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ABSTRACT
We consider the Cauchy problem for the Navier-Stokes equation in
IR3 %0, oo[ with the initial datum ug € L3 a critical space containing
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global well-posedness by perturbation theory. When ||ug||;3  is not
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small, the perturbation theory no longer applies and, veryvlvikely, the
local-in-time well-posedness and uniqueness fails. One can still develop
a good theory of weak solutions with the following stability property: If
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u™ are weak solutions corresponding the the initial datum ug ", and

ug’) converge weakly* in steak to up, then a suitable subsequence

of u™ converges to a weak solution u corresponding to the initial
condition ug. This is of interest even in the special case ug = 0.

1. Introduction

We consider the Cauchy problem for the Navier-Stokes equation in R3x]0, ool

0V +v.Av+Vp — Av=0

in R>x]0, 0o, (1.1)
divv=0
V|i—o = uo inR>. (1.2)
Our main assumption about ug, in addition to divuy = 0, is
up € L>*(R?), (1.3)

where the space L**°, sometimes also denoted by L. __,, is the Lorentz space consisting of
measurable functions f with

Wl = sup|{|f] > «}|7 < oco. (1.4)

k>0

The quantity ||f||;3 is not really a norm, but there exists a norm equivalent to it, see for
example [15] which will be denoted by ||f]|7; -
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We note that L>*(R3) is continuously imbedded into BMO~1(R3), and hence, by well-
known results of Koch and Tataru [23], the Cauchy problem (1.1), (1.2) is globally well-posed
for uy € L>*° when ||u||;3 is sufficiently small. This can also be proved in many other
ways, see for example [24].

What happens when [|ug]||;3. is allowed to be large? For large initial conditions uy there
is a significant difference between the spaces L3 and L»*°. They are both invariant under the
Navier-Stokes scaling symmetry of the initial datum

uo(x) — Aug(Ax), (1.5)

but unlike L3, the space L>* contains nontrivial (— 1)-homogeneous functions, which are of
course invariant under the scaling (1.5). There are no nontrivial scale-invariant functions is
L3, and one in fact has

}imo / |Af (Ax) Pdx— 0 uniformly in xo (1.6)
- Bx0>R

whenever f € L3 and R > 0 are fixed. The latter condition enables one to show local-in-time
well-posedness for the Cauchy problem (1.1), (1.2) for any uy € L3 (in appropriate spaces
of functions on R3x]0, T[ for suitable T = T(uy) > 0, such as Ls(R? x [0, T[) and many
others), see for example [22].

However, the Cauchy problem is conjecturally not well-posed locally-in-time in L>* for
large data, and in general it might presumably have many different solutions in R> x 0, T[ for
any small T > 0, see [21], with additional evidence in [16]. The regularity of these potential
solutions is the same as the regularity of the caloric extension of ug to t > 0. (Here and below
we use the term caloric extension of u for the solution of the heat equation with the initial
condition u.)

In addition to perturbation theory, there is a different approach through the theory of weak
solutions. Pioneered by Leray [27], this approach relies mostly on the energy inequality and
imbeddings. In the original version by Leray one needs u#y € L, but Lemarié-Rieusset [26]
made an important observation that one can establish a local version of the energy estimates
and prove the existence of the weak solutions (which we will sometimes refer to as Lemarié-
Rieusset local energy solutions) only with uy € leoc and limy, o0 foO,R lug(x)|?dx = 0

(for fixed R > 0). This approach covers ug € L>*. The main shortcoming of the theory
of the weak solutions is the possible lack of uniqueness. The best uniqueness results are the
so-called weak-strong uniqueness results, which say that, modulo technical assumptions, if
there is a sufficiently regular solution to the Cauchy problem, then any weak solution satisfying
local energy estimates has to coincide with it. (Results of this form go back to Leray [27], see
also [26] for more recent versions.) The possible examples of nonuniqueness for ug € L
mentioned above are just outside of the regularity classes required by the uniqueness results,
but they still satisfy all the requirements imposed on weak solutions.

Our goal in this paper is twofold. First, we develop a simple alternative approach to
Lemarié-Rieusset’s theory of local energy solutions in the case uy € L>*. The main
observation is that when 1y € L>® and V(x, t) is the caloric extension of ug to R3x]0, oo[,
then the Navier-Stokes solution v can be sought in the form

v(x,t) = V(x, t) + u(x,t), (1.7)
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where u is globally in the energy class in R*x]0, T[ for any finite T > 0. This motivates our
definition of weak L>*° —solutions, see Definition 1.4 below. When uy € L?> N L>*, it is not
hard to verify that our definition gives the same class as Leray-Hopf solutions satisfying the
local energy inequality (with the initial condition ug € L* N L>*).

The following result is subsumed in results [26], but our approach gives an easier proof,
through energy estimates for « in the above decomposition, see (3.31).
Proposition 1.1 (Existence of weak L>* —solutions). For each uy € L>* there exists at least
one weak L>>® —solution of the Cauchy problem (1.1), (1.2).

We expect that our method can be fairly easily adapted to unbounded domains with
boundaries, which seems to be an open problem for Lemarié-Rieusset’s local energy solutions.

Decomposition (1.7) is of course not new. Its analogues have been used in the theory of
dispersive equation, and in the context of the Navier-Stokes equations it has been used for
example in [33].

Let us mention that in [25], prior to the development of Lemarié-Rieusset local energy
solutions, Lemarié-Rieusset conceived a different notion of solution (v, q) (which we will refer
to as L, + L, solutions) to the Navier-Stokes equations, with solenoidal initial data ug in
Ly + Ly (3 < p < 00). The approach in [6, 25] is that one can split uy = u(l) + u%, such that u(l)
is solenoidal with sufficiently small L, norm and u} is solenoidal in L,. Then the paper [25]
proceeds by constructing a mild solution of the Navier-Stokes equations w € C([0, 2]; L),
with initial data u(l). Finally, the equation for v — w, with initial data ué, is solved in the global
energy class using methods related to those in Leray’s paper [27].

Our second goal, and in fact the main goal of this paper, is to study the stability of the weak
L>*—solutions under the weak convergence of the initial condition uy.

When dealing with weak or distributional solutions, we always have to keep in mind that
there might potentially be “anomalous weak solutions” which satisfy the equations in the sense
of distributions but violate the energy inequality and have other counter-intuitive features. In
the recent work [4] such solutions have been constructed for certain viscous SQG equations.
In the inviscid case such examples go back to Scheffer [29], with later developments by De
Lellis and Szekelyhidi [8], and Isett [18]. The purpose of the various technical requirements
in the definition of the weak L3 —solutions is to rule out the anomalous solutions. (The
situation is similar with the Leray-Hopf solutions.)

We recall that L>* is the dual space of L%’l, and hence it is equipped with weak™ topology.

The weak*-convergence will be denoted by STt s easy to see that f® A f in L3
is equivalent the requirement that the norms ||f*||;30c are uniformly bounded and f®
converge to f in distributions. By Banach-Alaoglu theorem, bounded sets in L*> are weakly*
pre-compact.

The strongest stability result would be that when u(()k) X ug in I>® (and are div-free)!
the corresponding solutions v(©), v satisfy v® — v (in a suitable sense). In view of the
conjectured nonuniqueness discussed above, this statement probably fails, even under the

additional assumptions that u(()k) belong to L? N L>*, are smooth, compactly supported,

The div-free condition will always be assumed in this context, and will not be explicitly mentioned each time.
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and converge to ug strongly in L?. (Of course, 1 cannot be smooth in such an example.)
Nevertheless, one has the following statement.

Theorem 1.2 (Stability under weak convergence). Let u(()k) X ug in L>* and let v% be a

sequence of a global weak L>*-solutions to the Cauchy problem for the Navier-Stokes system
with initial data u(()k) . Then there exists a subsequence, still denoted v, that converges to a
global weak L>*-solution v to the Cauchy problem for the Navier-Stokes system with initial

data uy, in the sense of distributions.

Remarks 1.3.

1. The theorem is not in contradiction with the possible nonuniqueness discussed above.
The main tool in the proof of the theorem, inequality (3.31) gives among other things a
quantitative upper bound on how fast the difference between two different solutions with
the same initial datum ug € L>* can grow. Note that V in decomposition (1.7) is given
uniquely by u, and hence the possible nonuniqueness can only be displayed by u, which
is estimated by (3.31).

2. When ||ug||;3. is sufficiently small, so that one has global existence of regular solutions
through perturbation arguments along the lines of [23], then the weak L>*—solution v
coincides with the regular solution, and the whole sequence v’ has to approach v.

3. It is not clear whether the stability remains true for Leray-Hopf weak solutions (even in
a bounded domain) if we only assume only that u(()k) are bounded in L,. In particular, the
following question seems to be open:

(Q1) Assume that u(()k) € L, are compactly supported in a fixed compact set and converge
to ug = 0 weakly in L,. Let v® be the Leray-Hopf solution with the initial value u(()k).
Can we conclude that v® converge to v = 0 in distributions?
The question is related to the open problem whether the Leray-Hopf solutions satisfy
the energy identity

t
/Iv(x,t)lzdx+2// |Vv(x,s)|2dxds=/ 1o (x)|? dx (1.8)
R3 0 JR3 R3

for every t > 0 (and not just the inequality < ). An additional discussion of related issues
can be found in [30].

A negative answer to (Q1) would mean that in certain situations the energy of u(()k) can
be transported by the evolution extremely quickly from very high (spatial) Fourier modes
into (relatively) low modes. One consequence of Theorem 1.2 is that such a fast transfer
is not possible with the additional assumptions that the sequence uf)k) is bounded in L>®
and v satisfies the local energy inequality for each k.

4. We do not know whether weak L>> —solutions can have singular points (x, t) with t > 0.
Perturbation theory and weak-strong uniqueness results imply that there exists p > 0
such that no such singularities exist when ||uo| |>£3>OO < p. Increasing p, we cannot rule out
the existence of several solutions, which are smooth for ¢t > 0 and have the same initial
data ug. Now, let pmax be the supremum of p > 0 for which all solutions starting with
||u0||i3yoo < p are smooth for all + > 0. Theorem 1.2, together with the results about
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stability of singularities proved in [28] imply the following statement: If ppay is finite, then
there exists ug € L>* with ||ug]| = pmax such that that a weak L>»> —solution v with
the initial condition ug has a singularity for ¢ > 0.

*
1300

We proceed with more formal definition and additional results.
To define our weak solution, we need to introduce additional notation:

SHuo(x) = /u@ I'(x =y, uo(y)dy,

where I' is a known heat kernel, V(x, t) := S(¢)ug(x);
Ls(R2) is a Lebesgue space in @ € R3 so that Ly(Q2) = L(R2) and abbreviations L :=
Ly(R3) and L% := L% (R?) are used;

T, [Coy (R3)]L5(R3) and; é are the completion of the space
CoO®R?) = {v e CP(R?) : divv = 0}

with respect to Ly-norm, Ls-norm and the Dirichlet integral

(/RS |Vv|2dx)%,

correspondingly. Additionally, we define the space-time domains Qr := R3x]0, T[ and
s i= R3%]0, o0].

Definition 1.4. Let T > 0 be finite. We say that v is a weak L>*-solution to Navier-Stokes
IVP in Qr if

v="V+u, (1.9)

with u € Loo(0, T5]) N Ly(0, T ] %) and there exists q € L%,loc(QT) such that v and g satisty
the perturbed Navier-Stokes system in the sense of distributions:

u+v-Vv— Au= —Vqy, divu=0 (1.10)
in Q7. Additionally, it is required that for any w € L;:

t— / w(x) - u(x, t)dx (1.11)
R3

is a continuous function on [0, T]. Moreover, u satisfies the energy inequality:

t
luC, 012, +2 f /R 19ute )Pt <
0

t
< 2/ VQu+V®YV): Vudxdt (1.12)
0 JR3

forall t € [0, T].
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Finally, it is required that v and g satisfy the local energy inequality. Namely, for a.a. t €
10, T,

t
f¢(x,t)|v(x,t)|2dx+2// o|Vv|2dxdt
R3 0 JR3

t
g/ / [|V|2(8t(l)+A¢)+V-V¢(|V|2+ZQ)]dxdt, (1.13)
0 JR3

for all non negative functions ¢ € C5°(Qr).
v is called a global weak L3°-weak solution if it is a weak solution in Q7 for any finite
T > 0.

Remark 1.5. One can see that the right-hand side in the energy inequality (1.12) is finite and
thus the function u satisfies the initial condition in the strong L,-sense, i.e., u(-,t) — 01in L;.

With regards to V, we can show that |V (-, t) — ugllr unif — Oast — 0 foranys <
3. In general, V(-,t) does not tends to ug in L3> which can be easily seen for minus one
homogeneous initial data, see [7].

As well as the main result stated in Theorem 1.2, we can prove additional facts, regarding
uniqueness and regularity of global weak L**-solutions on a finite time interval. These
statements can be viewed as additional justification for Definition 1.4. In most cases, their
proofs are based on comparison of energy and mild (perturbation theory) solutions and the
corresponding results can be interpreted as weak-strong uniqueness statements. For other
related weak-strong uniqueness statements, see for example [2, 9, 11, 12, 26].

Theorem 1.6. Let v be a global weak L>*-solution to the Cauchy problem for the Navier-Stokes
equations with the initial data ug € L>*. There is a universal constant g9 > 0 with the following

property. If

lim sup ||u0||L3,o<>(B(x0’R)) < &) (114)
R—0
for any xo € R? and
V(s 1) — uo ()l 300 m3) < €0 (1.15)

holds for all t €]0, T, then v is of class C* in Qr.
Moreover, if v is another global weak L>*-solution to the Cauchy problem for the Navier-
Stokes equations with the the same initial data uy, then v = v in Qr.

Corollary 1.7. Let v and v be two global weak L>*-solution to the Cauchy problem for the

Navier-Stokes equations with the same initial data uo. Suppose that v € C([0, T1; L>*). Then
v=vinQr.

As for regularity, we can state the following.

Theorem 1.8. Suppose that ug € L>*. There exists a universal constant ¢ > 0 such that if

1
(Viqr :== sup t5[|[V(,D)Ls <, (1.16)
O<t<T
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where V(-,t) = S(t)ug(-), then there exists a v that is a weak L>*-solution to the Cauchy
problem for the Navier-Stokes system in Qr and satisfies the property

Var < 2(V)qr. (1.17)
Moreover, the following estimate is valid
IV = ViLeo,1:L5) < (V)or (1.18)

It is easy to verify that a solution of Theorem 1.8 is infinitely smooth in Qr.

Although the main condition (1.16) holds for a wide class initial data, it does not work for
large minus one homogeneous initial data, see details in [7].

Finally, we will show that under the additional condition (1.19), see [13] and [24], any
global weak L**-solution is unique and smooth on a short time interval.

Proposition 1.9. Let uy € L>*. There exists an e3 > 0 such that if

lim sup (a\{|u0| > a}|%) < &3 (1.19)

oa—> 00

then there exists a T = T(ug) > 0 such that all global weak L3 solutions, with initial data
uy € L>*, coincide on Qr.

2. Preliminaries

Now we state a fact concerning decompositions of Lorentz spaces. The proof can be found
in [3]. This will be formulated as a Lemma. An analogous statement is Lemma ILI proven by
Calderén in [6].

Lemma 2.1. Takel <t < r < s < 00, and suppose that g € L>*>°(S2). For any N > 0, we let
gY = gxigi<n and gY =g — gN. Then

18V, <~ N gl ) — Ndg(N) 1)

ifs < oo, and

IIgNIILt(Q) — Nt r”g”LrOO(Q) (2.2)

Moreover, for @ = R?, ifg € L with1 < 1 < oo and div g = 0, then g = g~ + gV where
2V € [CRRHTE®) s < 0o with

g3, < ——anmw (2.3)
andgN € [C&%(Rﬂ]Lt(R}) with

1gV17, < 77M’MMM (24)

Remark 2.2. Looking at the proof of the second part of of Lemma 2, we can easily see that

18N l1zroe + 118N lI1ree < c(P)]Ig ]l Lree. (2.5)
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Let us recall the well known properties of L>!, for I < s < oo, such as separability and
density of smooth compactly supported functions. Also, recall that
s

(Ls,l)/ _ Ls/,oo, § = )
s—1

The identification is as follows, if f € L>*® and g € L>!:

Ty(g) = / Jfedx.
R3
The following proposition concerns weak-star approximation of L»* functions.

Proposition 2.3. Let ug € L>® be divergence free, in the sense of distributions. Then there
exists a sequence u(()k) € Coo (R3) such that

k
u(()k) — U
in L3>,

The proof is based on the estimates of solutions to the Neumann boundary problem in the

terms of the Lorentz space L3l
Now, consider the following Cauchy problem for the heat equation

oru— Au=20 (2.6)
in Qeo,
u(-,0) = up(+) € L¥® 2.7)
in R3.
Let us recall some known facts about solution operators of S(¢) for the corresponding semi-
group. Indeed, u(-,t) = V(-,£) = S(H)uo(-).
Proposition 2.4. We have
IS uollpsee < Clluoll 00 (2.8)
Moreover for3 < r < oo, m,k € N:

Clluo|l 300

197" VRS (B uollr, < o ST (2.9)
Furthermore for 1 < q < 3 the following limits exist as t — 0:
IS(Huo — uollz,,,; — 0> (2.10)
S(yug — ug (2.11)
in L3, Under the additional constraint that uy € L>® := [C(‘i%]Ls’oo Then we have that

S(Hug € L>* and

}in% IS(H)uo — uoll3.00 = 0. (2.12)
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Proof. The first two estimates are follows from convolution structure of the heat potential and
the corresponding inequalities.
Recall the definition

W Ly == sUP_If L, Bixo,1))-
x0€R3

Now, let us focus only on proving (2.10), as all other statements follow from this and (2.8).
From Lemma 2.1 we can write

ug == iy + iy, (2.13)
so that
iy € [Coo1 NL¥™®, @i e [Coylta N L

with1 < g <3 < s < oo.Itis clear that

lim [|S(£)ity — #pllz, = O,

lim IS0 — 1,

. ~1 _ ~ _

}i‘l‘(l) NG uo”Lq 0.
From here, (2.10) is obtained without difficulty. O

Proposition 2.5. Let
uék) —*\ Uuop

in L>*°. Then, for any ¢ € C3°(Qoo):

/‘00/ S(t)u(()k)(x)¢(x, Hdxdt — /00/‘ S(t)ug(x)p (x, t)dxdt. (2.14)
0 R3 0 R3

Proof. By Lemma 2.1, we have

W 01 4 1
and
- (k)1 ~ (k)1 k
sup 1z |1z, + sup 175" 1z, < C(s,q) sup [|ul” || 3.
k k k
Tt is clear that i#§"" — @y, S(NET — S(1)iig in Lyand 7" — &g, S(HELT — S(1)ifig in L.
Obviously, ug = ug + tip. From here the conclusion is easily reached. O

3. Existence of global weak L3> (R3)-solutions
3.1. Apriori estimates

Let L ;(Qr), WSI”ZO Qm), Wif (Qr) be anisotropic (or parabolic) Lebesgues and Sobolev spaces

with norms
1
I

T
lullzan = ( /0 DI de) s Nalhyioigp) = Il + 1 VallLg@n,

Iyt qp) = Nullg@n + IVulLy@n + 1V ullL @ + 18lLg@n-
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Lemma 3.1. Assume that u € Loo(0,T;]) N Ly (0, T; ] %) and let ug € L>* be divergence free.
Then

V‘VVELL;(QT), (3.1)
V-Vu—i—u-VVeL%’%(QT), (3.2)
V®u:Vue L (Qr). (3.3)

Proof. By Holder’s inequality and Proposition 2.4:
I 1 u
/ V- VVIFdx < IVI7, IVVIL,
R3 7 7

2
lluoll 5,

< e,

t7

From here, (3.1) is easily established. Again, by Holder’s inequality and Proposition 2.4:

lluoll 30 lull L, oo Qr)
SIVVILy lullz, < Tgm—
3

t20

lu-VVIL

5
1

From this it is immediate that u - VV L% 3 (Qr). Again by Hoélder’s inequality, it is not
difficult to verify

T 3 T % T p %
/ IV - Vul; dt < (/ IIWII%zdt> (/ IVIIZ dt)
0 1 0 0 3

The conclusion is easily reached by noting that Proposition 2.4 gives:

lluo 3,00

6

6
VIS, <c
3 £20

The last estimate is known and shows why there are difficulties to prove energy estimate for
u. By Hunt’s inequality (Theorem 4.5, p. 271 of [17]) and Proposition 2.4:

_/R3 V@ u: Vuldx < ||Vipseolullps2 | VullL,

2
< clluolipsee Vullg,-

We have used the fact that L% () — W21 (£2). See [1] for example. ]

The next statement is a direct consequence of Lemma 3.1 and coercive estimates of
solutions to the Stokes problem, which were developed by Solonnikov in [34]% for equal
space and time exponents and subsequently by Giga and Sohr in [14] for unequal space-time
exponents.

2Specifically, Theorem 3.1 p. 169 of [34].
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Lemma 3.2. Let v be a global weak L>*-solution with functions u and q as in Definition 1.4.
Then

3
wq) =Y (u',p) (3.4)
i=1
such that for any finite T:
(W', Vpi) € W21 (Qr) x L1, (Qr) (3.5)
and
(51, ll) = (9/8, 3/2),52 = lz = 11/7, (53, 13) = (5/4, 3/2). (3.6)

In addition (', p;) satisfy the following:

ul — Aut + Vp1=—u-Vu, 3.7)
dul — Au* +Vpy, =—-V-VV, (3.8)
' — AP +Vps =V -Vu—u-VV (3.9)
in Qoo, and
divi' =0 (3.10)
in Qoo fori=1,2,3,
u'(,0)=0 (3.11)

forallx e R®andi=1,2,3.

Let us introduce some notation. Let u, v and 1 be as in Definition 1.4. Let uy = itON + ﬁ{)\]
denote the splitting from Lemma 2.1. Let us define the following:

VNG 1) = SHud (-, 1), (3.12)
VN 1) = SO (-, t) (3.13)

and
W (x, 1) i= u(x, t) + VN (x, £). (3.14)

We are going to prove

t
1
||u(.,t)||%2 —f—/ /R3 |Vuldxdt' < t2F(||lugl|3.00)
0

by analyzing the global energy norm of w" and a careful choice of the parameter N. Related
splitting arguments have been used in [19], in the context of Lemarié-Rieusset local energy
solutions with solenoidal initial data in L3. First, let us state a relevant lemma.
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Lemma 3.3. In the above notation, we have the following global energy inequality

t
IWN 0113, +2/ /RS IV (x, )| 2dxdt’
0

t
< llig Nz, + 2f / VN owh + VN @ V) : viwdxdt (3.15)
0 JR3
that is valid for positive N and t.
Proof. The first stage is showing that w! satisfies the local energy inequality. Let us briefly

sketch how this can be done. Let ¢ € C{°(Qx) be a positive function. Observe that the
assumptions in Definition 1.4 imply that the following function

t— / wN(x, 1) - VN(x, D) (x, t)dx (3.16)
Q

is continuous for all + > 0. It is not so difficult to show that this term has the following
expression:

/ wN(x, 1) - VN (x, D) (x, £)dx
R?}
t
= / / WN - VNY(A¢ + d¢)dxdt
0o JR3
t t
—2/ / vwh V\7N¢dxdt/+/ / VN . Vqdxdt
0 JR3 0 JR3
t
+l/ / (|v]* — |WN1P)v - Vodxdt
2 0 R3
t
- / (VN @ wN + VN @ VN : VN pdxdt
0 JR3

t
—/ (VN@ VN + VN @ wh) : (W ® Ve)dxdr'. (3.17)
0 JR3
It is also readily shown that

t
f |V (x, )12 (x, t)dx = f / VNG, )P (A (x, t) + b (x, ) dxdt
R3 0 JR3

t
-2 / / IVVN2pdxdt . (3.18)
0 JR3

Using (1.13), together with (3.17) and (3.18), we obtain that for all ¢ €]0, oo[ and for all non
negative functions ¢ € Ci°(Quo):

t
/¢(x,t)|wN(x,t)|2dx+2// |V 2dxdt
R3 0 JR3

t
< / / W23 + AG) + 2qw" - Vel
0 JR3
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t
+/ IwN 2y - Vdxdt
0 JR3

t
+ 2[ (VN VN + VN @ wh) : (Vg + wh @ Vé)dxdt. (3.19)
0 JR3
In the next part of the proof, let ¢ (x,t) = ¢1(t)$pr(x). Here, ¢ € C;°(0,00) and ¢r €
C5° (B(2R)) are positive functions. Moreover, ¢g = 1 on B(R), 0 < ¢p < 1,
IVor| < ¢/R,

|V2¢r| < ¢/R%.

Since ft{)\] € [CS% (R3)]L2 (R3), it is obvious that for VN (-, 1) := S(¥) 116\] (-, t) we have the energy
equality:

t
VNG BI2, +/O /R3 IVVN Pdxdt’ = ||y |17, (3.20)
By semigroup estimates, we have for 2 < p < 00,10/3 < g < 00:
- cp) -
7Y G0l <~ 1 s (321)
12G=p)
- Cl -
SUILy ~ 33 _1,Mo Ly .
VN0l < g | (3.22)
tf(m—g) 3

Hence, we have w" e C,,([0, T1;J) N Ly(0, T;; i). Here, T is finite and C,, ([0, T];]) denotes
continuity with respect to the weak topology. Using these facts, and usual multiplicative
inequalities, it is obvious that the following limits hold:

t
lim / SrCOBL O (x, 1) 2dx + 2 / / ry [N Pebxdt
R— o0 R3 0 R3
t
=/ ¢1(t)|wN(x,t)|2dx+2// 611V Pdxdt
R3 0 JR3

t
lim / / (wWNPorp1or + 2(VN @ wN + VN @ V) : Vil by pr)dxdt’
0 JR3

R—o0

t
= / / (wWN 1201 + 2(VN @ W + VN @ VN : Vil )dxdr,
0 JR3

t
lim / /R<|WN|2¢1A¢R+¢1|WN|%-V¢R
0 3

R—o0

+20 (VN @ wN + VN @ V) : (WM ® Vr))dxdt’ = 0.

Let us focus on the term containing the pressure, namely

t
/ / g - Vrepdxdt .
0 JR3
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Define T(R) := B(2R) \ B(R). We can instead treat

t
// (q — [qlBar)W" - Vorpidxdt .
0 JTL(R)

Using the Poincaré inequality, it is not so difficult to show:

t
/ / (1 — [p1lpar)W" - Voreprdxdt ‘
0 JT®

Cllé1 Lo 0,
< —()||WN||L3(T(R)><]0 t[)”VPl”Lg 3@ (3.23)

R3

(P2 — [Pz]B(zR))WN . chR(pldxdt/‘

T(R)

< Cllp1 Lo 1WN L 1 (v <1040 1 VP21 11 (@o)» (3.24)
4 7

(p3 — [p3lsar) WY - Vop)rdxdt

T+(R)

Cllo1 Lo (0.6
—()IIWN||L3(T(R)x]0t[)IIVp3||L

5
Rs S

(Q)- (3.25)

3
2

Using (3.23)-(3.25), multiplicative inequalities and properties of the pressure decomposition
in Definition 1.4 we infer that

t
lim / / gw® - V¢R¢1dxdt, =0.
R—o0 Jg T(R)

Thus, putting everything together, we get for an arbitrary positive function ¢; € C§°(0, 00):

t
f o1 |WN (x, 1) 2dx + 2 / / o1 VWY 2dxdt
R3 0 JR3

t
< / / IWN 2o + 2V @ wN + VN @ V) - VinlNepydxdt.  (3.26)
0 JR3
From Remark 1.5, we see that
lim IWN (- t) — ) (I, = . (3.27)

Using known arguments from [3], we have the following estimates:

t
f VN @ wN : vl |dxdt’ <
0 JR3

é ¢ WN L
<CN10||uo||L3oo (// |V [ dx dt) (/O m ) , (328)
T4

t - - 7 1 2
/0 /R3 VN @ VN Vi |dxdt’ < CtooNs [|ugll 2.0 | VWV | Ly - (3.29)
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Using (3.26)-(3.29), we infer (3.15) by standard arguments involving an appropriate choices
of ¢1(t) = ¢pe(t) and letting € tend to zero. O

Lemma 3.4. Let u, v and ug be as in Definition 1.4. Then the following estimate is valid for all

N,t > 0:
t
luC, 012, + / / \Vuldxdt
0 JR3

-1 3 A %
< CIN"luollps0 + EON5 [[uoll 300)

199

11 2 11 B 19 9 2
+Cexp(CHINT [lugll 25 )N~ 2 £ [[ugl| 5 o + BN gl 20).  (3.30)

1
Hence, taking N = t~ 2 gives the following scale invariant estimate:

t
lu, 012, + / / \Vu2dxdt’
0 JR3

1 9 9 18
< Ct} exp(Clluo2s) (ol o + Dlluol o + ol 5). (331

Proof. First observe that u = w — VN_ Thus, using (3.20) we see that

t
luC, 0112, + / / \Vuldxdt
0 JR3

t
<20l 17, + 20w 0113, + 2/ A@ |VwN [2dxdt’.
0

By (2.4):
112, < CN"ugl3s - (3.32)
Thus, it is sufficient to prove (3.30) for wV in place of u. From now on, denote
N (@) = [WN DI,
Using (3.15), estimates (3.28) and (3.29), (3.32) and the Young’s inequality, we obtain that
yN @) + /Ot /l; VN Pdxdt’ < CN ||uo|IL%3,oo /Ot yN(f) dr

T4

18

—1 3 7 .2 =
+ CIN" ol 300 + EIONE (1ol 300)-

The conclusion is then easily reached using a Gronwall type lemma. O

3.2. Existence of global weak L3> (R3)-solutions

Proof of Theorem 1.2. We have

*
u(()k) — U
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in L*>*> and we may assume that

M := sup |ul” [l ;300 < oc.
k

Firstly, define
vt = S(t)uf)k)(-, 1), V(- 1) == S(Oup(-, 1).

By Proposition 2.5, we see that V% converges to V on Qs in the sense of distributions. By
Proposition 2.4, we see that

VR (1) < CM, (3.33)
CM
||8thlV(k)(',t)||L, S— 5 (3.34)
Ity
Here r €]3,00]. For T < oo and I €]1, oo[, we have the compact embedding
W (B(n) %10, T[) < C([0, T]; Li(B(n))).

From this and (3.34) one immediately infers that for every n € N and I €]1, oo[:

amviv® s 9mvly in C([1/n, nl; Li(B(n))). (3.35)
Fixing N = 1 in Lemma 3.4 we have:
t
1O D12, + / / v Pdxdt’ < fo(M, 1. (3.36)
0 JR3

By a Cantor diagonalisation argument, we can subtract a subsequence such that for any finite
T>0:

u® 2w in Lo (Qn), (3.37)

Vu®~Vu in Ly(Qr). (3.38)
Using (3.37), together with (3.31), we also get that:
lullzs iy < CODEL. (3.39)
From (3.36) it is easily inferred that
1u® - VPl o <AL, (3.40)
By the same reasoning as in Lemma 3.1, we obtain:

Iv® . vv(k)uL%(Qt) < H(M, 1), (3.41)

IVE - vu® +u® . vV O, ) <MD, (3.42)

o
(S5

Split u® = Z?Zl u'® according to Definition 1.4, namely (3.4). By coercive estimates for
the Stokes system, along with (3.40), we obtain:

93(Q) S Ch(M, 1), (3.43)

k
16" @20, g + 1P 112
2
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2(k (k)
1€ 21 gy +19P2” Iy @0 < CHOMLD, (3.44)
7

(k)

||u3(k)”W25’13 Q) + ||Vp3 “L Q) < Cf3(M, t). (345)
172

53
12

By the previously mentioned embeddings, we infer from (3.43)-(3.45) that for any n € N we
have the following convergence for a certain subsequence:

u® - 4 in C([0, nJ; Ls (B(n). (3.46)
Hence, using (3.36), it is standard to infer that for any s €]1,10/3[
u® =y in Ly(B(n)x]0,n)). (3.47)

It is also not so difficult to show that for any f € L, and for any n € N:
/11{3 u® (%, t) - f(x)dx — /R3 u(x, t).f(x)dx in C([0, n]). (3.48)
Using (3.39) with (3.48), we establish that
lim [[u(, Iz, = 0. (3.49)

All that remains to show is establishing the local energy inequality (1.13) for the limit and
establishing the energy inequality (3.3) for u. Verifying the local energy inequality is not so
difficult and hence omitted. Let us focus on verifying (3.3) for u. By identical reasoning to
Lemma 3.3, we have that for an arbitrary positive function ¢; (t) € C§°(0, 00):

t
/¢1(t)|u(x,t)|2dx+2// b1(D)|Vul*dxdt
R3 0 JR3

t
</ / [u|0:1 +2(VQ u+ V@ V) : Vugdxdt . (3.50)
0 JR3

From Lemma 3.1 and semigroup estimates, we have that
Veu+Ve®V):VueL(Qr)
for any positive finite T. Using these facts and (3.49), the conclusion is reached by choosing

appropriate ¢ = ¢; and taking a limit. O

Let us comment on Proposition 1.1. Recall that by Proposition 2.3, there exists a sequence
uf)k) € C5Q(R?) such that

*
uék) — U

in L>®, Tt was shown in [33] that for any k there exists a global L3-weak solution v Now,
Proposition 1.1 follows from Theorem 1.2.

4. Uniqueness

First we introduce the notation Q(zg, R) = B(x, R) x|t — R, t[. Here, zy = (x0, 1) € Quo.
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Proof of Theorem 1.6.
Step 1. Regularity
Our first remark is that, given ¢ > 0 and R > 0, there exists a number R.(T,R,&) > 0 such

that if B(xg, R) C R?\ B(R,) and ty — R? > 0 then
1 3 3

o7 (IWI” + 19 — [q]B(xo,R) |2 ) dxdt < &.
R J Qom0

For v it is certainly true. For g, we can use Lemma 3.3. Indeed, if ¢ = p; + p2 + p3, then, for
example, we have

1 3
2 |p1 — [P11B(xo,R) | 2 dxds
R* Joez.R)

1 T 3
< - lp1 — [P11B(xo,R) |2 dxds
R% Jo  JBxo.R)

1 (T 9 5
<— ( |Vp1|8dx> dt
Rz Jo B(x0,R))

1 [r 9 \3
<= ( |Vp1|8dx) dt — 0
R2 Jo R3\B(R.))

as Ry — oo for any fixed R > 0. Since the pair v and g satisfies the local energy inequality, by
the e-regularity theory developed in [5], we can claim that

Cc
V(Z < =
vzl = 7

as long as zp and R satisfy the conditions above.
Now, our aim is to show that v is locally bounded. To this end, we can use condition (1.14)
and state that there exists Ry (xo, &9) > 0 such that

4ol L300 (B(xg,R)) < €0
forall 0 < R < Ry(xp, &9). Then

V(s DIl L300 Bxg,R)) = Nltt0ll L300 (Bxp,R)) T €0 < 280

forall 0 < R < R(xo, &) and for all ¢t €]0, TT. .
By Hunt’s inequality (Theorem 4.5, p. 271 of [17]) for Lorentz spaces, we have

1 1
L o) a)

<c sup v, D30 Bxy,r)) = C€0
to—r2 <t<t

forall ty €]0, T], forall 0 < r < Rg(xo, &o) satistying fo — 2 > 0, and c is a positive universal
constant. Then the local boundedness follows from e-regularity conditions derived in [35]
with a suitable choice of the constant gg.

So, we can ensure that v € Lo (Qs,7) forany § > 0. Here, Q5,7 = R3x18, T[. Then, we can
easily deduce that, forany § > 0, u € sz’l(Q(g,T), Vu € Ly 5(Qs,1), and Vg € Ly(Qs,7)- By
iterative arguments, we complete the proof of the theorem.
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Step I1. Uniqueness
Regularity results proved above allow us to state that the energy identity

1 t t
—/ |u(x,t)|2dx+/ / |Vu|2dxds=/ / V ® v: Vudxds
2 Jps 0 JR? 0 JR3

holds for any ¢ > 0 and, moreover,
/ (Btu(x, 1) - w(x) 4+ (V(x, 1) - Vv(x, 1) - w(x) + Vi, 1) - Vw(x))dx —0
R3

forany w € Cg%(ﬂ@) and for all ¢ €]0, T[.
Letting # = v — V and w = & — u, we can repeat the same arguments as in [33] to obtain

1 fo
—/ |wix, to)|>dx +/ / |Vw|dxdt
2 R3 0 R3
to
5/ / (T/@T/:VW—V@V:VW)dxdt
0o JR3

to
=/ / W v+vQw) : Vwdxdt.
0o Jm3

So, finally,

to
1:=/ |w(x,to)|2dx+/ / |Vw|?dxdt
R3 0o JR3

to
< c/ / [v|?|w|?dxdt.
o JRr3

I <cly + cly + cl3,

Let us fix s €]0, T[, then

where

to
L = / / [v(x,t) — ”O(X)|2|w(x, t)|2dxdt,
0 R3
to
L = / / |v(x,s) — MO(x)|2|w(x, t))lzdxdt,
0 R3

to
13=/ / [v(x, )2 |w(x, t)|>dxdkt.
0 R3

The first two integrals are evaluated in the same way with the help of Hunt’s inequality
(Theorem 4.5, p. 271 of [17]) for Lorentz spaces:

to
dh+b)§c/ (VG 1) — o) P
0

+1vCy ) = uoOI7500) W D124
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By the assumptions of the theorem,
to
c(h +Dh) < CSO/ ||W(',t)||%6,2dt-
0

It remains to apply the Sobolev inequality L?(Q2) «— W21 (2) to conclude that

to
oIy + ) < ceo / VWG D2,
0
To estimate I3, we are going to use the fact that v(-, s) is bounded for positive s < T, i.e.,

V(s 9L = g()-
Here, it might happen that g(s) — oo if s — 0. So,

to
I ng(s)/ / [w(x, t)|*dxdt.
o JRr3

Then reducing & if necessary, we find

to to
/ |w(x, to) |2dx + / / |Vw|>dxdt < cg*(s) / / |w(x, t)|*dxdt
R3 0 R3 0 R3

for all ¢y €]0, T[, which implies that w(:, t) = 0 for the same . O

To justify Corollary 1.7, we can argue as follows. First, it can be shown that

4ol z3.00 (B(xo,R)) = O

as R — 0. Indeed, if v is a weak L>*-solution in Qr, then for a.a. t €]0, T[ we have v(-,t) €
L*>* along with the following property. Namely, for all xy € R>:

V(s Ol L300 B(xo,R)) —> O
as R — 0. Since it is assumed that v € C([0, T]; L>), the above property in fact holds for all
t e[0,T].
Now, one should split the interval [0, T] into sufficiently small pieces by points f; with
k=1,2,...,Nand ty = T so that
V(- ) — v(s k-1 300 r3) < €0
forany ¢ € [tx_1, ] and

lim [lu(,s) —u(t)ll, =0
5—)1‘;r

(k = 1,2,...,N). It is not difficult to see that for k = 1,2,...,N, v(-, tx + s) is a weak L>®
solution on Qr—y,, with initial value v(-, t). It remains to apply Theorem 1.6 successively for
k=1,2,...,N.

5. Regularity

Proof of Theorem 1.8. We use the Kato iteration scheme. Let us define the following, for k =
L2,...,

WO — v Y& _ oy KD
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where u**1 solves the following problem
D™D — AuHD Lyt — iy y® @y divu®HD =
in Qr,
WD (L 0y = 0

in R3. Tt is easy to check that for solutions to the above linear problem the following estimates
are true

Wk yo, < cw®)d,
%D 0,525 < V),

and thus we have

(V& D)o < (V)gp + cv®)d,

||V(k+1)||LOO(O,T;L3>°°) < IVllLy,m0300) + C(V(k)%T,
and
VY = Vilgoriz < e,
forallk = 1,2, .. .. Using Kato’s arguments from [22], one easily show that for ¢ < 4_1£ we shall
have
vOar <2(Vigr (5.1)
forallk =1,2,.... We get, in addition, that
||V(k)||Loo(0,T;L3»°°) < IVIliLg©,103%) + (V)aQr (5.2)
VD~ Viigomin < (Viar (53)
forall k = 1,2,.... Furthermore, Kato’s arguments in [22] also give that thereisav =V 4+ u
such that
v® —vop @® —uyq, — 0, (5.4)
VD = vl orae) 18© = ullgoriy — 0. (5.5)

Next we note that by interpolation:
1 3 1 5
t8(lgC DLy < CUIGC; ) llpace) 8 (£5(|gC, D) lILs) 8. (5.6)
Using this and (5.4) and (5.5), we immediately see that

10 — VL (Qr)» u® — ullL,@r) — 0. (5.7)

We also can exploit our equation, together with the pressure equation, to derive the
following estimate for the energy and pressure:

149 = a3 o 0 + 1Vu® = u™ 30, +14% = 4™ 130,

T
< c/ / v @ v — 0 & M2 dxdt. (5.8)
0 R3
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Using (5.7), we immediately see the following

u® = win Wy°(Qr) N C([0, T]; Ly(R?)) N Ly(Qr), (5.9)
u(-,0) =0, (5.10)
g% — qin Ly(Qr). (5.11)

Clearly, the pair v and g satisfies the Navier-Stokes equations, in a distributional sense. It is
easily verified that

S(Hug € La(Qr) N Laso (B(R)x10, T[) N Wy (B(R) x 1€, TI) (5.12)

forany0 < R,0 < ¢ < T.By(5.9)-(5.11), v has the same property. It is known that this, along
with g € L,(Qr), is sufficient to infer that the pair v and q satisfies the local energy equality.
This can be shown by a mollification argument. Showing that u satisfies the energy inequality
(on Qr) present in our definition of global weak L>* solution (in fact, in this case it is an
equality), can now be performed in a similar way to Lemma 3.3. Here, certain decay properties
of u, g from (5.9)-(5.11) are needed, as well as the fact that lim,_, o+ [[u(-, )|, 3 = 0. [

Proof of Theorem 1.9. Condition (1.19) ensures that there exists an N > 0 such that
lGa0)F s < &3.
Thus, by the convolution inequality,

< SO uo)Y >qps 1S o) Il 0,7513%) < Ces.

By Lemma 2.1, we have that

2 3
I wo)NllLs < CN Jlugll s -
Thus,
1 2 3
(V)qr < Ces + T5CN5 ||ugl 00

Taking T := T(uo) and &3 sufficiently small gives, by Theorem 1.8, the existence of weak L>>
solution on Qr such that

v — SO )N 1 0,113 <

< v = Vlip, o1 + 15O @)Yl o105 <
<V >q; +Ce3 < €. (5.13)
Next we notice that S; (£) (1) is bounded in Qr and moreover
I1S() (o)Xl 3. (B(xp,r)) < CRN. (5.14)

These facts, along with (5.13), are enough to conclude using minor adaptations to the proof
of Theorem 1.6. O
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Remark 5.1. Furthermore, there is the lower bound for T:

min(e®, 88)

> (5.15)
CN2[|ug 135

Here, Cis a universal constant. Moreover, € and &g are from Theorems 1.6 and 1.8 respectively.
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