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ABSTRACT

We consider the Cauchy problem for the Navier–Stokes equation in
R

3×]0, ∞[ with the initial datum u0 ∈ L
3
weak , a critical space containing

nontrivial (−1)−homogeneous fields. For small ||u0||
L

3
weak

one can get

global well-posedness by perturbation theory. When ||u0||
L

3
weak

is not

small, the perturbation theory no longer applies and, very likely, the
local-in-time well-posedness and uniqueness fails. One can still develop
a good theory of weak solutions with the following stability property: If
u
(n) are weak solutions corresponding the the initial datum u

(n)
0 , and

u
(n)
0 converge weakly∗ in L

3
weak to u0, then a suitable subsequence

of u
(n) converges to a weak solution u corresponding to the initial

condition u0. This is of interest even in the special case u0 ≡ 0.
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1. Introduction

We consider the Cauchy problem for the Navier–Stokes equation in R
3×]0,∞[,

∂tv + v.1v + ∇p − 1v= 0

div v= 0

}

in R
3×]0,∞[ , (1.1)

v|t=0 = u0 in R
3 . (1.2)

Our main assumption about u0, in addition to div u0 = 0, is

u0 ∈ L3,∞(R3) , (1.3)

where the space L3,∞, sometimes also denoted by L3weak, is the Lorentz space consisting of
measurable functions f with

||f ||L3,∞ = sup
κ>0

κ|{|f | > κ}|
1
3 < ∞ . (1.4)

The quantity ||f ||L3,∞ is not really a norm, but there exists a norm equivalent to it, see for
example [15] which will be denoted by ||f ||∗

L3,∞
.
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We note that L3,∞(R3) is continuously imbedded into BMO−1(R3), and hence, by well-
known results of Koch and Tataru [23], the Cauchy problem (1.1), (1.2) is globally well-posed
for u0 ∈ L3,∞ when ||u||L3,∞ is sufficiently small. This can also be proved in many other
ways, see for example [24].

What happens when ||u0||L3,∞ is allowed to be large? For large initial conditions u0 there
is a significant difference between the spaces L3 and L3,∞. They are both invariant under the
Navier–Stokes scaling symmetry of the initial datum

u0(x) → λu0(λx) , (1.5)

but unlike L3, the space L3,∞ contains nontrivial (−1)–homogeneous functions, which are of
course invariant under the scaling (1.5). There are no nontrivial scale-invariant functions is
L3, and one in fact has

lim
λ→0

∫

Bx0,R

|λf (λx)|3 dx → 0 uniformly in x0 (1.6)

whenever f ∈ L3 and R > 0 are fixed. The latter condition enables one to show local-in-time
well-posedness for the Cauchy problem (1.1), (1.2) for any u0 ∈ L3 (in appropriate spaces
of functions on R

3×]0,T[ for suitable T = T(u0) > 0, such as L5(R3 × [0,T[) and many
others), see for example [22].

However, the Cauchy problem is conjecturally not well-posed locally-in-time in L3,∞ for
large data, and in general it might presumably have many different solutions inR3×]0,T[ for
any small T > 0, see [21], with additional evidence in [16]. The regularity of these potential
solutions is the same as the regularity of the caloric extension of u0 to t > 0. (Here and below
we use the term caloric extension of u0 for the solution of the heat equation with the initial
condition u0.)

In addition to perturbation theory, there is a different approach through the theory of weak
solutions. Pioneered by Leray [27], this approach relies mostly on the energy inequality and
imbeddings. In the original version by Leray one needs u0 ∈ L2, but Lemarié-Rieusset [26]
made an important observation that one can establish a local version of the energy estimates
and prove the existence of the weak solutions (which we will sometimes refer to as Lemarié-
Rieusset local energy solutions) only with u0 ∈ L2loc and limx0→∞

∫

Bx0,R
|u0(x)|2 dx = 0

(for fixed R > 0). This approach covers u0 ∈ L3,∞. The main shortcoming of the theory
of the weak solutions is the possible lack of uniqueness. The best uniqueness results are the
so-called weak-strong uniqueness results, which say that, modulo technical assumptions, if
there is a sufficiently regular solution to theCauchy problem, then anyweak solution satisfying
local energy estimates has to coincide with it. (Results of this form go back to Leray [27], see
also [26] for more recent versions.) The possible examples of nonuniqueness for u0 ∈ L3,∞

mentioned above are just outside of the regularity classes required by the uniqueness results,
but they still satisfy all the requirements imposed on weak solutions.

Our goal in this paper is twofold. First, we develop a simple alternative approach to
Lemarié-Rieusset’s theory of local energy solutions in the case u0 ∈ L3,∞. The main
observation is that when u0 ∈ L3,∞ and V(x, t) is the caloric extension of u0 to R

3×]0,∞[,
then the Navier–Stokes solution v can be sought in the form

v(x, t) = V(x, t) + u(x, t) , (1.7)
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where u is globally in the energy class in R
3×]0,T[ for any finite T > 0. This motivates our

definition of weak L3,∞−solutions, see Definition 1.4 below. When u0 ∈ L2 ∩ L3,∞, it is not
hard to verify that our definition gives the same class as Leray-Hopf solutions satisfying the
local energy inequality (with the initial condition u0 ∈ L2 ∩ L3,∞).

The following result is subsumed in results [26], but our approach gives an easier proof,
through energy estimates for u in the above decomposition, see (3.31).

Proposition 1.1 (Existence of weak L3,∞−solutions). For each u0 ∈ L3,∞ there exists at least
one weak L3,∞−solution of the Cauchy problem (1.1), (1.2).

We expect that our method can be fairly easily adapted to unbounded domains with
boundaries, which seems to be an open problem for Lemarié-Rieusset’s local energy solutions.

Decomposition (1.7) is of course not new. Its analogues have been used in the theory of
dispersive equation, and in the context of the Navier–Stokes equations it has been used for
example in [33].

Let us mention that in [25], prior to the development of Lemarié-Rieusset local energy
solutions, Lemarié-Rieusset conceived a different notion of solution (v, q) (whichwewill refer
to as L2 + Lp solutions) to the Navier–Stokes equations, with solenoidal initial data u0 in
L2 +Lp (3 < p < ∞). The approach in [6, 25] is that one can split u0 = u10 +u20, such that u

1
0

is solenoidal with sufficiently small Lp norm and u20 is solenoidal in L2. Then the paper [25]
proceeds by constructing a mild solution of the Navier–Stokes equations w ∈ C([0, 2]; Lp),
with initial data u10. Finally, the equation for v−w, with initial data u20, is solved in the global
energy class using methods related to those in Leray’s paper [27].

Our second goal, and in fact the main goal of this paper, is to study the stability of the weak
L3,∞−solutions under the weak convergence of the initial condition u0.

When dealing with weak or distributional solutions, we always have to keep in mind that
theremight potentially be “anomalousweak solutions”which satisfy the equations in the sense
of distributions but violate the energy inequality and have other counter-intuitive features. In
the recent work [4] such solutions have been constructed for certain viscous SQG equations.
In the inviscid case such examples go back to Scheffer [29], with later developments by De
Lellis and Szekelyhidi [8], and Isett [18]. The purpose of the various technical requirements
in the definition of the weak L3,∞−solutions is to rule out the anomalous solutions. (The
situation is similar with the Leray-Hopf solutions.)

We recall that L3,∞ is the dual space of L
3
2 ,1, and hence it is equipped with weak∗ topology.

The weak∗-convergence will be denoted by
∗
⇀. It is easy to see that f (k)

∗
⇀ f in L3,∞

is equivalent the requirement that the norms ||f (k)||L3,∞ are uniformly bounded and f (k)

converge to f in distributions. By Banach-Alaoglu theorem, bounded sets in L3,∞ are weakly∗

pre-compact.

The strongest stability result would be that when u(k)
0

∗
⇀ u0 in L3,∞ (and are div-free)1

the corresponding solutions v(k), v satisfy v(k) → v (in a suitable sense). In view of the
conjectured nonuniqueness discussed above, this statement probably fails, even under the

additional assumptions that u(k)
0 belong to L2 ∩ L3,∞, are smooth, compactly supported,

1The div-free condition will always be assumed in this context, and will not be explicitly mentioned each time.
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and converge to u0 strongly in L2. (Of course, u0 cannot be smooth in such an example.)
Nevertheless, one has the following statement.

Theorem 1.2 (Stability under weak convergence). Let u(k)
0

∗
⇀ u0 in L3,∞ and let v(k) be a

sequence of a global weak L3,∞-solutions to the Cauchy problem for the Navier–Stokes system

with initial data u(k)
0 . Then there exists a subsequence, still denoted v(k), that converges to a

global weak L3,∞-solution v to the Cauchy problem for the Navier–Stokes system with initial
data u0, in the sense of distributions.

Remarks 1.3.

1. The theorem is not in contradiction with the possible nonuniqueness discussed above.
The main tool in the proof of the theorem, inequality (3.31) gives among other things a
quantitative upper bound on how fast the difference between two different solutions with
the same initial datum u0 ∈ L3,∞ can grow. Note that V in decomposition (1.7) is given
uniquely by u0, and hence the possible nonuniqueness can only be displayed by u, which
is estimated by (3.31).

2. When ||u0||L3,∞ is sufficiently small, so that one has global existence of regular solutions
through perturbation arguments along the lines of [23], then the weak L3,∞−solution v
coincides with the regular solution, and the whole sequence v(k) has to approach v.

3. It is not clear whether the stability remains true for Leray-Hopf weak solutions (even in

a bounded domain) if we only assume only that u(k)
0 are bounded in L2. In particular, the

following question seems to be open:

(Q1) Assume that u(k)
0 ∈ L2 are compactly supported in a fixed compact set and converge

to u0 ≡ 0 weakly in L2. Let v(k) be the Leray-Hopf solution with the initial value u(k)
0 .

Can we conclude that v(k) converge to v ≡ 0 in distributions?
The question is related to the open problem whether the Leray-Hopf solutions satisfy

the energy identity
∫

R3
|v(x, t)|2 dx + 2

∫ t

0

∫

R3
|∇v(x, s)|2 dx ds =

∫

R3
|u0(x)|

2 dx (1.8)

for every t > 0 (and not just the inequality ≤ ). An additional discussion of related issues
can be found in [30].

A negative answer to (Q1) would mean that in certain situations the energy of u(k)
0 can

be transported by the evolution extremely quickly from very high (spatial) Fourier modes
into (relatively) low modes. One consequence of Theorem 1.2 is that such a fast transfer

is not possible with the additional assumptions that the sequence u(k)
0 is bounded in L3,∞

and vk satisfies the local energy inequality for each k.
4. We do not know whether weak L3,∞−solutions can have singular points (x, t) with t > 0.

Perturbation theory and weak-strong uniqueness results imply that there exists ρ > 0
such that no such singularities exist when ||u0||∗L3,∞ < ρ. Increasing ρ, we cannot rule out
the existence of several solutions, which are smooth for t > 0 and have the same initial
data u0. Now, let ρmax be the supremum of ρ > 0 for which all solutions starting with
||u0||∗L3,∞ < ρ are smooth for all t > 0. Theorem 1.2, together with the results about
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stability of singularities proved in [28] imply the following statement: If ρmax is finite, then
there exists u0 ∈ L3,∞ with ||u0||∗L3,∞ = ρmax such that that a weak L3,∞−solution v with
the initial condition u0 has a singularity for t > 0.

We proceed with more formal definition and additional results.
To define our weak solution, we need to introduce additional notation:

S(t)u0(x) =

∫

R3
Ŵ(x − y, t)u0(y)dy,

where Ŵ is a known heat kernel, V(x, t) := S(t)u0(x);
Ls(�) is a Lebesgue space in � ⊆ R

3 so that Ls(�) = Ls,s(�) and abbreviations Ls :=
Ls(R3) and Ls,l := Ls,l(R3) are used;

J, [C0,0(R
3)]Ls(R

3) and
◦

J 1
2 are the completion of the space

C∞
0,0(R

3) := {v ∈ C∞
0 (R3) : div v = 0}

with respect to L2-norm, Ls-norm and the Dirichlet integral

(

∫

R3
|∇v|2dx

)
1
2
,

correspondingly. Additionally, we define the space-time domains QT := R
3×]0,T[ and

Q∞ := R
3×]0,∞[.

Definition 1.4. Let T > 0 be finite. We say that v is a weak L3,∞-solution to Navier–Stokes
IVP in QT if

v = V + u, (1.9)

with u ∈ L∞(0,T; J) ∩ L2(0,T;
◦

J 1
2) and there exists q ∈ L 3

2 ,loc
(QT) such that u and q satisfy

the perturbed Navier–Stokes system in the sense of distributions:

∂tu + v · ∇v − 1u = −∇q, div u = 0 (1.10)

in QT . Additionally, it is required that for any w ∈ L2:

t →

∫

R3
w(x) · u(x, t)dx (1.11)

is a continuous function on [0,T]. Moreover, u satisfies the energy inequality:

‖u(·, t)‖2L2 + 2

∫ t

0

∫

R3
|∇u(x, t′)|2dxdt′ 6

6 2

∫ t

0

∫

R3
(V ⊗ u + V ⊗ V) : ∇udxdt′ (1.12)

for all t ∈ [0,T].

632 T. BARKER ET AL.



Finally, it is required that v and q satisfy the local energy inequality. Namely, for a.a. t ∈

]0,T[,
∫

R3
φ(x, t)|v(x, t)|2dx + 2

∫ t

0

∫

R3
φ|∇v|2dxdt

′

6

∫ t

0

∫

R3
[|v|2(∂tφ + 1φ) + v · ∇φ(|v|2 + 2q)]dxdt

′

(1.13)

for all non negative functions φ ∈ C∞
0 (QT).

v is called a global weak L3,∞-weak solution if it is a weak solution in QT for any finite
T > 0.

Remark 1.5. One can see that the right-hand side in the energy inequality (1.12) is finite and
thus the function u satisfies the initial condition in the strong L2-sense, i.e., u(·, t) → 0 in L2.

With regards to V , we can show that ‖V(·, t) − u0‖Ls,unif → 0 as t → 0 for any s <

3. In general, V(·, t) does not tends to u0 in L3,∞ which can be easily seen for minus one
homogeneous initial data, see [7].

As well as the main result stated in Theorem 1.2, we can prove additional facts, regarding
uniqueness and regularity of global weak L3,∞-solutions on a finite time interval. These
statements can be viewed as additional justification for Definition 1.4. In most cases, their
proofs are based on comparison of energy and mild (perturbation theory) solutions and the
corresponding results can be interpreted as weak-strong uniqueness statements. For other
related weak-strong uniqueness statements, see for example [2, 9, 11, 12, 26].

Theorem1.6. Let v be a global weak L3,∞-solution to the Cauchy problem for the Navier–Stokes
equations with the initial data u0 ∈ L3,∞. There is a universal constant ε0 > 0with the following
property. If

lim sup
R→0

‖u0‖L3,∞(B(x0,R)) < ε0 (1.14)

for any x0 ∈ R
3 and

‖v(·, t) − u0(·)‖L3,∞(R3) < ε0 (1.15)

holds for all t ∈]0,T[, then v is of class C∞ in QT .
Moreover, if ṽ is another global weak L3,∞-solution to the Cauchy problem for the Navier–

Stokes equations with the the same initial data u0, then ṽ = v in QT .

Corollary 1.7. Let v and ṽ be two global weak L3,∞-solution to the Cauchy problem for the
Navier–Stokes equations with the same initial data u0. Suppose that v ∈ C([0,T]; L3,∞). Then
ṽ = v in QT .

As for regularity, we can state the following.

Theorem 1.8. Suppose that u0 ∈ L3,∞. There exists a universal constant ε > 0 such that if

〈V〉QT := sup
0<t<T

t
1
5 ‖V(·, t)‖L5 ≤ ε, (1.16)
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where V(·, t) = S(t)u0(·), then there exists a v that is a weak L3,∞-solution to the Cauchy
problem for the Navier–Stokes system in QT and satisfies the property

〈v〉QT < 2〈V〉QT . (1.17)

Moreover, the following estimate is valid

‖v − V‖L∞(0,T;L3) < 〈V〉QT (1.18)

It is easy to verify that a solution of Theorem 1.8 is infinitely smooth in QT .
Although the main condition (1.16) holds for a wide class initial data, it does not work for

large minus one homogeneous initial data, see details in [7].
Finally, we will show that under the additional condition (1.19), see [13] and [24], any

global weak L3,∞-solution is unique and smooth on a short time interval.

Proposition 1.9. Let u0 ∈ L3,∞. There exists an ε3 > 0 such that if

lim sup
α→∞

(

α
∣

∣{|u0| > α}
∣

∣

1
3

)

< ε3 (1.19)

then there exists a T = T(u0) > 0 such that all global weak L3,∞ solutions, with initial data
u0 ∈ L3,∞, coincide on QT .

2. Preliminaries

Now we state a fact concerning decompositions of Lorentz spaces. The proof can be found
in [3]. This will be formulated as a Lemma. An analogous statement is Lemma II.I proven by
Calderón in [6].

Lemma 2.1. Take 1 < t < r < s 6 ∞, and suppose that g ∈ Lr,∞(�). For any N > 0, we let
gN− := gχ|g|6N and gN+ := g − gN− . Then

‖gN−‖sLs(�) 6
s

s − r
Ns−r‖g‖rLr,∞(�) − Nsdg(N) (2.1)

if s < ∞, and

‖gN+‖tLt(�) 6
r

r − t
Nt−r‖g‖rLr,∞(�). (2.2)

Moreover, for � = R
3, if g ∈ Lr,l with 1 6 l 6 ∞ and div g = 0, then g = ḡN + g̃N where

ḡN ∈ [C∞
0,0(R

3)]Ls(R
3) s < ∞ with

‖ḡN‖sLs 6
Cs

s − r
Ns−r‖g‖rLr,∞ (2.3)

and g̃N ∈ [C∞
0,0(R

3)]Lt(R
3) with

‖g̃N‖tLt 6
Cr

r − t
Nt−r‖g‖rLr,∞ . (2.4)

Remark 2.2. Looking at the proof of the second part of of Lemma 2, we can easily see that

‖ḡN‖Lr,∞ + ‖g̃N‖Lr,∞ ≤ c(r)‖g‖Lr,∞ . (2.5)
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Let us recall the well known properties of Ls,1, for 1 < s < ∞, such as separability and
density of smooth compactly supported functions. Also, recall that

(Ls,1)′ = Ls
′,∞, s′ =

s

s − 1
.

The identification is as follows, if f ∈ Ls
′,∞ and g ∈ Ls,1:

Tf (g) =

∫

R3
fgdx.

The following proposition concerns weak-star approximation of L3,∞ functions.

Proposition 2.3. Let u0 ∈ L3,∞ be divergence free, in the sense of distributions. Then there

exists a sequence u(k)
0 ∈ C∞

0,0(R
3) such that

u(k)
0

∗
⇀ u0

in L3,∞.

The proof is based on the estimates of solutions to the Neumann boundary problem in the

terms of the Lorentz space L
3
2 ,1.

Now, consider the following Cauchy problem for the heat equation

∂tu − 1u = 0 (2.6)

in Q∞,

u(·, 0) = u0(·) ∈ L3,∞ (2.7)

in R
3.

Let us recall some known facts about solution operators of S(t) for the corresponding semi-
group. Indeed, u(·, t) = V(·, t) = S(t)u0(·).

Proposition 2.4. We have

‖S(t)u0‖L3,∞ 6 C‖u0‖L3,∞ . (2.8)

Moreover for 3 < r < ∞, m, k ∈ N:

‖∂mt ∇kS(t)u0‖Lr 6
C‖u0‖L3,∞

tm+ k
2+ 3

2 ( 13− 1
r )
. (2.9)

Furthermore for 1 6 q < 3 the following limits exist as t → 0:

‖S(t)u0 − u0‖Lq,unif → 0, (2.10)

S(t)u0
∗
⇀ u0 (2.11)

in L3,∞. Under the additional constraint that u0 ∈ L
3,∞ := [C∞

0,0]
L3,∞ Then we have that

S(t)u0 ∈ L
3,∞ and

lim
t→0

‖S(t)u0 − u0‖L3,∞ = 0. (2.12)
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Proof. The first two estimates are follows from convolution structure of the heat potential and
the corresponding inequalities.

Recall the definition

‖f ‖Lp,unif := sup
x0∈R3

‖f ‖Lp(B(x0,1)).

Now, let us focus only on proving (2.10), as all other statements follow from this and (2.8).
From Lemma 2.1 we can write

u0 := ū10 + ũ10, (2.13)

so that

ū10 ∈ [C∞
0,0]

Ls ∩ L3,∞, ũ10 ∈ [C∞
0,0]

Lq ∩ L3,∞

with 1 < q < 3 < s < ∞. It is clear that

lim
t→0

‖S(t)ū10 − ū10‖Ls = 0,

lim
t→0

‖S(t)ũ10 − ũ10‖Lq = 0.

From here, (2.10) is obtained without difficulty.

Proposition 2.5. Let

u(k)
0

∗
⇀ u0

in L3,∞. Then, for any φ ∈ C∞
0 (Q∞):

∫ ∞

0

∫

R3
S(t)u(k)

0 (x)φ(x, t)dxdt →

∫ ∞

0

∫

R3
S(t)u0(x)φ(x, t)dxdt. (2.14)

Proof. By Lemma 2.1, we have

u(k)
0 := ū(k)1

0 + ũ(k)1
0

and

sup
k

‖ū(k)1
0 ‖Ls + sup

k
‖ũ(k)1

0 ‖Lq 6 C(s, q) sup
k

‖u(k)
0 ‖L3,∞ .

It is clear that ū(k)1
0 ⇀ ū0, S(t)ū

(k)1
0 ⇀ S(t)ū0 in Ls and ũ

(k)1
0 ⇀ ũ0, S(t)ũ

(k)1
0 ⇀ S(t)ũ0 in Lq.

Obviously, u0 = ū0 + ũ0. From here the conclusion is easily reached.

3. Existence of global weak L3,∞(R3)-solutions

3.1. Apriori estimates

Let Ls,l(QT),W1,0
s,l (QT),W2,1

s,l (QT) be anisotropic (or parabolic) Lebesgues and Sobolev spaces
with norms

‖u‖Ls,l(QT) =
(

∫ T

0
‖u(·, t)‖lLsdt

)
1
l
, ‖u‖W1,0

s,l (QT)
= ‖u‖Ls,l(QT) + ‖∇u‖Ls,l(QT),

‖u‖W2,1
s,l (QT)

= ‖u‖Ls,l(QT) + ‖∇u‖Ls,l(QT) + ‖∇2u‖Ls,l(QT) + ‖∂tu‖Ls,l(QT).
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Lemma 3.1. Assume that u ∈ L∞(0,T; J) ∩ L2(0,T;
◦

J 1
2) and let u0 ∈ L3,∞ be divergence free.

Then

V · ∇V ∈ L 11
7
(QT), (3.1)

V · ∇u + u · ∇V ∈ L 5
4 ,

3
2
(QT), (3.2)

V ⊗ u : ∇u ∈ L1(QT). (3.3)

Proof. By Hölder’s inequality and Proposition 2.4:
∫

R3
|V · ∇V|

11
7 dx 6 ‖V‖

11
7
L 22

7

‖∇V‖
11
7
L 22

7

6 c
‖u0‖

22
7
L3,∞

t
6
7

.

From here, (3.1) is easily established. Again, by Hölder’s inequality and Proposition 2.4:

‖u · ∇V‖L 5
4
6 ‖∇V‖L 10

3
‖u‖L2 6 c

‖u0‖L3,∞‖u‖L2,∞(QT)

t
11
20

.

From this it is immediate that u · ∇V ∈ L 5
4 ,

3
2
(QT). Again by Hölder’s inequality, it is not

difficult to verify

∫ T

0
‖V · ∇u‖

3
2
L 5
4

dt 6

(∫ T

0
‖∇u‖2L2dt

)

3
4
(∫ T

0
‖V‖6L 10

3

dt

)

1
4

.

The conclusion is easily reached by noting that Proposition 2.4 gives:

‖V‖6L 10
3

6 c
‖u0‖L3,∞

t
6
20

.

The last estimate is known and shows why there are difficulties to prove energy estimate for
u. By Hunt’s inequality (Theorem 4.5, p. 271 of [17]) and Proposition 2.4:

∫

R3
|V ⊗ u : ∇u|dx 6 ‖V‖L3,∞‖u‖L6,2‖∇u‖L2

6 c‖u0‖L3,∞‖∇u‖2L2 .

We have used the fact that L6,2(�) →֒ W1
2(�). See [1] for example.

The next statement is a direct consequence of Lemma 3.1 and coercive estimates of
solutions to the Stokes problem, which were developed by Solonnikov in [34]2 for equal
space and time exponents and subsequently by Giga and Sohr in [14] for unequal space-time
exponents.

2Specifically, Theorem 3.I p. 169 of [34].
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Lemma 3.2. Let v be a global weak L3,∞-solution with functions u and q as in Definition 1.4.
Then

(u, q) =

3
∑

i=1

(ui, pi) (3.4)

such that for any finite T:

(ui,∇pi) ∈ W2,1
si,li

(QT) × Lsi,li(QT) (3.5)

and

(s1, l1) = (9/8, 3/2), s2 = l2 = 11/7, (s3, l3) = (5/4, 3/2). (3.6)

In addition (ui, pi) satisfy the following:

∂tu
1 − 1u1 + ∇p1 = −u · ∇u, (3.7)

∂tu
2 − 1u2 + ∇p2 = −V · ∇V , (3.8)

∂tu
3 − 1u3 + ∇p3 = −V · ∇u − u · ∇V (3.9)

in Q∞, and

div ui = 0 (3.10)

in Q∞ for i = 1, 2, 3,

ui(·, 0) = 0 (3.11)

for all x ∈ R
3 and i = 1, 2, 3.

Let us introduce some notation. Let u, v and u0 be as in Definition 1.4. Let u0 = ūN0 + ũN0
denote the splitting from Lemma 2.1. Let us define the following:

V̄N(·, t) := S(t)ūN0 (·, t), (3.12)

ṼN(·, t) := S(t)ũN0 (·, t) (3.13)

and

wN(x, t) := u(x, t) + ṼN(x, t). (3.14)

We are going to prove

‖u(·, t)‖2L2 +

∫ t

0

∫

R3
|∇u|dxdt′ ≤ t

1
2 F(‖u0‖L3,∞)

by analyzing the global energy norm of wN and a careful choice of the parameter N. Related
splitting arguments have been used in [19], in the context of Lemarié-Rieusset local energy
solutions with solenoidal initial data in L3. First, let us state a relevant lemma.
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Lemma 3.3. In the above notation, we have the following global energy inequality

‖wN(·, t)‖2L2 + 2

∫ t

0

∫

R3
|∇wN(x, t′)|2dxdt′

6 ‖ũN0 ‖2L2 + 2

∫ t

0

∫

R3
(V̄N ⊗ wN + V̄N ⊗ V̄N) : ∇wNdxdt′ (3.15)

that is valid for positive N and t.

Proof. The first stage is showing that wN satisfies the local energy inequality. Let us briefly
sketch how this can be done. Let φ ∈ C∞

0 (Q∞) be a positive function. Observe that the
assumptions in Definition 1.4 imply that the following function

t →

∫

�

wN(x, t) · V̄N(x, t)φ(x, t)dx (3.16)

is continuous for all t > 0. It is not so difficult to show that this term has the following
expression:

∫

R3
wN(x, t) · V̄N(x, t)φ(x, t)dx

=

∫ t

0

∫

R3
(wN · V̄N)(1φ + ∂tφ)dxdt′

− 2

∫ t

0

∫

R3
∇wN : ∇V̄Nφdxdt′ +

∫ t

0

∫

R3
V̄N · ∇φqdxdt′

+
1

2

∫ t

0

∫

R3
(|v|2 − |wN |2)v · ∇φdxdt′

−

∫ t

0

∫

R3
(V̄N ⊗ wN + V̄N ⊗ V̄N) : ∇wNφdxdt′

−

∫ t

0

∫

R3
(V̄N ⊗ V̄N + V̄N ⊗ wN) : (wN ⊗ ∇φ)dxdt′. (3.17)

It is also readily shown that
∫

R3
|V̄N(x, t)|2φ(x, t)dx =

∫ t

0

∫

R3
|V̄N(x, t′)|2(1φ(x, t′) + ∂tφ(x, t′))dxdt′

−2

∫ t

0

∫

R3
|∇V̄N |2φdxdt′. (3.18)

Using (1.13), together with (3.17) and (3.18), we obtain that for all t ∈]0,∞[ and for all non
negative functions φ ∈ C∞

0 (Q∞):
∫

R3
φ(x, t)|wN(x, t)|2dx + 2

∫ t

0

∫

R3
φ|∇wN |2dxdt

′

6

∫ t

0

∫

R3
|wN |2(∂tφ + 1φ) + 2qwN · ∇φdxdt

′
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+

∫ t

0

∫

R3
|wN |2v · ∇φdxdt′

+ 2

∫ t

0

∫

R3
(V̄N ⊗ V̄N + V̄N ⊗ wN) : (∇wNφ + wN ⊗ ∇φ)dxdt′. (3.19)

In the next part of the proof, let φ(x, t) = φ1(t)φR(x). Here, φ1 ∈ C∞
0 (0,∞) and φR ∈

C∞
0 (B(2R)) are positive functions. Moreover, φR = 1 on B(R), 0 6 φR 6 1,

|∇φR| 6 c/R,

|∇2φR| 6 c/R2.

Since ũN0 ∈ [C∞
0,0(R

3)]L2(R
3), it is obvious that for ṼN(·, t) := S(t)ũN0 (·, t) we have the energy

equality:

‖ṼN(·, t)‖2L2 +

∫ t

0

∫

R3
|∇ṼN |2dxdt′ = ‖ũN0 ‖2L2 . (3.20)

By semigroup estimates, we have for 2 6 p 6 ∞, 10/3 6 q 6 ∞:

‖ṼN(·, t)‖Lp 6
C(p)

t
3
2 ( 12− 1

p )
‖ũN0 ‖L2 , (3.21)

‖V̄N(·, t)‖Lq 6
C(q)

t
3
2 ( 3

10− 1
q )

‖ūN0 ‖L 10
3
. (3.22)

Hence, we have wN ∈ Cw([0,T]; J) ∩ L2(0,T;
◦

J 1
2). Here, T is finite and Cw([0,T]; J) denotes

continuity with respect to the weak topology. Using these facts, and usual multiplicative
inequalities, it is obvious that the following limits hold:

lim
R→∞

∫

R3
φR(x)φ1(t)|w

N(x, t)|2dx + 2

∫ t

0

∫

R3
φRφ1|∇wN |2dxdt

′

=

∫

R3
φ1(t)|w

N(x, t)|2dx + 2

∫ t

0

∫

R3
φ1|∇wN |2dxdt

′

,

lim
R→∞

∫ t

0

∫

R3
(|wN |2∂tφ1φR + 2(V̄N ⊗ wN + V̄N ⊗ V̄N) : ∇wNφ1φR)dxdt

′

=

∫ t

0

∫

R3
(|wN |2∂tφ1 + 2(V̄N ⊗ wN + V̄N ⊗ V̄N) : ∇wNφ1)dxdt

′,

lim
R→∞

∫ t

0

∫

R3
(|wN |2φ11φR + φ1|w

N |2v · ∇φR

+ 2φ1(V̄
N ⊗ wN + V̄N ⊗ V̄N) : (wN ⊗ ∇φR))dxdt

′ = 0.

Let us focus on the term containing the pressure, namely
∫ t

0

∫

R3
qwN · ∇φRφ1dxdt

′

.
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Define T(R) := B(2R) \ B(R). We can instead treat
∫ t

0

∫

T+(R)

(q − [q]B(2R))w
N · ∇φRφ1dxdt

′

.

Using the Poincaré inequality, it is not so difficult to show:
∣

∣

∣

∣

∫ t

0

∫

T(R)

(p1 − [p1]B(2R))w
N · ∇φRφ1dxdt

′

∣

∣

∣

∣

6
C‖φ1‖L∞(0,t)

R
2
3

‖wN‖L3(T(R)×]0,t[)‖∇p1‖L 9
8 ,

3
2
(Qt), (3.23)

∣

∣

∣

∣

∫ t

0

∫

T(R)

(p2 − [p2]B(2R))w
N · ∇φRφ1dxdt

′

∣

∣

∣

∣

6 C‖φ1‖L∞(0,t)‖w
N‖L 11

4
(T(R)×]0,t[)‖∇p2‖L 11

7
(Qt), (3.24)

∣

∣

∣

∣

∫ t

0

∫

T+(R)

(p3 − [p3]B(2R))(w
N · ∇φR)φ1dxdt

′

∣

∣

∣

∣

6
C‖φ1‖L∞(0,t)

R
2
5

‖wN‖L3(T(R)×]0,t[)‖∇p3‖L 5
4 ,

3
2
(Qt). (3.25)

Using (3.23)–(3.25), multiplicative inequalities and properties of the pressure decomposition
in Definition 1.4 we infer that

lim
R→∞

∫ t

0

∫

T(R)

qwN · ∇φRφ1dxdt
′

= 0.

Thus, putting everything together, we get for an arbitrary positive function φ1 ∈ C∞
0 (0,∞):

∫

R3
φ1(t)|w

N(x, t)|2dx + 2

∫ t

0

∫

R3
φ1(t)|∇wN |2dxdt

′

6

∫ t

0

∫

R3
|wN |2∂tφ1 + 2(V̄N ⊗ wN + V̄N ⊗ V̄N) : ∇wNφ1dxdt

′. (3.26)

From Remark 1.5, we see that

lim
t→0

‖wN(·, t) − ũN0 (·)‖L2 = 0. (3.27)

Using known arguments from [3], we have the following estimates:
∫ t

0

∫

R3
|V̄N ⊗ wN : ∇wN |dxdt′ 6

6 CN
1
10 ‖u0‖

9
10
L3,∞

(∫ t

0

∫

R3
|∇wN |2dxdt′

)
4
5
(

∫ t

0

‖wN(·, τ)‖2L2

τ
3
4

dτ

)
1
5

, (3.28)

∫ t

0

∫

R3
|V̄N ⊗ V̄N : ∇wN |dxdt′ 6 Ct

7
20N

1
5 ‖u0‖

9
5
L3,∞

‖∇wN‖L2(Qt). (3.29)
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Using (3.26)–(3.29), we infer (3.15) by standard arguments involving an appropriate choices
of φ1(t) = φǫ(t) and letting ǫ tend to zero.

Lemma 3.4. Let u, v and u0 be as in Definition 1.4. Then the following estimate is valid for all
N, t > 0:

‖u(·, t)‖2L2 +

∫ t

0

∫

R3
|∇u|2dxdt′

6 C(N−1‖u0‖
3
L3,∞ + t

7
10N

2
5 ‖u0‖

18
5
L3,∞

)

+C exp(Ct
1
4N

1
2 ‖u0‖

9
2
L3,∞

)(N− 1
2 t

1
4 ‖u0‖

33
8
L3,∞

+ t
19
20N

9
10 ‖u0‖

199
40
L3,∞

). (3.30)

Hence, taking N = t−
1
2 gives the following scale invariant estimate:

‖u(·, t)‖2L2 +

∫ t

0

∫

R3
|∇u|2dxdt′

6 Ct
1
2 exp(C‖u0‖

9
2
L3,∞

)(‖u0‖
9
8
L3,∞

+ 1)(‖u0‖
3
L3,∞ + ‖u0‖

18
5
L3,∞

). (3.31)

Proof. First observe that u = wN − ṼN . Thus, using (3.20) we see that

‖u(·, t)‖2L2 +

∫ t

0

∫

R3
|∇u|2dxdt′

6 2‖ũN0 ‖2L2 + 2‖wN(·, t)‖2L2 + 2

∫ t

0

∫

R3
|∇wN |2dxdt′.

By (2.4):

‖ũN0 ‖2L2 6 CN−1‖u0‖
3
L3,∞ . (3.32)

Thus, it is sufficient to prove (3.30) for wN in place of u. From now on, denote

yN(t) := ‖wN(·, t)‖2L2 .

Using (3.15), estimates (3.28) and (3.29), (3.32) and the Young’s inequality, we obtain that

yN(t) +

∫ t

0

∫

R3
|∇wN |2dxdt′ 6 CN

1
2 ‖u0‖

9
2
L3,∞

∫ t

0

yN(τ )

τ
3
4

dτ

+C(N−1‖u0‖
3
L3,∞ + t

7
10N

2
5 ‖u0‖

18
5
L3,∞

).

The conclusion is then easily reached using a Gronwall type lemma.

3.2. Existence of global weak L3,∞(R3)-solutions

Proof of Theorem 1.2. We have

u(k)
0

∗
⇀ u0
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in L3,∞ and we may assume that

M := sup
k

‖u(k)
0 ‖L3,∞ < ∞.

Firstly, define

V(k)(·, t) := S(t)u(k)
0 (·, t), V(·, t) := S(t)u0(·, t).

By Proposition 2.5, we see that V(k) converges to V on Q∞ in the sense of distributions. By
Proposition 2.4, we see that

‖V(k)(·, t)‖L3,∞ 6 CM, (3.33)

‖∂mt ∇ lV(k)(·, t)‖Lr 6
CM

tm+ l
2+ 3

2 ( 13− 1
r )
. (3.34)

Here r ∈]3,∞]. For T < ∞ and l ∈]1,∞[, we have the compact embedding

W2,1
l (B(n)×]0,T[) →֒ C([0,T]; Ll(B(n))).

From this and (3.34) one immediately infers that for every n ∈ N and l ∈]1,∞[:

∂mt ∇ lV(k) → ∂mt ∇ lV in C([1/n, n]; Ll(B(n))). (3.35)

Fixing N = 1 in Lemma 3.4 we have:

‖u(k)(·, t)‖2L2 +

∫ t

0

∫

R3
|∇u(k)|2dxdt′ 6 f0(M, t). (3.36)

By a Cantor diagonalisation argument, we can subtract a subsequence such that for any finite
T > 0:

u(k) ∗
⇀ u in L2,∞(QT), (3.37)

∇u(k)⇀∇u in L2(QT). (3.38)

Using (3.37), together with (3.31), we also get that:

‖u‖L2,∞(Qt) 6 C(M)t
1
2 . (3.39)

From (3.36) it is easily inferred that

‖u(k) · ∇u(k)‖L 9
8 ,

3
2 (Qt)

6 f1(M, t). (3.40)

By the same reasoning as in Lemma 3.1, we obtain:

‖V(k) · ∇V(k)‖L 11
7

(Qt) 6 f2(M, t), (3.41)

‖V(k) · ∇u(k) + u(k) · ∇V(k)‖L 5
4 ,

3
2
(Qt) 6 f3(M, t). (3.42)

Split u(k) =
∑3

i=1 u
i(k) according to Definition 1.4, namely (3.4). By coercive estimates for

the Stokes system, along with (3.40), we obtain:

‖u1(k)‖W2,1
9
8 ,

3
2
(Qt)

+ ‖∇p(k)
1 ‖L 9

8 ,
3
2
(Qt) 6 Cf1(M, t), (3.43)
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‖u2(k)‖W2,1
11
7

(Qt)
+ ‖∇p(k)

2 ‖L 11
7

(Qt) 6 Cf2(M, t), (3.44)

‖u3(k)‖W2,1
5
4 ,

3
2
(Qt)

+ ‖∇p(k)
3 ‖L 5

4 ,
3
2
(Qt) 6 Cf3(M, t). (3.45)

By the previously mentioned embeddings, we infer from (3.43)–(3.45) that for any n ∈ N we
have the following convergence for a certain subsequence:

u(k) → u in C([0, n]; L 9
8
(B(n)). (3.46)

Hence, using (3.36), it is standard to infer that for any s ∈]1, 10/3[

u(k) → u in Ls(B(n)×]0, n[). (3.47)

It is also not so difficult to show that for any f ∈ L2 and for any n ∈ N:
∫

R3
u(k)(x, t) · f (x)dx →

∫

R3
u(x, t).f (x)dx in C([0, n]). (3.48)

Using (3.39) with (3.48), we establish that

lim
t→0

‖u(·, t)‖L2 = 0. (3.49)

All that remains to show is establishing the local energy inequality (1.13) for the limit and
establishing the energy inequality (3.3) for u. Verifying the local energy inequality is not so
difficult and hence omitted. Let us focus on verifying (3.3) for u. By identical reasoning to
Lemma 3.3, we have that for an arbitrary positive function φ1(t) ∈ C∞

0 (0,∞):
∫

R3
φ1(t)|u(x, t)|

2dx + 2

∫ t

0

∫

R3
φ1(t)|∇u|2dxdt

′

6

∫ t

0

∫

R3
|u|2∂tφ1 + 2(V ⊗ u + V ⊗ V) : ∇uφ1dxdt

′. (3.50)

From Lemma 3.1 and semigroup estimates, we have that

(V ⊗ u + V ⊗ V) : ∇u ∈ L1(QT)

for any positive finite T. Using these facts and (3.49), the conclusion is reached by choosing
appropriate φǫ = φ1 and taking a limit.

Let us comment on Proposition 1.1. Recall that by Proposition 2.3, there exists a sequence

u(k)
0 ∈ C∞

0,0(R
3) such that

u(k)
0

∗
⇀ u0

in L3,∞. It was shown in [33] that for any k there exists a global L3-weak solution v(k). Now,
Proposition 1.1 follows from Theorem 1.2.

4. Uniqueness

First we introduce the notation Q(z0,R) = B(x0,R)×]t − R2, t[. Here, z0 = (x0, t) ∈ Q∞.
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Proof of Theorem 1.6.
Step I. Regularity

Our first remark is that, given ε > 0 and R > 0, there exists a number R∗(T,R, ε) > 0 such
that if B(x0,R) ⊂ R

3 \ B(R∗) and t0 − R2 > 0 then

1

R2

∫

Q(z0,R)

(|v|3 + |q − [q]B(x0,R)|
3
2 )dxdt ≤ ε.

For v it is certainly true. For q, we can use Lemma 3.3. Indeed, if q = p1 + p2 + p3, then, for
example, we have

1

R2

∫

Q(z0,R)

|p1 − [p1]B(x0,R)|
3
2 dxds

≤
1

R2

∫ T

0

∫

B(x0,R)

|p1 − [p1]B(x0,R)|
3
2 dxds

≤
1

R
3
2

∫ T

0

(

∫

B(x0,R))

|∇p1|
9
8 dx

)
4
3
dt

≤
1

R
3
2

∫ T

0

(

∫

R3\B(R∗))

|∇p1|
9
8 dx

)
4
3
dt → 0

as R∗ → ∞ for any fixed R > 0. Since the pair v and q satisfies the local energy inequality, by
the ε-regularity theory developed in [5], we can claim that

|v(z0)| ≤
c

R

as long as z0 and R satisfy the conditions above.
Now, our aim is to show that v is locally bounded. To this end, we can use condition (1.14)

and state that there exists R0(x0, ε0) > 0 such that

‖u0‖L3,∞(B(x0,R)) < ε0

for all 0 < R < R0(x0, ε0). Then

‖v(·, t)‖L3,∞(B(x0,R)) ≤ ‖u0‖L3,∞(B(x0,R)) + ε0 < 2ε0

for all 0 < R < R(x0, ε0) and for all t ∈]0,T[. .
By Hunt’s inequality (Theorem 4.5, p. 271 of [17]) for Lorentz spaces, we have

1

r

(

∫ t0

t0−r2

(

∫

B(x0,r)
|v|2dx

)2
dt

)
1
4

≤ c sup
t0−r2<t<t0

‖v(·, t)‖L3,∞(B(x0,r)) ≤ cε0

for all t0 ∈]0,T], for all 0 < r < R0(x0, ε0) satisfying t0 − r2 > 0, and c is a positive universal
constant. Then the local boundedness follows from ε-regularity conditions derived in [35]
with a suitable choice of the constant ε0.

So, we can ensure that v ∈ L∞(Qδ,T) for any δ > 0. Here,Qδ,T = R
3×]δ,T[. Then, we can

easily deduce that, for any δ > 0, u ∈ W2,1
2 (Qδ,T), ∇u ∈ L2,∞(Qδ,T), and ∇q ∈ L2(Qδ,T). By

iterative arguments, we complete the proof of the theorem.
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Step II. Uniqueness

Regularity results proved above allow us to state that the energy identity

1

2

∫

R3
|u(x, t)|2dx +

∫ t

0

∫

R3
|∇u|2dxds =

∫ t

0

∫

R3
V ⊗ v : ∇udxds

holds for any t > 0 and, moreover,
∫

R3

(

∂tu(x, t) · w(x) + (v(x, t) · ∇v(x, t)) · w(x) + ∇u(x, t) : ∇w(x)
)

dx = 0

for any w ∈ C∞
0,0(R

3) and for all t ∈]0,T[.
Letting ũ = ṽ − V and w = ũ − u, we can repeat the same arguments as in [33] to obtain

1

2

∫

R3
|w(x, t0)|

2dx +

∫ t0

0

∫

R3
|∇w|2dxdt

≤

∫ t0

0

∫

R3

(

ṽ ⊗ ṽ : ∇w − v ⊗ v : ∇w
)

dxdt

=

∫ t0

0

∫

R3
(w ⊗ v + v ⊗ w) : ∇wdxdt.

So, finally,

I :=

∫

R3
|w(x, t0)|

2dx +

∫ t0

0

∫

R3
|∇w|2dxdt

≤ c

∫ t0

0

∫

R3
|v|2|w|2dxdt.

Let us fix s ∈]0,T[, then

I ≤ cI1 + cI2 + cI3,

where

I1 =

∫ t0

0

∫

R3
|v(x, t) − u0(x)|

2|w(x, t)|2dxdt,

I2 =

∫ t0

0

∫

R3
|v(x, s) − u0(x)|

2|w(x, t))|2dxdt,

I3 =

∫ t0

0

∫

R3
|v(x, s)|2|w(x, t)|2dxdt.

The first two integrals are evaluated in the same way with the help of Hunt’s inequality
(Theorem 4.5, p. 271 of [17]) for Lorentz spaces:

c(I1 + I2) ≤ c

∫ t0

0
(‖v(·, t) − u0(·)‖

2
L3,∞

+ ‖v(·, s) − u0(·)‖
2
L3,∞)‖w(·, t)‖2L6,2dt.
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By the assumptions of the theorem,

c(I1 + I2) ≤ cε0

∫ t0

0
‖w(·, t)‖2L6,2dt.

It remains to apply the Sobolev inequality L6,2(�) →֒ W1
2(�) to conclude that

c(I1 + I2) ≤ cε0

∫ t0

0
‖∇w(·, t)‖2L2 .

To estimate I3, we are going to use the fact that v(·, s) is bounded for positive s ≤ T, i.e.,

‖v(·, s)‖L∞ ≤ g(s).

Here, it might happen that g(s) → ∞ if s → 0. So,

I3 ≤ g2(s)

∫ t0

0

∫

R3
|w(x, t)|2dxdt.

Then reducing ε0 if necessary, we find
∫

R3
|w(x, t0)|

2dx +

∫ t0

0

∫

R3
|∇w|2dxdt ≤ cg2(s)

∫ t0

0

∫

R3
|w(x, t)|2dxdt

for all t0 ∈]0,T[, which implies that w(·, t) = 0 for the same t.

To justify Corollary 1.7, we can argue as follows. First, it can be shown that

‖u0‖L3,∞(B(x0,R)) → 0

as R → 0. Indeed, if v is a weak L3,∞-solution in QT , then for a.a. t ∈]0,T[ we have v(·, t) ∈

L3,∞ along with the following property. Namely, for all x0 ∈ R
3:

‖v(·, t)‖L3,∞(B(x0,R)) → 0

as R → 0. Since it is assumed that v ∈ C([0,T]; L3,∞), the above property in fact holds for all
t ∈ [0,T].

Now, one should split the interval [0,T] into sufficiently small pieces by points tk with
k = 1, 2, . . . ,N and tN = T so that

‖v(·, t) − v(·, tk−1)‖L3,∞(R3) < ε0

for any t ∈ [tk−1, tk] and

lim
s→t+k

‖u(·, s) − u(·, tk)‖L2 = 0

(k = 1, 2, . . . ,N). It is not difficult to see that for k = 1, 2, . . . ,N, v(·, tk + s) is a weak L3,∞

solution on QT−tk , with initial value v(·, tk). It remains to apply Theorem 1.6 successively for
k = 1, 2, . . . ,N.

5. Regularity

Proof of Theorem 1.8. We use the Kato iteration scheme. Let us define the following, for k =

1, 2, . . . ,

v(1) = V , V(k+1) = V + u(k+1),
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where u(k+1) solves the following problem

∂tu
(k+1) − 1u(k+1) + ∇q(k+1) = −div v(k) ⊗ v(k), div u(k+1) = 0

in QT ,

u(k+1)(·, 0) = 0

inR3. It is easy to check that for solutions to the above linear problem the following estimates
are true

〈u(k+1)〉QT ≤ c〈v(k)〉2QT
,

‖u(k+1)‖L∞(0,T;L3) ≤ c〈v(k)〉2QT

and thus we have

〈v(k+1)〉QT ≤ 〈V〉QT + c〈v(k)〉2QT
,

‖v(k+1)‖L∞(0,T;L3,∞) ≤ ‖V‖L∞(0,T;L3,∞) + c〈v(k)〉2QT
,

and

‖v(k+1) − V‖L∞(0,T;L3) ≤ c〈v(k)〉2QT

for all k = 1, 2, . . .. Using Kato’s arguments from [22], one easily show that for ε < 1
4c we shall

have

〈v(k)〉QT < 2〈V〉QT (5.1)

for all k = 1, 2, . . .. We get, in addition, that

‖v(k)‖L∞(0,T;L3,∞) ≤ ‖V‖L∞(0,T;L3,∞) + 〈V〉QT , (5.2)

‖v(k+1) − V‖L∞(0,T;L3) ≤ 〈V〉QT (5.3)

for all k = 1, 2, . . .. Furthermore, Kato’s arguments in [22] also give that there is a v = V + u
such that

〈v(k) − v〉QT , 〈u(k) − u〉QT → 0, (5.4)

‖v(k) − v‖L∞(0,T;L3,∞), ‖u(k) − u‖L∞(0,T;L3) → 0. (5.5)

Next we note that by interpolation:

t
1
8 ‖g(·, t)‖L4 ≤ C(‖g(·, t)‖L3,∞)

3
8 (t

1
5 ‖g(·, t)‖L5)

5
8 . (5.6)

Using this and (5.4) and (5.5), we immediately see that

‖v(k) − v‖L4(QT), ‖u(k) − u‖L4(QT) → 0. (5.7)

We also can exploit our equation, together with the pressure equation, to derive the
following estimate for the energy and pressure:

‖u(k) − u(m)‖22,∞,QT
+ ‖∇u(k) − u(m)‖22,QT

+ ‖q(k) − q(m)‖22,QT

≤ c

∫ T

0

∫

R3
|v(k) ⊗ v(k) − v(m) ⊗ v(m)|2dxdt. (5.8)
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Using (5.7), we immediately see the following

u(k) → u in W1,0
2 (QT) ∩ C([0,T]; L2(R

3)) ∩ L4(QT), (5.9)

u(·, 0) = 0, (5.10)

q(k) → q in L2(QT). (5.11)

Clearly, the pair v and q satisfies the Navier–Stokes equations, in a distributional sense. It is
easily verified that

S(t)u0 ∈ L4(QT) ∩ L2,∞(B(R)×]0,T[) ∩ W1,0
2 (B(R)×]ǫ,T[) (5.12)

for any 0 < R, 0 < ε < T. By (5.9)–(5.11), v has the same property. It is known that this, along
with q ∈ L2(QT), is sufficient to infer that the pair v and q satisfies the local energy equality.
This can be shown by a mollification argument. Showing that u satisfies the energy inequality
(on QT) present in our definition of global weak L3,∞ solution (in fact, in this case it is an
equality), can nowbe performed in a similar way to Lemma 3.3.Here, certain decay properties
of u, q from (5.9)–(5.11) are needed, as well as the fact that limt→0+ ‖u(·, t)‖L2(R3) = 0.

Proof of Theorem 1.9. Condition (1.19) ensures that there exists an N > 0 such that

‖(u0)
N
+‖L3,∞ < ε3.

Thus, by the convolution inequality,

< S(t)(u0)
N
+ >QT , ‖S(t)(u0)

N
+‖L∞(0,T;L3,∞) < Cε3.

By Lemma 2.1, we have that

‖(u0)
N
−‖L5 ≤ CN

2
5 ‖u0‖

3
5
L3,∞

.

Thus,

〈V〉QT < Cε3 + T
1
5CN

2
5 ‖u0‖

3
5
L3,∞

.

Taking T := T(u0) and ε3 sufficiently small gives, by Theorem 1.8, the existence of weak L3,∞

solution on QT such that

‖v − S(t)(u0)
N
−‖L∞(0,T;L3,∞) ≤

≤ ‖v − V‖L∞(0,T;L3,∞) + ‖S(t)(u0)
N
+‖L∞(0,T;L3,∞) <

< V >QT +Cε3 < ε0. (5.13)

Next we notice that S1(t)(u0)N− is bounded in QT and moreover

‖S(t)(u0)
N
−‖L3,∞(B(x0,R)) ≤ CRN. (5.14)

These facts, along with (5.13), are enough to conclude using minor adaptations to the proof
of Theorem 1.6.
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Remark 5.1. Furthermore, there is the lower bound for T:

T ≥
min(ε5, ε50)

CN2‖u0‖3L3,∞
. (5.15)

Here,C is a universal constant.Moreover, ε and ε0 are fromTheorems 1.6 and 1.8 respectively.
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