q. This step involves solving || second-stage problems of the primal form (2)
or its dual. This task can be computationally intensive, particularly when the size of the scenario
space grows or a large number of decision variables and constraints are present.

While this computational challenge persists when the expected value of the recourse function
E [Q(x,w)] is considered in ¢(z), the computational demand increases in the presence of a downside
risk measure. Obtaining a reliable estimation of the probability distribution of Q(x,w), and hence
an accurate evaluation of p[Q(x,w)], often relies on a large number of scenarios.

To alleviate the computational cost when the first-stage objective function includes the expec-
tation of the recourse function E [Q(x,w)], a number of extensions to bundle methods capable of
working with less accurate function evaluations have been developed. For a recent review on algo-
rithms based on the bundle method to handle inexact data, see de Oliveira and Solodov (2020).
These methods replace the function values and subgradients by their approximations, for all or

just a subset of the iterations. Suppose ¢z and gz, are objective value and subgradient estimates
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obtained from an inexact oracle for the projection point 7. Then, the inexact bundle method uses
an approximate linearization for the first-stage objective function ¢ constructed by these estimates.

To achieve convergence in inexact bundle methods, the estimates ., and g,, which are the
outputs of an oracle, should satisfy some conditions. In particular, the inexact proximal bundle
method (Kiwiel 2006, Oliveira et al. 2011) requires for a given point x a function estimate @, and

a subgradient estimate g, satisfying

Pa € [p(z) — €1, (7)) + e, 3)
9e € Oeyp(2)- (4)

Here, €1,€; > 0 are unknown but fixed, €y = €; + €5, and the e;-approximate subdifferential 0., ¢ (z)

in (4) is given by
Oepp(x) = {g €R" [ p(2) > p(2) + (g, 2 = x) — €0, V2 € X'} (5)

Therefore, to achieve convergence in this inexact bundle method, one needs to compute approxima-
tions @, and g, which satisfy equations (3) and (4). In addition, to address the original motivation
of achieving a computationally efficient approach, these approximations must be easily computable.

This paper extends this inexact proximal bundle method (Kiwiel 2006, Oliveira et al. 2011) to
the risk-averse two-stage stochastic optimization problems of the form (1) with the aversion to
risk in the second-stage optimal value p[Q(x,w)]. We achieve this by describing appropriate oracles
capable of generating estimates ¢,; and g,;, which guarantee convergence in the inexact bundle
method for convex first-stage feasible regions. The validity of the risk-averse inexact oracle under
some assumption on the second-stage optimal value is theoretically established.

The developed inexact bundle method for our resource allocation model is studied using an
extensive computational investigation. In particular, we focus on two coherent risk measures for
the risk of unfulfilled demand. We show the convergence of the method for this two-stage stochas-
tic optimization problem with a discrete first-stage feasible region numerically by comparing the
computed solutions with those of the computationally prohibitive deterministic equivalent models.

The contributions of the paper can be summarized as follows.

e An oracle needed to implement the framework of inexact proximal bundle method is introduced

for a class of risk-averse two-stage stochastic optimization problems.
e We prove that the objective function and subgradient approximations from this oracle meet
the requirements stated in conditions (3)-(4).

e The approach with the introduced risk-averse inexact oracle is applied heuristically to a
resource allocation problem arising in contingency planning. This step involves a heuristic
treatment to adopt the method when the first-stage decision variables are subject to integrality

constraints.
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e We perform the benchmarks of the algorithm against the exact proximal bundle method for
problem instances with different sizes, and demonstrate the computational benefits of the
developed approach.

This paper is organized as follows. Section 2 provides background on risk-averse two-stage opti-
mization. Section 3 explains the details of the inexact bundle method. Section 4 introduces the
risk-averse oracle and proves its correctness. The modeling details for a resource allocation problem
in contingency planning are explained in Section 5. Section 6 reports the results of the numerical

experiments and the comparisons on the benchmark problems. We list our conclusions in Section 7.

2. Coherent Risk Measures and Risk-Averse Stochastic Optimization
This section details the evaluation of the first-stage objective function with risk-averse recourse
and the computation of its subgradients. First, we briefly discuss coherent risk measures and its
representation theorem. For an in-depth treatment see Ruszczynski and Shapiro (2006b,a), Shapiro
et al. (2014), Rockafellar (2014).

Let Z:= L4(Q,F,P) consist of all F-measurable functions Z : w — R, where the set  :=
{wi, -+ ,wy} is finite with N elements and py,---,py are probabilities of the corresponding ele-
mentary events. For Z,Z" € Z, let Z < Z' denote the pointwise partial order, i.e., Z(w) < Z'(w)
for all w € Q). In our exposition, Z represents a random cost and as such smaller realizations are

preferred.

Definition 2.1 A real-valued coherent risk measure is a proper function p: Z — R satisfying the
following axioms:

(A1) Convexity: p(aZ+(1—a)Z") <ap(Z)+ (1 —a)p(Z'), for all Z,Z' € Z and all a € [0,1].
(A2) Monotonicity: If Z,Z' € Z and Z < Z', then p(Z) < p(Z").

(A3) Translation Equivariance: If « € R and Z € Z, then p(Z + o) = p(Z) + «.

(A4) Positive Homogeneity: If a >0 and Z € Z, then p(aZ) = ap(Z).

The following theorem is a fundamental result employed in the evaluation of coherent measures

and risk-averse stochastic optimization, e.g., see Theorem 6.4 in (Shapiro et al. 2014):

Theorem 2.1 (Representation Theorem of Coherent Risk Measures) Let p: Z — R be a

coherent risk measure. Then the function p is subdifferentiable at 0 and

p(Z) =max E,[Z] = maxz,uwzwpw, VZeZ, (6)

neAp ,utep

where A, :=0p(0 C{MER‘QWM>O and Zweglu’wpw—]-}
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Theorem 2.1 implies that problem (1) can be expressed as

reX

. s T s T
min gp(x)—gg;l {c"z+p(Q(z,w))} =min {c $+£%§%Q($,W)waw}.

In the risk-averse two-stage optimization problem (1)—(2), X CR" and ) C R™ are nonempty,
convex, and closed. The second-stage problem is defined by ¢: R™ x Q = R, T = (t1,--- ,t) :
R" x = R and R = (r,---,r) : R™ x Q — R where t;(z,w) and r;(y,w), i =1,---,{ are
real-valued. We assume that the real-valued functions ¢(x) and ¢(-,w), and the mappings T'(-,w)
and W(-,w) are proper convex for every w € 2. The function Q(z,w) is assumed to be finite
for all z € X and all w € Q, which implies that the two-stage stochastic problem has complete
recourse, e.g., see Birge and Louveaux (1997), Shapiro et al. (2014). For any first-stage decision
x, denote the (-vector x :=T'(z,w) and let J(y,w) denote the optimal value of the second-stage
problem, i.e., ¥(x,w) := Q(x,w). We assume that the regularity condition x € int(domd(-,w))
holds, i.e., for all small perturbations of x, the second-stage problem remains feasible. We further
assume that the functions c¢(-) and T,(-) = T'(-,w) are differentiable in x for every w € €, and
0 € int {T,,(z) + V, T, (z)R* — dom ¥(-,w) }. Our intention is to describe d,¢(z), the subdifferential
of ¢(-) evaluated at x.

For x € X, denote ¢(x) := p(Q(x,w)). Theorem 2.1 implies that

= wlPw ) 7
¢(x) g&gﬁ%u p.Q(,w) (7)
Let Z*:= L.(Q,F, P) and define Q: X x £* — R, where
Oz, 1) =Y Pt Q(z,w). (8)
weN

Using this notation in equation (7) implies that ¢(z) = max,ca, Q(z,p). It thus follows from
Theorem 6.11 in Shapiro et al. (2014) (see also Theorem 2.87 in Ruszczynski (2006)) that for

real-valued coherent risk measures ¢(z) is subdifferentiable and

0¢(z) = conv U 8,9 (x, 1) | 9)

Neﬁz

where 2, := {u* € A, | Oz, %) = ¢(x)}. In particular, for any p* € 2, we have
9,0(z, 1) C 0(x). (10)

The rest of this section aims to specify the subdifferential 8wé(93, ). It follows from the Moureau-
Rockafeller Theorem (see Theorem 6 in Ruszczynski and Shapiro (2003)) that

aIQ(:C,/L) :Zuwpwawg(wi)' (11)

we
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Propositions 2.21 and 2.22 in Shapiro et al. (2014) imply that the function Q(-,w) is convex and
0,9(z,w) =V, T(z,w) " D(x,w), where D(x,w) is the set of optimal solutions of the dual problem
of the second-stage problem. In particular, the function Q(-,w) is differentiable at every x at which
D(x,w) is a singleton, e.g., see Corollary 2.23 in Shapiro et al. (2014). This result along with
equation (11) imply that

0:9(x, 1) = 1PV, T (7,0) D (x,w). (12)

weN

Then equation (12) at p* together with equation (10) yields

Co= Y Hip VT () T, € 6(a), (13)

weN
for m, € ®(x,w). Since the function Q(-,u) is convex for any given pu, the function ¢(x) is also
convex. Therefore, the subgradient calculus for convex functions implies that g, :=c+ (, € 0p(z).
Evaluating the objective function ¢(x) at a given x € X’ requires computing ¢(z) in equation
(7) and thus the optimal objective value of the second-stage problem, Q(z,w), for all w € Q. Each
Q(z,w) can be computed by solving the primal form of the problem (2). However, the regularity
condition and the complete recourse assumptions of the second-stage problem imply that the strong
primal-dual optimality holds for the problem (2), see Proposition 25 in Ruszczyniski and Shapiro
(2003). Therefore,
Q(x,w) = max {WTX + ;relgﬁ(y,ﬂ,w)} , (14)

ﬂERi
where L(y, T, w) :=q(y,w) +7 " R(y,w). This suggests that one can use the dual form of the second-
stage problem in (14) to derive Q(z,w) and consequently evaluate ¢(x). Our risk-averse inexact

oracle builds on this dual representation.

3. Imnexact Proximal Bundle Method
For risk-neutral multistage stochastic optimization problems, the family of decomposition meth-
ods constitutes an established and efficient approach, see Birge and Louveaux (1997), Kall and
Mayer (2005), Prékopa (1995), Ruszczyniski (2003) and the references therein. The class of cutting
plane methods, in particular bundle methods, proved to be a useful approach to solve risk-averse
optimization problems. For details on the exact bundle method and its convergence analysis for
minimizing a nonsmooth convex function, see (Ruszczynski 2006, ch. 7.4). For the case of two-stage
stochastic optimization, see (Birge and Louveaux 1997, ch. 5.2).

The essence of the (exact) proximal bundle method includes the application of the Moreau-
Yosida regularization of a lower approximation of the objective function and solving a sequence of

quadratic optimization problems. Localizing the iterations through regularization makes the bundle
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method more practical for problems of higher dimensions, where methods such as the cutting plane
method need a growing number of cuts to be stored in the master problem (Ruszczynski 2006).
We apply the bundle method to the first-stage minimization problem (1), min,cx ¢(x). At iter-

k

ation k of the proximal bundle method, having points z!,--- ,Z%, a piecewise-linear approximation

©"(+) of the objective function ¢(-) is constructed and used in the following master problem:

min gpk(x)—l—%“x—ﬂk“? (15)

zeX

Here, in the proximal term H:p — ﬁk‘ 2, v > 0 is a regularization parameter and the prox center

B¥ € X is updated by a conditional rule over iterations. An optimal solution of the master prob-
lem (15), denoted by Zy,1, is added to the set of points and used to construct improved linear
approximations over next iterations.

In the exact version of the method, values of the objective function ¢(z'),- -+, »(Z"), and subgra-

dients g' € dp(z), -+, g* € Op(T*) are used to construct the approximate model ¢*(-) as follows:

" () :=max {p(') + (¢, z = 27)}, (16)
MASES
for some subset J, C {1,---,k}. For the risk-averse two-stage stochastic optimization problem (1)—

(2), evaluating ¢(Z) and computing subgradients g € dp(Z) are carried out by means of equa-
tions (7) and (13), which involve computing Q(x,w) by solving the second-stage problem for all
w € Q). This is a computationally expensive task, especially as the number of elementary elements
in the probability space N grows.

To mitigate this computational challenge, one can resort to inexact bundle methods, which
rely on approximations of the objective and subgradient values, and try to supply admissible
approximations by solving some form of the second-stage problem for only a subset of scenarios.
We adopt the inexact bundle method in Kiwiel (2006). In this inexact proximal bundle method,
approximate objective value @; and approximate subgradient g.; satisfying the conditions in

equations (3) and (4) are derived to construct the piecewise-linear approximation ¢*(z) as follows:
CPk(@:g%f}f{@aj + (G, z—77)}. (17)

Then, at iteration k, the model approximation ¢*(z) is used in the master problem (15). With
the regularization parameter v, = i, this master problem can be equivalently written as a linearly
constrained quadratic optimization problem:

. 1
min v+ o1, Haz—ﬂ’“HQ

rzeX, veER
s.t. ¢§j+<§§j,$—§j>gv, VJGJk

(18)
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The parameter t;, > 0, referred to as the stepsize, as well as the prox center 8% are updated during
iterations (Kiwiel 1990, 2006). Algorithm 1 presents the details of this method (see Algorithm 2.1
in Kiwiel (2006)). This algorithm assumes the availability of an oracle which returns admissible

approximations ¢; and g;; satisfying the conditions (3) and (4).

Algorithm 1 Inexact Proximal Bundle Method (Kiwiel 2006)
Inputs: descent parameter g € (0, 1), stepsize bound T} > 0, stepsize ¢, € (0,7}], stopping tolerance 6 > 0, an

inexact oracle satisfying conditions (3) and (4).

Step 0: (Initialization)
[i] Set £:=0, k:=1, and k(0) :=1. Here k(£) — 1 denotes the iteration of the ¢th descent step.
[i7] Let ' € X be a given initial feasible point with inexact oracle approximations @z and gz .
[ii7] Set B =7, J; :={1}, and i, :=0.

Step 1: (Trial point finding) Let (Z*** v**1) be an optimal solution of problem (18), and {A¥};c;, be the

1 N .
tf(ﬁk — zFT1) | the predicted descent
2.

Lagrangian multipliers. Compute the aggregate subgradient py, :=
k
v, = @gr — 01 and the aggregate linearization error oy := vy, — ty||px
Step 2: (Stopping criterion) Compute the optimality measure wy := max {||pxll, ax}. If @, <46, stop.
Step 3: (Stepsize correction) If v, < —ay,, set ty, :=10ty, Ty := max{Ty, tx}, i, := k and go to Step 1; else set
Tk+1 = Tk
Step 4: (Inezact oracle call) Obtain @gr+1 and gge+1 from the inexact oracle satisfying (3) and (4).
Step 5: (Descent test)
If @zri1 < Pgr — ovy, declare a descent step: set fF1 i =TF T (:=0+1, iy 1 :=0, k({) :=k+ 1.
If @art1 > Qe — ovy, declare a null step: set BF T =% i) 1 =1y
Step 6: (Bundle management) Choose Jyi1 2 {j € Ji |[A¥ #0} U{k+1}.
Step 7: (Stepsize updating) If k(€) = k+1 (i.e., after a descent step), select tj41 € [tx, Trr1]. Otherwise, if the
step was declared null, set t41 :=t;. If i1 =0 and wy < Ggr — (Part1 + (Gars1, ¥ —TFH1)), choose

trr1 €[0.1¢t, ty]. Set k:=k+1 and go to Step 1.

Step 1 sets z¢t! and v**! = *(Z**1) to be an optimal solution to the master problem (18)
using the approximate piecewise-linear model ¢* constructed by {Z7, @z, §zi}jes, . Due to errors
in the oracle approximations, ¢* might not approximate @ from below at the prox center 3, in
which case the predicted descent v, may be nonpositive. In such a case, the method increases the
stepsize t;, and loops over a stepsize correction phase in Step 3 until v, > 0. Note that after the
stepsize correction step, vy := @gr — V" = @gr — @F(Z¥1) > 0. In the descent test at Step 5, a
null step improves the model approximation (17) through the addition of an extra constraint to

problem (18). In Step 6, the Lagrangian multipliers /\f are used to update the index set with the
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aim of reducing the number of cuts when constructing the model approximation. Namely, those
cuts j corresponding to inactive Lagrange multipliers )\f =0 that do not contribute to the new trial
point ¥ can be eliminated from equation (17). Lagrangian multipliers )\f are only necessary for
bundle management, Step 6, and can be forgone at the cost of solving a larger master problem at
each iteration.

With the tolerance level § =0, the inexact bundle method has two possible outcomes (see The-
orem 9 in Oliveira et al. (2011)): Either (i) the method loops forever at Step 3, in which case the
last generated 3% is 2(e; + €2)-optimal, or (ii) the method generates an infinite sequence of either
descent or null steps. In this case the method generates a sequence {3*}$°, for which each cluster
point B* satisfies 5* € X and §* is 2(€; + €3)-optimal.

This inexact proximal bundle method can find a ey-optimal solution for the convex minimization
problem over a nonempty closed convex set. We refer the reader to Kiwiel (2006) and de Oliveira

et al. (2014) for a proof and an in-depth discussion on its convergence analysis.

4. Risk-Averse Inexact Oracle
A key component in Algorithm 1 is the definition of an inexact oracle capable of providing approx-
imate value ¢, and approximate subgradient g, satisfying (3)—(4). In this section, we introduce
an inexact oracle specialized to work on our two-stage risk-averse stochastic optimization problem.
We refer to this oracle as the risk-averse inexact oracle, which together with Algorithm 1 comprises
the risk-averse inexact bundle method. The construction of our risk-averse inexact oracle extends
the approach in (Oliveira et al. 2011) for the risk-neutral case and linear two-stage models.

The analysis in this section relies on the assumption that for every x € X, the optimal value of

the second-stage problem admits the form
Q(z,w) :ma:}({ﬂTn(w,w) | mell(w)}, (19)
TER

for some function 7 : X x Q@ — R’ convex and differentiable in x, and a nonempty convex set
II(w) C R*. The feasible region I1(w) can be expressed in the general form {m € R¢ | ¢;(7,w) <0, i =
1,--+,1}, where ¢;(m,w)s are convex in 7.

Denote an optimal solution of the maximization problem (19) by ,,. Given the optimality of =,
and expression (19), we have Q(z,w) =] n(z,w). The essence of the inexact oracle is to compute
approximate values for {Q(x,w)},ecq, without computing ,, for every single w € 2, and then use
these values to construct approximations for ¢(x) and d¢(x). This process is carried out by first
selecting a subset Z C 2 and cluster the scenarios. The approximate oracle then computes the exact
optimal values Q(z,w) for every w € Z and derives approximate optimal values, without solving

the second-stage problem, for the remaining scenarios w € Q\ Z.



Resource Allocation for Contingency Planning: An Inexact Proximal Bundle Method

11

Suppose Z := {wy, -+ , Wk} is a subset of scenarios Z C € obtained through a clustering procedure
for the scenario set 2. Therefore, 2 = Ug, ¢z J, where J;, denotes the cluster of scenarios around

the scenario &, € Z. Given Z and for any k=1,--- , K, define
I, = {reR’ | E,[ci(m,w)lwe T <0, i=1,---,1}. (20)

Here, the expectation is given by E,, [¢;(m,w)|w € Tx] = c 7 Puci(m,w)/ 3 ,c 7 Do For any w € 7,
consider the problem of maximizing 7' n(x,w) over the feasible set II,,, defined in (20), and denote

its optimal solution by 7. Hence, for k=1,--- , K,
Ty € argmax {WTn(m,@k) | me ﬁk} . (21)
TER

Note that 7, depends on x. For a scenario w € 2, let E(w) €{1,---,K} denote the index of the
corresponding cluster J;, with w € J,. In particular, when w =@, € Z, we have E(w) = k. Then, for

any w € €, the algorithm adopts an approximation of Q(z,w) given by

QPP (2, w) == 7] (). (22)

These computed values are then aggregated to form the objective function approximation ¢,,

Dy :=c' x4 max [Z oD QPP (1, w)] , (23)
weN

HeERA,

and the approximate subgradient g,,

Eix =c+

> uipﬁ%@%n(w,w] : (24)

we

where, p* is an optimal solution to the maximization problem in (23). Algorithm 2 formally states
the risk-averse inexact oracle. Later in Theorem 4.1, we prove that under some conditions on
problem (19) and Z, the computed ¢, and g, in equations (23) and (59) satisfy the conditions (3)

and (4); hence the oracle returns admissible inputs for the Algorithm 1.

Algorithm 2 Risk-Averse Inexact Oracle

Inputs: x € X, Q={w1, -+ ,wn}, a scenario clustering method J(x)
Step 1: (Scenario Clustering) For the given x, call the scenario clustering method J(x) to generate clusters

{J1,+, T} with the set of cluster centers I.
Step 2: (Cluster Solutions) For each cluster Jy, construct Il in (20). Compute a solution 7, as in (21).

Step 3: (Approximate Q*PP™) For each w € €2, find the cluster k(w) containing w. Using solutions 7y

obtained in Step 2, compute QPP™*(z,w).
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Step 4: (Risk-averse oracle estimates) Use Q™% obtained from Step 3 in equation (23) to compute @,.
Compute an optimal solution u* to the mazimization in equation (23). Apply p* in equation (59) to

derive the subgradient approximation g,.

Next, we show that the risk-averse inexact oracle, presented in Algorithm 2, provides approxi-
mations ¢, and g, satisfying conditions (3) and (4). This property is referred to as the correctness
of the risk-averse inexact oracle.

For a given convex set S, let ss(d) denote the support function of S evaluated at d, i.e.,
ss(d) :==max {r'd ‘ TeS}. (25)

Denote d7, :=n(x,w). Let ||d?|| < 9% for all w € Jy, for some 9§ < +o00. The following assumptions
are made on the structure in (19):

[A] For any x € X and any cluster k € {1,---, K}, there exists a constant I'; > 0 such that
st (d5) — sq, ()| < 9Ty, YV we Ty
[B] For any x € X and any cluster k € {1,---, K}, there exists a constant x > 0 such that

|sq, (d2) =70 di| <Oiwi, ¥V we Ty

Since 77, € ﬁg(w), it is a feasible point when maximizing 7 'd?. Hence, Siig,,, (d®)>7l d®

2 T ) Y
and consequently |Sﬁz(w) (dr)— ﬁg(w)dﬂ = |sg, (d5) — T de| = Sfiz.. (d*) — %g(w)dfi. In addition,
note that the definition of 7, in equation (21), for the cluster center w = wy,, we have sz (d,) =
T dZ, and consequently |sg (df) — 7, dZ| =0.

Notice that the parameters I'?, and 7, and consequently €* defined below, do depend on the set

of clusters Z and consequently the clustering mechanism through the collinearity measure (26).

Theorem 4.1 Consider a two-stage risk-averse stochastic optimization problem with the first-stage
problem (1) with the nonempty compact feasible set X, and the second-stage problem (2) which
has fized and complete recourse. Suppose the optimal value of the second-stage problem Q(x,w)
can be expressed as in equation (19) for some function n. Then, for every x € X and €., € (0,1),
Algorithm 2 along with the scenario clustering method in Algorithm 3 provides outputs ©, and g,

satisfying equations (3) and (4) with €, =€y =€ >0, where € :=maxzex k=1,... k{(F + K7)V7}.

The proof of Theorem 4.1 is presented in subsection 4.3.
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4.1. Scenario Clustering
An approach for scenario clustering in Step 1 of Algorithm 2 is to select the subset Z such that the
corresponding set of vectors {n(z,§) | € Z} sufficiently deviates from collinearity. The collinearity

of two scenarios w and £ is measured by the cosine of the angle 6, ¢ between the two vectors n(x,w)

(@)
s = <Hn<x,w>|| ||n<x,5>||) ' (26)

Hence, two scenarios w and & are collinear if cos 0, ¢ = 1. For any given x € X and a given collinearity

and n(z,§), namely

parameter €..s € (0, 1), we consider a maximal subset Z C Q such that U,ez 7, = Q and for every
w,& € we have cosf,, ¢ <1 — €qs. Each cluster then includes all w-almost collinear scenarios, for
some w € Z. This can be carried out by a combinatorial method given in Oliveira et al. (2011).
This method is presented in Algorithm 3. The generated subset Z C Q) from Algorithm 3 depends
on the permutation of elements of 2 fixed as an input. In particular, the initial elements of the
permutation of 2 are favored to be part of Z. We consider a random permutation of elements of {2

on each call to Algorithm 3.

Algorithm 3 Selection of Z C Q2 and clusters {J; }
Inputs: x € X, Q={wy,...,wn}, collinearity parameter €., € (0, 1)
Step 0: (Initialization) Set k=0, Z=10, and Z, :=
Step 1: (Main procedure) For every i=1,---,N such that w; € Iy do:
k:=k+1, T=7TU{w,;}, and define 7, := {w;}
for every j=i41,---, N such that w; € Z, do
compute cosf,, ., using vectors n(z,w;) and n(z,w;) and eq. (26)
If co8 0., .0, > 1 —€cos then Jy := T U{w, } and Zp :=Tp \ {w; }

end for

4.2. The Case of Linear Second-Stage Problem
The second-stage optimal value Q(x,w) takes the form in equation (19), for example, when the
second-stage problems in a linear optimization problem for any w € Q, i.e., q(y,w) = q_ y for some

m-vector q,,, R(y,w) = Ry — h,, for a fixed recourse matrix R, and J =R’

Q(z,w) = min g,y
ver™ (27)
st Ry+T(z,w)<he,  y=0,

The full recourse assumption on the second-stage problem implies that the strong duality for

problem (27) holds and we have

Q(z,w)=max 7' (T(z,w)—h,)
mERE (28)
st. R'm>—q,, m > 0.
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The expression of problem (28) if of the form in (19) with n(z,w) =T(z,w) — h,, is convex and
differentiable in #, and the set II(w) := {m € R|~R"m — ¢, <0, —7 <0} is convex.

For the second-stage problem (27), the feasible set II, defined in equation (20) is given by
I, = {reR ‘ T>0, R'm>—E,[q.|lw € J;]}, with the conditional expectation g, := E,[q.|w €
Tl = dejw Peqe/ dejw De.

For the linear second-stage optimization problem (27) both assumptions [A] and [B] hold. We
use the Lipschitz continuity of solutions of linear programs with respect to the right-hand-side
perturbation; for the linear optimization problem (28) the optimal solution is Lipschitz with respect
to perturbations in the right-hand-side vector ¢, (e.g., see Theorem 2.4 of Mangasarian and Shiau

(1987)). Consider the kth cluster J,. Suppose max )ﬂ'Tdi = d®. For all w € Jj, E(w) =k,

WGHE(w

we have

T\ _ o T — T gxz Tgz| |- Tgz _ T gz
SH(W) (dw) SH/I(;(UJ) (dw) |7TIEHI_?(§)7T- dw ﬂg%z?)ﬂ dw| ’ﬂ-w dw Tk dw|
< e = el ]| < <5 llgw — Ee[ge|€ € Tl [HIdE || < TR, (29)

for some Lipschitz constant ¢¥ >0 and I'} := max,e 7, {2 ||qw — Ee[ge|§ € Ti]||}- This establishes the
validity of assumption [A] for linear second-stage models. In the special case, that g, = ¢ for all
w € ), then I'f = 0. In this case, T, =75, , the exact optimal solution of the second-stage problem
for the scenario wy.

Assumption [B] also holds when the second-stage problem is linear, as in (28). Consider cluster
Ji. and let w € J. Using the property max,cx f(z) — max,cx g(z) <max,(f(z) — g(z)), we have

|55, (do) =7 d5| = sq, (d) — 7y d, = max 7' dj —maxn'df <maxn' (df —df,)=7"(d—d5),
melly melly mwelly

where 7, is an optimal solution of the maximization problem max, g 7' (d% —dg, ). Since the
feasible region of the problem (28) and consequently ﬁk is a polyhedron, which is nonempty due
to the complete recourse assumption. Thus, we can let 7, be a basic optimal solution. Since any
polyhedron has finitely many extreme points, let 9, be the largest ||74||. On the other hand we
have ||df, —dg, ||? = (d —dg, ) " (df —dg, ) = | dg |1+ [|dg, 1> —2[|dg [[ 143, || cos(0u,) < (95)+ (9F)* —
2(95)?€cos = (95)*2(1 — €cos)- These two bounds together imply that

|71, (d5) — 7 di] < I7llldE — d5, | < 0uiv/2(1 = €eos) (30)

Thus, assumption [B] holds for x% :=9;/2(1 — €cos)-
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4.3. Proof of Theorem 4.1
In this section, we present the proof of Theorem 4.1.

Proof of Theorem 4.1 Fix x € X'. According to equation (19) and using the notation in (25),
we have Q(x,w) = sn(.)(dy). Equation (22) implies that Q*PP"(x,w) := };r( )df), where 77, is as

n (21) for k =k(w). In particular, when w = &, for some @ € Z, we have Q"PPr% (g, w) 1= s, (d)-

Denote the approximation error in the second-stage value function evaluation by

sn(w)(dj)—b’ﬁ d), fw=w,el
. __ ()apPprox — k
= Qa,w) = @M, w) {sn(w)(d o) =Rl A Hwe\T. (31)
For any w=wy, € Z, it follows from assumption [A] that
|€w] = Isnw) (d) — s, (d5)] < TRog- (32)
For every w € Q\ Z, from equation (31) we have
— T ~T T | __ T = T . T ~T T
’6w| - ysn(w)(dw) - Wg(w)dw‘ - |SH(UJ)(dw) - SHE(“}) (dw) + SHE(W) (dw) k(w)dw|
T N T . £ AT T
< o (€5) — s, (@) + o, (d5) — 7, )
<297 + K297, (33)

where the inequality (33) follows from assumptions [A] and [B]. Therefore, equations (32) and (33)
collectively imply that for any w € 2,

le,| <max{T{97, T997 + k207 = (i 4+ k1) 97 <€, Ywe T (34)

Note that given the compactness of X and finiteness of €2, €* is well-defined and €* < co. We use
the bound (34) on Q estimation errors to establish that the risk-averse inexact oracle satisfies
requirements (3) and (4). We complete this step in two parts focusing on @, and g,, respectively.

Part 1: Correctness of ¢,: The expression of ¢(z) in (1) and Theorem 2.1 implies that

o(z) = ¢z + max ZMwa (, w)] =c m—l—max [Zwaw QPPN (1, ) + €

HEAp wGQ

=c'z 4 max Z P QPP (2, w) + Z wawfw]

eA
L et wen

< ¢z + max Z PP QPP (1, w) + Z ,uwpwe*]

el
R et weR

= @, +e€. (35)
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The last equality comes from the equality ) g, ftop., =1 from Theorem 2.1 for every p€®,, and
then the definition of ¢, in equation (23). Similarly, we get

— T approx
o(a) C$+£Iégl>p<[ze;mpw(9 (@w)+e)

> ¢z 4+ max wPw (QFPPTX (1 ) — €*
> el + max [U;ZM P (Q¥P7(z,w) )]

= (;51/, — 6*. (36>
Inequalities (35) and (36) collectively imply that ¢, —€* < p(z) < @, + €, thus satisfying the
requirement (3), @, € [p(x) — €*, p(z) + €*], with €1 := €y := €.

Part 2: Correctness of g.. Let z € X such that z # x. Let n7, be an optimal solution for problem
(19), i.e.,

Q(z,w) = max 7' 1(z,w) = () 'n(z,w) = snw)(d5), (37)

mell(w)

where d? :=n(z,w). Using assumption [A] at dZ, we get

€ 215050 2 Isnw () — s, (d0) Zsn, (D) = sne(d)) = max «'d] — sue)(d])- (33)

k
T w)

From equation (22), Q®P™*(z w) = n(z,w) ' m,, where m, is %E(w) corresponding to z. Since 7, €

Il We have maX iy m'd? > n]d?. Applying this inequality in (38) yields
st (d3) > 7T d — €. (39)
Using (37) and (39) along with the equality Q**P"*(x,w) =n(z,w)  x, implies that

Q(z,w) > (Q""(z,w) —n(z,w) ) + (7, d — )

_ Qappmx((IZ, w) e 7-‘—; (n(sz) — n(m,w)) . (40)

The convexity and differentiability of (-, w) at x implies that n(z,w) —n(z,w) > V,n(z,w)(z —x).
Here, V,n(z,w) is the s x n Jacobian matrix of 7. Using this inequality in (40) along with 7, >0

(problem (14) includes > 0 as the constraints), we arrive at
Q(z,w) > QP (g, w) — " + 7, Von(z,w)(z — ). (41)

From the definition of ¢(z) we have

— T > T * T _
Pl =Tz max Euwmgw,m] > ot Y pipaQew) 4T (2 — ),

weN
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where p* is an optimal solution to the optimization problem in equation (23) for z. Using inequal-

ity (41) in the above equality yields

p(z) ZcTa+ Y pip, (QPP (2 w) + 7, Von(z,w)(z —2) +¢' (2 —2) =€)

weN
= CT*T + Z M:pw Qappmx(l‘a OJ) + Z M:pwﬂ-;vzn(m?w)(z - l’) + CT(Z - LU) —€
weN weN
-

= o+ | i (Van(z,w) T, +c .

weN
:¢z+<§z> Z_$>_€*

(z—x)—€

> o) + (o, 2 — ) — 26"

Here, the first equality uses ), puipoe® = €*. The last inequality comes from inequality (35).
Thus, g, € Os.+p(x) satisfies (4) with €, := €5 := €*. This completes the proof. O

5. Resource Allocation for Contingency Planning

This section presents the details of our resource allocation problem and its formulation as a risk-
averse two-stage stochastic optimization problem. For a detailed review on facility location prob-
lems, the reader is referred to (Daskin 1995, Drezner 1995). This problem aims to allocate a set
of reserve resources to the nodes in a network in order to achieve an optimal risk-adjusted level
of cost versus reliability in the network. This problem arises for example in the optimal alloca-
tion of a finite number of energy storage facilities to different areas in an electricity grid, given
area generation, area demand, and tie-line connections between areas. For details on this problem
see Chowdhury et al. (2004), Jirutitijaroen and Singh (2006, 2008). We formulate the optimal
allocation problem as a two-stage risk-averse stochastic optimization problem, where the second-
stage problem is modeled as a network flow problem (Bertsekas 1998). We start by describing the

network model next.

5.1. The Model
Consider a multi-area network with the set of nodes {1,...,n} and the set of edges E C
{{i,5}]4,7€{1,--- ,n}}. The network is directed and we set E :={(4,7), (j,4) | {i,7} € E}. For any
arc (i,7) € E,i = j. Elements of randomness in the network are driven by a finite probability space
(Q,F, P), where each w € Q represents an outcome of the system characterized by

t; ;j(w): tie-line capacity between areas ¢ and j under scenario w

cl(w): cost of demand unfulfillment in area i under scenario w

gi(w): production capacity of area i under scenario w

l;(w): demand in area i under scenario w
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Above-mentioned functions of scenario w are known and given. In addition, the following parame-
ters are given:
c?: cost of an additional reserve resource in area i
GY: capacity of the reserve facility if installed in area i
B: maximum capacity of reserve resources for contingency planning
We do not assume that the events of network disruptions are independent. Our computational
studies let the tie-line distributions be dependent. We refer the reader to Garver (1966), Lago-
conzalez and Singh (1989), Mitra and Singh (1999), Lawton et al. (2003), Jirutitijaroen and Singh
(2006, 2008) for more details in the generation of state-dependent functions from available data.
Our model can cast as a generalization of the model in Jirutitijaroen and Singh (2006, 2008).
The main objective of the problem is to efficiently allocate the given set of external reserve
resources in terms of cost versus reliability, in the presence of uncertain inputs ¢, ;, ¢;, g;, and [;. The
first-stage decision variables, x;’s, are the number of reserve facilities to be allocated to each area.
These integer decision variables must be determined before the realization of a random scenario
w € Q for demands, generations, and congestions. Given an allocation {z;}! ;, flows in the network
for each scenario constitute the second-stage decision variables. Denote the flow from arc ¢ to j for

the scenario w by y;;(w). The precise formulation of this two-stage problem is as follows:

n

- b 42
min ;czxﬂrp[Q(%w)] (42)
st. Y 2, <B, x>0, x is integral, (43)

i=1
where p(-) is a coherent risk measure, and for any w € €2,

n

Qz,w)= min > ¢j(w) (Li(w) —yrs) (44)

yeRlE‘ i=1
yG.yr ER™

s.t. Yo.i < gi(w) +Glzy, i=1,2,-- n, (45)
yL,iSli(w)y Z:1727 y 1L, (46)
Y — Yl Stij(w), (4,5) € E, (47)
Z Yji — Z yij+yG,i_yL,i:07 2.:1727"'an7 (48)

(4,0)€EE (i,5)EE
yijuyG,iuyL7i207 7’7.]:1)27 ;. (49)

Function Q(z,w) is the optimal objective value of the second-stage problem of minimizing the cost
of demand unfulfillment under scenario w € €. Constraints (45)—(47) correspond to the maximum
capacity flow in the network. These constraints consider generation, demand, and tie-line capac-

ity, respectively. Equation (48) is the flow conservation constraint. The cost c!(w) is the penalty
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cost of not serving the customer per unit of missed demand. Hence, the objective function (45),
!

c;(w)(l;(w) —yr.i(w)), serves as an unreliability index, which we aim to minimize. The failure cost
to measure reliability is typical in the facility location literature, e.g., see Cui et al. (2010).

In the first-stage problem, Q(z,w) is a random variable on Q. Equation (43) is the first-stage
bound on the total number of reserve facilities to be allocated. This bound is based on our resource
availability on such components. The objective function (42) adds the cost of additional reserve
capacities to the risk-averse evaluation of the second-stage cost of demand loss under uncertainty.

The risk measure p as included in the first-stage problem makes our model fundamentally dif-
ferent from the standard literature on related problems, e.g. Jirutitijaroen and Singh (2006, 2008).
More specifically, instead of considering as our recourse the (risk-neutral) expectation of the cost of
demand unfulfillment, we use a risk measure of the second-stage objective value. This enables the
decision maker to incorporate his risk preferences in the reliability management while allocating

the reserve resources. Under this paradigm, the decision maker is capable of placing more attention

on particular scenarios based on his risk preferences.

5.2. Coherent Risk Measures for Network Reliability Assessment
We illustrate the inexact proximal bundle method with the risk-averse oracle for two popular coher-
ent risk measures: Mean-Upper Semideviation and Coditional Value-at-Risk. For further review on
these risk measures, see Shapiro et al. (2014), Rockafellar (2014). Below, [a], :=max {0, a}.

For o > 0, the mean-upper-semideviation, denoted by MUSD,,, measures the risk of losses exceed-

ing the expectation (Ogryczak and Ruszczyniski (1999, 2001)) and is defined by
MUSD,(2) :=E[Z]+oE[Z -E[Z]],, VZeZ, (50)

The conditional wvalue-at-risk at level a € [0,1] (Rockafellar and Uryasev (2000, 2002),
Ruszczyniski and Shapiro (2006b)), denoted by CVaR,, is the expectation of Z in the conditional

distribution of its upper a-tail, and is given by

s -1 _
CVaR,(Z) = inf {t+a'E[Z -1, }. (51)
Given a finite probability space with = {w;,--- ,wx}, the corresponding risk envelopes are
Rhavspa ={H € Loo(Q, F, P) [p=147—-E[7], |I7]lx <a}, (52)
Acvar, = {1 € Loo(Q, F,P) | p(w) €0,a7"] ac.we, E[u=1}. (53)

For other examples of coherent risk measures and their representations see Section 6.3.2 in Shapiro

et al. (2014) and Rockafellar (2014).
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For a discussion on deploying coherent risk measures for handling the risk of system failure and
reliability analysis, see Minguez et al. (2011), Rockafellar and Royset (2015), Gardoni (2017). The
two-stage model (42)-(49) for a finite probability space can be represented as a one-stage determin-
istic linear optimization problems. The deterministic equivalent optimization formulations for these
risk functionals are presented in Appendix A. Solving the deterministic equivalent formulations

becomes quickly computationally expensive as the number of scenarios N grows.

5.3. Application of Risk-Averse Inexact Proximal Bundle Method
This section presents the details of applying the inexact proximal bundle method outlined in
Section 3 with the risk-averse inexact oracle described in Section 4 for the two-stage optimization
model (42)-(49).

For each cluster J}, the solutions 7, is computed as in equations (21). Let 77, 7L, 71,7, 7}, and 7%
refer to part of 7, corresponding to the set of constraints (45)-(48) in the second-stage optimization

problem. Hence, equations (20) and (21) are expressed as

~ ~ b ~ A ~ t+ t—
Ty € arg féaﬁ)z Z;(gi(wk)+Gixi)ﬂf+z;li(wk)7ri+ Z ti i (@r) (T +m357) ¢ (54)
1= 1= (’L,j)EE
where
7rf—|—7r§’§0, i=1,---,n
b .
o (g b+ _t— _d 3n+2|E| 7T - <E[ ( )]wejk], =1, ,n
I, =<qr=(n%7n, 7", 7", 7%) eR g_ﬂ_ +7Tb_7rb<() (i,j) € E . (55)
ﬂ- 7TZ 77T’Lj ) 1_7_

Note that here E[cl(w)|w € Ji] = > e, PuC W)/ Ppe 7, Poo- These solutions are used to construct
QPProX (1 ). For some w € €2, suppose that k( ) =k. Thus,

n

QFPPTOX (11 1) = Z(gi(w) + Glaxy)T )T+ Zl 7rk i+ Z 13 (W) (T + 7). (56)

i=1 (i.4)EE
These approximate optimal values for the second-stage problem are used to derive @, as stated in

equation (23). In particular, using (53) for CVaR,, we set

S cl ot ma% [Z LoD Qapprox(ﬂf,W)] (57)

R
e we

N
1
st > paa=1, 0<p<— s=1-,N.

s=1

Using the expression in (52) for MUSD,, we compute

Pyi=c z+ max [Z uwprapme(x,w)] (58)

HERN weQ
N
s.t. ,uszl—l—T—ZpsTs—l—T, 0<7,<a, s=1,---,N.

s=1
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Suppose that u* € RY solves the maximization in the description of @, above. Then, the approxi-

mate subgradient follows from v,Q*"*(z,w) =[x} G} --- 7} ,G5]", that is

Gi7l,
gx =c+ Z szw . (59)
S L,

5.4. Convergence with First-Stage Integrality Constraints

The convergence analysis of the inexact proximal bundle method established in Kiwiel (2006)
relies on the optimality condition for convex optimization problems. Hence, this analysis cannot be
directly employed for the resource allocation problem introduced in (42)—(49) due to its first-stage
integrality constraints. We heuristically apply Algorithm 1 to the resource allocation problem by
letting the regularized master problem (18) at each iteration be an integer optimization problem.
In addition, in our implementation, the bundle management in Step 6 is forgone.

We numerically investigate the convergence of the algorithm for the resource allocation prob-
lem of our interest with first-stage integer decision variables. For this purpose, we develop the
deterministic equivalent program (see e.g. Birge and Louveaux (1997)) for our two-stage stochastic
optimization problem when p is replaced by expectation, mean-upper semideviation, and CVaR.
These deterministic equivalent formulations are presented in Appendix A. For a given scenario set,
deterministic equivalent programs provide an optimal solution of the two-stage stochastic opti-
mization problem. However, these formulations are generally computationally prohibitive as the
number of scenarios grows. We solve these mixed-integer problems using the Gurobi’s branch and
bound algorithm (Gurobi Optimization 2016). We use the solutions computed from the determin-
istic equivalent formulations to assess the optimality of the solutions obtained from the application
of Algorithm 1 to our resource allocation problem. For this study, we consider a randomly gener-
ated network of 20 nodes and 78 arcs and vary the number of scenarios from 100 to 2000 scenarios.
The rest of the simulation parameters are as in section 6. We observe that for all three risk func-
tionals and for all scenario sets, the relative error is consistently less than 0.01%. For expectation,
Algorithm 1 with an integer master problem is often capable to offer the exact optimal solution

obtained from the deterministic equivalent program.

6. Computational Results
In our numerical experiments we randomly generate sparse connected networks of different sizes
using the Networkx Python library (Hagberg et al. 2008). Figure 1 presents some of the networks

used in our subsequent analyses.
!

Sets of scenarios (2 specifying t; ;(w), g;(w), l;(w), ¢,(w) are generated by simulation. We build on

the existing literature to determine our simulation setting and parameter values. The details of our
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% R A

(a) 20 nodes (Table 1) (b) 10 nodes (Figures 2 and 3) (c) 15 nodes (Figures 2 and 3)

.<. &‘g!"

<
i

J

(d) 20 nodes (Figures 2 and 3) (e) 25 node (Figures 2 and 3) (f) 20 nodes (Figure 4)

Figure 1 Examples of randomly generated networks

scenario simulation are presented in Appendix B. In addition, we set ¢? = $205,100 and G? = 0.1MW
for every node i. We set the maximum number of extra reserve resources B to be 3% of the total
maximum generation capacity on the network. That is, B =0.03>_" | G, where G; is the upper
bound of the support of the probability distribution for g;(w), see Table 2a. The software containing
these problems is available at https://archive.org/details/contingency-data.-7z.

We consider three risk functionals p: expectation, mean-upper semideviation, and CVaR.
Throughout, the risk parameters in CVaR and mean-upper semideviation are set to o =0.40. For
the exact proximal bundle method, the regularization parameter is set to v =0.31. In the inexact
proximal bundle method, presented in Section 3, the descent parameter is o = 0.3, the initial step-
size bound is T7 = 0.05, and the initial stepsize is t; = 0.1. In both the exact and inexact bundle
methods, the stopping tolerance § = 107° is used.

The master problem in the proximal bundle methods and deterministic formulations (60), (61),
and (62) are solved using Gurobi quadratic, mixed-integer, and dual simplex solvers (Gurobi Opti-
mization 2016), implemented in the Python programming language. In the exact method, the
objective functions and subgradients are evaluated using equations (7) and (13). The inexact

method employs equations (23) and (59). To improve efficiency, we parallelized the calls to multiple
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scenarios w € €). An Ubuntu 14.04 PC with dual Intel Xeon E5-2650 v4 @ 2.20GHz CPU with a
total of 48 threads available and 128GB of RAM is used in these numerical experiments.

6.1. Accuracy: Inexact Bundle Method versus Exact Bundle Method

Table 1 reports the run-times of the inexact bundle method for different risk measures and its
corresponding suboptimality levels against the exact bundle method. In this section, all parameters
are fixed except €.s. The suboptimility is computed as the absolute value of the difference of
optimal values of exact and inexact methods, divided by the optimal value of the exact method. In
this analysis, a network with 20 nodes and 48 arcs is considered. Figure 1a illustrates the undirected
version of this network, with 48/2 =24 arcs. The size of the scenario set is |2] = 100. For each risk
measure, the exact running time is also provided.

Results in Table 1 show that the running time can be reduced by more than 2.85 times for CVaR,
7.98 times for Mean-Upper Semideviation, and 8 times for expectation at about 10% suboptimality.
In addition, Table 1 suggests that €., = 0.1 offers an acceptable tradeoff between approximation
error and run-time. This observation informs the numerical experiments in the subsequent sections
to focus on the inexact proximal bundle method with two “extreme” conditions of €., = 0.2 and

€cos = 0.05, and a “reasonable” condition with €., = 0.1.

CVvVaR Mean-Upper Semideviation Expectation
€cos | Time | Suboptimality €cos | Time | Suboptimality €cos | Time | Suboptimality
0.9 2.6 80.85% 0.9 2.72 71.87% 0.9 2.52 63.58%
0.8 2.32 80.85% 0.8 2.44 71.87% 0.8 2.47 63.58%
0.7 2.34 80.85% 0.7 2.46 71.87% 0.7 2.46 63.58%
0.6 2.33 80.85% 0.6 2.46 71.87% 0.6 2.47 63.58%
0.5 2.33 80.85% 0.5 2.47 71.87% 0.5 2.47 63.58%
0.4 4.68 48.04% 0.4 4.75 36.16% 0.4 4.53 32.60%
0.3 5.01 44.58% 0.3 5.5 32.65% 0.3 4.85 29.30%
0.2 | 834 26.85% 0.2 | 7.23 14.81% 0.2 | 7.54 11.95%
0.1 28.1 10.51% 0.1 | 15.22 0.31% 0.1 15.60 3.30%
0.08 | 21.77 5.28% 0.08 | 23.73 2.31% 0.08 | 22.52 0.84%
0.06 | 41.88 2.95% 0.06 | 42.43 2.05% 0.06 | 49.93 1.16%
0.05 | 94.53 1.76% 0.05 | 69.67 1.67% 0.05 | 103.80 1.27%
0.04 | 61.97 0.23% 0.04 | 79.26 0.12% 0.04 | 148.38 0.14%
0.02 | 71.03 0.00% 0.02 | 61.04 0.00% 0.02 | 124.28 0.00%
Exact running time: 80.43 Exact running time: 121.44 Exact running time: 124.87

Table 1 Run-time (in seconds) of inexact proximal bundle methods as a function of e..s and the percentage of

sub-optimality (approximation errors in %) against the exact proximal bundle method.

Figure 2 exhibits the percentage of approximation error (suboptimality) of the solution com-
puted from the inexact bundle method. These plots are obtained from applying the exact bundle
method and the inexact bundle methods (with €., = 0.2, 0.1, 0.05) under different risk functionals

to random networks of 3 to 25 nodes. Some of these graphs are presented in Figures 1b-1e. In the



Resource Allocation for Contingency Planning: An Inexact Proximal Bundle Method

24

plots in Figure 2, each point represents the average over 5 simulations on a fixed network with 100
randomly generated scenarios. Other settings are similar to those explained previously.

The error in approximation improves with smaller values of €.,s. This is expected since for a
fixed scenario indexing, a smaller €., tends to create finer partitions Z, thus leading to solving
more second-stage scenarios in Algorithm 2. The suboptimality level is relatively consistent among
different risk measures and different scenario sizes. Right plots in Figure 2 indicate that a solution
with an acceptable level of accuracy can be obtained from the inexact method even for a large
number of scenarios. This result along with the time improvements achieved in the inexact method
make this approach attractive for solving risk-averse two-stage stochastic problem with downside
risk measures. For risk measures such as CVaR, a large number of scenarios must be considered to
accurately capture the tail of the recourse function distributions. This leads to high computational

time in the exact method for risk-averse two-stage stochastic problems.

6.2. Computational Time: Inexact Bundle Method versus Exact Bundle Method
This section reports the run-time of the inexact proximal bundle method and compares it with
the run-time of the exact proximal bundle method. The analysis on run-time is conducted by
varying the number of nodes in the network, the number of scenarios in the scenario set €2, and
the parameter €. in the inexact risk-averse oracle.

Figure 3 illustrates the run-times (in seconds) of the exact method and the inexact bundle
methods for e, =0.2,0.1, 0.05. The left plots in Figure 3 illustrate the run-times to randomly
generated networks of 5 to 25 nodes, some of which are presented in Figures 1b-1le, and a scenario
set with |©2| = 100 scenarios. Every point in these plots represent the average over 5 simulations. The
left plots in Figure 3 illustrate that significant run-time improvements (85% — 95% for €..s =0.1,0.2
and 65% — 75% for €..s = 0.05) can be achieved through the inexact method. The run time for both
exact and inexact method for the case of CVaR is lower than the other two risk measures, which is
more prominent as the number of nodes grows. The time improvement from inexact bundle method
is slightly higher for expectation and mean-upper semideviation risk functionals than the CVaR.

The right plots in Figure 3 depict the run-times of the exact and inexact methods as the number
of scenarios || increases. Here, we consider a network with 10 nodes and vary the number of
scenarios. Each point represents the average over 3 simulations. These results indicate that higher
run-time improvements are observed as the size of the scenario set increases. The run-time for
CVaR is again lower than that of the mean-upper semi deviation risk measure and the expectation.

Figure 4 illustrates the run-time of the exact and inexact methods as the number of scenarios
increases to 5000. This study considers a network with 20 nodes as in Figure 1f. In this experiment,

a single-threaded code environment is used. All parameters are set as before. The plots in Figure 4
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Figure 2 Approximation error of inexact proximal bundle methods with .. =0.2 (red), 0.1 (blue), 0.05 (black).
Left plot: approximation error vs. number of nodes. Right plot: approximation error vs. number of

scenarios. The lines show the medians.
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Figure 3 Run-time of exact and inexact proximal bundle methods with e.,s =0.05, 0.1, 0.2. Left plots: run-time

vs. number of nodes. Right plots: run-time vs. number of scenarios. The curves show the fitted robust

power models.
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also show a fitted power model t = ¢N7, where t denotes the running time, N is the number of
scenarios, and ¢,y are model parameters. The plots indicate that generally significant improvements
in the run-times can be achieved by the inexact method for both risk measures. The run time
improvement relative to that of the exact method becomes more prominent as the number of
scenarios increases. Consider that there is a run-time budget of five minutes. We observe that
allowing the method with the CVaR objective run for up to five minutes, the exact method solves
problems up to 2,472 scenarios, whereas the inexact methods can handle problems up to 6,565 for
€c0s = 0.05, up to 28,682 for €., = 0.1, and up to 30,829 for €.,, = 0.2. Similarly, for the mean-upper
semideviation objective, letting the methods run for up to five minutes, the exact method solves
problems up to 1,553 scenarios, whereas the inexact methods can handle problems up to 2,552 for

€cos = 0.05, up to 4,565 for €.,s = 0.1, and up to 4,931 for €., =0.2.
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Figure 4 Run-time of exact and inexact proximal bundle methods as the number of scenarios grows.

7. Conclusion

This paper studies the resource allocation problem as a two-stage stochastic optimization problem
with risk-averse recourse. Solving this problem using the deterministic equivalents of the problem
or exact proximal bundle method becomes computationally expensive for large number of scenar-
ios. An inexact proximal bundle method with a risk-averse inexact oracle to compute approximate
objective function values and subgradients is developed, for coherent risk measures and convex
second-stage problems. Sufficient conditions are established for the correctness of the risk-averse
oracle, when the second-stage optimal value for each scenario admits a linear representation. The

performance of the methodology is investigated for the resource allocation problem for reserve
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resources arising in contingency planning, modeled as a risk-averse two-stage stochastic optimiza-
tion. Computational experiments are conducted for various networks and scenario sets, collected
as a library of test problems. A sensitivity analysis on the scenario clustering parameter €., in the
risk-averse inexact oracle for this two-stage risk averse stochastic problem is carried out to guide
on the selection of an appropriate value for this parameter. Our numerical results exhibit that the
inexact proximal bundle method can provide significant improvement in the run-time to achieve
an approximate solution for this two-stage problem, comparing to the exact bundle method. Such
runtime improvements depend on the decision maker’s approximation preference controlled by the
choice of the clustering method. Future research includes investigating the performance of the
risk-averse inexact oracle when applied to problem classes beyond linear second-stage problems
and to other resource allocation applications. Studying the effect of alternative scenario clustering
mechanisms on the solution approximation and the granularity of the results constitutes another

direction for future work.
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Appendix A: Deterministic Equivalent Formulations

In this section, R%} denotes the set of all real vectors of dimension n with nonnegative elements. Let X =

{x eR" s.t. £ >0,z is integer, ) ",

Expectation:

Zcx +prZc —Yriw)

zEX, GR‘E”Q‘

weR i=1
s.t. Ya,iw ng( )+szz7 Ze{la ) an}a WEQ,
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Mean-Upper Semideviation:
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Appendix B: Scenario Simulation

In order to capture the local structure of the network we generate distance-based covariance matrices X;
and Y. To do this, we first obtain matrices D; and Dpg of distance in the underlying undirected network

between nodes in I and between arcs in F, respectively. For every a,b€ {1, --- ,n} and e,d € E we define

Si(a,b) = % [exp <— [D’p(;b)] 2) +6u,| and Sp(e,d):= % [exp (- [W} 2) ey

where §; ; is the Kronecker delta and p;, pp are parameters controlling the strength of linear correlation. In

)

our experiments we set p; = 0.3 and pr = 0.4. The distance D;(a,b) is the number of arcs on the shortest
path from node a to b. The distance Dy(e,d) is the number of arcs on the shortest path from node e to d in
the line graph of the network. We avoid numerical instabilities in the calculation of ¥; and X g by running
them through the algorithm in Higham (1988) to find a nearest symmetric positive semidefinite matrix. We
use the matrices ¥;(a,b) and Xz(e,d) to generate correlated simulated values, described next.

t;;(w): To each tie-line (i,5) € E, we attach an independent discrete total failure distribution taking

values 100 and 0.0 with probability 0.7 and 0.3, respectively. The high probability of total failure
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max gen. 500 MW max gen. 600 MW max load 500 max load 600
Cap. (MW) | Prob. | Cap. (MW) | Prob. Cap. (MW) | Prob. | Cap. (MW) | Prob.
- - 600 0.564474 - - 600 0.028257
500 0.620921 500 0.338684 500 0.028257 500 0.275288
400 0.310461 400 0.084671 400 0.275288 400 0.436651
300 0.062092 300 0.011289 300 0.436651 300 0.259803
200 0.006209 200 0.000847 200 0.259803 - -
100 0.000310 100 0.000034
0 0.000006 0 0.000001
(a) Probability models for Area Generation (b) Regimes for Area Load

Table 2 Discrete probability distributions to generate two regimes for area generation g; and load I;

simulates times of great stress in the network such as storms and other natural disasters. In order to
capture the structure of the network, we let ¢, ; be obtained from a multivariate probability with a
Gaussian copula and total failure distribution marginals with values correlated by the tie-line distance

covariance matrix > g.

gi;(w): Each area is randomly assigned one of two generation distributions defining regimes constraining
maximum generation to 5J00MW or 600MW, see Table 2a. We let g; be obtained from a multivariate
probability with a Gaussian copula and generation distribution marginals with values correlated by the
covariance matrix ;. In this way, generation values on closer areas are more correlated than on far

apart ones, thus simulating local constraints on the generation areas.

l;(w): Each area is randomly assigned one of two load distributions defining maximum-load regimes, see
Table 2b. We let [, :=Z; + A;, where Z; is obtained from a multivariate probability with a Gaussian
copula and load distribution marginals with values correlated by the covariance matrix X; and A; is
an independent Poisson distribution. A; models the load spikes integral to load values in electricity
networks, see Carmona and Coulon (2014) for more details on modeling electricity markets.

!
i

c(w): The cost of demand loss function is expressed through a customer damage function (CDF) that
relates different types of load and interruption duration to cost per MW. We use the CDF appeared
in Lawton et al. (2003), which is defined as follows ¢ = exp(6.48005 + 0.38489D,, — 0.02248 D?), where
D, is the mean duration of each state, see e.g. Samaan (2004), Jirutitijaroen and Singh (2006, 2008).

This quantity is defined

-1

my
_ w—+ w— w+ w— w
D, =24 ZA% +Z)\9i + Z )‘tm’ + Z )‘tz‘j +Z)\lk
il el i,j €T “jET k=1
i i
Here, m, is the total number of area load states, Aj is the equivalent transition rate of area load from
state w to other load states, and )\;‘”‘ (Mg~ ) expresses the equivalent transition rate of generation in area
i from a capacity of state w to higher (lower) capacity. Similarly, /\‘;’j (A7) is the equivalent transition

rate of transmission line from area i to area j from a capacity of state w to higher (lower) capacity.

The values of these parameters are given in Table 3, see also Mitra and Singh (1999).
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index | Ap
max gen. 500 | max gen. 600 0 1.3429
Cap. (MW) [5eF T XgT [ AaT [ oo 1 |0.0206
600 — - 0.6 0 2 0.3394
500 0.5 0 0.5 1 3 | 1.9753 Cap. (MW) | AT [Ao-
400 0.4 1 0.4 2 4 |0.0278 ” ki
300 0.3 2 0.3 3 5 0.0085 100 0.274 0
200 0.2 3 0.2 4 6 1.3399 0 0 3
100 0.1 4 0.1 5 7 |2.1036 o o
0 0 5 0 6 B 0.0452 (c) Transition rates for tie-lines
9 2.237

(a) Transition rate regimes for generation
(b) Transition rate for loads

Table 3 Generation, load, and tie-line transition rates
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