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A B S T R A C T

Stress in crops is one of the major concerns in precision agriculture because it indicates the emergence of disease
and damage in plants. Detecting the stress condition of a plant early is critical. A system that can monitor the
condition of plants is a desirable solution. In this work, Collaborative Control Theory is utilized to construct a
new system, ARS (agricultural robotic system) which synchronizes humans, a mobile robot, and a variable set of
sensors to effectively perform the monitoring and detection tasks. A key protocol for that system, which com-
bines routing algorithm, adaptive search algorithm, and collaboration control framework has been developed
and validated, and is presented in this article. By using greenhouse as a case study structure, the protocol routes
a robot to visit the sampled locations by using a genetic algorithm. In addition, the search algorithm can be
guided by the predictive characteristics of the crops’ stress, which can spread to other plants according to
sunlight, airflow direction, and other known conditions. Based on simulation experiments, the results indicate
with statistical significance that (1) the routing algorithm increases the number of successful detections of ex-
isting stressed plants by 45.77% compared to monitoring without this routing algorithm. (2) The adaptive search
algorithm improves the number of successful detections of stressed plants by 71.88% compared to a system
without the adaptive search algorithm. (3) The new protocol developed in this research yields the highest overall
robotic efficiency, compared with a system without collaborative control framework.

1. Introduction

Ability to detect stresses in crops in early stages is crucial in pre-
cision agriculture since it can help prevent plants from developing
damaging disease. Diseases, insects, and weeds damage approximately
40% of food production in the world (Oerke & Dehne, 2004). So far, the
techniques that are applied to handle this situation are not effective.
Lacking an effective system to monitor stress conditions of crops leads
to ambiguous and wrong decisions of implementing over or under
amounts of water, fertilizers, and pesticide, resulting in wasted effort,
money and time. Therefore, an effective system which can detect
stresses in plants early enough to prevent them from uncontrolled
spreading of disease and damages is widely considered to be a bene-
ficial solution.

Currently, agricultural processes involve high labor-intensive work.
Workers perform monitoring, inspecting, farming, and harvesting tasks
(Khan, Martin, & Hardiman, 2004). For inspection tasks, workers walk
into the plot and sample locations where to inspect. Each worker
usually walks approximately 20 km per day to perform the task. Be-
cause of limitations of workers and available time, however, the

inspecting process is inaccurate, and the detection of stresses is fre-
quently too late.

The improvement of farming equipment will drastically change the
way farmers work (Grad et al., 2014). Because of the improvement,
farmers can obtain relatively higher productivity at lower cost (Mare &
Mare, 2015). Therefore, researchers have focused on better techniques
and equipment to improve the productivity of agricultural production
systems. Researchers tend to apply robots to work for people in agri-
culture tasks (Edan, 1999; Edan, Han, & Kondo, 2009). The new agri-
cultural machinery is expected to become a major contributor to the
precision of agriculture system (Eaton, Katupitiya, & Siew, 2008).

Nowadays, agricultural robotics is typically used for weeding,
spraying, irrigation (Cheein and Carelli, 2013). A survey of agriculture
automation has been done by Edan, Han, and Kondo (2009). Ad-
vancement of precision agriculture, however, is not as fast as predicted
(McBratney, Whelan, Ancev, & Bouma, 2004). For precision agri-
culture, certain research problems need to be explored. Since an agri-
cultural system has many factors to consider, such as weather for each
day, humidity, stress in plant, quality of soil, to name but a few, it
presents a challenge for researchers in diverse disciplines. Therefore,
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precision agriculture will consist of various advanced technologies,
such as information system, operation research, machinery and ro-
botics, and information management (Gebbers & Adamchuk, 2010).

The research reported here focuses on developing and validating a
protocol to monitor effectively stress in greenhouse plants. It is part of a
larger project, seeking to benefit from human-robot stress monitoring
for early detection of stress, thus preventing its propagation and con-
version to disease (see Acknowledgement at the end). The major ob-
servation is that existing protocols lack ability to collaborate with
parties that comprise the monitoring system. Moreover, current proto-
cols have not relied on captured real characteristics of the monitored
plants. Therefore, this work focuses on the following aspects of mon-
itoring crops in greenhouses: (1) Establishing a framework for mon-
itoring plants by a robotic system. (2) Collaboration between three
parties; human (one or more), a mobile robot, and sensors. (3) Routing
algorithm and search algorithm that can capture real characteristics of
plants.

Section 2 summarizes previous research in the above areas. The
design of the collaborative control protocol, including Collaborative
Control Theory and adaptive search algorithm, is explained in Section
3. Section 4 describes experiments of greenhouse robotic simulation.
Conclusions and future work direction are discussed in Section 5.

2. Background

2.1. Robotics in the agriculture

Research on agricultural robotics for monitoring conditions of crops
is not a new idea. The main focus of researchers has been to find
methods to optimize the monitoring and detecting processes. Table 1
summarizes previous works. In the first place, robots were used to help
farmers performed routine operations such as fertilizing, irrigation, and
harvesting (Reid, Zhang, Noguchi, & Dickson, 2000; Keicher & Seufert,
2000). After that, robots in agriculture were used to improve, enhance,
and control activities such as monitoring, inspection, and detection

diseases. Astrand and Baerveldt (2002) used the autonomous mobile
robot to control weed in open field. In addition, robots and remote
sensing are used for gathering information about status of crops and
environment conditions (Diker & Bausch, 2003; Nagasaka et al., 2004).
Bochtis et al. (2011) designed a system which can create plan for
monitoring crops. Xue, Zhang, and Grift (2012) developed vision-based
guidance system to navigate a robot in cornfield. Spekken and Bruin
(2013) designed a method to minimize maneuvering and servicing time
for agricultural machine. The research about self-driven robots has been
developed since the anticipation of future aging society and population
decline (Iida et al., 2013). After that, Ishibashi, Iida, Suguri, and
Masuda (2013) presented an idea of using web application to create
remote monitoring robotic system. In addition, a system that auto-
matically navigates a robot to spaying pesticide was developed by Ko
et al., in 2015. In 2016, Zou et al. gave an idea of how to deploy sensors
in open field to monitor crops intelligently which is a different ap-
proach to monitor crops. Lastly, Chebrolu et al. in (2017), used a robot
with an RGB-D sensor to capture information of beet fields.

All of researchers’ work aims to enhance the ability to control and
monitor crops in fields in different perspectives. The development of
robotic machinery in agriculture moves us closer to precision agri-
culture. They optimize the way workers work in fields by using robots,
sensors, and machinery. They also improve productivity, increase ac-
curacy and reduce waste of system, helping farmers achieve better
crops yield. An important characteristic of crops that can contract dis-
ease to nearby locations, however, has not yet been considered.
Moreover, collaboration among parties in agriculture monitoring
system is also an important part that can expedite and improve systems’
performance. Lastly, handling conflicts and errors in agriculture robotic
systems has also not yet been considered. Therefore, this article de-
velops a collaborative control protocol that takes the mentioned char-
acteristics of plants’ stress into consideration. Based on such knowledge,
routing and adaptive search can be achieved with more advanced and
effective results.

Nomenclature

Variables and Abbreviations

AD association and dissociation
ARS agricultural robotic system
ARSSingle(t) single ARS′ agent at time t
ARSGroup(t) group of ARS′ agents at time t
AS adaptive Search
Avg. average
BM best matching
C conflict
cij travel time from i to j
CCP-ED collaborative control protocol for early detection of stress

in plants
CCT collaborative Control Theory
CFT collaborative fault tolerance
CLM collaborative life-cycle manufacturing
CRM collaboration requirement matrix
CRP collaboration requirement planning
CTR collaborative telerobotics
CVC collaborative visualization and comprehension
n total number of infected locations found
di number of infected locations found during operation at

location i
E error
ELOCC emergent lines of collaboration and command
EPCR error prevention and conflict resolution

EWP e-Work parallelism
GA genetic algorithm
KISS keep it simple, system
Li ith level of adaptive search
M M, ¯ partition of set of integer i
m, n number of sampled locations in the greenhouse
Nr(t) set of constraints r at time t
ORE overall robotic effectiveness
P performance
pj inspection time at location i
pj' extra processing time at node j
qj searching time at location i
qj' extra searching time at node j
Ri agent or group of agents i
S success
S t( )ARSSingle state of single ARS’ agent at time t
S t( )ARSGroup state of group of ARS’ agents at time t
SD standard deviation
si number of inspected locations at location i
T total available time
T' total processing time
Ti task i
TSP traveling salesman problem
U utilization
xij ARS traverse from i to j
yi ARS perform adaptive search at location i
αj probability to fail to search at node j
βj probability to fail to inspect at node j
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2.2. Collaborative control theory

Collaborative Control Theory (CCT) includes principles and frame-
work for engineers to design a complex system with multiple agents
(Nof, 2007). With a good design, better performance (relatively more
reliable, shorter time, and cost-effective) can be achieved. Collabora-
tion among parties in system will enable design of effective e-Work
system (Nof, Ceroni, Jeong, & Moghaddam, 2015). Moreover, an im-
portant ability which enables better performance of e-Work is sharing
information among agents with collaboration protocol. All agents in a
particular system will have the same mutual goal as to improve the
system and its performance. In any system, it can have one or combi-
nation of the following collaborations: mandatory, optional, and con-
current collaboration. There are nine CCT design principles that can be
applied in this research: collaboration requirement planning (CRP), e-
Work parallelism (EWP), keep it simple, system (KISS), error prevention
and conflict resolution (EPCR), collaborative fault tolerance (CFT), as-
sociation and dissociation (AD), emergent lines of collaboration and
command (ELOCC), best matching (BM), and collaborative visualiza-
tion and comprehension (CVC).

CCT has been applied extensively in various aspects to design multi-
agent complex systems. For example, Zhong, Wachs, and Nof (2013)
applied the theory to create CTR, telerobotics framework for colla-
borative life-cycle manufacturing (CLM). The CTR framework considers
a protocol which handles conflicts and errors in human-robot system for
nuclear application. Asynchronous cooperation requirement planning
also applied CCT for having better robotic performance in agriculture
task (Zhong, Nof, & Berman, 2015). In addition, best matching protocol
in CCT can be used in assembling e-work networks to better utilize
existing equipment, parts, and suppliers (Velasquez & Nof, 2009).
Moreover, CCT best matching allocation protocols for capacity and
demand sharing optimized overall yield for supply network
(Moghaddam, and Nof, 2014; 2016). Additionally, resources sharing-
based framework for cyber-physical system used CCT to enable flex-
ibility of modeling and control (Nayak, Levalle, Lee, & Nof, 2016).

Based on the wide range of CCT applications, it can be applied to
precision agriculture process to obtain better system performance and
efficiency. CCT principles are used to develop crops monitoring process.
As shown in this article, it helps improve efficiency, by significantly
saving time and cutting cost.

2.3. Traveling salesman problem for robotic monitoring and inspection

In general, if we need to develop a path for visiting every desired
node once, Traveling salesman problem (TSP) is used to describe this
situation. TSP is a well-known NP-hard problem that many researchers
have explored extensively in numerous variations. In TSP, given n in-
teger nodes and n-dimensional square matrix of distance between
nodes, the objective is to find a tour that visits each location once with
the lowest total cost (Bellmore & Nemhauser, 1968). Solving real cases,
TSP is relatively difficult to apply. Methods such as dynamic pro-
gramming, branch and bound, and other heuristics can be used for
solving TSP. Heuristics approaches were developed to find a good
feasible solution in different scenarios (Lin & Kernighan, 1973). Genetic
algorithm (GA) is a popular algorithm to obtain the solution for TSP
because it can provide an acceptable solution within limited time, even
though the optimal solution is not guaranteed by solving the problem
with a heuristic approach. (Potvin, 1996, Nagata & Kobayashi, 2013).

3. Methodology

The objective of this article is to develop a protocol that can capture
the characteristics of individual plants and coordinate among all col-
laborating participants in the system to work most effectively. In this
section, we demonstrate the design of collaborative control protocol for
early detection of stress in plants. The protocol has three main parts:Ta
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collaborative control protocol, routing algorithm, and adaptive search
algorithm.

3.1. Task description

The agricultural robotic system (ARS) comprises humans (one or
more), a robot mounted on a remote-controlled or autonomous mobile
cart, and multiple sensors. Humans are the decision makers who will
solve complex, unanticipated real-time problems. The mobile robot will
be guided to selected, assigned locations for inspecting plant samples at
those locations. From system engineering perspective, the robot that
moves through required locations needs to be equipped with arms and
sensors to inspect the conditions at each spot (Edan & Miles, 1994). A
robot will carry several types of sensors which contain detection agents.
Routing a robot in a greenhouse environment is required to perform
planning in an unstructured but predictable, knowledge-based en-
vironment.

Where agricultural crops are grown, especially in relatively large
areas, it is hard to inspect every single plant to check its status and
detect whether it is under stress. Therefore, a representative sample of
the plants in each area is typically selected for assessment and inspec-
tion. Using this approach, the chosen sample of plants can be assumed
to represent that local area, thus saving time and cost. After the samples
of plants are selected, a robot is guided from the Robot Base Point (see
Fig. 1) to visit each selected sample location by the robot routing al-
gorithm. There, it will acquire sensor data about any stress among the
sampled local plants. Data collected from each location can indicate the
potential of the crops as either being under control (meaning, un-
stressed), or not. When a plant displays unusual stress, surrounding
plants may already have the same problem.

Given scientifically established stress and disease behaviors for
certain predictable diseases, the stress and disease will more likely
spread in certain known directions. Such directional spread may be
influenced by sunlight and other light sources, by airflow direction, and
other causes. Suppose, for example, that Northern and Western green-
house directions tend to have relatively more stressed plants, given one
stressed plant was found at a certain inspected location. Hence, the
adaptive search algorithm needs to further check at the surrounding
plants in those directions. The adaptive search algorithm cannot have

information about stress of a particular plant until it reaches each
sampled location. The algorithm needs to be adaptive based on new
information found during the operation period (possibly updated by
remote experts). Fig. 1 illustrates the situation described above.

3.2. Collaborative control protocol for early detection of stress in plants
(CCP-ED)

The protocol is derived from Collaborative Control Theory (CCT)
principles. The system components (parties) are considered as agents
that have the mutual goal of saving cost (time) while finding as early as
possible the maximum number of stressed or already infected crops.
The system agents (components) need to collaborate intelligently to
effectively perform the task. As all agents of the system are working
together, this is “Mandatory Collaboration,” or collaborate as required.

Collaborative control protocol is designed to integrate agents (par-
ties) in ARS system to work seamlessly. The protocol design starts with
creating collaboration requirement planning (CRP) which helps the
designer to allocate tasks to agents. After the planning of tasks has been
completed, potential conflicts and errors in the system and its opera-
tions are discussed. Lastly, the step by step protocol which combines the
routing algorithm and adaptive search algorithm is explained.

3.2.1. Collaboration requirement planning (CRP)
By applying CRP concept to design ARS system, we can obtain as

follows.
CRP-I: Plan Generation
Referring to CCT framework, the initial route can be mapped with

CRP-I which is the planning phase. In order to develop the CRP-I, es-
tablishing the requirements generating from Collaboration requirement
matrix (CRM) is necessary. CRM can be expressed as follow.

A R xT CRM( )i i (1)

A(Ri) denotes the set of resources i available for each task. Ti de-
notes as tasks and Ri denotes available agent or group of agents. The
matrix will generate CRM which contain CRM(Ri, Ti)= 0 when re-
source Ri is not available for task Ti and CRM(Ri, Ti)= 1 when resource
Ri is available for task Ti.

For this situation, at each location, the robot inspects several

Fig. 1. Agricultural robotic system operation; North and West propagation directions assumed as given by experts for this crop season.
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parameters with respect to the defined task and only one robot is re-
quired in this ARS. The system will have several types of tasks Ti as
follows.

T1=compute the routing
T2=moving to the location
T3=measure the parameter
T4=error and conflict checking
T5=stress status checking
T6=decision making

For the agent or group of agents Ri, one can define the following
team.

R1 = {robot}
R2 = {sensors}
R3 = {human}
R4 = {robot, sensor}
R5 = {robot, human}
R6 = {sensor, human}
R7 = {robot, sensor, human}

Therefore, the CRM matrix which has group of agents in row and
tasks in column is derived as follows, to define what collaboration
modes are feasible.

=CRM

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 1 1
0 1 1 0 0 0
1 1 0 1 1 1
1 0 1 1 1 1
1 1 1 1 1 1 (2)

CRP-II: Plan Execution & Revision
CRP-II is the execution phase that obtains the plan from CRP-I.

When more information is obtained during the process, the plan from
CRP-I can be adjusted, which is the CRP-II role.

In this situation, the initial plan created for routing and monitoring
task needs to be generated. The plan will define route and parameters
that are needed to be measured by sensors. Therefore, the plan will
define a route of a mobile robot, order of locations to be visited, order
of information to be obtained at each location, and assignment of sensor
(s) to measure parameters. In addition, the plan will be updated over
time based on new information found during the monitoring process
and the sequence of the location will be updated.

3.2.2. Error prevention and conflict resolution (EPCR)
In the ARS, there are potential conflicts and errors. Error prevention

and conflict resolution (EPCR) principle will help to resolve conflicts

and errors as early as possible. Errors occur when the input, output, or
intermediate result of ARS does not meet specifications or expectations.
Error is defined as follows.

E ARS t if S t N t[ ( )], ( ) ( )Single ARS
Dissatisfy

rSingle (2)

Where E is an error, ARSSingle(t) is ARS’ single agent at time t, S t( )ARSSingle
is state of single ARS’ agent at time t, and Nr(t) is the set of constraints,
r, at time t.

Moreover, a conflict refers to the difference between the informa-
tion, goals, plans, tasks, operations, or activities of the collaborating
agents. Conflict is defined as follow.

C ARS t if S t N t[ ( )], ( ) ( )Group ARS
Dissatisfy

rGroup (3)

Where C is conflict, ARSGroup(t) is group of ARS′ agents at time t,
S t( )ARSGroup is state of group of ARS′ agents at time t, and Nr(t) is the set
of constraints, r, at time t.

If dissatisfaction of conflicts or errors is found, conflicts or errors are
detected and need to be solved. According to the definition of errors
and conflicts, potential errors and conflict are described in Table 2.

In every system, conflicts and errors are unavoidable. CCP-ED will
take potential conflicts and errors into account by having conflict and
error rates in the protocol and during experiments. Having conflict and
error rates, real performance of protocol can be analyzed. In addition,
how to develop EPCR algorithm to solve conflicts and errors effectively
can be future research in ARS area.

3.2.3. Elements in CCP-ED
CCP-ED’s objective is to utilize resource available to detect stress in

greenhouse crops. The following sections describe CCP-ED in details
and Fig. 3 presents CCP-ED workflow.

Decision variables:

=x if ARS traverse from i to j
otherwise

1
0ij

=y if ARS search at location i
otherwise

1
0i

Parameters:

=c travel time from i to jij

=d number of infected plants found during operation at
location i

i

=p processing time at node jj

=p extra processing time at node j'j

=q searching time at node jj

=q extra searching time at node j'j

Table 2
Major potential errors and conflicts examples in ARS planning and control.

Type Example Collaborator(s) State Constraint

Error Path error Human Inputs wrong data, or does not run the algorithm properly The objective of the routing
Error Movement or routing error Robot Robot cannot move according to the routing plan Robot’s goal
Error Measuring error Sensor(s) Sensor measures the wrong parameter Sensor’s goal
Conflict Command conflict Human and Robot Human commands the robot to deviate from the initial route Human/operator objective
Conflict Information conflict Human and sensor The human does not receive the information on time Sensor’s objective/capacities
Conflict Time measuring conflict Robot and sensor The robot tends to move to a new location, but sensor has not yet

finished measuring the parameter
Robot’s and sensor(s)’ objectives/
capacities

Conflict Transition conflict Human, robot, and sensor The sensor information is not sent by a robot to the human Robot’s capacity; Sensor’s capacity
Conflict Sensor conflict Multiple sensors Two sensors provide conflicting data for the same parameter

measurement
Sensor’s capacity

Conflict Human conflict Two or more humans Decision from two humans are different Human’s capacity

P.O. Dusadeerungsikul and S.Y. Nof Computers & Industrial Engineering 135 (2019) 456–466

460



=T total avible time

=T total processing time'

= probability to fail to search at node jj

= probability to fail to inspect at node jj

3.2.4. CCP-ED steps
Step 1 Sample n nodes
Step 2 Use genetics algorithm to develop the TSP route for n nodes.

Travelling salesman problem can be formalized as follows.
Let

=x if the ARS traverse from i to j
otherwise

1
0ij

=c cost from i to jij

Objective function:

=
= =

z c xmin
i

n

j

n

ij ij
1 1 (4)

Subject to:

=x for all j1;
i

ij
(5)

=x for all i1;
j

ij
(6)

x for all i and j2;
i M j M

ij
¯ (7)

x binary for all i and jij (8)

- Objective function (4) is to minimize cost of traveling from i to j.
o If xij=1meaning that there is a tour from i to j. Therefore, in TSP,
one would like to minimize the cost of travel from node i to j by
sum of a tour that has smallest cost cij.

- Constraint (5) is the constraint that forces all node has only one
incoming arc.
o For all node, j will have only one arc from node i.

- Constraint (6) is the constraint that forces all node has only one
outgoing arc.
o For all node, i will have only one arc out to node j.

- Constraint (7) is sub-tour elimination constraint.
o Let M and M̄ be the partition of integer i = {1, 2… n} so that

= =M M and M M i¯ ¯ . When we partition group of nodes
as mentioned above, this constraint ensures that every partition
has at least 2 arcs. It means at least 1 arc-in and 1 arc-out for each
partition. Because of this constraint, one can ensure that the sub-
tour is eliminated.

o Fig. 2 (modified from Bellmore & Nemhauser, 1968) shows how
constraint (7) can eliminate sub-tours. Which (a) has a sub tour
since there is no path from M to M̄ but (b) and (c) do not have any
sub-tour, since there are 2 or more arcs from M to M̄ .

Step 3 If cij < T− T′, visit node j and T′ = T′ + cij
Else End algorithm
Step 4 If pj < T− T′, inspection location j with probability of re-

inspection j and T′ = T′ + pj
Else go to Step 3
Step 5 If the sensor finished the task go to Step 6
Else, if p′i < T− T′, spend p′j to finish the measuring task and

T′ = T′ + p′j
Step 6 Checking the quality of data obtained from the sensor, if

good, go to Step 7.
Else, re-measure the data and T′ = T′ + pj+ p′j

Step 7 If the status of node j is good or q > T− T′, then go to Step
10

Else, make the decision yi for search with probability of re-
searching j, T′= T′ + qi

=y searching for the surroundingarea for the suspected plant
otherwise

1
0i

For searching the surrounding area, the ARS will use time qi
Step 8 If the sensor finished the task go to Step 9
Else, if q′i < T− T′, spend q′j to finish the searching task and

T′ = T′ + q′j
Step 9 Checking the quality of data obtained from the sensor, if

good, go to Step 10.
Else, re-measure the data and T′ = T′+ qj+ q′j
Step 10 Update D=D+dj, then do to Step 3.
Fig. 3 demonstrates workflow of CCP-ED as describing in the step by

step protocol.

3.3. Routing algorithm

To guide a mobile robot to visit sampled locations, an effective
routing algorithm which can create an optimal or near optimal tour is
needed. An effective routing algorithm can save traveling time for
mobile robot and allow ARS system to spend more time on finding
infected plants. In this work, genetic algorithm is applied to find a tour
for a mobile robot.

3.3.1. Algorithm steps
Step 1 Generate initial population: Initial locations population

(tour) is randomly generated by having the same probability of
choosing each path. The number of initial locations is 10 times larger
than the size of the sampling locations (Storn, 1996). Each chromosome
in this genetic algorithm is a list of locations that a mobile robot will
potentially visit. In addition, all initial populations are feasible solution
with different fitness value. No initial tours are eliminated.

Step 2 Select parents: roulette wheel selection rule is used in the
algorithm to select a parent based on fitness value (total distance).
Roulette wheel selection rule will give more chance to select chromo-
some with better fitness value. Only the selected chromosome will
move to crossover (Step 3) and mutation (Step 4).

Step 3 Crossover: single point crossover is implemented in the al-
gorithm with probability of successful crossover equal to one minus
expected errors in the system.

Step 4 Mutation: mutation is performed by switching randomly two
locations (two genes) in each chromosome. The probability to suc-
cessfully mutate is equal to one minus expected conflict in the system.

Step 5 Evaluation: all new offspring from mutation step will be
evaluated. Only the offspring which has better fitness value (shorter
distance) will replace the parent.

Fig. 2. Sub-tour elimination (modified from Bellmore & Nemhauser, 1968).
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After performing all five steps, the process repeats until it meets
stopping criterion (three times number of sampling locations). The re-
sult is a planned tour for a mobile robot to actually visit and monitor
stress conditions of inspected plants at each of those locations.

3.4. Adaptive search (AS) algorithm

Adaptive search (AS) algorithm is an important part of collaborative
control protocol to indicate the severity of disease at plants in a
greenhouse. Based on the behavior of a given plant, stress and disease

Fig. 3. CCP-ED Workflow.
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usually propagate in scientifically predictable directions. Stress and
disease will more likely spread in directions influenced by sunlight and
airflow, as discussed earlier. Therefore, given this knowledge, we can
construct the adaptive search algorithm which can reflect real char-
acteristics of plant stress or disease propagation. When the first infected
plant is detected, the adaptive search algorithm will be activated to
further explore high potential locations (i.e., locations with high risk of
stress). In addition, if the fraction of stress plant from the first operation
is beyond a threshold, the second search which help to indicate severity
of such area will be activated. The search algorithm is adaptive, based
on the new information just obtained, type of disease, type of plant,
stress severity in plant, season of the year, and other environmental
conditions.

Suppose Northern and Western directions of plant in greenhouse are
more likely to have similar stress symptoms, based on prior patholo-
gical knowledge. Therefore, the adaptive search algorithm should fur-
ther inspect plants in the given directions once the first infected plant is
found. (Fig. 4)

3.4.1. Algorithm steps
Step 1 Sensors inspect plant at sampled location
Step 2 If the sampled plant has abnormal condition (sign of stress,

diseases, etc.), adaptive search algorithm will be activated by starting to
search for the first potential locations (L1).

Step 3 After performing the first search operation, if more than half
of the plants inspected are also infected, the second search operation
(L2) will be activated.

Step 4 All information about infected locations will be sent to host.
By performing 4 steps of adaptive search algorithm, farmers can

know the magnitude and number of stressed or already infected plants,
hence plan a precise, localized, and safe mitigation procedure. Adaptive
search algorithm will be activated once sensors found the first signs of
stress in plant. This procedure will save time for searching in unlikely
plants’ locations.

3.5. Protocol performance metrics

The following metrics are used for measuring the performance of
the protocol in different aspects.

1. Stressed or infected location found

The protocol aims to correctly find existing stressed or infected lo-
cations in a greenhouse. The first metric is the total number of existing
stressed/infected locations found.

=
=

D d
i

n

i
1 (9)

D= total number of infected locations found
di=number of infected locations found at location i
n=number of sampled locations in the greenhouse

2. Overall Robotic Effectiveness – ORE

Overall Robotic Effectiveness (ORE) measures the overall detection
ability of the robotic system. The measurement comprises three main
components: Utilization (U), Performance (P), and Success (S). Each of
the components measures a different aspect of the system.

• Utilization (U) measures the proportion of uptime in the total
available time for a robot in ARS system.
• Performance (P) measures the time that a robot performs work
(finding infected plants) during its uptime.
• Success (S) measures the percentage of successful operations that
have been completed by the robot; meaning the proportion of in-
fected plants found out of the total number of plants inspected by

this robot.

=ORE UxPxS (10)
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U=utilization
P=performance
S=success
cij=travel time from i to j
di=number of infected plants found during operation at location i
m, n=number of sampled locations in the greenhouse
pi= inspection time at location i
qi=searching time at location i
si=number of inspected plants at location i
T=total available time

The above metrics will be applied in the computer simulation ex-
periments which are described in the next section.

4. Experiments

To assess and validate the CCP-ED designed in this research, com-
puter simulation is used to test its effectiveness. With the same amount
of resources (and time), a protocol which finds the highest number of
existing stressed or already infected plants and has the highest ORE
would be preferred.

4.1. Experimental design

The experiment is meant to methodically determine effectiveness of
the CCP-ED. By assuring that a greenhouse has healthy plants, and ef-
fectively protecting or recovering unhealthy plants inside, the protocol
is implemented to find the stressed or infected locations and the ORE of
the system is measured. A greenhouse simulation with a mobile robot
which is mounted with sensors is the platform. To compare perfor-
mance of the developed protocol, six alternative protocol designs which
represent different combinations of algorithm are tested (Table 3).

Assumptions and parameters

1. The greenhouse consists of 10x5 subspaces and each subspace is

Fig. 4. Adaptive search algorithm when propagation directions are known from
prior pathological findings.
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composed of 30x4 locations.
2. The infected will not propagate between subspaces which means
that the search algorithm needs to inspect only the locations within
a given subspace.

3. Two hours of operation time (120min) with the inspection time
distributed as normal distribution N(20/60, 5/60) minutes and
searching time distributed as normal distribution N(80/60, 20/60)
minutes.

4. The probability of conflict between sensors’ reading is 5% and error
is 10%.

5. The conflict cost time is normally distributed N(5/60, 1/60) for
inspection and N(20/60, 4/60) for searching.

6. The speed of the robot movement is 50m/minute. (Ji, 2014)
7. Using rectilinear distance from location to location.
8. The sampling location will represent the status of surrounding area.

5. Results and analysis

With 100 replications of simulation, the results are shown in Fig. 5
and Fig. 6. Table 4 and Table 5 summarize the matrices from the si-
mulation runs. The developed protocol had the significantly highest
number of infected locations found, even though standard deviation of
this protocol is also relatively higher than others.

From the results, the routing algorithm can improve the number of
infected locations found by 37.74% compared with the alternate design.

The adaptive search algorithm can improve the number of infected
locations found by 71.88%.

ORE of the developed protocol also higher than others which means
the highest productivity of a robotic system. Although protocol 3, 4, 5,
and 6 have the highest utilization, the system stopped before visiting all
nodes since it spent most of the time on an unnecessary task such as
traveling or searching the area which has no potential.

Overall, the developed protocol outperforms others by detecting the
more existing infected locations and utilizes most of resources available
to detect infected locations. It visited all the assigned locations before it
stopped since the utilization is less than 100%. The high performance
indicates that, for the given time, the developed protocol uses time to
perform inspection task (not for traveling). Lastly, the high success-
fulness means adaptive search algorithm can successfully capture
character of disease in plant.

T-test results of the number of infected location (Table 6) have been
done with null hypothesis are the number of infected locations found by
developed protocol and other protocol are the same. With 99.5% con-
fidence interval, the null hypothesizes are rejected. The developed
protocol can find significantly larger number of existing infected loca-
tion than other protocol.

In addition, t-test (Table 7) indicates that the null hypothesizes
“ORE of the developed protocol is the same with other protocols” are
rejected at 99.5% statistically significant level. Therefore, ORE of the
developed protocol is significantly higher than other protocols.

6. Conclusions and discussions

A collaborative control protocol for agricultural robot routing with
online adaptation is established for monitoring the condition of plant in
a greenhouse. The collaborative control protocol combines three main
parties (humans, a mobile robot, and sensors) in the system together by
utilizing CCT. The objective of the system is to monitor condition of
plants with limited resources. Errors and conflicts of the system are
considered in the developed protocol. The protocol expands system

Table 3
Alternative protocols design.

Protocol design No. Routing algorithm Search algorithm

1 Genetic Algorithm Adaptive Search
2 Genetic Algorithm None
3 Genetic Algorithm Always Search
4 Random Routing Adaptive Search
5 Random Routing None
6 Random Routing Always Search

Fig. 5. Number of stressed/infected plants in each run.
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design under the cooperative parties. In this work, performance ma-
trices which are number of infected locations and overall robotic effi-
ciency (ORE) are used to measure performance of the protocol. ORE
will capture overall capability of the robotic system in three aspects;
utilization, performance, and successfulness. With the higher ORE, the
system will better utilize available resources.

The methodology is developed and validated in this work. Routing

algorithm can save traveling time by creating a tour for a mobile robot.
Time saved by routing algorithm can be used for performing inspecting
and monitoring task. Routing algorithm improved number of infected
location found by 45.77%. Adaptive search algorithm captures scien-
tifically known characteristics of plant which can propagate disease to
the nearby locations in specific directions and can improve detection
rate by 71.88%. By having too sensitive search algorithm, however, a

Fig. 6. Overall Robotic Efficiency.

Table 4
Data collected form simulation.

Protocol 1* Protocol 2 Protocol 3 Protocol 4 Protocol 5 Protocol 6

Avg. infected found 105.97 29.80 65.97 57.47 20.17 39.00
SD of infected found 25.15 6.16 17.12 13.03 4.62 13.08
Avg. ORE 36.74% 9.59% 20.47% 9.59% 6.60% 12.38%
SD of ORE 8.27% 2.02% 4.00% 2.02% 1.60% 3.89%

* Preferred design.

Table 5
Overall robotic efficiency.

Protocol 1 Protocol 2 Protocol 3 Protocol 4 Protocol 5 Protocol 6

Avg. Utilization 83.06% 50.34% 99.89% 99.80% 99.77% 99.85%
Avg. Performance 76.37% 61.27% 87.87% 35.73% 21.49% 55.82%
Avg. Success 57.09% 31.11% 23.32% 48.61% 30.81% 22.21%
Avg. ORE 36.74% 9.59% 20.47% 9.59% 6.60% 12.38%

Table 6
t-test of the equality of infected locations found.

H0 Hypothesis P value

1 Average of infected locations found is the same in Protocol 1 and Protocol 2. < 0.005
2 Average of infected locations found is the same in Protocol 1 and Protocol 3. < 0.005
3 Average of infected locations found is the same in Protocol 1 and Protocol 4. < 0.005
4 Average of infected locations found is the same in Protocol 1 and Protocol 5. < 0.005
5 Average of infected locations found is the same in Protocol 1 and Protocol 6. < 0.005

*At significance level 0.05, based on P values of< 0.05, all null hypotheses shown are rejected
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system will waste time to search at the areas that do not have, or have
lower risk of locating an infected plant. Therefore, search algorithm
should be activated only when sensors found the suspicious area.

For recommendations, parameters can be adjusted for reflecting on
other situations. In the future, researchers can pursue the most effective
sampling policy by using historical data to select proper locations for
each run. Moreover, researchers can further explore situations where a
single robot is not sufficient. Operational area might be relatively too
large for one robot, or tasks assigned for the robot are complicated and
need more than one robot to perform the operations. Protocol for multi-
robots operating system would be another future challenge for re-
searchers. Lastly, research about EPCR algorithm to solve potential
conflicts and errors in the system before they occur can be an important
research question open for further exploration and discoveries.
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