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Resource contingency planning aims to mitigate the effects of unexpected disruptions in supply chains.

While these failures occur infrequently, they often have disastrous consequences. This paper formulates the

resource allocation problem in contingency planning as a two-stage stochastic optimization problem with a

risk-averse recourse function. The solution method proposed relies on an inexact proximal bundle method

with subgradient approximations through a scenario reduction mechanism. The paper extends the inexact

oracle to a more general risk-averse setting, and proves that it meets the requirements of the oracle in

the inexact bundle method, ensuring convergence to an optimal solution. The practical performance of the

developed inexact bundle method under risk aversion is investigated for our resource allocation problem. We

create a library of test problems and obtain their optimal values by applying the exact bundle method. The

computed solutions from the developed inexact bundle method are compared against these optimal values,

under different coherent risk measures. Our analyses indicate that our inexact bundle method significantly

reduces the computational time of solving the resource allocation problem in comparison to the exact bundle

method, and is capable of achieving a high percentage of optimality within a much shorter time.

Key words : Logistics, risk-averse optimization, stochastic programming, proximal bundle method

1. Introduction

This paper studies the optimal allocation of resources to reduce the risk of demand unfulfillment

due to demand spikes, supply interruptions, or tie-line disruptions. Such network disruptions can

arise due to various man-made and natural disasters, such as severe weather, fires, traffic accidents,

or sabotage. Resource contingency planning is one of the proactive strategies to mitigate such

uncertainties and to be prepared to withstand disruptions in supply chains (Tomlin 2006, Snyder

et al. 2006). An optimal allocation of these resources to different areas in a network is critical to

achieve lower costs of failure and higher reliability. While the frequency of network disruptions due

to disasters can be rare, they can lead to severe supply chain interruptions. Hence, decision makers

should take into account such risks when allocating additional resources.

For various disaster management strategies, the reader is referred to Gupta et al. (2016). The

addition of reserve capacity in the supply chain for contingency planning is studied in Kleindorfer
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and Saad (2005), Matta (2016), Parajuli et al. (2017), Avlov et al. (2019), where network optimiza-

tion tools are used. For a recent review on contingency planning and resilient strategies in supply

chains, see Behzadi et al. (2020). Grass and Fischer (2016) reviews the literature on contingency

planning in disaster management by two-stage stochastic programming. The existing literature

primarily focuses on minimizing the expected failure cost, e.g., see Cui et al. (2010), Guo et al.

(2016), Chen et al. (2017), Moreno et al. (2018), Avlov et al. (2019) and the references therein.

Noyan (2012) considers the risk-averse two-stage stochastic optimization model for disaster man-

agement and discusses the importance of incorporating a risk measure to derive optimal decisions

computed from the Benders-decomposition method. A risk-averse model is studied in Alem et al.

(2016) where a heuristic solution approach is proposed. As it is pointed out in Alem et al. (2016),

computational challenges are the primary barrier in the risk-averse models for such two-stage logis-

tic problems since the number of decision variables would depend on the number of scenarios,

which is potentially large in the presence of down-side risk measures. The present paper aims to

address this challenge by proposing a computationally tractable approach for the resource location

problems arising in contingency planning.

This resource allocation problem lends itself to the class of two-stage stochastic optimization

problems with a risk-averse recourse function. Let (Ω,F , P ) be a probability space, where Ω is the

sample space, F is a σ-algebra on Ω, and P is a probability measure on Ω. We consider the case

of a finite probability space with a potentially very large number of elementary events ω1, · · · , ωN
occurring with probabilities p1, · · · , pN . Consider a stochastic optimization problem of the form:

min
x∈X

ϕ(x) := c>x+ ρ (Q(x,ω)) , (1)

where ρ is a risk measure and Q(x,ω) is the optimal value of the second-stage problem

Q(x,ω) := min
y∈Y

q(y,ω)

s.t. T (x,ω) +R(y,ω)≤ 0.
(2)

Here, X ⊆Rn, Y ⊆Rm, and c∈Rn. In the second-stage problem (2), q is a real-valued function on

Rm×Ω, and T and R are vector-valued functions on Rn×Ω and Rm×Ω, respectively.

In this paper, we focus on coherent risk measures (Artzner et al. 1999) and convex finite-valued

second-stage optimal value functions. The convexity of Q(·, ω) together with the convexity and

monotonicity of the coherent risk measures ρ imply that ϕ is a proper convex function, e.g., see

Proposition 6.8 in Shapiro et al. (2014). In addition, ϕ(·) is subdifferentiable over the interior of

its domain, see Theorem 6.11 in Shapiro et al. (2014). However, the function ϕ(x) is generally

nondifferentiable and the problem (1) becomes a nonsmooth optimization problem.
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One approach for solving convex minimization problems with a nonsmooth objective function

is the bundle method; see Hiriart-Urruty and Lemarechal (1993) and Section 7.4 in Ruszczyn-

ski (2006) for details on the bundle method, and see Nesterov (2018) for an overview on nons-

mooth convex optimization. For a survey on applications of the bundle method and comparisons

to alternative methods, see Mäkelä (2002) and references therein. Mäkelä et al. (2013) compares

implementations of bundle-type methods against subgradient methods for nonsmooth optimization

problems and have found its efficiency and outperformance. The method has been successfully

applied to regularized risk minimization (Teo et al. 2010), machine learning (Le et al. 2008),

two-stage stochastic linear problems (Ruszczynski 1986, Ruszczyanski and Swietanowski 1997),

two-stage stochastic quadratic programming (Liu and Sen 2020), risk-averse two-stage stochastic

linear programming (Miller and Ruszczyski 2011), and risk-averse multistage stochastic optimiza-

tion (Ruszczyński 2010, Collado et al. 2012). Two recent specialized bundle methods for multistage

stochastic programs are given in Asamov and Powell (2018), van Ackooij et al. (2019).

The approach iteratively builds linearizations for ϕ(x) around a projection point and includes a

cutting-plane model using the piecewise maximum of linearizations. At iteration k, given the finite

set of information {x̂j, ϕ(x̂j), gj ∈ ∂ϕ(x̂j)}j∈Jk for some index set Jk ⊆ {1, · · · , k}, the proximal

bundle method constructs a piecewise-linear approximation of ϕ, denoted by ϕk(x), in terms of x̂j,

ϕ(x̂j), and gj. The approximate function ϕk is used to construct a master optimization problem.

Then, an optimal solution of the master problem x̂j+1 is found, the objective ϕ(x̂j+1) is evaluated,

a subgradient in ∂ϕ(x̂j+1) is obtained, and the algorithm continues into the next iteration.

This method requires evaluations of the objective function ϕ(x̂j) and consequently computing

Q(x̂j, ω) for all ω ∈Ω. This step involves solving |Ω| second-stage problems of the primal form (2)

or its dual. This task can be computationally intensive, particularly when the size of the scenario

space grows or a large number of decision variables and constraints are present.

While this computational challenge persists when the expected value of the recourse function

E [Q(x,ω)] is considered in ϕ(x), the computational demand increases in the presence of a downside

risk measure. Obtaining a reliable estimation of the probability distribution of Q(x,ω), and hence

an accurate evaluation of ρ [Q(x,ω)], often relies on a large number of scenarios.

To alleviate the computational cost when the first-stage objective function includes the expec-

tation of the recourse function E [Q(x,ω)], a number of extensions to bundle methods capable of

working with less accurate function evaluations have been developed. For a recent review on algo-

rithms based on the bundle method to handle inexact data, see de Oliveira and Solodov (2020).

These methods replace the function values and subgradients by their approximations, for all or

just a subset of the iterations. Suppose ϕ̃x̂j and g̃x̂j are objective value and subgradient estimates
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obtained from an inexact oracle for the projection point x̂j. Then, the inexact bundle method uses

an approximate linearization for the first-stage objective function ϕ constructed by these estimates.

To achieve convergence in inexact bundle methods, the estimates ϕ̃x and g̃x, which are the

outputs of an oracle, should satisfy some conditions. In particular, the inexact proximal bundle

method (Kiwiel 2006, Oliveira et al. 2011) requires for a given point x a function estimate ϕ̃x and

a subgradient estimate g̃x satisfying

ϕ̃x ∈ [ϕ(x)− ε1, ϕ(x) + ε2], (3)

g̃x ∈ ∂ε0ϕ(x). (4)

Here, ε1, ε2 ≥ 0 are unknown but fixed, ε0 = ε1 + ε2, and the ε0-approximate subdifferential ∂ε0ϕ(x)

in (4) is given by

∂ε0ϕ(x) := {g ∈Rn | ϕ(z)≥ϕ(x) + 〈g, z−x〉− ε0, ∀z ∈X} . (5)

Therefore, to achieve convergence in this inexact bundle method, one needs to compute approxima-

tions ϕ̃x and g̃x which satisfy equations (3) and (4). In addition, to address the original motivation

of achieving a computationally efficient approach, these approximations must be easily computable.

This paper extends this inexact proximal bundle method (Kiwiel 2006, Oliveira et al. 2011) to

the risk-averse two-stage stochastic optimization problems of the form (1) with the aversion to

risk in the second-stage optimal value ρ[Q(x,ω)]. We achieve this by describing appropriate oracles

capable of generating estimates ϕ̃xj and g̃xj , which guarantee convergence in the inexact bundle

method for convex first-stage feasible regions. The validity of the risk-averse inexact oracle under

some assumption on the second-stage optimal value is theoretically established.

The developed inexact bundle method for our resource allocation model is studied using an

extensive computational investigation. In particular, we focus on two coherent risk measures for

the risk of unfulfilled demand. We show the convergence of the method for this two-stage stochas-

tic optimization problem with a discrete first-stage feasible region numerically by comparing the

computed solutions with those of the computationally prohibitive deterministic equivalent models.

The contributions of the paper can be summarized as follows.

• An oracle needed to implement the framework of inexact proximal bundle method is introduced

for a class of risk-averse two-stage stochastic optimization problems.

• We prove that the objective function and subgradient approximations from this oracle meet

the requirements stated in conditions (3)-(4).

• The approach with the introduced risk-averse inexact oracle is applied heuristically to a

resource allocation problem arising in contingency planning. This step involves a heuristic

treatment to adopt the method when the first-stage decision variables are subject to integrality

constraints.
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• We perform the benchmarks of the algorithm against the exact proximal bundle method for

problem instances with different sizes, and demonstrate the computational benefits of the

developed approach.

This paper is organized as follows. Section 2 provides background on risk-averse two-stage opti-

mization. Section 3 explains the details of the inexact bundle method. Section 4 introduces the

risk-averse oracle and proves its correctness. The modeling details for a resource allocation problem

in contingency planning are explained in Section 5. Section 6 reports the results of the numerical

experiments and the comparisons on the benchmark problems. We list our conclusions in Section 7.

2. Coherent Risk Measures and Risk-Averse Stochastic Optimization

This section details the evaluation of the first-stage objective function with risk-averse recourse

and the computation of its subgradients. First, we briefly discuss coherent risk measures and its

representation theorem. For an in-depth treatment see Ruszczyński and Shapiro (2006b,a), Shapiro

et al. (2014), Rockafellar (2014).

Let Z := L1(Ω,F , P ) consist of all F-measurable functions Z : ω → R, where the set Ω :=

{ω1, · · · , ωN} is finite with N elements and p1, · · · , pN are probabilities of the corresponding ele-

mentary events. For Z,Z ′ ∈ Z, let Z � Z ′ denote the pointwise partial order, i.e., Z(ω) ≤ Z ′(ω)

for all ω ∈ Ω. In our exposition, Z represents a random cost and as such smaller realizations are

preferred.

Definition 2.1 A real-valued coherent risk measure is a proper function ρ :Z →R satisfying the

following axioms:

(A1) Convexity: ρ (αZ + (1−α)Z ′)≤ αρ(Z) + (1−α)ρ(Z ′), for all Z,Z ′ ∈Z and all α∈ [0,1].

(A2) Monotonicity: If Z,Z ′ ∈Z and Z �Z ′, then ρ(Z)≤ ρ(Z ′).

(A3) Translation Equivariance: If α∈R and Z ∈Z, then ρ(Z +α) = ρ(Z) +α.

(A4) Positive Homogeneity: If α> 0 and Z ∈Z, then ρ(αZ) = αρ(Z).

The following theorem is a fundamental result employed in the evaluation of coherent measures

and risk-averse stochastic optimization, e.g., see Theorem 6.4 in (Shapiro et al. 2014):

Theorem 2.1 (Representation Theorem of Coherent Risk Measures) Let ρ :Z →R be a

coherent risk measure. Then the function ρ is subdifferentiable at 0 and

ρ(Z) = max
µ∈Aρ

Eµ[Z] = max
µ∈Aρ

∑
ω∈Ω

µωzωpω, ∀Z ∈Z, (6)

where Aρ := ∂ρ(0)⊆
{
µ∈R|Ω|

∣∣µ≥ 0 and
∑

ω∈Ω µωpω = 1
}

.
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Theorem 2.1 implies that problem (1) can be expressed as

min
x∈X

ϕ(x) = min
x∈X

{
c>x+ ρ(Q(x,ω))

}
= min

x∈X

{
c>x+ max

µ∈Aρ

∑
ω∈Ω

Q(x,ω)µωpω

}
.

In the risk-averse two-stage optimization problem (1)–(2), X ⊆ Rn and Y ⊆ Rm are nonempty,

convex, and closed. The second-stage problem is defined by q : Rm × Ω→ R, T = (t1, · · · , t`) :

Rn × Ω → R`, and R = (r1, · · · , r`) : Rm × Ω → R`, where ti(x,ω) and ri(y,ω), i = 1, · · · , ` are

real-valued. We assume that the real-valued functions c(x) and q(·, ω), and the mappings T (·, ω)

and W (·, ω) are proper convex for every ω ∈ Ω. The function Q(x,ω) is assumed to be finite

for all x ∈ X and all ω ∈ Ω, which implies that the two-stage stochastic problem has complete

recourse, e.g., see Birge and Louveaux (1997), Shapiro et al. (2014). For any first-stage decision

x, denote the `-vector χ := T (x,ω) and let ϑ(χ,ω) denote the optimal value of the second-stage

problem, i.e., ϑ(χ,ω) := Q(x,ω). We assume that the regularity condition χ ∈ int(domϑ(·, ω))

holds, i.e., for all small perturbations of χ, the second-stage problem remains feasible. We further

assume that the functions c(·) and Tω(·) = T (·, ω) are differentiable in x for every ω ∈ Ω, and

0∈ int
{
Tω(x) +∇xTω(x)R`−domϑ(·, ω)

}
. Our intention is to describe ∂xϕ(x), the subdifferential

of ϕ(·) evaluated at x.

For x∈X , denote φ(x) := ρ(Q(x,ω)). Theorem 2.1 implies that

φ(x) := max
µ∈Aρ

∑
ω∈Ω

µωpωQ(x,ω). (7)

Let Z∗ :=L∞(Ω,F , P ) and define Q̃ :X ×Z∗→R, where

Q̃(x,µ) :=
∑
ω∈Ω

pωµωQ(x,ω). (8)

Using this notation in equation (7) implies that φ(x) = maxµ∈Aρ Q̃(x,µ). It thus follows from

Theorem 6.11 in Shapiro et al. (2014) (see also Theorem 2.87 in Ruszczynski (2006)) that for

real-valued coherent risk measures φ(x) is subdifferentiable and

∂φ(x) = conv

 ⋃
µ∈Âx

∂xQ̃(x,µ)

 , (9)

where Âx := {µ∗ ∈Aρ | Q̃(x,µ∗) = φ(x)}. In particular, for any µ∗ ∈ Âx, we have

∂xQ̃(x,µ∗)⊆ ∂φ(x). (10)

The rest of this section aims to specify the subdifferential ∂xQ̃(x,µ). It follows from the Moureau-

Rockafeller Theorem (see Theorem 6 in Ruszczyński and Shapiro (2003)) that

∂xQ̃(x,µ) =
∑
ω∈Ω

µωpω∂xQ(x,ω). (11)
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Propositions 2.21 and 2.22 in Shapiro et al. (2014) imply that the function Q(·, ω) is convex and

∂xQ(x,ω) =∇xT (x,ω)>D(χ,ω), where D(χ,ω) is the set of optimal solutions of the dual problem

of the second-stage problem. In particular, the function Q(·, ω) is differentiable at every x at which

D(χ,ω) is a singleton, e.g., see Corollary 2.23 in Shapiro et al. (2014). This result along with

equation (11) imply that

∂xQ̃(x,µ) =
∑
ω∈Ω

µωpω∇xT (x,ω)>D(χ,ω). (12)

Then equation (12) at µ∗ together with equation (10) yields

ζx :=
∑
ω∈Ω

µ∗ωpω∇xT (x,ω)>πω ∈ ∂φ(x), (13)

for πω ∈ D(χ,ω). Since the function Q(·, µ) is convex for any given µ, the function φ(x) is also

convex. Therefore, the subgradient calculus for convex functions implies that gx := c+ ζx ∈ ∂ϕ(x).

Evaluating the objective function ϕ(x) at a given x ∈ X requires computing φ(x) in equation

(7) and thus the optimal objective value of the second-stage problem, Q(x,ω), for all ω ∈Ω. Each

Q(x,ω) can be computed by solving the primal form of the problem (2). However, the regularity

condition and the complete recourse assumptions of the second-stage problem imply that the strong

primal-dual optimality holds for the problem (2), see Proposition 25 in Ruszczyński and Shapiro

(2003). Therefore,

Q(x,ω) = max
π∈R`+

{
π>χ+ inf

y∈Y
L(y,π,ω)

}
, (14)

where L(y,π,ω) := q(y,ω)+π>R(y,ω). This suggests that one can use the dual form of the second-

stage problem in (14) to derive Q(x,ω) and consequently evaluate ϕ(x). Our risk-averse inexact

oracle builds on this dual representation.

3. Inexact Proximal Bundle Method

For risk-neutral multistage stochastic optimization problems, the family of decomposition meth-

ods constitutes an established and efficient approach, see Birge and Louveaux (1997), Kall and

Mayer (2005), Prékopa (1995), Ruszczyński (2003) and the references therein. The class of cutting

plane methods, in particular bundle methods, proved to be a useful approach to solve risk-averse

optimization problems. For details on the exact bundle method and its convergence analysis for

minimizing a nonsmooth convex function, see (Ruszczynski 2006, ch. 7.4). For the case of two-stage

stochastic optimization, see (Birge and Louveaux 1997, ch. 5.2).

The essence of the (exact) proximal bundle method includes the application of the Moreau-

Yosida regularization of a lower approximation of the objective function and solving a sequence of

quadratic optimization problems. Localizing the iterations through regularization makes the bundle
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method more practical for problems of higher dimensions, where methods such as the cutting plane

method need a growing number of cuts to be stored in the master problem (Ruszczynski 2006).

We apply the bundle method to the first-stage minimization problem (1), minx∈X ϕ(x). At iter-

ation k of the proximal bundle method, having points x̂1, · · · , x̂k, a piecewise-linear approximation

ϕk(·) of the objective function ϕ(·) is constructed and used in the following master problem:

min
x∈X

ϕk(x) +
γk
2

∥∥x−βk∥∥2
. (15)

Here, in the proximal term γk
2

∥∥x−βk∥∥2
, γk > 0 is a regularization parameter and the prox center

βk ∈ X is updated by a conditional rule over iterations. An optimal solution of the master prob-

lem (15), denoted by x̂k+1, is added to the set of points and used to construct improved linear

approximations over next iterations.

In the exact version of the method, values of the objective function ϕ(x̂1), · · · ,ϕ(x̂k), and subgra-

dients g1 ∈ ∂ϕ(x̂1), · · · , gk ∈ ∂ϕ(x̂k) are used to construct the approximate model ϕk(·) as follows:

ϕk(x) := max
j∈Jk

{
ϕ(x̂j) +

〈
gj, x− x̂j

〉}
, (16)

for some subset Jk ⊆ {1, · · · , k}. For the risk-averse two-stage stochastic optimization problem (1)–

(2), evaluating ϕ(x̂) and computing subgradients g ∈ ∂ϕ(x̂) are carried out by means of equa-

tions (7) and (13), which involve computing Q(x,ω) by solving the second-stage problem for all

ω ∈Ω. This is a computationally expensive task, especially as the number of elementary elements

in the probability space N grows.

To mitigate this computational challenge, one can resort to inexact bundle methods, which

rely on approximations of the objective and subgradient values, and try to supply admissible

approximations by solving some form of the second-stage problem for only a subset of scenarios.

We adopt the inexact bundle method in Kiwiel (2006). In this inexact proximal bundle method,

approximate objective value ϕ̃x̂j and approximate subgradient g̃x̂j satisfying the conditions in

equations (3) and (4) are derived to construct the piecewise-linear approximation ϕk(x) as follows:

ϕk(x) = max
j∈Jk

{
ϕ̃x̂j +

〈
g̃x̂j , x− x̂j

〉}
. (17)

Then, at iteration k, the model approximation ϕk(x) is used in the master problem (15). With

the regularization parameter γk = 1
tk

, this master problem can be equivalently written as a linearly

constrained quadratic optimization problem:

min
x∈X , υ∈R

υ+
1

2tk

∥∥x−βk∥∥2

s.t. ϕ̃x̂j +
〈
g̃x̂j , x− x̂j

〉
≤ υ, ∀ j ∈ Jk.

(18)
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The parameter tk > 0, referred to as the stepsize, as well as the prox center βk are updated during

iterations (Kiwiel 1990, 2006). Algorithm 1 presents the details of this method (see Algorithm 2.1

in Kiwiel (2006)). This algorithm assumes the availability of an oracle which returns admissible

approximations ϕ̃x̂j and g̃x̂j satisfying the conditions (3) and (4).

Algorithm 1 Inexact Proximal Bundle Method (Kiwiel 2006)

Inputs: descent parameter %∈ (0,1), stepsize bound T1 > 0, stepsize t1 ∈ (0, T1], stopping tolerance δ > 0, an

inexact oracle satisfying conditions (3) and (4).

Step 0: (Initialization)

[i] Set ` := 0, k := 1, and k(0) := 1. Here k(`)− 1 denotes the iteration of the `th descent step.

[ii] Let x̂1 ∈X be a given initial feasible point with inexact oracle approximations ϕ̃x̂1 and g̃x̂1 .

[iii] Set β1 := x̂1, J1 := {1}, and i1 := 0.

Step 1: (Trial point finding) Let (x̂k+1, vk+1) be an optimal solution of problem (18), and {λkj }j∈Jk be the

Lagrangian multipliers. Compute the aggregate subgradient pk :=
1

tk
(βk − x̂k+1), the predicted descent

νk := ϕ̃βk − vk+1, and the aggregate linearization error αk := νk− tk‖pk‖2.

Step 2: (Stopping criterion) Compute the optimality measure $k := max{‖pk‖, αk}. If $k ≤ δ, stop.

Step 3: (Stepsize correction) If νk <−αk, set tk := 10 tk, Tk := max{Tk, tk}, ik := k and go to Step 1; else set

Tk+1 := Tk.

Step 4: (Inexact oracle call) Obtain ϕ̃x̂k+1 and g̃x̂k+1 from the inexact oracle satisfying (3) and (4).

Step 5: (Descent test)

If ϕ̃x̂k+1 ≤ ϕ̃βk − %νk, declare a descent step: set βk+1 := x̂k+1, ` := `+ 1, ik+1 := 0, k(`) := k+ 1.

If ϕ̃x̂k+1 > ϕ̃βk − %νk, declare a null step: set βk+1 := βk, ik+1 = ik.

Step 6: (Bundle management) Choose Jk+1 ⊇
{
j ∈ Jk

∣∣λkj 6= 0
}
∪{k+ 1}.

Step 7: (Stepsize updating) If k(`) = k+1 (i.e., after a descent step), select tk+1 ∈ [tk, Tk+1]. Otherwise, if the

step was declared null, set tk+1 := tk. If ik+1 = 0 and $k ≤ ϕ̃βk − (ϕ̃x̂k+1 + 〈g̃x̂k+1 , βk− x̂k+1〉), choose

tk+1 ∈ [0.1 tk, tk]. Set k := k+ 1 and go to Step 1.

Step 1 sets x̂k+1 and vk+1 = ϕk(x̂k+1) to be an optimal solution to the master problem (18)

using the approximate piecewise-linear model ϕk constructed by {x̂j, ϕ̃x̂j , g̃x̂j}j∈Jk . Due to errors

in the oracle approximations, ϕk might not approximate ϕ̃ from below at the prox center βk, in

which case the predicted descent νk may be nonpositive. In such a case, the method increases the

stepsize tk and loops over a stepsize correction phase in Step 3 until νk > 0. Note that after the

stepsize correction step, νk := ϕ̃βk − vk+1 = ϕ̃βk − ϕk(x̂k+1) > 0. In the descent test at Step 5, a

null step improves the model approximation (17) through the addition of an extra constraint to

problem (18). In Step 6, the Lagrangian multipliers λkj are used to update the index set with the
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aim of reducing the number of cuts when constructing the model approximation. Namely, those

cuts j corresponding to inactive Lagrange multipliers λkj = 0 that do not contribute to the new trial

point xk+1 can be eliminated from equation (17). Lagrangian multipliers λkj are only necessary for

bundle management, Step 6, and can be forgone at the cost of solving a larger master problem at

each iteration.

With the tolerance level δ = 0, the inexact bundle method has two possible outcomes (see The-

orem 9 in Oliveira et al. (2011)): Either (i) the method loops forever at Step 3, in which case the

last generated βk is 2(ε1 + ε2)-optimal, or (ii) the method generates an infinite sequence of either

descent or null steps. In this case the method generates a sequence {βk}∞k=1 for which each cluster

point β∗ satisfies β∗ ∈X and β∗ is 2(ε1 + ε2)-optimal.

This inexact proximal bundle method can find a ε0-optimal solution for the convex minimization

problem over a nonempty closed convex set. We refer the reader to Kiwiel (2006) and de Oliveira

et al. (2014) for a proof and an in-depth discussion on its convergence analysis.

4. Risk-Averse Inexact Oracle

A key component in Algorithm 1 is the definition of an inexact oracle capable of providing approx-

imate value ϕ̃x and approximate subgradient g̃x satisfying (3)–(4). In this section, we introduce

an inexact oracle specialized to work on our two-stage risk-averse stochastic optimization problem.

We refer to this oracle as the risk-averse inexact oracle, which together with Algorithm 1 comprises

the risk-averse inexact bundle method. The construction of our risk-averse inexact oracle extends

the approach in (Oliveira et al. 2011) for the risk-neutral case and linear two-stage models.

The analysis in this section relies on the assumption that for every x ∈X , the optimal value of

the second-stage problem admits the form

Q(x,ω) = max
π∈R`

{
π>η(x,ω) | π ∈Π(ω)

}
, (19)

for some function η : X × Ω→ R` convex and differentiable in x, and a nonempty convex set

Π(ω)⊆R`. The feasible region Π(ω) can be expressed in the general form {π ∈R` | ci(π,ω)≤ 0, i=

1, · · · , l}, where ci(π,ω)s are convex in π.

Denote an optimal solution of the maximization problem (19) by πω. Given the optimality of πω

and expression (19), we have Q(x,ω) = π>ω η(x,ω). The essence of the inexact oracle is to compute

approximate values for {Q(x,ω)}ω∈Ω, without computing πω for every single ω ∈Ω, and then use

these values to construct approximations for ϕ(x) and ∂ϕ(x). This process is carried out by first

selecting a subset I ⊆Ω and cluster the scenarios. The approximate oracle then computes the exact

optimal values Q(x,ω) for every ω ∈ I and derives approximate optimal values, without solving

the second-stage problem, for the remaining scenarios ω ∈Ω \ I.
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Suppose I := {ŵ1, · · · , ŵK} is a subset of scenarios I ⊆Ω obtained through a clustering procedure

for the scenario set Ω. Therefore, Ω = ∪ω̂k∈IJk, where Jk denotes the cluster of scenarios around

the scenario ω̂k ∈ I. Given I and for any k= 1, · · · ,K, define

Π̂k :=
{
π ∈R` | Eω [ci(π,ω)|ω ∈Jk]≤ 0, i= 1, · · · , l

}
. (20)

Here, the expectation is given by Eω [ci(π,ω)|ω ∈Jk] =
∑

ω∈Jk
pωci(π,ω)/

∑
ω∈Jk

pω. For any ω ∈ I,

consider the problem of maximizing π>η(x,ω) over the feasible set Π̂k, defined in (20), and denote

its optimal solution by π̂k. Hence, for k= 1, · · · ,K,

π̂k ∈ argmax
π∈R`

{
π>η(x, ω̂k) | π ∈ Π̂k

}
. (21)

Note that π̂k depends on x. For a scenario ω ∈ Ω, let k̂(w) ∈ {1, · · · ,K} denote the index of the

corresponding cluster Jk with ω ∈Jk. In particular, when ω= ω̂k ∈ I, we have k̂(w) = k. Then, for

any ω ∈Ω, the algorithm adopts an approximation of Q(x,ω) given by

Qapprox(x,ω) := π̂>
k̂(ω)

η(x,ω). (22)

These computed values are then aggregated to form the objective function approximation ϕ̃x,

ϕ̃x := c>x+ max
µ∈Aρ

[∑
ω∈Ω

µωpωQapprox(x,ω)

]
, (23)

and the approximate subgradient g̃x,

g̃x := c+

[∑
ω∈Ω

µ∗ωpωπ̂
>
k̂(ω)
∇xη(x,ω)

]
, (24)

where, µ∗ is an optimal solution to the maximization problem in (23). Algorithm 2 formally states

the risk-averse inexact oracle. Later in Theorem 4.1, we prove that under some conditions on

problem (19) and I, the computed ϕ̃x and g̃x in equations (23) and (59) satisfy the conditions (3)

and (4); hence the oracle returns admissible inputs for the Algorithm 1.

Algorithm 2 Risk-Averse Inexact Oracle

Inputs: x∈X , Ω = {ω1, · · · , ωN}, a scenario clustering method J (x)

Step 1: (Scenario Clustering) For the given x, call the scenario clustering method J (x) to generate clusters

{J1, · · · ,JK} with the set of cluster centers I.

Step 2: (Cluster Solutions) For each cluster Jk, construct Π̂k in (20). Compute a solution π̂k as in (21).

Step 3: (Approximate Qapprox) For each ω ∈ Ω, find the cluster k̂(ω) containing ω. Using solutions π̂k

obtained in Step 2, compute Qapprox(x,ω).
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Step 4: (Risk-averse oracle estimates) Use Qapprox obtained from Step 3 in equation (23) to compute ϕ̃x.

Compute an optimal solution µ∗ to the maximization in equation (23). Apply µ∗ in equation (59) to

derive the subgradient approximation g̃x.

Next, we show that the risk-averse inexact oracle, presented in Algorithm 2, provides approxi-

mations ϕ̃x and g̃x satisfying conditions (3) and (4). This property is referred to as the correctness

of the risk-averse inexact oracle.

For a given convex set S, let sS(d) denote the support function of S evaluated at d, i.e.,

sS(d) := max
{
π>d

∣∣ π ∈ S} . (25)

Denote dxω := η(x,ω). Let ‖dxω‖ ≤ ϑxk for all ω ∈ Jk, for some ϑxk <+∞. The following assumptions

are made on the structure in (19):

[A] For any x∈X and any cluster k ∈ {1, · · · ,K}, there exists a constant Γxk > 0 such that

|sΠ(ω)(d
x
ω)− sΠ̂k

(dxω)| ≤ ϑxkΓxk, ∀ ω ∈Jk.

[B] For any x∈X and any cluster k ∈ {1, · · · ,K}, there exists a constant κxk > 0 such that

|sΠ̂k
(dxω)− π̂>k dxω| ≤ ϑxkκxk, ∀ ω ∈Jk.

Since π̂k̂(ω) ∈ Π̂k̂(ω), it is a feasible point when maximizing π>dxw. Hence, sΠ̂
k̂(ω)

(dxω)≥ π̂>
k̂(ω)

dxω,

and consequently |sΠ̂
k̂(ω)

(dxω)− π̂>
k̂(ω)

dxω|= |sΠ̂k
(dxω)− π̂>k dxω|= sΠ̂

k̂(ω)
(dxω)− π̂>

k̂(ω)
dxω. In addition,

note that the definition of π̂k in equation (21), for the cluster center w= ŵk, we have sΠ̂k
(dxω) =

π̂>k d
x
ω, and consequently |sΠ̂k

(dxω)− π̂>k dxω|= 0.

Notice that the parameters Γxω and κxω, and consequently ε∗ defined below, do depend on the set

of clusters I and consequently the clustering mechanism through the collinearity measure (26).

Theorem 4.1 Consider a two-stage risk-averse stochastic optimization problem with the first-stage

problem (1) with the nonempty compact feasible set X , and the second-stage problem (2) which

has fixed and complete recourse. Suppose the optimal value of the second-stage problem Q(x,ω)

can be expressed as in equation (19) for some function η. Then, for every x ∈ X and εcos ∈ (0,1),

Algorithm 2 along with the scenario clustering method in Algorithm 3 provides outputs ϕ̃x and g̃x

satisfying equations (3) and (4) with ε1 = ε2 = ε∗ > 0, where ε∗ := maxx∈X ,k=1,··· ,K{(Γxk +κxk)ϑ
x
k}.

The proof of Theorem 4.1 is presented in subsection 4.3.
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4.1. Scenario Clustering

An approach for scenario clustering in Step 1 of Algorithm 2 is to select the subset I such that the

corresponding set of vectors {η(x, ξ) | ξ ∈ I} sufficiently deviates from collinearity. The collinearity

of two scenarios ω and ξ is measured by the cosine of the angle θω,ξ between the two vectors η(x,ω)

and η(x, ξ), namely

θω,ξ := cos−1

(
η(x,ω)>η(x, ξ)

‖η(x,ω)‖‖η(x, ξ)‖

)
. (26)

Hence, two scenarios ω and ξ are collinear if cosθω,ξ = 1. For any given x∈X and a given collinearity

parameter εcos ∈ (0, 1), we consider a maximal subset I ⊆Ω such that ∪ω∈IJω = Ω and for every

ω, ξ ∈ I we have cosθω,ξ ≤ 1− εcos. Each cluster then includes all ω-almost collinear scenarios, for

some ω ∈ I. This can be carried out by a combinatorial method given in Oliveira et al. (2011).

This method is presented in Algorithm 3. The generated subset I ⊆Ω from Algorithm 3 depends

on the permutation of elements of Ω fixed as an input. In particular, the initial elements of the

permutation of Ω are favored to be part of I. We consider a random permutation of elements of Ω

on each call to Algorithm 3.

Algorithm 3 Selection of I ⊆Ω and clusters {Jk}k
Inputs: x∈X , Ω = {ω1, . . . , ωN}, collinearity parameter εcos ∈ (0, 1)

Step 0: (Initialization) Set k= 0, I = ∅, and I0 := Ω

Step 1: (Main procedure) For every i= 1, · · · ,N such that ωi ∈ I0 do:

k := k+ 1, I = I ∪ {ωi}, and define Jk := {ωi}
for every j = i+ 1, · · · ,N such that ωj ∈ I0 do

compute cosθωi,ωj
using vectors η(x,ωi) and η(x,ωj) and eq. (26)

If cosθωi,ωj
> 1− εcos then Jk :=Jk ∪{ωj} and I0 := I0 \ {ωj}

end for

4.2. The Case of Linear Second-Stage Problem

The second-stage optimal value Q(x,ω) takes the form in equation (19), for example, when the

second-stage problems in a linear optimization problem for any ω ∈Ω, i.e., q(y,ω) = q>ω y for some

m-vector qω, R(y,ω) =Ry−hω for a fixed recourse matrix R, and Y =Rm+ :

Q(x,ω) = min
y∈Rm

q>ω y

s.t. Ry+T (x,ω)≤ hω, y≥ 0,
(27)

The full recourse assumption on the second-stage problem implies that the strong duality for

problem (27) holds and we have

Q(x,ω) = max
π∈R`

π> (T (x,ω)−hω)

s.t. R>π≥−qω, π≥ 0.
(28)
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The expression of problem (28) if of the form in (19) with η(x,ω) = T (x,ω)− hω is convex and

differentiable in x, and the set Π(ω) :=
{
π ∈R`

∣∣−R>π− qω ≤ 0, −π≤ 0
}

is convex.

For the second-stage problem (27), the feasible set Π̂k defined in equation (20) is given by

Π̂k =
{
π ∈R`

∣∣ π≥ 0, R>π≥−Eω[qω|ω ∈Jk]
}

, with the conditional expectation q̂ω := Eω[qω|ω ∈

Jk] =
∑

ξ∈Jω pξqξ/
∑

ξ∈Jω pξ.

For the linear second-stage optimization problem (27) both assumptions [A] and [B] hold. We

use the Lipschitz continuity of solutions of linear programs with respect to the right-hand-side

perturbation; for the linear optimization problem (28) the optimal solution is Lipschitz with respect

to perturbations in the right-hand-side vector qω (e.g., see Theorem 2.4 of Mangasarian and Shiau

(1987)). Consider the kth cluster Jk. Suppose maxπ∈Π̂
k̂(ω)

π>dxω = π>k d
x
ω. For all ω ∈ Jk, k̂(ω) = k,

we have

∣∣∣sΠ(ω)(d
x
ω)− sΠ̂

k̂(ω)
(dxω)

∣∣∣ = | max
π∈Π(ω)

π>dxω − max
π∈Π̂

k̂(ω)

π>dxω|= |π>ω dxω −π>k dxω|

≤ ‖πω −πk‖‖dxω‖ ≤ ςxω ‖qω −Eξ[qξ|ξ ∈Jk]‖‖dxω‖ ≤ Γxkϑ
x
k, (29)

for some Lipschitz constant ςxω > 0 and Γxk := maxω∈Jk{ςxω ‖qω −Eξ[qξ|ξ ∈Jk]‖}. This establishes the

validity of assumption [A] for linear second-stage models. In the special case, that qω = q for all

ω ∈Ω, then Γxk = 0. In this case, π̂k = πω̂k , the exact optimal solution of the second-stage problem

for the scenario ω̂k.

Assumption [B] also holds when the second-stage problem is linear, as in (28). Consider cluster

Jk and let ω ∈Jk. Using the property maxx∈X f(x)−maxx∈X g(x)≤maxx(f(x)− g(x)), we have

|sΠ̂k
(dxω)− π̂>k dxω| = sΠ̂k

(dxω)− π̂>k dxω = max
π∈Π̂k

π>dxω −max
π∈Π̂k

π>dxω̂k ≤max
π∈Π̂k

π>(dxω − dxω̂k) = π̄>(dxω − dxω̂k),

where π̌k is an optimal solution of the maximization problem maxπ∈Π̂k
π>(dxω − dxω̂k). Since the

feasible region of the problem (28) and consequently Π̂k is a polyhedron, which is nonempty due

to the complete recourse assumption. Thus, we can let π̄k be a basic optimal solution. Since any

polyhedron has finitely many extreme points, let ϑ̄k be the largest ‖π̄k‖. On the other hand we

have ‖dxω−dxω̂k‖
2 = (dxω−dxω̂k)>(dxω−dxω̂k) = ‖dxω‖2 +‖dxω̂k‖

2−2‖dxω‖‖dxω̂k‖ cos(θω,ω̂k)≤ (ϑxk)
2 +(ϑxk)

2−

2(ϑxk)
2εcos = (ϑxk)

22(1− εcos). These two bounds together imply that

|sΠ̂k
(dxω)− π̂>k dxω| ≤ ‖π̌k‖‖dxω − dxω̂k‖ ≤ ϑ̄kϑ

x
k

√
2(1− εcos) (30)

Thus, assumption [B] holds for κxω := ϑ̄k
√

2(1− εcos).
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4.3. Proof of Theorem 4.1

In this section, we present the proof of Theorem 4.1.

Proof of Theorem 4.1 Fix x∈X . According to equation (19) and using the notation in (25),

we have Q(x,ω) = sΠ(ω)(d
x
ω). Equation (22) implies that Qapprox(x,ω) := π̂>

k̂(ω)
dxω, where π̂k̂(ω) is as

in (21) for k= k̂(ω). In particular, when ω= ω̂k for some ω̂k ∈ I, we have Qapprox(x,ω) := sΠ̂k
(dxω).

Denote the approximation error in the second-stage value function evaluation by

εω :=Q(x,ω)−Qapprox(x,ω) =

{
sΠ(ω)(d

x
ω)− sΠ̂k

(dxω), if ω= ŵk ∈ I
sΠ(ω)(d

x
ω)− π̂>

k̂(ω)
dxω, if ω ∈Ω \ I. (31)

For any ω= ωk ∈ I, it follows from assumption [A] that

|εω|= |sΠ(ω)(d
x
ω)− sΠ̂k

(dxω)| ≤ Γxkϑ
x
k. (32)

For every ω ∈Ω \ I, from equation (31) we have

|εω|= |sΠ(ω)(d
x
ω)− π̂>

k̂(ω)
dxω| = |sΠ(ω)(d

x
ω)− sΠ̂

k̂(ω)
(dxω) + sΠ̂

k̂(ω)
(dxω)− π̂>

k̂(ω)
dxω|

≤ |sΠ(ω)(d
x
ω)− sΠ̂

k̂(ω)
(dxω)|+ |sΠ̂

k̂(ω)
(dxω)− π̂>

k̂(ω)
dxω|

≤ Γxωϑ
x
k +κxωϑ

x
k, (33)

where the inequality (33) follows from assumptions [A] and [B]. Therefore, equations (32) and (33)

collectively imply that for any ω ∈Ω,

|εω| ≤max{Γxkϑxk, Γxkϑ
x
k +κxωϑ

x
k}= (Γxk +κxk)ϑ

x
k ≤ ε∗, ∀ω ∈Jk. (34)

Note that given the compactness of X and finiteness of Ω, ε∗ is well-defined and ε∗ <∞. We use

the bound (34) on Q estimation errors to establish that the risk-averse inexact oracle satisfies

requirements (3) and (4). We complete this step in two parts focusing on ϕ̃x and g̃x, respectively.

Part 1: Correctness of ϕ̃x: The expression of ϕ(x) in (1) and Theorem 2.1 implies that

ϕ(x) = c>x+ max
µ∈Aρ

[∑
ω∈Ω

µωpωQ(x,ω)

]
= c>x+ max

µ∈Aρ

[∑
ω∈Ω

µωpω (Qapprox(x,ω) + εω)

]

= c>x+ max
µ∈Aρ

[∑
ω∈Ω

µωpωQapprox(x,ω) +
∑
ω∈Ω

µωpωεω

]

≤ c>x+ max
µ∈Aρ

[∑
ω∈Ω

µωpωQapprox(x,ω) +
∑
ω∈Ω

µωpωε
∗

]
= ϕ̃x + ε∗. (35)
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The last equality comes from the equality
∑

ω∈Ω µωpω = 1 from Theorem 2.1 for every µ∈Aρ, and

then the definition of ϕ̃x in equation (23). Similarly, we get

ϕ(x) = c>x+ max
µ∈Aρ

[∑
ω∈Ω

µωpω (Qapprox(x,ω) + εω)

]

≥ c>x+ max
µ∈Aρ

[∑
ω∈Ω

µωpω (Qapprox(x,ω)− ε∗)

]
= ϕ̃x− ε∗. (36)

Inequalities (35) and (36) collectively imply that ϕ̃x − ε∗ ≤ ϕ(x) ≤ ϕ̃x + ε∗, thus satisfying the

requirement (3), ϕ̃x ∈ [ϕ(x)− ε∗, ϕ(x) + ε∗], with ε1 := ε2 := ε∗.

Part 2: Correctness of g̃x. Let z ∈ X such that z 6= x. Let πzω be an optimal solution for problem

(19), i.e.,

Q(z,ω) = max
π∈Π(ω)

π>η(z,ω) = (πzω)>η(z,ω) = sΠ(ω)(d
z
ω), (37)

where dzω := η(z,ω). Using assumption [A] at dzω, we get

ε∗ ≥ Γz
k̂(ω)

ϑz
k̂(ω)
≥ |sΠ(ω)(d

z
ω)− sΠ̂

k̂(ω)
(dzω)| ≥ sΠ̂

k̂(ω)
(dzω)− sΠ(ω)(d

z
ω) = max

π∈Π̂
k̂(ω)

π>dzω − sΠ(ω)(d
z
ω). (38)

From equation (22), Qapprox(x,ω) = η(x,ω)>πx, where πx is π̂k̂(ω) corresponding to x. Since πx ∈

Π̂k̂(ω), we have maxπ∈Π̂
k̂(ω)

π>dzω ≥ π>x dzω. Applying this inequality in (38) yields

sΠ(ω)(d
z
ω)≥ π>x dzω − ε∗. (39)

Using (37) and (39) along with the equality Qapprox(x,ω) = η(x,ω)>πx implies that

Q(z,ω) ≥
(
Qapprox(x,ω)− η(x,ω)>πx

)
+
(
π>x d

z
ω − ε∗

)
=Qapprox(x,ω)− ε∗+π>x (η(z,ω)− η(x,ω)) . (40)

The convexity and differentiability of η(·, ω) at x implies that η(z,ω)−η(x,ω)≥∇xη(x,ω)(z−x).

Here, ∇xη(x,ω) is the s×n Jacobian matrix of η. Using this inequality in (40) along with πx ≥ 0

(problem (14) includes π≥ 0 as the constraints), we arrive at

Q(z,ω) ≥Qapprox(x,ω)− ε∗+π>x∇xη(x,ω)(z−x). (41)

From the definition of ϕ(z) we have

ϕ(z) = c>z+ max
µ∈Aρ

[∑
ω∈Ω

µωpωQ(z,ω)

]
≥ c>x+

∑
ω∈Ω

µ∗ωpωQ(z,ω) + c>(z−x),
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where µ∗ω is an optimal solution to the optimization problem in equation (23) for x. Using inequal-

ity (41) in the above equality yields

ϕ(z) ≥ c>x+
∑
ω∈Ω

µ∗ωpω
(
Qapprox(x,ω) +π>x∇xη(x,ω)(z−x) + c>(z−x)− ε∗

)
=

[
c>x+

∑
ω∈Ω

µ∗ωpωQapprox(x,ω)

]
+

[∑
ω∈Ω

µ∗ωpωπ
>
x∇xη(x,ω)(z−x) + c>(z−x)

]
− ε∗

= ϕ̃x +

[∑
ω∈Ω

µ∗ωpω (∇xη(x,ω))
>
πx + c

]>
(z−x)− ε∗

= ϕ̃x + 〈g̃x, z−x〉− ε∗

≥ϕ(x) + 〈g̃x, z−x〉− 2ε∗.

Here, the first equality uses
∑

ω∈Ω µ
∗
ωpωε

∗ = ε∗. The last inequality comes from inequality (35).

Thus, g̃x ∈ ∂2ε∗ϕ(x) satisfies (4) with ε1 := ε2 := ε∗. This completes the proof. �

5. Resource Allocation for Contingency Planning

This section presents the details of our resource allocation problem and its formulation as a risk-

averse two-stage stochastic optimization problem. For a detailed review on facility location prob-

lems, the reader is referred to (Daskin 1995, Drezner 1995). This problem aims to allocate a set

of reserve resources to the nodes in a network in order to achieve an optimal risk-adjusted level

of cost versus reliability in the network. This problem arises for example in the optimal alloca-

tion of a finite number of energy storage facilities to different areas in an electricity grid, given

area generation, area demand, and tie-line connections between areas. For details on this problem

see Chowdhury et al. (2004), Jirutitijaroen and Singh (2006, 2008). We formulate the optimal

allocation problem as a two-stage risk-averse stochastic optimization problem, where the second-

stage problem is modeled as a network flow problem (Bertsekas 1998). We start by describing the

network model next.

5.1. The Model

Consider a multi-area network with the set of nodes {1, . . . , n} and the set of edges E ⊆

{{i, j} | i, j ∈ {1, · · · , n}}. The network is directed and we set Ẽ := {(i, j), (j, i) | {i, j} ∈E}. For any

arc (i, j)∈ Ẽ, i 6= j. Elements of randomness in the network are driven by a finite probability space

(Ω,F , P ), where each ω ∈Ω represents an outcome of the system characterized by

ti,j(ω): tie-line capacity between areas i and j under scenario ω

cli(ω): cost of demand unfulfillment in area i under scenario ω

gi(ω): production capacity of area i under scenario ω

li(ω): demand in area i under scenario ω
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Above-mentioned functions of scenario ω are known and given. In addition, the following parame-

ters are given:

cbi : cost of an additional reserve resource in area i

Gb
i : capacity of the reserve facility if installed in area i

B: maximum capacity of reserve resources for contingency planning

We do not assume that the events of network disruptions are independent. Our computational

studies let the tie-line distributions be dependent. We refer the reader to Garver (1966), Lago-

conzalez and Singh (1989), Mitra and Singh (1999), Lawton et al. (2003), Jirutitijaroen and Singh

(2006, 2008) for more details in the generation of state-dependent functions from available data.

Our model can cast as a generalization of the model in Jirutitijaroen and Singh (2006, 2008).

The main objective of the problem is to efficiently allocate the given set of external reserve

resources in terms of cost versus reliability, in the presence of uncertain inputs ti,j, ci, gi, and li. The

first-stage decision variables, xi’s, are the number of reserve facilities to be allocated to each area.

These integer decision variables must be determined before the realization of a random scenario

ω ∈Ω for demands, generations, and congestions. Given an allocation {xi}ni=1, flows in the network

for each scenario constitute the second-stage decision variables. Denote the flow from arc i to j for

the scenario ω by yij(w). The precise formulation of this two-stage problem is as follows:

min
x∈Rn

n∑
i=1

cbixi + ρ [Q(x,ω)] (42)

s.t.
n∑
i=1

xi ≤B, x≥ 0, x is integral, (43)

where ρ(·) is a coherent risk measure, and for any ω ∈Ω,

Q(x,ω) = min
y∈R|Ẽ|

yG,yL∈Rn

n∑
i=1

cli(ω) (li(ω)− yL,i) (44)

s.t. yG,i ≤ gi(ω) +Gb
ixi, i= 1,2, · · · , n, (45)

yL,i ≤ li(ω), i= 1,2, · · · , n, (46)

|yji− yij| ≤ ti,j(ω), (i, j)∈ Ẽ, (47)∑
(j,i)∈Ẽ

yji−
∑

(i,j)∈Ẽ

yij + yG,i− yL,i = 0, i= 1,2, · · · , n, (48)

yij, yG,i, yL,i ≥ 0, i, j = 1,2, · · · , n. (49)

Function Q(x,ω) is the optimal objective value of the second-stage problem of minimizing the cost

of demand unfulfillment under scenario ω ∈Ω. Constraints (45)–(47) correspond to the maximum

capacity flow in the network. These constraints consider generation, demand, and tie-line capac-

ity, respectively. Equation (48) is the flow conservation constraint. The cost cli(ω) is the penalty
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cost of not serving the customer per unit of missed demand. Hence, the objective function (45),

cli(ω)(li(ω)− yL,i(ω)), serves as an unreliability index, which we aim to minimize. The failure cost

to measure reliability is typical in the facility location literature, e.g., see Cui et al. (2010).

In the first-stage problem, Q(x,ω) is a random variable on Ω. Equation (43) is the first-stage

bound on the total number of reserve facilities to be allocated. This bound is based on our resource

availability on such components. The objective function (42) adds the cost of additional reserve

capacities to the risk-averse evaluation of the second-stage cost of demand loss under uncertainty.

The risk measure ρ as included in the first-stage problem makes our model fundamentally dif-

ferent from the standard literature on related problems, e.g. Jirutitijaroen and Singh (2006, 2008).

More specifically, instead of considering as our recourse the (risk-neutral) expectation of the cost of

demand unfulfillment, we use a risk measure of the second-stage objective value. This enables the

decision maker to incorporate his risk preferences in the reliability management while allocating

the reserve resources. Under this paradigm, the decision maker is capable of placing more attention

on particular scenarios based on his risk preferences.

5.2. Coherent Risk Measures for Network Reliability Assessment

We illustrate the inexact proximal bundle method with the risk-averse oracle for two popular coher-

ent risk measures: Mean-Upper Semideviation and Coditional Value-at-Risk. For further review on

these risk measures, see Shapiro et al. (2014), Rockafellar (2014). Below, [a]+ := max{0, a}.

For α≥ 0, the mean-upper-semideviation, denoted by MUSDα, measures the risk of losses exceed-

ing the expectation (Ogryczak and Ruszczyński (1999, 2001)) and is defined by

MUSDα(Z) :=E[Z] +αE [Z −E[Z]]+ , ∀ Z ∈Z, (50)

The conditional value-at-risk at level α ∈ [0,1] (Rockafellar and Uryasev (2000, 2002),

Ruszczyński and Shapiro (2006b)), denoted by CVaRα, is the expectation of Z in the conditional

distribution of its upper α-tail, and is given by

CVaRα(Z) := inf
t∈R

{
t+α−1E[Z − t]+

}
. (51)

Given a finite probability space with Ω = {ω1, · · · , ωN}, the corresponding risk envelopes are

AMUSDα = {µ∈L∞(Ω,F , P ) | µ= 1 + τ −E[τ ], ‖τ‖∞ ≤ α} , (52)

ACVaRα =
{
µ∈L∞(Ω,F , P )

∣∣ µ(ω)∈ [0, α−1] a.e. ω ∈Ω, E[µ] = 1
}
. (53)

For other examples of coherent risk measures and their representations see Section 6.3.2 in Shapiro

et al. (2014) and Rockafellar (2014).
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For a discussion on deploying coherent risk measures for handling the risk of system failure and

reliability analysis, see Minguez et al. (2011), Rockafellar and Royset (2015), Gardoni (2017). The

two-stage model (42)-(49) for a finite probability space can be represented as a one-stage determin-

istic linear optimization problems. The deterministic equivalent optimization formulations for these

risk functionals are presented in Appendix A. Solving the deterministic equivalent formulations

becomes quickly computationally expensive as the number of scenarios N grows.

5.3. Application of Risk-Averse Inexact Proximal Bundle Method

This section presents the details of applying the inexact proximal bundle method outlined in

Section 3 with the risk-averse inexact oracle described in Section 4 for the two-stage optimization

model (42)-(49).

For each cluster Jk, the solutions π̂k is computed as in equations (21). Let π̂gk, π̂
l
k, π̂

t+
k , π̂

t−
k , and π̂bk

refer to part of π̂k corresponding to the set of constraints (45)-(48) in the second-stage optimization

problem. Hence, equations (20) and (21) are expressed as

π̂k ∈ arg max
π∈Π̂k


n∑
i=1

(gi(ω̂k) +Gb
ixi)π

g
i +

n∑
i=1

li(ω̂k)π
l
i +

∑
(i,j)∈E

ti,j(ω̂k)(π
t+
ij +πt−ij )

 , (54)

where

Π̂k =

π= (πg, πl, πt+, πt−, πd)∈R3n+2|E|

∣∣∣∣∣∣∣∣
πgi +πbi ≤ 0, i= 1, · · · , n
πLi −πbi ≤E[cli(ω)|ω ∈Jk], i= 1, · · · , n
πt+ij −πt−ij +πbj −πbi ≤ 0, (i, j)∈E
πGi , π

L
i , π

t+
ij , π

t−
ij ≥ 0

 . (55)

Note that here E[cli(ω)|ω ∈ Jk] =
∑

ω∈Jk
pωc

l
i(ω)/

∑
ω∈Jk

pω. These solutions are used to construct

Qapprox(x,ω). For some ω ∈Ω, suppose that k̂(ω) = k. Thus,

Qapprox(x,ω) =
n∑
i=1

(gi(ω) +Gb
ixi)π̂

g
k,i +

n∑
i=1

li(ω)π̂lk,i +
∑

(i,j)∈E

ti,j(ω)(π̂t+k,ij + π̂t−k,ij). (56)

These approximate optimal values for the second-stage problem are used to derive ϕ̃x as stated in

equation (23). In particular, using (53) for CVaRα we set

ϕ̃x := c>x+ max
µ∈RN

[∑
ω∈Ω

µωpωQapprox(x,ω)

]
(57)

s.t.
N∑
s=1

psµs = 1, 0≤ µs ≤
1

α
s= 1, · · · ,N.

Using the expression in (52) for MUSDα we compute

ϕ̃x := c>x+ max
µ∈RN

[∑
ω∈Ω

µωpωQapprox(x,ω)

]
(58)

s.t. µs = 1 + τ −
N∑
s=1

psτs + τ, 0≤ τs ≤ α, s= 1, · · · ,N.



Resource Allocation for Contingency Planning: An Inexact Proximal Bundle Method
21

Suppose that µ∗ ∈RN solves the maximization in the description of ϕ̃x above. Then, the approxi-

mate subgradient follows from OxQapprox(x,ω) = [π̂gk,1G
b
1 · · · π̂

g
k,nG

b
n]>, that is

g̃x := c+
∑
ω∈Ω

µ∗ωpω

 G
b
1π̂

g
k,1

...
Gb
nπ̂

g
k,n

 . (59)

5.4. Convergence with First-Stage Integrality Constraints

The convergence analysis of the inexact proximal bundle method established in Kiwiel (2006)

relies on the optimality condition for convex optimization problems. Hence, this analysis cannot be

directly employed for the resource allocation problem introduced in (42)–(49) due to its first-stage

integrality constraints. We heuristically apply Algorithm 1 to the resource allocation problem by

letting the regularized master problem (18) at each iteration be an integer optimization problem.

In addition, in our implementation, the bundle management in Step 6 is forgone.

We numerically investigate the convergence of the algorithm for the resource allocation prob-

lem of our interest with first-stage integer decision variables. For this purpose, we develop the

deterministic equivalent program (see e.g. Birge and Louveaux (1997)) for our two-stage stochastic

optimization problem when ρ is replaced by expectation, mean-upper semideviation, and CVaR.

These deterministic equivalent formulations are presented in Appendix A. For a given scenario set,

deterministic equivalent programs provide an optimal solution of the two-stage stochastic opti-

mization problem. However, these formulations are generally computationally prohibitive as the

number of scenarios grows. We solve these mixed-integer problems using the Gurobi’s branch and

bound algorithm (Gurobi Optimization 2016). We use the solutions computed from the determin-

istic equivalent formulations to assess the optimality of the solutions obtained from the application

of Algorithm 1 to our resource allocation problem. For this study, we consider a randomly gener-

ated network of 20 nodes and 78 arcs and vary the number of scenarios from 100 to 2000 scenarios.

The rest of the simulation parameters are as in section 6. We observe that for all three risk func-

tionals and for all scenario sets, the relative error is consistently less than 0.01%. For expectation,

Algorithm 1 with an integer master problem is often capable to offer the exact optimal solution

obtained from the deterministic equivalent program.

6. Computational Results

In our numerical experiments we randomly generate sparse connected networks of different sizes

using the Networkx Python library (Hagberg et al. 2008). Figure 1 presents some of the networks

used in our subsequent analyses.

Sets of scenarios Ω specifying ti,j(ω), gi(ω), li(ω), cli(ω) are generated by simulation. We build on

the existing literature to determine our simulation setting and parameter values. The details of our
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(a) 20 nodes (Table 1) (b) 10 nodes (Figures 2 and 3) (c) 15 nodes (Figures 2 and 3)

(d) 20 nodes (Figures 2 and 3) (e) 25 node (Figures 2 and 3) (f) 20 nodes (Figure 4)

Figure 1 Examples of randomly generated networks

scenario simulation are presented in Appendix B. In addition, we set cbi = $205,100 andGb
i = 0.1MW

for every node i. We set the maximum number of extra reserve resources B to be 3% of the total

maximum generation capacity on the network. That is, B = 0.03
∑n

i=1 Ḡi, where Ḡi is the upper

bound of the support of the probability distribution for gi(ω), see Table 2a. The software containing

these problems is available at https://archive.org/details/contingency-data.-7z.

We consider three risk functionals ρ: expectation, mean-upper semideviation, and CVaR.

Throughout, the risk parameters in CVaR and mean-upper semideviation are set to α= 0.40. For

the exact proximal bundle method, the regularization parameter is set to γ = 0.31. In the inexact

proximal bundle method, presented in Section 3, the descent parameter is �= 0.3, the initial step-

size bound is T1 = 0.05, and the initial stepsize is t1 = 0.1. In both the exact and inexact bundle

methods, the stopping tolerance δ= 10−6 is used.

The master problem in the proximal bundle methods and deterministic formulations (60), (61),

and (62) are solved using Gurobi quadratic, mixed-integer, and dual simplex solvers (Gurobi Opti-

mization 2016), implemented in the Python programming language. In the exact method, the

objective functions and subgradients are evaluated using equations (7) and (13). The inexact

method employs equations (23) and (59). To improve efficiency, we parallelized the calls to multiple
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scenarios ω ∈ Ω. An Ubuntu 14.04 PC with dual Intel Xeon E5-2650 v4 @ 2.20GHz CPU with a

total of 48 threads available and 128GB of RAM is used in these numerical experiments.

6.1. Accuracy: Inexact Bundle Method versus Exact Bundle Method

Table 1 reports the run-times of the inexact bundle method for different risk measures and its

corresponding suboptimality levels against the exact bundle method. In this section, all parameters

are fixed except εcos. The suboptimility is computed as the absolute value of the difference of

optimal values of exact and inexact methods, divided by the optimal value of the exact method. In

this analysis, a network with 20 nodes and 48 arcs is considered. Figure 1a illustrates the undirected

version of this network, with 48/2 = 24 arcs. The size of the scenario set is |Ω|= 100. For each risk

measure, the exact running time is also provided.

Results in Table 1 show that the running time can be reduced by more than 2.85 times for CVaR,

7.98 times for Mean-Upper Semideviation, and 8 times for expectation at about 10% suboptimality.

In addition, Table 1 suggests that εcos = 0.1 offers an acceptable tradeoff between approximation

error and run-time. This observation informs the numerical experiments in the subsequent sections

to focus on the inexact proximal bundle method with two “extreme” conditions of εcos = 0.2 and

εcos = 0.05, and a “reasonable” condition with εcos = 0.1.

CVaR

εcos Time Suboptimality

0.9 2.6 80.85%

0.8 2.32 80.85%

0.7 2.34 80.85%

0.6 2.33 80.85%

0.5 2.33 80.85%

0.4 4.68 48.04%

0.3 5.01 44.58%

0.2 8.34 26.85%

0.1 28.1 10.51%

0.08 21.77 5.28%

0.06 41.88 2.95%

0.05 94.53 1.76%

0.04 61.97 0.23%

0.02 71.03 0.00%

Exact running time: 80.43

Mean-Upper Semideviation

εcos Time Suboptimality

0.9 2.72 71.87%

0.8 2.44 71.87%

0.7 2.46 71.87%

0.6 2.46 71.87%

0.5 2.47 71.87%

0.4 4.75 36.16%

0.3 5.5 32.65%

0.2 7.23 14.81%

0.1 15.22 0.31%

0.08 23.73 2.31%

0.06 42.43 2.05%

0.05 69.67 1.67%

0.04 79.26 0.12%

0.02 61.04 0.00%

Exact running time: 121.44

Expectation

εcos Time Suboptimality

0.9 2.52 63.58%

0.8 2.47 63.58%

0.7 2.46 63.58%

0.6 2.47 63.58%

0.5 2.47 63.58%

0.4 4.53 32.60%

0.3 4.85 29.30%

0.2 7.54 11.95%

0.1 15.60 3.30%

0.08 22.52 0.84%

0.06 49.93 1.16%

0.05 103.80 1.27%

0.04 148.38 0.14%

0.02 124.28 0.00%

Exact running time: 124.87

Table 1 Run-time (in seconds) of inexact proximal bundle methods as a function of εcos and the percentage of

sub-optimality (approximation errors in %) against the exact proximal bundle method.

Figure 2 exhibits the percentage of approximation error (suboptimality) of the solution com-

puted from the inexact bundle method. These plots are obtained from applying the exact bundle

method and the inexact bundle methods (with εcos = 0.2, 0.1, 0.05) under different risk functionals

to random networks of 3 to 25 nodes. Some of these graphs are presented in Figures 1b-1e. In the
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plots in Figure 2, each point represents the average over 5 simulations on a fixed network with 100

randomly generated scenarios. Other settings are similar to those explained previously.

The error in approximation improves with smaller values of εcos. This is expected since for a

fixed scenario indexing, a smaller εcos tends to create finer partitions I, thus leading to solving

more second-stage scenarios in Algorithm 2. The suboptimality level is relatively consistent among

different risk measures and different scenario sizes. Right plots in Figure 2 indicate that a solution

with an acceptable level of accuracy can be obtained from the inexact method even for a large

number of scenarios. This result along with the time improvements achieved in the inexact method

make this approach attractive for solving risk-averse two-stage stochastic problem with downside

risk measures. For risk measures such as CVaR, a large number of scenarios must be considered to

accurately capture the tail of the recourse function distributions. This leads to high computational

time in the exact method for risk-averse two-stage stochastic problems.

6.2. Computational Time: Inexact Bundle Method versus Exact Bundle Method

This section reports the run-time of the inexact proximal bundle method and compares it with

the run-time of the exact proximal bundle method. The analysis on run-time is conducted by

varying the number of nodes in the network, the number of scenarios in the scenario set Ω, and

the parameter εcos in the inexact risk-averse oracle.

Figure 3 illustrates the run-times (in seconds) of the exact method and the inexact bundle

methods for εcos = 0.2, 0.1, 0.05. The left plots in Figure 3 illustrate the run-times to randomly

generated networks of 5 to 25 nodes, some of which are presented in Figures 1b-1e, and a scenario

set with |Ω|= 100 scenarios. Every point in these plots represent the average over 5 simulations. The

left plots in Figure 3 illustrate that significant run-time improvements (85%−95% for εcos = 0.1,0.2

and 65%−75% for εcos = 0.05) can be achieved through the inexact method. The run time for both

exact and inexact method for the case of CVaR is lower than the other two risk measures, which is

more prominent as the number of nodes grows. The time improvement from inexact bundle method

is slightly higher for expectation and mean-upper semideviation risk functionals than the CVaR.

The right plots in Figure 3 depict the run-times of the exact and inexact methods as the number

of scenarios |Ω| increases. Here, we consider a network with 10 nodes and vary the number of

scenarios. Each point represents the average over 3 simulations. These results indicate that higher

run-time improvements are observed as the size of the scenario set increases. The run-time for

CVaR is again lower than that of the mean-upper semi deviation risk measure and the expectation.

Figure 4 illustrates the run-time of the exact and inexact methods as the number of scenarios

increases to 5000. This study considers a network with 20 nodes as in Figure 1f. In this experiment,

a single-threaded code environment is used. All parameters are set as before. The plots in Figure 4
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cos
=0.20

cos
=0.10

cos
=0.05

(a) Conditional Value-at-Risk

cos
=0.20

cos
=0.10

cos
=0.05

(b) Mean-Upper Semideviation

cos
=0.20

cos
=0.10

cos
=0.05

(c) Expectation

Figure 2 Approximation error of inexact proximal bundle methods with εcos = 0.2 (red), 0.1 (blue), 0.05 (black).

Left plot: approximation error vs. number of nodes. Right plot: approximation error vs. number of

scenarios. The lines show the medians.
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(a) Conditional Value-at-Risk

(b) Mean-Upper Semideviation

(c) Expectation

Figure 3 Run-time of exact and inexact proximal bundle methods with εcos = 0.05, 0.1, 0.2. Left plots: run-time

vs. number of nodes. Right plots: run-time vs. number of scenarios. The curves show the fitted robust

power models.
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also show a fitted power model t = cNγ , where t denotes the running time, N is the number of

scenarios, and c, γ are model parameters. The plots indicate that generally significant improvements

in the run-times can be achieved by the inexact method for both risk measures. The run time

improvement relative to that of the exact method becomes more prominent as the number of

scenarios increases. Consider that there is a run-time budget of five minutes. We observe that

allowing the method with the CVaR objective run for up to five minutes, the exact method solves

problems up to 2,472 scenarios, whereas the inexact methods can handle problems up to 6,565 for

εcos = 0.05, up to 28,682 for εcos = 0.1, and up to 30,829 for εcos = 0.2. Similarly, for the mean-upper

semideviation objective, letting the methods run for up to five minutes, the exact method solves

problems up to 1,553 scenarios, whereas the inexact methods can handle problems up to 2,552 for

εcos = 0.05, up to 4,565 for εcos = 0.1, and up to 4,931 for εcos = 0.2.

(a) Conditional Value-at-Risk (b) Mean-Upper Semideviation

Figure 4 Run-time of exact and inexact proximal bundle methods as the number of scenarios grows.

7. Conclusion

This paper studies the resource allocation problem as a two-stage stochastic optimization problem

with risk-averse recourse. Solving this problem using the deterministic equivalents of the problem

or exact proximal bundle method becomes computationally expensive for large number of scenar-

ios. An inexact proximal bundle method with a risk-averse inexact oracle to compute approximate

objective function values and subgradients is developed, for coherent risk measures and convex

second-stage problems. Sufficient conditions are established for the correctness of the risk-averse

oracle, when the second-stage optimal value for each scenario admits a linear representation. The

performance of the methodology is investigated for the resource allocation problem for reserve
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resources arising in contingency planning, modeled as a risk-averse two-stage stochastic optimiza-

tion. Computational experiments are conducted for various networks and scenario sets, collected

as a library of test problems. A sensitivity analysis on the scenario clustering parameter εcos in the

risk-averse inexact oracle for this two-stage risk averse stochastic problem is carried out to guide

on the selection of an appropriate value for this parameter. Our numerical results exhibit that the

inexact proximal bundle method can provide significant improvement in the run-time to achieve

an approximate solution for this two-stage problem, comparing to the exact bundle method. Such

runtime improvements depend on the decision maker’s approximation preference controlled by the

choice of the clustering method. Future research includes investigating the performance of the

risk-averse inexact oracle when applied to problem classes beyond linear second-stage problems

and to other resource allocation applications. Studying the effect of alternative scenario clustering

mechanisms on the solution approximation and the granularity of the results constitutes another

direction for future work.
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Appendix A: Deterministic Equivalent Formulations

In this section, Rn+ denotes the set of all real vectors of dimension n with nonnegative elements. Let X =

{x∈Rn s.t. x≥ 0, x is integer,
∑n

i=1 xi ≤B}.

Expectation:

min
x∈X , y∈R|E||Ω|

+

n∑
i=1

cbixi +
∑
ω∈Ω

pω

n∑
i=1

cli(ω) (li(ω)− yL,i,ω)

s.t. yG,i,ω ≤ gi(ω) +Gb
ixi, i∈ {1,2, · · · , n}, ω ∈Ω,

yL,i,ω ≤ li(ω), i∈ {1,2, · · · , n}, ω ∈Ω,

|yji,ω − yij,ω| ≤ ti,j(ω), i, j ∈ {1,2, · · · , n}, i 6= j, ω ∈Ω,∑
j∈I
j 6=i

yji,ω −
∑
j∈I
j 6=i

yij,ω + yG,i,ω − yL,i,ω = 0, i∈ {1,2, · · · , n}, ω ∈Ω.

(60)
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Mean-Upper Semideviation:

min
x∈X , y∈R|E||Ω|

+
, T∈R|Ω|, R∈R|Ω|

+

n∑
i=1

cbixi +
∑
ω∈Ω

pωTω +α
∑
ω∈Ω

pωRω

s.t. yG,i,ω ≤ gi(ω) +Gb
ixi, i∈ {1,2, · · · , n}, ω ∈Ω,

yL,i,ω ≤ li(ω), i∈ {1,2, · · · , n}, ω ∈Ω,

|yji,ω − yij,ω| ≤ ti,j(ω), i, j ∈ {1,2, · · · , n}, i 6= j, ω ∈Ω,∑
j∈I
j 6=i

yji,ω −
∑
j∈I
j 6=i

yij,ω + yG,i,ω − yL,i,ω = 0, i∈ {1,2, · · · , n}, ω ∈Ω,

Tω =
n∑
i=1

cli(ω) (li(ω)− yL,i,ω) , ω ∈Ω,

Rω ≥ Tω −
∑
ω∈Ω

pωTω, ω ∈Ω.

(61)

CVaR:

min
x∈X , t∈R,y∈R|E||Ω|

+
,T∈R|Ω|,R∈R|Ω|

+

n∑
i=1

cbixi +
∑
ω∈Ω

pωTω +α
∑
ω∈Ω

pωRω

s.t. yG,i,ω ≤ gi(ω) +Gb
ixi, i∈ {1,2, · · · , n}, ω ∈Ω,

yL,i,ω ≤ li(ω), i∈ {1,2, · · · , n}, ω ∈Ω,

|yji,ω − yij,ω| ≤ ti,j(ω), i, j ∈ {1,2, · · · , n}, i 6= j, ω ∈Ω,∑
j∈I
j 6=i

yji,ω −
∑
j∈I
j 6=i

yij,ω + yG,i,ω − yL,i,ω = 0, i∈ {1,2, · · · , n}, ω ∈Ω,

Tω =

n∑
i=1

cli(ω) (li(ω)− yL,i,ω) , ω ∈Ω,

Rω ≥ Tω − t, ω ∈Ω.

(62)

Appendix B: Scenario Simulation

In order to capture the local structure of the network we generate distance-based covariance matrices ΣI

and ΣE. To do this, we first obtain matrices DI and DE of distance in the underlying undirected network

between nodes in I and between arcs in E, respectively. For every a, b∈ {1, · · · , n} and e, d∈E we define

ΣI(a, b) :=
1

2

[
exp

(
−
[
DI(a, b)

ρIn

]2
)

+ δa,b

]
and ΣE(e, d) :=

1

2

[
exp

(
−
[
DE(e, d)

ρE|E|

]2
)

+ δe,d

]
,

where δi,j is the Kronecker delta and ρI , ρE are parameters controlling the strength of linear correlation. In

our experiments we set ρI = 0.3 and ρE = 0.4. The distance DI(a, b) is the number of arcs on the shortest

path from node a to b. The distance DE(e, d) is the number of arcs on the shortest path from node e to d in

the line graph of the network. We avoid numerical instabilities in the calculation of ΣI and ΣE by running

them through the algorithm in Higham (1988) to find a nearest symmetric positive semidefinite matrix. We

use the matrices ΣI(a, b) and ΣE(e, d) to generate correlated simulated values, described next.

ti,j(ω): To each tie-line (i, j) ∈ Ẽ, we attach an independent discrete total failure distribution taking

values 100 and 0.0 with probability 0.7 and 0.3, respectively. The high probability of total failure
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max gen. 500 MW max gen. 600 MW

Cap. (MW) Prob. Cap. (MW) Prob.

– – 600 0.564474

500 0.620921 500 0.338684

400 0.310461 400 0.084671

300 0.062092 300 0.011289

200 0.006209 200 0.000847

100 0.000310 100 0.000034

0 0.000006 0 0.000001

(a) Probability models for Area Generation

max load 500 max load 600

Cap. (MW) Prob. Cap. (MW) Prob.

– – 600 0.028257

500 0.028257 500 0.275288

400 0.275288 400 0.436651

300 0.436651 300 0.259803

200 0.259803 – –

(b) Regimes for Area Load

Table 2 Discrete probability distributions to generate two regimes for area generation gi and load li

simulates times of great stress in the network such as storms and other natural disasters. In order to

capture the structure of the network, we let ti,j be obtained from a multivariate probability with a

Gaussian copula and total failure distribution marginals with values correlated by the tie-line distance

covariance matrix ΣE.

gi(ω): Each area is randomly assigned one of two generation distributions defining regimes constraining

maximum generation to 500MW or 600MW, see Table 2a. We let gi be obtained from a multivariate

probability with a Gaussian copula and generation distribution marginals with values correlated by the

covariance matrix ΣI . In this way, generation values on closer areas are more correlated than on far

apart ones, thus simulating local constraints on the generation areas.

li(ω): Each area is randomly assigned one of two load distributions defining maximum-load regimes, see

Table 2b. We let li := Ξi + Λi, where Ξi is obtained from a multivariate probability with a Gaussian

copula and load distribution marginals with values correlated by the covariance matrix ΣI and Λi is

an independent Poisson distribution. Λi models the load spikes integral to load values in electricity

networks, see Carmona and Coulon (2014) for more details on modeling electricity markets.

cli(ω): The cost of demand loss function is expressed through a customer damage function (CDF) that

relates different types of load and interruption duration to cost per MW. We use the CDF appeared

in Lawton et al. (2003), which is defined as follows cl = exp(6.48005 + 0.38489Dω − 0.02248D2
ω), where

Dω is the mean duration of each state, see e.g. Samaan (2004), Jirutitijaroen and Singh (2006, 2008).

This quantity is defined

Dω = 24

∑
i∈I

λω+
gi

+
∑
i∈I

λω−gi +
∑
i,j∈I
i6=j

λω+
tij

+
∑
i,j∈I
i6=j

λω−tij +

mk∑
k=1

λωlk


−1

.

Here, mt is the total number of area load states, λωlk is the equivalent transition rate of area load from

state ω to other load states, and λω+
gi

(λω−gi ) expresses the equivalent transition rate of generation in area

i from a capacity of state ω to higher (lower) capacity. Similarly, λω+
tij

(λω−tij ) is the equivalent transition

rate of transmission line from area i to area j from a capacity of state ω to higher (lower) capacity.

The values of these parameters are given in Table 3, see also Mitra and Singh (1999).
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Cap. (MW)
max gen. 500 max gen. 600

λω+
gi

λω−
gi

λω+
gi

λω−
gi

600 – – 0.6 0

500 0.5 0 0.5 1

400 0.4 1 0.4 2

300 0.3 2 0.3 3

200 0.2 3 0.2 4

100 0.1 4 0.1 5

0 0 5 0 6

(a) Transition rate regimes for generation

index λω
lk

0 1.3429

1 0.0206

2 0.3394

3 1.9753

4 0.0278

5 0.0085

6 1.3399

7 2.1036

8 0.0452

9 2.237

(b) Transition rate for loads

Cap. (MW) λω+
tij

λω−
tij

100 0.274 0

0 0 3

(c) Transition rates for tie-lines

Table 3 Generation, load, and tie-line transition rates
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Ogryczak, W lodzimierz, Andrzej Ruszczyński. 2001. On consistency of stochastic dominance and mean–

semideviation models. Mathematical Programming 89(2) 217–232.

Oliveira, Welington, Claudia Sagastizabal, Susana Scheimberg. 2011. Inexact bundle methods for two-stage

stochastic programming. SIAM Journal on Optimization 21(2) 517–544.

Parajuli, Anubhuti, Onur Kuzgunkaya, Navneet Vidyarthi. 2017. Responsive contingency planning of capac-

itated supply networks under disruption risks. Transportation Research Part E: Logistics and Trans-

portation Review 102 13–37. doi:https://doi.org/10.1016/j.tre.2017.03.010.
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