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Abstract We show that the asymptotics of solutions to stationary Navier Stokes equations in 4, 5

or 6 dimensions in the whole space with a smooth compactly supported forcing are given by the linear

Stokes equation. We do not need to assume any smallness condition. The result is in contrast to three

dimensions, where the asymptotics for steady states are different from the linear Stokes equation, even

for small data, while the large data case presents an open problem. The case of dimension n = 2 is still

harder.
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1 Introduction

An important problem in the theory of steady Navier Stokes equations is to understand the
asymptotic behavior of solutions at large distances. Consider

−Δu + u · ∇u + ∇p = f

div u = 0

}
in R

n (1.1)

with an external force f . To simplify the technical details, we shall restrict ourselves to a local,
regular force in our presentation, i.e., we assume that f is smooth and compactly supported.
We consider the case u(x) → 0 as x → ∞. The case when one assumes u(x) → u∞ �= 0
as x → ∞ turns out to be easier, see [1] and Section X.8 in [14]. While from the physical
point of view the most interesting dimensions are, of course, n = 3 and n = 2, the higher-
dimensional stationary Navier Stokes equation is interesting mathematically. The regularity of
steady solutions in higher dimensions have received a lot of attention, as a simpler model for
the regularity problem for the time dependent problem. See e.g. [6–8, 10–13, 21]. Here we
focus on a different aspect of the high dimensional steady Navier Stokes equations, and study
the large distance asymptotics. These problems can be viewed as an analogue of the scattering
theory questions in the elliptic setting, and – as we shall see below – have connections with
regularity theory. In scattering theory for dispersive equations it can also be the case that some
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statements are harder to prove in low dimensions, at least if local regularity issues are settled.
The reason is similar as in our case: slower decay of the solutions of the linear part of the
equations.

The dimension n plays a crucial role in determining the asymptotics, which can already be
seen at the linearized level. In the dimension n = 3, the fundamental solution to the Stokes
system decays with a rate O( 1

|x| ). Consequently, we can expect that the nonlinearity u · ∇u

to decay with a rate O( 1
|x|3 ). Treating u · ∇u as perturbation and inverting the linear Stokes

operator, we can then expect that the contribution of u · ∇u to the solution u to be of the
order O( 1

|x| ), which is consistent with the decay of the linear solution. Hence, dimension n = 3
appears to be a critical dimension from this point of view. The result in Korolev and Sverak [16]
shows that for small f , the solution to (1.1) indeed decays with the rate O( 1

|x| ). However, the
precise asymptotics is different from the one given by the linear Stokes system and is given by
an explicit solution found by Landau. More precisely, there exists ε∗ > 0 such that for a steady
state u in R

3 satisfying
|u(x)| ≤ ε∗

1 + |x| ,

one has the following. Denote

Tij = pδij + uiuj +
[

∂ui

∂xj
+

∂uj

∂xi

]

(the energy momentum tensor), and let

b =
�
|x|=R

Tij nj dσ,

which is independent of R for sufficiently large R as a consequence of

div T = 0

outside the support of f . The steady state has the asymptotic

u = U b + O

(
1

|x|1+β

)
(1.2)

for β ∈ (0, 1). In the above formula, U b is the Landau solution, which can be thought of an
axi-symmetric solutions of

−ΔUb + U b · ∇U b + ∇P b = b δ(x),

with the symmetry axis given by b. We refer to [16] for the explicit expression for U b, and more
discussion. It appears to be an interesting open problem to determine the precise decay rate of
the difference u − U b, and, in particular, whether β can be taken as β = 1 in (1.2).

The result in [16] can be explained at a heuristic level by the fact that the contribution from
the nonlinear term u · ∇u has the same order of magnitude as the typical solution of the linear
Stokes system and thus affects the leading term asymptotics. The two dimensional situation is
much more complicated still, as the fundamental solution to the linear Stokes system does not
even decay, and the above heuristics no longer works. Recently, Guillod [15] put forward some
interesting conjectures (in dimension n = 2) on the possible asymptotics. We refer the reader
to [15] for details.
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Although the above analysis, based on linearization, suggests that the steady states in
dimension three decays with a rate O( 1

|x| ), it remains a major problem to prove this claim once
no smallness condition is assumed on f . In large data case, the main a priori estimate for a
steady solution is the finite Dirichlet energy�

R3
|∇u|2 dx ≤ C(f).

The finite Dirichlet energy only gives a decay of the order o( 1√
|x| ) on average, which is much

slower than the expected rate of decay O( 1
|x| ). It appears to be an outstanding open problem

to prove O( 1
|x| ) decay for steady states in dimension 3.

In higher dimensions n ≥ 4, the problem on the decay of steady states becomes more
tractable on a heuristic level, at least. For instance in dimension 4, the a priori estimate�

R4
|∇u|2(x) dx ≤ C(f)

already suggests decay of u with the rate o( 1
|x| ). This decay rate is already consistent with scale

invariance
u(x) → uλ(x) = λu(λx), p(x) → pλ(x) = λ2p(λx)

for λ > 0, in the sense that uλ enjoys uniform bound exterior to B1(0) for all λ > 1 assuming
that u has the decay O( 1

|x| ).
In this short note, we show that the problem is indeed easier in higher dimensions. More

precisely, we show that the leading term of the steady state is given by the linear Stokes system:

u(x) = G ∗ f(x) +

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

O

(
log |x|
|x|3

)
n = 4,

O

(
1

|x|4
)

n = 5,

O

(
1

|x|5
)

n = 6,

as |x| → ∞, (1.3)

where G is the fundamental solution to the steady Stokes system. Unlike for results in dimen-
sion 3, we do not have to assume any smallness condition on f .

In principle, the decay problem in higher dimensions n ≥ 7 is easier (as we shall see below
in the proof). However, local regularity could become a problem for large dimensions. Since
our method uses a version of ε-regularity criteria in the spirit of Scheffer [20] and Caffarelli–
Kohn–Nirenberg [3], which is not known for n ≥ 7, we will only work with dimensions up
to 6.

In this paper, we consider general suitable weak solutions to (1.1). There is an important
scalar quantity

H = |u|2 +
p

2
,

called the “head pressure”, which satisfies the scalar equation

−ΔH + u · ∇H = −|∇ × u|2 − div f + f · u.

Frehse and Růžička proved regularity for weak solutions to (1.1) for which the head pressure H

satisfies a suitable maximal principle and established the existence of such solutions for higher
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dimensions (up to dimension 15 in periodic domains). We refer the reader to the series of works
[6–8, 10–13] for details. It is an interesting question if similar asymptotic expansion as in (1.3)
for dimensions n > 6 can be obtained if we also exploit the special scalar quantity H.

2 ε-regularity Criteria

We always assume n = 4, 5 or 6. We consider u ∈ Ḣ1(Rn) ⊆ L
2n

n−2 (Rn), which solves

−Δu + u · ∇u + ∇p = f

div u = 0

}
in R

n (2.1)

with f ∈ C∞
c (Rn).

We say u is suitable if u satisfies the following version of energy inequality:�
Rn

|∇u|2(x)φ(x) dx ≤
�

Rn

|u|2
2

Δφ +
|u|2
2

u · ∇φ + pu · ∇φ + fuφ dx (2.2)

for all smooth compactly supported φ ≥ 0. Note that this notion is a local one as long as
one requires φ to be supported in a local set. The existence of such solutions are well known,
see [17].

The main result we have to use about suitable weak solutions is the following ε-regularity
theorem.

Theorem 2.1 There exist a sufficiently small ε0 > 0 and positive numbers ck, k ≥ 0, such
that the following statement holds. For any suitable weak solution u ∈ H1(B1) to

{ −Δu + u · ∇u + ∇p = 0

divu = 0
(2.3)

with ‖u‖L3(B1) ≤ ε0 satisfies u ∈ C∞(B1/2), and ‖u‖Ck(B1/2) ≤ ck for all k ≥ 0.

The theorem can be proved by classical methods of [18] and [3, 20]. One can for instance
follow the argument in [18] for n = 4, 5. It is not immediately clear if the same proof works in
dimension n = 6, due to the lack of compactness in the embedding H1(R6) → L3(R6). In this
case, one can find a proof in [5] (see theorem 2.2 and its proof), which is in the spirit of [3].
In [5], the bounds are not explicitly stated but they are implied in the proof. As remarked
in [5], the methods used in proving ε-regularity are not likely to work for higher dimensions
than 6, due to the fact that the Dirichlet energy can only control L3

loc norm of u in dimensions
up to 6, and in higher dimensions (2.2) no longer makes sense.

We will present a unified proof of this theorem following the approach of [18]. Let us
introduce some notations. Denote (g)r0,x0 as the average of g over the ball Br0(x0) and�

Br0 (x0)

g dx =
1

|Br0(x0)|
�

Br0 (x0)

g dx.

Let

Y (g, r0, x0) :=
( �

Br0 (x0)

|u − (u)r0,x0 |3
) 1

3

.

In the case x0 = 0, we omit the x0 in the above notations. Thus we have, e.g.,

(g)r0 = (g)r0,0, Y (g, r0) = Y (g, r0, 0).

We firstly prove
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Lemma 2.2 For all θ ∈ (0, 1), there exists a sufficiently small ε0 = ε0(θ) > 0, and constant
C > 0 which is independent of θ, such that if u is a suitable weak solution to (2.3) in B2

satisfying
Y (u, 2) ≤ ε0,

and
|(u)2| ≤ 1,

then
Y (u, θ) ≤ Cθ Y (u, 2). (2.4)

Proof Suppose the lemma is false, then we can find εi → 0+ and suitable weak solutions
ui, pi to (2.3), such that

Y (ui, 2) = εi, |(ui)2| ≤ 1,

and that (2.4) does not hold. pi satisfies in B2

−Δpi = div div [(ui − (ui)2) ⊗ (ui − (ui)2)],

and
−∇pi = −Δui + ui · ∇(ui − (ui)2).

From the assumption
Y (u, 2) ≤ ε,

we get that
‖ui − (ui)2‖L3(B2) ≤ εi.

Standard elliptic estimates imply that modulo constants we have

‖pi‖
L

3
2 (B 5

3
)
� εi.

Denote
ai = (ui)2

and
ui = εi vi + ai, pi = εi qi.

Then vi, qi verify
‖vi‖L3(B 5

3
) � 1, ‖qi‖

L
3
2 (B 5

3
)
� 1, (2.5)

and the equation
−Δvi + ai · ∇vi + εi vi · ∇vi + ∇qi = 0, (2.6)

with
div vi = 0.

We also note that |ai| ≤ 1. With some calculations, (2.2) implies that
�

B2

|∇vi|2φ dx ≤
�

B2

( |vi|2
2

+ qi

)
vi · ∇φ +

|vi|2
2

Δφ +
|vi|2

2
ai · ∇φ dx, (2.7)
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for all φ ≥ 0 smooth and compactly supported in B2. Take φ ∈ C∞
c (B 5

3
) with φ|B 4

3
≡ 1. From

the bounds (2.5) and (2.7), we get that�
B 4

3

|∇vi|2 dx � 1.

Thus bounds on vi, qi imply that we can assume, by taking a subsequence, that

vi → v

in Lm(B 4
3
) for m < 3 and weakly in H1(B 4

3
), and

qi → q

weakly in L
3
2 (B 4

3
). We can also assume that the constants ai → a ∈ R

3 with |a| ≤ 1. It is clear
that vi, qi satisfy the equation

−Δv + a · ∇v + ∇p = 0,

with
div v = 0

and
‖v‖L3(B 4

3
) + ‖q‖

L
3
2 (B 4

3
)
+ |a| � 1.

Elliptic estimates then imply that v, q are smooth in B1. In particular,

‖v‖C1(B 7
6
) � 1.

To obtain information on vi from v, let us write

vi = v + ṽi, qi = q + q̃i.

Clearly ṽi, q̃i are uniformly bounded in L3(B 4
3
) and L

3
2 (B 4

3
) respectively. In addition, ṽi → 0

in Lm(B 4
3
) for any m < 3. ṽi, q̃i verify the equation

−Δṽi + (ai − a) · ∇v + ai · ∇ṽi + εi vi · ∇vi + ∇q̃i = 0.

Hence
−Δq̃i = εi div div (vi ⊗ vi).

We can decompose q̃i as
q̃i = q̃i

1 + q̃i
2,

where
q̃i
1 = εi(−Δ)−1div div (vi ⊗ vi χB 4

3
),

and q̃i
2 solves

−Δq̃i
2 = 0.

Then elliptic estimates imply
‖q̃i

1‖L
3
2 (R6)

� εi,

and
‖q̃i

2‖C1(B 7
6
) � 1.
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Using the smoothness property of v, (2.2) implies that
�

B 7
6

|∇ṽi|2φ dx ≤
�

B 7
6

(
εi

|vi|2
2

+ q̃i

)
ṽi · ∇φ − εi v · ∇v ṽi φ+

+ εi
|vi|2

2
v · ∇φ − εi ṽi · ∇v ṽi φ − (ai − a) · ∇v ṽi φ +

|ṽi|2
2

ai · ∇φ dx, (2.8)

for nonnegative φ ∈ C∞
c (B 7

6
) with φ|B1 ≡ 1. We need to show that the right hand side of (2.8)

goes to zero as i → ∞. It suffices to consider the term�
B 7

6

q̃i ṽi · ∇φ dx =
�

B 7
6

q̃i
1 ṽi · ∇φ dx +

�
B 7

6

q̃i
2 ṽi · ∇φ dx.

The vanishing of q̃i
1 and the smoothness of q̃i

2 respectively, together with the fact that ṽi → 0 in
Lm(B 4

3
) for any m < 3, show that this term vanishes as i → ∞. Therefore, (2.8) implies that

�
B1

|∇ṽi|2 dx → 0,

and consequently
vi → v, in L3(B1).

By the smoothness of v, we have
(�

Bθ

|v − (v)θ|3 dx

) 1
3

≤ Cθ.

Hence, for large i, ( �
Bθ

|vi − (vi)θ|3 dx

) 1
3

≤ Cθ.

A contradiction. The lemma is proved.
By scaling and translation invariance, Lemma 2.2 has the following consequence.

Lemma 2.3 Let ε0, C be from Lemma 2.2. Fix θ > 0 sufficiently small so that Cθ < 1
2 . Let

u, p be a suitable weak solution to (2.3) in Br0(x0) with

Y (u, r0, x0) ≤ ε0 r−1
0 , |(u)r0,x0 | ≤ r−1

0 .

Then
Y (u, θr0, x0) ≤ 1

2
Y (u, r0, x0). (2.9)

Now we can prove Theorem 2.1.

Proof of Theorem 2.1 For any x0 ∈ B 1
2
. Clearly,

Y

(
u,

1
2
, x0

)
� ε0,

and
|(u) 1

2 ,x0
| � ε0.

As long as we choose ε0 sufficiently small, we can apply Lemma 2.3 and obtain that

Y

(
u,

θ

2
, x0

)
≤ 1

2
Y

(
u,

1
2
, x0

)
.
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If we can iteratively apply Lemma 2.3 on balls B θk

2
(x0) for k = 0, 1, . . . , we would obtain that

Y

(
u,

θk

2
, x0

)
≤ 1

2k
Y

(
u,

1
2
, x0

)
.

We only need to verify that
|(u) θk

2 ,x0
| ≤ 1,

assuming that

Y

(
u,

θj

2
, x0

)
≤ 1

2j
Y

(
u,

1
2
, x0

)
� 2−jε0,

for j = 0, 1, . . . , k − 1. Using the inequality

|(u) θj

2 ,x0
− (u) θj+1

2 ,x0
| � Y

(
u,

θj

2
, x0

)
,

for j = 0, 1, . . . , k − 1, we get that

|(u) θk

2 ,x0
− (u) 1

2 ,x0
| � ε0.

Consequently,
|(u) θk

2 ,x0
| � ε0.

Hence we can iteratively apply Lemma 2.3 and obtain that

Y

(
u,

θk

2
, x0

)
≤ 1

2k
Y

(
u,

1
2
, x0

)
� 2−kε0 (2.10)

for all k. As x0 ∈ B 1
2

is arbitrary, (2.10) implies that u is Hölder continuous in B 1
2
. The

claimed higher regularity in Theorem 2.1 then follows from standard elliptic estimates.
We shall also need the following variant of Theorem 2.1.

Theorem 2.4 Let ε0 be from Theorem 2.1. Let u be a suitable weak solution to (2.3) with
‖u‖L3(B1) ≤ ε0 δ for δ < 1. Then there exists constant C > 1 which is independent of u and δ,
such that ‖u‖C(B1/4) ≤ Cδ.

Proof By Theorem 2.1, we know that

‖u‖Ck(B1/2) ≤ ck.

Thus ‖u · ∇u‖L3(B1/2) ≤ c1ε0δ. Denote

g = u · ∇u.

Then
−Δu + ∇p = g,

with
‖u‖L3(B 3

4
) ≤ ε0 δ

and
‖g‖L3(B 3

4
) � ε0 δ.

By elliptic estimates, one immediately gets that

‖u‖W 2,3(B 1
2
) � ε0 δ.
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Sobolev embedding then gives
‖u‖Lm(B 1

2
) � ε0 δ

for all m < ∞. Hence, we have in fact that

‖g‖Lm(B 1
2
) � ε0 δ

for all m < ∞. Elliptic estimates immediately imply that

‖u‖W 2,m(B 1
4
) � ε0 δ

for all m < ∞. By Sobolev embedding, Theorem 2.4 follows.

3 Main Theorem and Proof

We can now state our main results formally.

Theorem 3.1 Let u ∈ Ḣ1(Rn) ↪→ L
2n

n−2 (Rn) be a suitable weak solution to equations (2.1).
Then

u(x) = G ∗ f(x) +

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

O

(
log |x|
|x|3

)
n = 4,

O

(
1

|x|4
)

n = 5,

O

(
1

|x|5
)

n = 6,

as |x| → ∞, (3.1)

where G is the fundamental solution to linear Stokes equation. That is,

G(x) = − 1
2n ωn

[
1

n − 2
I

|x|n−2
+

x ⊗ x

|x|n
]
,

where ωn is the volume of the unit ball in R
n, I is the identity n × n matix and x ⊗ x is the

matrix which has (i, j) item xi xj.

Proof We consider the cases n = 4, n = 5 and n = 6 separately. For n = 4, by Sobolev
embedding, u ∈ Ḣ1(R4) ⊂ L4(R4). Take a large R > 1 and consider |x| = 2R. Then direct
calculation shows that

R
−1

�
BR(x)

|u|3 dy ≤
(�

BR(x)

|u|4 dy

)3/4

→ 0,

as R → +∞. Thus by a rescalled version of Theorems 2.1 and 2.4, we get that

|u(x)| = o

(
1
|x|

)
, |∇u(x)| = o

(
1

|x|2
)

(3.2)

for |x| → +∞. Fix small number ε > 0 and sufficiently large R > 1. Set

v(x) = R u(Rx). (3.3)

(3.2) implies that
|v(x)| + |∇v(x)| ≤ ε, on ∂B1,

if R is taken large enough depending on ε. In addition,

|v(x)| = o

(
1
|x|

)
, |∇v(x)| = o

(
1

|x|2
)

,
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as x → ∞. By Lemma 3.2 below, we get the desired decay estimate

|v(x)| = O

(
1

|x|2
)

.

Using the relation (3.3), we get that

|u(x)| = O

(
1

|x|2
)

.

This decay is already sufficient to obtain the precise asymptotics for u. To see this, we write⎧⎨
⎩

−Δ u + ∇p = f − div u ⊗ u,

div u = 0,
in R

4.

Thus we can write
u(x) = G ∗ f(x) − G ∗ (div u ⊗ u)(x).

It suffices to prove

|G ∗ (div u ⊗ u)(x)| = O

(
log |x|
|x|3

)

under the condition that

|u(x)| = O

(
1

|x|2
)

,

as |x| → ∞. This can be verified by direct calculations.
In the case that n = 5, by Sobolev embedding, u ∈ Ḣ1(R5) ⊂ L10/3(R5). Suppose |x| = 2R

is large, then

R
−2

�
BR

|u|3dy ≤ R
−3/2

( �
BR(x)

|u|10/3 dy

)9/10

is small. Thus by rescalled versions of Theorems 2.1 and 2.4, we conclude that u is smooth
outside a large ball BM and

|u(x)| = o

(
1

|x|3/2

)
.

As before, we can write
u = G ∗ f − G ∗ (div u ⊗ u).

Using

|u(x)| = o

(
1

|x|3/2

)

and
|G(x)| ≤ C

|x|3 ,

we obtain

|u(x)| = o

(
1

|x|2
)

,

which is an improvement of the original estimate. By applying this procedure several times, we
obtain the desired estimate.

The case n = 6 is almost identical to n = 5.
It remains to state and prove
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Lemma 3.2 There exists a sufficiently small δ > 0 such that the following statement holds.
Let u be a smooth solution to (2.3) in R

4\B1, satisfying

|u(x)| ≤ δ

|x| , |∇u(x)| ≤ δ

|x|2 . (3.4)

Then we have the improved decay estimate

|u(x)| � 1
|x|2 , |∇u(x)| � 1

|x|3 (3.5)

for x ∈ R
3\B1.

Proof By Theorem 2.1 in [19], we can find a solution ũ(x) to (1.1) for |x| ≥ 1, such that ũ is
smooth and ũ = u on ∂B1. Moreover,

ũ(x) � 1
|x|2

for |x| > 1 and some absolute constant C > 0.1) We claim that

u(x) = ũ(x), for |x| ≥ 1.

This uniqueness is an easy result in our case as we have a “smallness condition”. One can
proceed for instance as follows. Denote

w = u − ũ.

Then w satisfies⎧⎨
⎩

−Δw + w · ∇u + u · ∇w − w · ∇w + ∇p = 0,

divw = 0,
in R

4\B1.

Since w|∂B1 = 0, ∇w ∈ L2, w ∈ L4, w = o( 1
|x| ) as |x| → ∞, we obtain by integration by parts:

�
R4\B1

|∇w|2 dx ≤ −
�

R4\B1

(w · ∇u)w dx

=
�

R4\B1

u (w · ∇w) dx

�
�

R4\B1

δ

|x| |w||∇w| dx

� δ

( �
R4\B1

|∇w|2 dx

)1/2( �
R4\B1

|w|2
|x|2 dx

)1/2

� δ

�
R4\B1

|∇w|2 dx.

If δ is sufficiently small, then the above inequality will force w to be identically zero. Thus we
obtain that

u = ũ for |x| > 1.

Since

|ũ(x)| = O

(
1

|x|2
)

,

1) We will outline an alternative approach which is somewhat more direct in the appendix
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we also have

|u(x)| = O

(
1

|x|2
)

, as |x| → ∞.

The lemma is proved.

4 Appendix: An Alternative Approach to Lemma 3.2

The goal of this section is to outline a more direct approach, based more on methods introduced
in this note, to Lemma 3.2. Let u be from Lemma 3.2. Take u as the solution to the boundary
value problem for the steady Stokes equation in the unit ball

−Δu + ∇p = 0, in B1.

with div u = 0 and u|∂B1 = u|∂B1 . Since u|∂B1 is smooth, classical estimates for the steady
Stokes equations give that u, p are smooth in B1. Define

U(x) =

⎧⎨
⎩

u(x) for |x| ≥ 1,

u(x) for |x| < 1;

and

P (x) =

⎧⎨
⎩

p(x) for |x| ≥ 1,

p(x) for |x| < 1.

Then U, P verify
−ΔU + U · ∇U + ∇P = (u · ∇u) χB1 + Σ,

in R
4, with div U = 0. In the above, Σ is a smooth surface measure supported on ∂B1. Since

u is small, both u and Σ have “smallness condition”. Denote

g := (u · ∇u) χB1 + Σ.

We shall use perturbation argument to find another divergence free solution V to

−ΔV + V · ∇V + ∇Q = g, (4.1)

with better decay properties than those known for U . We can choose the norm

‖h‖X := ‖h‖
L

5
2 (R4)

+ ‖∇h‖L2(R4),

and the space
X := {h : ‖h‖X < ∞}.

We can re-write equation (4.1) as

V = G ∗ g − G ∗ (V · ∇V ). (4.2)

We only need to verify that the map

V ∈ X → G ∗ g − G ∗ (V · ∇V ) ∈ X

is a contraction mapping in BCδ ⊆ X. This property can be verified by direct calculations. We
shall only show that

‖G ∗ Σ‖X � δ,
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assuming that Σ is a surface measure supported on the unit sphere with smooth densities and
that the density function has Cm norm smaller than Cδ with a sufficiently large m. By the
decay property of G, we only need to show that

‖∇G ∗ Σ‖L2(R4) � Cδ. (4.3)

By the property of Fourier transform of smooth measures supported on sphere, we see that

|F(Σ)(ξ)| � δ

(1 + |ξ|) 3
2
,

where we use the notation F(h) to denote the Fourier transform of h. In combination of the
fact that

|F(G)(ξ)| � 1
|ξ|2 ,

we get that

|F(G ∗ Σ)(ξ)| � δ

|ξ|2 (1 + |ξ|) 3
2
,

Hence,
‖ |∇|sG ∗ Σ‖L2(R4) � δ,

for 0 < s < 3
2 . (4.3) thus follows. V ∈ X implies that V ∈ L3(R4). The improved decay breaks

the scaling and now we can treat the nonlinearity V · ∇V as perturbations when we consider
decay. Indeed, from V ∈ L3, rescaled version of Theorems 2.1 and 2.4 already implies that

|V (x)| � 1
|x| 43

for large x. Treating V · ∇V as perturbation and following the arguments as in the proof of
Theorem 3.1, we can conclude that

|V (x)| � δ

1 + |x|2 .

The same argument as in the proof of Lemma 3.2 shows that

U = V.

Hence U has the same decay.
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l?hydrodynamique. J. Math. Pures Appl., 12, 1–82 (1933)

[18] Lin, F.: A new proof of the Caffarelli–Korn–Nirenberg theorem. Comm. Pure Appl. Math., 51(3), 241–257

(1998)

[19] Maremonti, P., Russo, R., Starita, G.: Classical solutions to the stationary Navier–Stokes system in exterior

domains, The Navier–Stokes equations: theory and numerical methods (Varenna, 2000), 53–64, Lecture

Notes in Pure and Appl. Math., 223, Dekker, New York, 2002

[20] Scheffer, V.: Partial regularity of solutions to the Navier–Stokes equations. Pacific J. Math., 66(2), 535–552

(1976)

[21] Struwe, M.: Regular solutions of the stationary Navier–Stokes equations in R
5. Math. Ann., 302(4), 719–

741 (1995)
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