
160 IEEE SIGNAL PROCESSING MAGAZINE   |   November 2020   | 1053-5888/20©2020IEEE

Jay S. Stanley III, Eric C. Chi, and Gal Mishne

G raph signal processing (GSP) is an important methodology 
for studying data residing on irregular structures. Because 
acquired data are increasingly taking the form of multiway 

tensors, new signal processing tools are needed to maximally 
utilize the multiway structure within the data. In this article, 
we review modern signal processing frameworks that general-
ize GSP to multiway data, starting from graph signals coupled 
to familiar regular axes, such as time in sensor networks, and 
then extending to general graphs across all tensor modes. This 
widely applicable paradigm motivates reformulating and im-
proving classical problems and approaches to creatively address 
the challenges in tensor-based data. We synthesize common 
themes arising from current efforts to combine GSP with tensor 
analysis and highlight future directions in extending GSP to the 
multiway paradigm.

Introduction
During the past decade, GSP [1] has laid the foundation for 
generalizing classical Fourier theory as defined on a regular 
grid, such as time, to handle signals on irregular structures, 
such as networks. GSP, however, is currently limited to sin-
gle-way analysis: graph signals are processed independently 
of one another, thus ignoring the geometry between multiple 
graph signals. Through the coming decade, generalizing GSP 
to handle multiway data, which are represented by multidi-
mensional arrays and tensors, with graphs underlying each 
axis of the data will be essential for modern signal processing. 
This survey discusses the burgeoning family of multiway GSP 
(MWGSP) methods for analyzing data tensors as a dependent 
collection of axes.

To introduce the concept of way, consider a network of N
sensors, each measuring a signal sampled at T time points. On 
the one hand, classic signal processing treats these signals as a 
collection of N independent, 1D time series, ignoring the rela-
tion structure of the graph. On the other hand, the standard GSP 
perspective treats the data as a collection of T independent, 1D 
graph signals that describe the state of all sensors for a given 
time point .t Tj !  Both are single-way perspectives that ignore 
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the underlying geometry of the other way (also referred to 
as a mode). The recent time–vertex (T–V) framework [2], 
[3] unifies these perspectives to form a dual-way framework 
that processes graph signals that are time-varying (note that 
the graph itself is static, while the signals are time-varying), 
thus bridging the gap between classical 
signal processing and GSP. While one of 
the axes of a T–V signal is a regular grid 
(time), in general, a regular geometry may 
not underlie any of the ways of the data, 
e.g., genes and cells in sequencing data 
and users and items in recommendation 
systems [4]–[6]. Thus, the T–V framework 
is a subset of a more general MWGSP framework that con-
siders the coupling of multiple geometries, whether they are 
predefined temporal or spatial axes or irregular graph-based 
axes. MWGSP is, by definition, more versatile, and it is our 
main focus.

Classical signal processing and GSP typically address 1D 
and 2D signals [1]–[3], [7] and do not address data sets of 
higher dimensions. However, such data sets, given as multi-
way tensors, are becoming increasingly common in many 
domains. Mathematically, tensors generalize matrices to 
higher dimensions [8], and, in this article, the term tensors 
includes matrices (as they are order-two tensors). Examples of 
tensors include video, hyperspectral imaging, magnetic reso-
nance imaging (MRI) scans, multisubject functional MRI 
data, chemometrics, epigenetics, trial-based neural data, and 
higher-order sparse tensor data, such as databases of crime 
incident reports, taxi rides, and ad-click information [9]–
[14]. While tensors are the primary structure for represent-
ing D-dimensional signals, research on tensors and signal 
processing on tensors has primarily focused on factorization 
methods [8], [15], devoting less attention to leveraging the 
underlying geometry on the tensor modes. Recent MWGSP 
approaches incorporate graph smoothness in multiway tensor 
analysis for both robust tensor factorization [12]–[14] and the 
direct data analysis of tensors [9], [10].

In this overview of multiway data analysis, we present a 
broad viewpoint to simultaneously consider the general graphs 
underlying all modes of a tensor. Thus, we interpret multiway 
analyses in light of graph-based signal processing to consid-
er tensors as multiway graph signals defined on multiway 
graphs. GSP is a powerful framework in the multiway set-
ting, leading to intuitive and uniform interpretations of 
operations on irregular geometry. Thus, MWGSP is a non-
trivial departure from classical signal processing, producing 
an opportunity to exploit joint structures and correlations 
across modes to more accurately model and process signals 
in real-world applications of current societal importance: the 
climate, the spread of epidemics and traffic, and complex 
systems in biology.

Both the GSP and tensor analysis communities have been 
developing methods for multiway data analysis and taken differ-
ent but complementary strategies to solving common problems. 
We lay the mathematical and theoretical foundations, drawing 

on work from both communities to develop a framework for the 
higher-order signal processing of tensor data, and we explore 
the challenges and algorithms that result when one imposes 
relational structure along all axes of data tensors. At the heart of 
this framework is the graph Laplacian, which provides a basis 

for the harmonic analysis of data in MWGSP 
and an important regularizer in the model-
ing and recovery of multiway graph signals. 
We illustrate the breadth of MWGSP by 
reinterpreting classic techniques, such as 
the 2D discrete Fourier transform (DFT), as 
a special case of MWGSP and introduce a 
general multiway graph Fourier transform 

(MWGFT). Further, we review novel multiway regularizations 
that are not immediately obvious by viewing the data purely as 
a tensor. Thus, we synthesize into a coherent family a spectrum 
of recent and novel MWGSP methods across varied applica-
tions in inpainting, denoising, data completion, factor analysis, 
dictionary learning, and graph learning [4], [10], [11], [16]–[21]. 

Single-way GSP
GSP generalizes classical signal processing from regular Eu-
clidean geometries, such as time and space, to irregular and 
non-Euclidean geometries represented discretely by a graph. 
In this section, we review basic concepts. A complete survey 
of GSP is provided in [1]. 

Graphs
This tutorial considers undirected, connected, and weight-
ed graphs V E,, WG = " , consisting of a finite vertex set 
V,  an edge set E,  and a weighted adjacency matrix W. 
If two vertices ,vi  v j  are connected, then E( , )v vi j !  and 

;0W W, ,i j j i2=  otherwise, .0W W, ,i j j i= =  We employ a 
superscript parenthetical index to reference graphs and their 
accompanying characteristics from a set of graphs G ;( )i  i.e., 

G V E ., ,G W( ) ( ) ( ) ( )i i i i
i
D

1= = =^ h" ,  Contextually, we will refer to 
the cardinality of the vertex set of a graph G( )i  as V .n( )i

i=  
When parenthetical indexing is not used, we refer to a general 
graph G  on n nodes.

Graph signals
A signal V:f Rn"  on the vertices of a graph on n nodes may 
be represented as a vector ,f Rn!  where ( )f ifi =  is the sig-
nal value at vertex V.vi !  The graph Fourier transform (GFT) 
decomposes a graph signal in terms of the eigenvectors of a 
graph shift operator. Many choices have been proposed for 
graph shifts, including the adjacency matrix W and various 
forms of the graph Laplacian ,L  which is a second-order dif-
ference operator across the edge set of the graph. In this article, 
we use the popular combinatorial graph Laplacian defined as 

:L ,D W= -  where the degree matrix D is diagonal, with el-
ements .D Wj ijii /=  This matrix is real and symmetric. Its 
eigendecomposition is L ,GWWK= )  where the columns of W  
are a complete set of orthonormal eigenvectors ,n

0
1

}, ,=
-" ,  W)  

is the conjugate transpose of ,W  and the diagonal of GK  con-
stitutes the real eigenvalues .n

0
1

m, ,=
-" ,

New signal processing 
tools are needed to 
maximally utilize the 
multiway structure within 
the data.
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Graph Fourier analysis
The GFT and its inverse are

	 ( ) ( ) ( ) ( ) ( ) ( ),f f k k f k f kand
k

N N

1 0

1

m } m }= =)
, ,

,

, ,

= =

-
t t/ / � (1)

or, in matrix form, .GFT ff W= )" ,  The GFT generalizes 
the classical Fourier transform since the former is the spec-
tral expansion of a vector in the discrete graph Laplacian 
eigensystem, while the latter is the spectral expansion of a 
function in the eigensystem of the continuous Laplacian op-
erator. Indeed, the GFT is synonymous with the DFT when 
the graph Laplacian is built on a cyclic path or a ring graph. 
It is typical to reinforce the classical Fourier analogy by 
referring to the eigenvectors of L  as graph harmonics and 
the eigenvalues as graph frequencies and indexing the har-
monics in ascending order of the eigenvalues such that the 
lowest indexed harmonics are the smoothest elements of the 
graph eigenbasis.

Despite these analogies, it is nontrivial to directly extend 
classical tools to signals on graphs. For example, there is no 
straightforward analog of convolution in the time domain to 
convolution in the vertex domain. Instead, filtering signals 
in the GFT domain is defined analogously to filtering in the 
frequency domain, with a filtering function ( )h $t  applied to 
the eigenvalues m,  that take the place of the frequencies

	 ( ) ( ) ( ) ( ),f k h f k
N

0

1

m m }=
,

, , ,

=

-
u t t/ � (2)

where fu  is the result of filtering f with the graph spectral filter 
L( ).h  This spectral analogy is a common approach for gener-

alizing classical notions that lack clear vertex interpretations.

Extending GSP to multiway spaces
Classical D-dimensional Fourier analysis provides a template 
for constructing unified geometries from various data sources. 
The D-dimensional Fourier transform sequentially applies a 
1D Fourier transform to each axis of the data. For example, a 
2D DFT applied to an n n1 2#  real image X is

	
2D-DFT DFT DFT DFT DFT

,

X X X

U XU
r cc r

n n1 2

= =

=

^ ^ ^ ^hh hh" ,
�

(3)

where DFTr  )(DFTc  applies the DFT to the rows (columns) 
of X and Un  denotes a normalized n-point DFT matrix: 

/ /( , ) ( )expnt k t k n1 2 1U jn r= - -^ h " , for t, , , .k n1f=  This 
2D transform decomposes the input into a set of plane waves. 
The 2D GFT is algebraically analogous to the 2D DFT. For two 
graphs G( )1  and G( )2  on n1  and n2  vertices, the 2D DFT of 
X Rn n1 2! #  is

	 2D GFT GFT GFT GFT GFT ,- X X Xnn n n1 2 2 1= =^ ^ ^^ ^h h hh h � (4)

and it was presented in [7] as a method for efficiently process-
ing big data. Note that when G P( ) n1 1=  and G P ,( ) n2 2=  i.e., 
they are cyclic path graphs on n1 and n2 vertices, this transform 
is equivalent to a 2D DFT [7].

In this section, we present the MWGSP framework for gen-
eral D-dimensional signal processing on coupled and irregular 
domains, which enables holistic data analysis by considering 
relational structures on potentially all modes of a multiway 
signal. MWGSP encompasses standard GSP while extending 
fundamental GSP tools, such as graph filters to D dimensions. 
Furthermore, because graphs can be used to model discrete 
structures from classical signal processing, MWGSP forms an 
intuitive superset of discrete signal processing in domains such 
as images and video.

Tensors
Tensors are a data structure representing D-dimensional sig-
nals as well as a mathematical tool for analyzing multilinear 
spaces. We use both perspectives to formulate MWGSP. In 
this article, we adopt the tensor terminology and notation used 
by [8].

Tensors as a D -dimensional array
The number of ways or modes of a tensor is its order. Vectors 
are tensors of order one and denoted by boldface lowercase let-
ters, e.g., a. Matrices are tensors of order two and represented 
by boldface capital letters, e.g., A. Tensors of higher orders, 
namely, order three and greater (see “Order-Three Tensors”),  
are indicated by boldface Euler script letters, e.g., .A  If A  is 
a D-way data array of size ,n nD1 # #g  we say A  is a tensor 
of order D.

There are multiple operations to reshape tensors and that 
are used for convenient calculations. Vectorization maps the 
elements of a matrix into a vector in column-major order. That 
is, for ,X Rn n1 2! #

, , , , , , , , , .vec( )X X X X X X X, , , , ,n n n n n1 1 1 12 2 1
T

1 1 2 1 2f f f f= 6 @

A tensor mode-,  vectorization operator, ( ),vec X,  is simi-
larly defined by stacking the elements of X  in mode-d major 
order. Let , , { , , }n nten x XD1 f, =^ h  be the , th tensorization of 
x, which is the inverse of the , -major vectorization of .X  Denote 
by \n n ni j

D
ji

1
11, = ,

,=
-

= +
%%  the product of all factor sizes 

except for the , th factor. Then, let ,mat X RX \( ) n n, != #, ,,^ h  
be the mode- ,  matricization of X  formed by setting the 
, th mode of X  to the rows of ,X( ),  vectorizing the remaining 
modes to form the columns of ,X( ),  as in Figure S1.

Tensor products
Up to this point, we have explicitly avoided constructing 
D-dimensional transforms. In the 2D case, applying a 2D 
transform is calculated via linear operators, as in (3); gener-
alizing to higher-order tensors requires multilinear operators. 
Therefore, we introduce the tensor product and its discrete 
form, which is known as the Kronecker product. These prod-
ucts are powerful tools for succinctly describing D-dimen-
sional transforms. 

The great utility of the tensor product is that it simul-
taneously transforms spaces alongside their linear opera-
tors. This is the so-called universal property of the tensor 
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product. In brief, it states that the tensor product, denoted 
by ,,  of two vector spaces V and W is the unique result of 
a bilinear map : .V W V W"# 7{  The power in {  is that 
it uniquely factors any bilinear map on V W#  into a lin-
ear map on .V W7  The universal property implies that the 
tensor product is symmetric: V W7  is a canonical isomor-
phism of .W V7  Although the tensor product is defined in 
terms of two vector spaces, it can be repeatedly applied to 
combine many domains, so we generically refer to it as a 
product of many spaces.

In this article, we are concerned with the tensor product 
on Hilbert spaces H ,( )k  , , .k D1 f=  These metric spaces 
include both continuous and discrete Euclidean domains from 
classical signal processing as well as the non-Euclidean ver-
tex domain. Since tensor products on Hilbert spaces produce 
Hilbert spaces, we can combine time, space, the vertex, and 
other signal processing domains via the tensor product and 
remain in a Hilbert space. Under some constraints, an ortho-
normal basis for the product of D Hilbert spaces is directly 
admitted by the tensor product of the factor spaces. These 
properties of the tensor product are the mathematical founda-
tions for the remainder of this tutorial, in which we construct 
a multiway signal processing framework based on unifying 

multiple input spaces and their Fourier operators into a single 
linear representation.

Kronecker products
The Kronecker product produces the matrix of a tensor prod-
uct with respect to a standard basis and generalizes the outer 
product of vectors xy)  for x Cm!  and .y Cn!  For an anal-
ogy, it is common to use the same notation to denote the Kro-
necker product and the tensor product. The Kronecker product 
is associative. Consequently, the matrix M that is the Kro-
necker product of a sequence of D matrices M C( )k n nk k! #  for 

, ,k D1 f=  is

	

.

M M M M M M

M M
k

D

k

D

k

D

1 2 1

1
( ) (1) ( ) ( ) ( )

(1) ( )

k k k D

D

7 7

7 7g

= = =

=

= = =

-

e eo o, , ,
�

(5)

It is important to note that the Kronecker product is, in gener-
al, noncommutative. For brevity, we will apply a decremental 
Kronecker product using the notation

.M M M M( ) ( )

k

D

k

D
DD

1

1

0

1
( ) ( )k k. 7 7g= =

=

-

=

-

, ,

For simplicity, we briefly review some tensor terminology for 
the three-way tensor CX n n n1 2 3! # # . The size of each mode is 
denoted by nk , with n1  being the number of columns, n2  
the number of rows, and n3  the number of tubes [8]. Video 
and the time-series recording of matrix-valued signals are 

common applications for tensors of this form (Figure S1).   
In videos, the first and second modes of the tensor encode 
pixel values for each frame, while the third mode indexes 
the frames in time. We can slice a video tensor to produce 
different views of the data, as presented in Figure S1.

Order-Three Tensors

CANDECOMP/
PARAFAC

Decomposition

c1

a1 a2

b1

c2

b2
1D Fibers

2D Slices Matricization

+ …

…

(a)

(c)

(b) (d)

(e)

FIGURE S1. Tensor terminology. (a) A time-lapse video is an order-three tensor. (b) Tensor slices (left to right): A frontal slice is the matrix X k}  that 
is formed by selecting the kth frame of the video. The lateral slice, X j| |, is a matrix (viewable as an image) that shows the time evolution of the j th 
column of pixels in the input. The horizontal slice, X i}, similarly contains the time evolution of one row of pixels. (c) The 2D indexing of third-order 
tensors yields a 1D fiber. For example, the tubular fiber X ij|, is an n3-dimensional time series of the i, jth pixel across all frames; the two tubular fibers 
correspond to the highlighted pixels in the tensor. (d) Mode 1 matricization concatenates all frontal slices side by side. (e) Canonical decomposition/ 
parallel factor analysis decomposition (CANDECOMP/PARAFAC) is a sum of the rank-one tensors. (Video source: Stock footage provided by 
peacezxp, downloaded from https://www.videvo.net/video/timelapse-of-klcc-kuala-lumpur/2654/.)
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The Kronecker product has many convenient algebra-
ic properties for computing multidimensional transforms. 
Vectorization enables one to express bilinear matrix multipli-
cation as a linear transformation

	 ,vec vecCXB B C X7= R^ ^ ^h h h � (6)

assuming that the dimensions of ,C  ,X  and B are compatible 
such that CXB is a valid operation. This identity is a discrete 
realization of the universal property of tensors and shows that 
the Kronecker product corresponds to a bilinear operator. We 
will use this identity to 1) construct multidimensional discrete 
Fourier bases and 2) decompose multiway algorithms for com-
putational efficiency.

Multiway transforms and filters
We now apply (6) to explicitly construct a 2D GFT. If ( )1W  and 

( )2W  are Fourier bases for graph signals on any two graphs G1  
and G ,2  a 2D GFT basis is .( ) ( )2 17W W  This is a single ortho-
normal basis of dimension V V V V ,( ) ( ) ( )( ) 2 1 21 #  which 
can be used to describe a 2D graph signal X Rn n1 2! #  in the 
geometry of a single multiway graph by the GFT

.vec Xx ( ) ( )2 17W W=
)t ^ ^h h

Unlike the DFT, where it is clear that increasing the dimen-
sion yields grids, cubes, and hypercubes, interpreting the ge-
ometry of ( ) ( )2 17W W  is less intuitive. For this, we must turn 
to a graph product.

Product graphs
MWGSP relies on a graph underlying each mode of the given 
tensor data. The question is: What joint geometry arises from 
these graphs, and what multilinear operators exist on this joint 
graph structure? Our approach is to construct a multiway graph 
G V E, , W= " , across the entirety of a data X  as the product 
graph of a set of factor graphs G G ., ,G ( ) ( )D1 f= " ,  For exam-
ple, if RX n n n1 2 3! # #  contains the results of an n3  sample lon-
gitudinal survey of n2  genes on a cohort of n1  patients, then the 
intramodal relationships of X  are modeled by separate graphs: 
G ,( )1  in which each patient is a vertex; G ,( )2  in which each gene 
is a vertex; and G ,( )3  which represents time as a path graph on 
n3  vertices. We will use this example throughout this section, 
although our derivation generalizes to tensors of arbitrary order.

While one could treat matrix-valued slices of X  as signals 
on each individual graph, we use the graph product to model 
X  as a single graph signal on G. We begin by constructing V, 
the vertices of G, which, for all graph products, is performed 
by assigning a single vertex to every element in the Cartesian 
product of the factor vertex sets; i.e., V V V .( ) ( )D1 # #f=  
Thus, the cardinality of the vertex set of G  is .n nk k

D
1=
=

%  
For example, our longitudinal survey will be modeled by the 
product graph G  on n n n n1 2 3=  vertices. As a Cartesian prod-
uct, the elements Vv !  can be expressed as the tuple v =
(patient, gene, time). The experimental observation tensor 
can be modeled as a graph signal ( )vecx X=  in .Rn  [We can 

do this because the vectorization vec( )X  is isomorphic to ,X  
which can be shown using (6).] 

Our next step is to learn the topology of G  by mapping the 
edge sets (weights) of the factor graphs into a single set of prod-
uct edges (weights) E. There are a variety of graph products, 
each of which differs from the others only in the construction 
of this map. We focus on the Cartesian graph product, as it is 
the most widely employed in multiway algorithms. However, 
other products, such as the tensor and strong graph products, 
each induce novel edge topologies that warrant further explora-
tion of MWGSP [7].

Cartesian graph products
We denote the Cartesian product of D graphs as

	 G G G G .( ) ( ) ( )D
D

1

1 g4 4= =
,

,

=
4 � (7)

The Cartesian graph product is intuitively an exclusive-or 
product since, for any two vertices

	 V, , , , , ,v v v u u u( ) ( ) ( ) ( )D D1 1f f 1= =^ ^h h" , � (8)

the edge ,v u^ h exists if and only if there exists a single i such 
that E,v u( ) ( ) ( )i i i!^ h  and v u( ) ( )=, ,  for all .i, !  In other words, 
the vertices of G  are connected if and only if, exclusively, one 
pair of factor vertices is adjacent, and the remaining factor ver-
tices are the same. Figure 1(a) illustrates the generation of an 
n n1 2#  2D grid graph via the product of two path graphs on 
n1  and n2  vertices.

The Cartesian graph product can induce topological prop-
erties, such as regularity, onto a graph. Since the path graph 
basis is well characterized as a discrete Fourier basis, it is a 
convenient tool for including Euclidean domains in multiway 
analysis. For example, we can model time series and longitu-
dinal graph signals as a single vector by using a path graph 
product. In the case of our gene expression data ,X  the prod-
uct of the gene and the patient mode graphs with a path on 
n3  vertices; i.e., G G ,P( ) ( ) n1 2 34 4  models the data by treating 
the temporal mode as a sequence. One can intuit this opera-
tion as copying G G ,n( ) ( )1 2

34  times and connecting the edges 
between each copy.

Product graph matrices
The Kronecker product links graph shift operators on Car-
tesian product graphs to the corresponding operators on the 
factors. The Kronecker sum of D matrices A C( )k n nk k! #  for 

, ,k D1 f=  is

.

,

,n n nnwhere and

A A II( )
n k

k k

k

k

k

k

D

n k
k

D

D

11

1

1 1

,= =

= =,

,

,

,

2 2

2 1

= =

= + =

-

+

%%

/

The joint adjacency matrix A and the graph Laplacian L  
are constructed by the Kronecker sum of their correspond-
ing factor graph matrices. The eigensystem of a Kronecker 
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sum is generated by the pairwise sum of the eigenvalues of 
its factors and the tensor product of the factor eigenbases 
[22, Th. 4.4.5]. Thus, the Fourier basis W  for the product 
graph G  is immediate from the factors. For , , ,k D1 f=  let 

,k km },,^ h be the k, th eigenpair of L( )k  for .n0 1k k,# # -  
Then, let ( , , ) [ ] [ ]I n nD D1 1 # #f f, , !=,  be a multi-index 
to the , th eigenpair of L. The product graph Fourier basis 
is then

	 , , .( ) ( )
I I

k

k

D

k

k
D

1 1
k k.m } m }= , ,

= =
, , 7^ eh o/ � (9)

Thus, the MWGFT of a multiway graph signal X  is

	 vec vec .x X X( )
D

k

k

1

.W W= =)
)

=

,t ^ ^eh ho � (10)

This formulation includes applying a single-way trans-
form along one mode of the tensor; for example, 
DFT Xn1 =" ,  vecI U Xk

D
n n2

T
k 1. 7=, ^` hj  applies the DFT 

along the first mode of the tensor (see “Multiway Signal 
Compression”).

Efficient MWGSP by graph factorization
On the surface, the computational cost of an MWGFT (and 
MWGSP, in general) seems high, as multiway product graphs 
are often much larger than their individual factors; the cardi-

nality of the product vertex set is the product of the number of 
vertices in each factor. However, the product graph structure 
actually yields efficient algorithms. With small adjustments 
to fundamental operations, such as matrix multiplication, in 
the best case, one can effectively reduce the computational 
burden of an order-D tensor with n nD

1=
, ,=
%  total elements 

to a sequence of problems on n( / )D1  elements. The computa-
tional strategy is to apply (6) and its order-D generalization 
to avoid storing and computing large product graph operators. 
We introduce the order-D form of (6) via an algorithm. Given 
a sequence of operators ,M R( ) n!, ,  , , ,D1 f, =  an efficient 
algorithm for computing y vec( )M X( )D

1= ,
,

=7  proceeds by 
applying each M( ),  to the corresponding mode-wise matrici-
zation of .X  Algorithm 1 presents pseudocode for computing 
this product.

As a sequential product of an n n#, ,  matrix with an 
\n n# ,,  matrix, this method can dramatically improve the cost 

of algorithms that depend on matrix multiplication. Further, 
the number of operations depends only on computations across 
smaller factor matrices, enabling one to perform computations 
on the product graph without computing and storing expensive 
operators. For example, consider the computational cost of 
applying an MWGFT for a product graph G  on n nD

1P= , ,=  
nodes. In the worst case, Algorithm 1 is as fast as directly 
computing (10). However, in the best-case scenario, n nD=,  
for all , , ,D1, f=  and computing D graph Fourier bases of 

FIGURE 1. Multiway graphs, signals, and spectral filters. (a) The Cartesian graph product generates a copy of G ( )1  at each vertex of G ( )2 . (b) A multiway 
graph formed from a dynamic mesh [2]. This T–V graph (purple t0= ; yellow t7= ) connects each point in the mesh to its counterpart in adjacent frames. 
The temporal evolution of the 3D coordinates is a graph signal on this graph. (c) A single column of the joint adjacency matrix of a 2D grid shifts signals 
to their neighbors. (d)–(f) Multiway filtering. A multiway signal on a 2D grid (top). This signal can be decomposed into an impulse and a smooth signal; 
thus, it is band-limited along one way of the grid. A frame of the dancer mesh (bottom). (e) A separable diffusion filter is the product of domain-specific 
heat kernels. Separable filters can filter along both axes in unison (left) or each axis independently (middle/right). (f) A nonseparable filter. For the dy-
namic mesh, filtering along only one mode reveals either the skeleton structure ( )02x =  or the averaged (blurred) dynamics of the figure ( )01x = , while 
joint separable and nonseparable filtering reveals joint dependencies.

G (1)

G (2)

G

=

(a)

(b) (d) (e) (f)

(c)

A

exp(−t1λ(1))exp(−t2λ(2))/k

t1 > 0
t2 > 0

t1 > 0
t2 = 0

t1 = 0
t2 > 0
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A key motivation for MWGSP is the capability of encoding 
multiway data in a compact way. Transforms with good 
energy compactness summarize the data well and can be 
used to construct efficient regularizers for regression prob-
lems. Figure S2 demonstrates energy compression in four 
data sets. The dancer mesh [2] shown in Figure 1(b) 
couples n1 =  1,502 points to temporal evolution across 
n2 = 570 time steps. The Molene weather data set [23] 
(n1 = 32 weather stations measuring temperatures across 
n2 = 24 hours across n3 = 30 days) couples a spatially 
determined graph to two temporal scales (hours and days). 
The time-lapse video [2] couples a 2D spatial grid 
(492 × 853 pixels) to a temporal axis (602 time steps), 
while the hyperspectral data set [24] couples a 2D spatial 
grid (145 × 145 pixels) to 200 spectral bandwidths (treated 
as a graph). All graphs were constructed using k nearest 

neighbors with weighted edges that were set using a 
Gaussian kernel on the matricized modes of the tensor.

To measure the energy compactness, we compute the rele-
vant transforms among the GFT, DFT (temporal axis), joint 
time–vertex Fourier transform (JFT), 2D DFT (spatial grid), 3D 
DFT (spatial grid + temporal axis), and MWGFT (all tensor 
modes) for each data set. We replace the spectrum coeffi-
cients with magnitudes smaller than the pth percentile with 
zeros and perform the corresponding inverse transform on 
the resulting coefficients. The normalized compression error 
is computed from the signal reconstructed after thresholding 
the values of the transforms below the pth percentile, which is 
denoted by X p  and given by || ( || ||) / ( ) || .vec vecX X Xp 2 2-  
MWGFT achieves the best compactness in all data sets, pro-
viding the insight that there are advantages to treating classi-
cal domains (time and space) as themselves lying on graphs.

Multiway Signal Compression
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FIGURE S2. The compactness of single- and multiway transforms for different data sets: (a) the dancer mesh (Figure 1), (b) the Molene weather 
data set, (c) a time-lapse video (Figure S1), and (d) an Airborne Visible/Infrared Imaging Spectrometer Indiana pines hyperspectral image.
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size n nD D#  requires nO /D3^ h operations. To compute an 
MWGFT using the factor bases, we use ( )W ,  as the sequence 
of operators in Algorithm 1, which costs DnO /D1 1+^ h opera-
tions. This improves the standard GFT, which costs nO 3^ h 
operations to obtain an eigenbasis and nO 2^ h operations to 
apply. For example, when D 3=  and ,n n n n1 2 3

3= = =  we 
obtain an asymptotically linear factorization of a graph Fourier 
basis for ,G  and the corresponding MWGFT can be applied in 

n3O /1 3 1+^ h operations.

Edge density
The graph edge density impacts the scalability of signal pro-
cessing algorithms for multiway data. Matrix equations can 
be efficiently solved by iteratively computing sparse matrix–
vector products. The computational complexity of such algo-
rithms, which include fundamental techniques, such as Krylov 
subspace methods and polynomial approximation, typically 
depend linearly on the number of edges in the graphs, e.g., 
[2], [5], and [25]. This dependency suggests using the sparsest 
possible graph that still captures the main similarity structure 
along each mode. Indeed, a common strategy is to construct 
sparse graph Laplacian matrices [25] or edge-incidence ma-
trices [5] using k-nearest-neighbor graphs that produce edge 
sets whose cardinality is linear in the number of nodes. Yet, 
given a sparse factor graph, there is no guarantee that the 

product will be sparse. Thus, major efficiency gains for 
multiway algorithms can be made by replacing iterative ma-
trix–vector multiplications (both sparse and dense) with a se-
quence of factor graph sparse matrix–vector multiplications 
through Algorithm 1.

Three immediate applications for such a factorization are 
multiway filter approximations (see, e.g., [2]), compressive 
spectral clustering [26], and fast GFT [27]. We detail the for-
mer while briefly describing future directions for the latter. 
For filtering, one could spectrally define and exactly compute 
a multiway product graph filter (see “Multiway Filters”) by 
using the MWGSP techniques described in the previous section. 
Yet, Chebyshev approximations [2] are an efficient, robust, and 
accurate technique for approximate filtering. These approaches 

Algorithm 1. D-tensor multilinear transformations.

1:  Initialize Y X=

2:  for , , D1 f, =  do
3:    Matricize: ,matY Y( ) ,=, ^ h
4:    Factor update: M YY ( ) ( ) ( )=, , ,<

5:    Reform tensor: , , , ,n nten YY ( )
D1 f,= ,^ h" ,

6:  end for
7:  Vectorization: .vecy Y= ^ h

It is natural to define spectral filters for multiway graph sig-
nals on the product G  as a function across the product 
graph eigenvalues :h R7K  as if they are traditional 
spectrally defined GSP filters. Since these functions operate 
on the product eigenvalues, they directly consider the 
edge topology induced by a particular choice of product. 
Yet, it is feasible to develop filters for multiway graph sig-
nals on G  that are defined by multivariate functions 

:h R( ) D1 7# #gK K .^ h  These multivariate filters are split 
into two classes: separable and nonseparable.

Separable filters have multivariate response functions that 
can be written as the product of separate univariate func-
tions. In the D = 2 case, a separable filter for the product 
graph could be written as ,H H x( ) ( )2 17^ h  in which 

( )hH( ) ( ) ( ) ( ) ( )1 1 1 1 1W K W=
)  and .( )hH( ) ( ) ( ) ( ) ( )2 2 2 2 2W K W=

)  Since 
this Kronecker product is permutation-equivalent, we can 
treat its operation as an order-independent unimodal filter-
ing of x  (6). If H( )1  and H( )2  are both filters defined in a 
Laplacian eigenbasis of their respective factor graph, then 
the tensor product H H( ) ( )2 17^ h  is also diagonalized by the 
product eigenbasis. Thus, this filter is merely a reweighting 
of the product graph eigenbasis. In Figure 1(e), we demon-
strate the application of a product of mode-wise heat filters 
to a graph signal on a grid [Figure 1(d), top] and to a T–V 
signal that is a dynamic mesh [Figure 1(d), bottom]. While 

there is a choice of 1x  and 2x  such that certain regions of 
this filter can be computed from a heat kernel on the 
Cartesian product graph spectrum, such an approach aban-
dons the flexibility of bilinear filtering. By separability, each 
mode can be analyzed independently of the others by set-
ting the appropriate kx  to zero. This enables independently 
analyzing a joint signal along each mode, for example, by 
filtering out high-frequency structures along one domain 
while preserving the frequency content of the other mode. A 
D -way separable filter applied to vecx X= ^ h  is given by

,hx x( )

k

D k

1
# KW W= )

=
u ` j

where h ( )
k
D k

1# K=^ h  is a diagonal matrix whose elements 
are given by ,h( )

k
kD

1 kmP ,= ^ h  i.e., the product of separate 
spectral functions h( )k  for each factor graph .G( )k

Nonseparable filters cannot be designed from separate 
univariate filters on each mode. This class of filters encom-
passes a broad group of functions that includes many fil-
ters defined in terms of the product graph eigenvalues as 
well as multivariate functions [Figure 1(f)]. Indeed, the 
authors of [2] find that one cannot, in general, describe 
partial differential equations that define diffusion, wave, 
and disease propagation with separable filters, as the rela-
tionship between frequencies is not independent.

Multiway Filters
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approximate spectrally defined filters by applying a recurrently 
defined weighted matrix–vector multiplication. Efficient mul-
tiway Chebyshev approximation leverages the Kronecker sum 
definition for product graph Laplacians L. That is, by noting that 

I I xL Lk n n
D

1 k k7 7R= = 2 1x ( )k^ h  is equivalent to computing

,I x I I x I xL LL ( ) ( )( )
n n n

D
n

21
D1 2 17 7 7 f+ + +2 2 1^ ^ ^h h h

it is clear that Chebyshev approximations of functions on L  
(such as spectral graph wavelets) can be written as a sum of 
sparse matrix vector multiplications; all operations are now 
dominated by the densest factor graph.

The efficiency of this approach cannot be understated, as it 
facilitates many algorithms, including the compressive spec-
tral algorithm [26]. Indeed, it is increasingly common to esti-
mate geometric and spectral qualities of the graph Laplacian 
by applying ideal filter approximations for eigencounting and 
coherence estimation. Finally, factor graph sparsity and Algo-
rithm 1 could be combined with recently proposed approaches 
for approximate orthogonal decompositions [27] to construct 
a fast-product GFT. This algorithm would admit striking simi-
larities to the classical fast Fourier transform (FFT).

MWGSP frameworks
Here, we highlight two recent multiway frameworks: the T–V 
framework [2] and generalized GSP [28].

T–V framework
The joint T–V framework [2], [3], [23] arose to address the 
limitations of GSP in analyzing dynamic data on graphs. This 
required generalizing harmonic analysis to a coupled time-
graph setting by connecting a regular axis (time) to an arbi-
trary graph. The central application of these techniques is to 
analyze graph signals that are time-varying, for example, a 
time series that resides on a sensor graph. Each time point 
of this series is itself a graph signal, while each vertex on the 
graph maps to a time series of T samples. This enables learn-
ing covariate structures from T–V signals, which are bivariate 
functions on the vertex and the time domain. Such sequenc-
es of graph signals are commonly collected longitudinally 
through sensor networks, video, health data, and social net-
works. The JFT [2] for a T–V signal X R | |V T! #  is defined as

{ ( )} ( ) ( ),JFT{ } or JFT vec vecUX XU X X* *
T T 7W W= = r

such that the multiway Fourier transform of a T–V signal 
is a tensor product of the DFT basis with a GFT basis (see 
Figure S2). Consequently, the JFT admits a fast transform 
in which one first performs an FFT along the time mode of 
the data before taking the GFT of the result, thus requiring 
only one Laplacian diagonalizaiton.

Including the DFT basis in this framework immediately 
admits novel joint T–V structures that are based on classi-
cal tools, such as variational norms that combine classical 
variation with graph variation [2]. For efficient filter analy-
sis, they also propose an FFT and a Chebyshev-based algo-

rithm for computing fast T–V filters, which applies to both 
separable and nonseparable filters; see an example of T–V 
filtering in Figure 1. Finally, overcomplete dictionary rep-
resentations are constructed as a tensor-like composition of 
graph spectral dictionaries with classical a short-time Fou-
rier transform and wavelet frames. These joint dictionaries 
can be constructed to form frames, enabling the analysis 
and manipulation of data in terms of time-frequency–ver-
tex-frequency localized atoms. T–V spectral filtering was 
also introduced in [3], in addition to a T–V Kalman filter, 
with both batch and online function estimators. Further 
works have integrated ideas from classical signal process-
ing, such as stationarity to graph and T–V signals [23], [29], 
[30]. Thus, recent developments in the T–V framework can 
serve as a road map for the future development of general 
MWGSP methods.

Generalized GSP
Another recent development is that of the generalized GSP 
[28] framework, which extends the notions of MWGSP to 
arbitrary, nongraphical geometries. Generalized GSP facili-
tates the multivariate signal processing of interesting signals 
in which at least one domain lacks a discrete geometry. This 
framework recognizes that the key intuition of GSP is the util-
ity of irregular, non-Euclidean geometries for analyzing sig-
nals. However, where GSP techniques axiomatize a finite rela-
tional structure encoded by a graph shift operator, generalized 
GSP extends classical Fourier analogies to arbitrary Hilbert 
spaces (i.e., complete inner-product spaces) HH !  equipped 
with a compact, self-adjoint operator A. This broad class of 
geometries contains GSP as the standard space of square sum-
mable graph signals; i.e., {( ) : , }L V f V fC2

27 31< <=  is 
itself a Hilbert space.

The geometries and corresponding signals that can be 
induced by generalized GSP offer an intriguing juxtaposition 
of continuous and discrete topologies. As an example, con-
sider the tensor product of a graph G  with the space of square 
integrable functions on an interval, e.g., ([ , ]) .L 1 1G 27 -  
Graph signals in this space map each vertex to an L2 function. 
Conversely, L2 functions can be mapped to specific vertices. 
To generate a Fourier basis for the product space, one simply 
takes the tensor product of the factor space eigenbases. This 
is a promising future direction for MWGSP, as it implies that 
one can, for instance, combine graph Fourier bases with gen-
eralized Fourier bases for innovative signal representations.

The authors of [11] proposed an early example of generalized 
GSP, though under a different name. This work modeled vid-
eos and collections of related matrices as matrix-valued graph 
signals using matrix convolutional networks. The authors 
aimed to solve the challenging missing-data problem of node 
undersampling: some matrix slices from the networks are 
completely unobserved. When matrices have a low-rank GFT, 
the network’s graph structure enables the recovery of miss-
ing slices. In light of the development of generalized GSP, it 
is clear that [11] proposed an algorithm for the denoising of 
multiway signals on .RG n n1 27 #
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Signal processing on multiway graphs
In the previous section, we focused on signal processing 
through the lens of harmonic analysis, using the graph Lapla-
cian to analyze data in the spectral domain. In this section, 
we focus on signal modeling and recovery in the multiway 
setting through the lens of optimization, where the graph 
Laplacian serves the role of imposing signal smoothness. 
Including graph structures along the modes of multiway ma-
trices and higher-order tensors has led to more robust and 
efficient approaches for denoising, matrix completion, and 
inpainting; collaborative filtering; recommendation systems; 
biclustering; factorization; and dictionary learning [4], [10], 
[11], [16], [18], [21]. We begin with dual-graph modeling in 
the matrix setting and then extend to the higher-order tensor 
setting. In the tensor setting, we review the use of multiway 
graph regularization in tensor factorization methods and in a 
complementary fashion using tensor factorization in signal 
modeling and recovering to make graph regularization com-
putationally tractable.

Signal processing on dual graphs
The quadratic form of the graph Laplacian of a graph G  

	 ,f f W f fL ,
( , )

i j
i j

i j
2= -R

! f

^ h/ � (11)

quantifies the smoothness of a signal f with respect to the graph, 
where the smoother a signal is, the smaller the value. Conse-
quently, the typical model in the multiway signal recovery set-
ting is to add dual row–column graph regularizers of the form 

R RTr TrX X X XLLr r c cc c+^ ^h h to classical problem formula-
tions; such a regularization incentivizes the recovered signal to 
be smooth with respect to the underlying data graphs (11). The 
matrices Lr  and Lc  denote the graph Laplacians on the rows 
and columns of X, respectively, and the nonnegative tuning pa-
rameters rc  and cc  trade off data fitting for smoothness with 
respect to the row and column geometries encoded in Lr  and 
Lc, respectively. The choice of underlying graphs consequently 
greatly influences the quality of signal reconstruction. For de-
tails on how to construct a graph, see “Graph Construction.”

A question that arises in graph-based methods is how to 
construct the graphs themselves. In some applications, 
e.g., social and citation networks, a graph is known a pri-
ori. In transportation and communication networks, verti-
ces represent physical locations (traffic intersections) and 
sensors (routers in a Wi-Fi network), and edges encode 
connected locations. In other settings, there is no a priori 
graph, and the topology must be learned from the data. 
We describe common strategies and challenges.
Data-driven graphs
One of the most popular ways to construct a graph is 
from the data itself, for example, using a k-nearest-
neighbor graph with Gaussian kernel weights.  
For example, in our simulations, if rows i and j are  
k 7= nearest neighbors, their weight is W ,

( )
i j
1 =  

{ || || / }exp X Xi j 2
2

· · v- -  with kernel bandwidth v. Other
wise, their weight is zero. One difficulty that arises is that 
in the presence of noise, outliers, and missing entries, con-
structing a graph from the data yields a corrupted graph. 
Figure 2(b) compares a “noisy” graph constructed from the 
missing data to an “oracle” graph constructed from the 
original complete data. The noisy graph along the images 
( )A( )1  connects images of different people together, while 
the noisy feature graph ( )A( )2  loses the local pixel geome-
try. The results in Figure 2(a) demonstrate that, for a higher 
percentage of the missing values, the noisy graph 
degrades the performance compared to the oracle graph.
Graphs from side information
Supplementary information can be leveraged to define 
the similarity structure among rows and columns for the 

purpose of graph construction. In some cases, there 
may be a natural geometry that easily translates 
into similarity graphs for rows and columns. For 
example, in [23], the authors constructed a graph 
among weather stations by using the stations’ physi-
cal coordinates. In other cases, various supplemen-
tal data sets may be leveraged to provide similarity 
structure among rows and columns. As an example 
regarding music recommendation systems, in [36], 
the authors used a publicly available playlist cate-
gorization as well as summary statistics extracted 
from an audio signal to construct a graph for esti-
mating a latent association matrix between playlists 
and songs.
Graph learning
In [16] and [19], the graphs on the feature space are 
learned alongside the signal by minimizing over ,L  in 
addition to the signal recovery in the optimization prob-
lem. For a detailed review, see [37].
Dynamically varying graphs
Graphs may not be static, presenting a current challenge 
in GSP. This is especially acute in T–V frameworks, which 
admit time as one of components in the analysis. The diffi-
culties include determining how to identify when a graph 
needs to be updated, i.e., when the underlying topology 
has changed. The task of accounting for dynamically vary-
ing graphs also poses computational questions, namely, 
finding computationally efficient ways to update graphs 
within the processing framework that will minimally spawn 
artifacts at transitions.

Graph Construction 
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Table 1 presents formulations of these different algorithms; 
multiple extensions and other methods exist in the literature. 
For the T–V framework [2], the graph on the columns is a tem-
poral graph modeled explicitly with a ring graph Laplacian 

.LT  The mapping PX  is a projection operator on the set of 
observed entries H in missing-data scenarios. The methods 
may differ in their fidelity term, minimizing the Frobenius 
norm for denoising and the one-norm to impart robustness to 
outliers [25], and several methods assume a low-rank struc-
ture, either with a nuclear norm penalty [31] or with an explicit 
low-rank factorization of the data matrix Y as DX, sometimes 
with additional constraints on the factor matrices (nonnega-
tivity [33] and sparsity [16]). A few methods aim to solve a 
matrix completion problem (see Figure 2). Finally, while most 
instances of graph regularization rely on the quadratic penalty 
term R wTr X X X XL ( , ) ,r i j i j i j 2

2
· ·r < <R= -! f ,^ h  the biclustering 

formulation in [5] and [32] employs a penalty that is either lin-

ear in the l2-norm or concave and continuously differentiable, 
relying on the mapping ( ) .X Xi j 2· ·< <X -  The motivation there 
is that convex penalties, when X is either linear or quadratic, 
do not introduce enough smoothing for small differences and 
too much smoothing for large differences, resulting in poorer 
clustering results.

Typically, an alternating optimization algorithm is used to 
solve the various problems in Table 1. The T–V regularization 
problem is the only one with a closed-form solution given by a 
joint nonseparable low-pass filter (generalizing Tikhonov reg-
ularization to the T–V case). The graph DNMF [33] relies on 
an alternating optimization scheme for the nonnegative factor 
matrices. Other solutions are computed with proximal meth-
ods, such as the alternating-direction method of multipliers 
to handle multiple regularization terms via variable splitting. 
Dual-graph regularized approaches have been shown to con-
sistently outperform their nonregularized and single-graph 

Table 1. Multiway graph regularization formulations. 

Fidelity Term Graph Regularizers Additional Constraints and Regularizers

MCG [31] || ( ) ||Y XP F
2-H ( ) ( )Tr TrX X X XL Lr r c cc c+< < || ||Xnc )

CFGI [4] || ( ) ||Y DXP 2
F-H ( ) ( )Tr TrD D X XL Lr cc +< <^ h || || || ||D XF F

2 2a b+

DGRDL [16] || ||Y DX 2
F- ( ) ( )Tr TrD D X XL Lr r c cc c+< < || ||x i 0

T–V regularization [2] || ||Y X 2
F- ( ) ( )Tr TrX X X XL Lr G c Tc c+< <

T–V inpainting [2] || ( ) ||Y XP 2
F-H ( ) ( )Tr TrX X X XL Lr G c Tc c+< <

Cvx biclustering [5] || ||Y X 2
F- || ||w X X,

( , )
r i j

i j

i j 2· ·
Er

c - +
!

|

|| ||w X X,
( , )

c i j

i j

i j 2· ·
Ec

c -
!

u|

Comani missing [32] || ( ) ||Y XP 2
F-H (|| || )X X

( , )
r

i j

i j 2· ·
Er

c X - +
!

|

(|| || ) ||X X
( , )

c

i j

i j 2 2· ·
Ec

c X -
!

|

FRPCAG [25] || ||Y X 1- ( ) ( )Tr TrX X X XL Lr r c cc c+< <

DNMF [33] || ||Y DX 2
F- ( ) ( )Tr TrD D X XL Lr r c cc c+< < ,0 0D X$ $

CFGI: collaborative filtering with graph information; Cvx: convex; DGDRL: dual graph regularized dictionary learning; DNMF: dual regularization nonnegative matrix factorization; 
FRPCAG: fast robust PCA on graphs; MCG: matrix completion on graphs.
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FIGURE 2. Matrix completion on the Olivetti Research Laboratory data set. (a) The relative error for 10 and 50% missing values, using noisy and oracle 
graphs. (b) The adjacency matrix of row Ar  and column Ac  graphs for complete data (“oracle”) and 50% missing data (“noisy”).
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regularized counterparts across a wide range of applications 
and domains.

In Figure 2(a), we compare several approaches for matrix 
completion [25], [31], [34] with single- and multiway graph reg-
ularization on the ORL data set with 10 or 50% of the entries 
missing at random. The ORL [35] data set consists of 300 
images of faces (30 people, with 10 images per person), which 
are flattened into 2,576 features. We used 
a row graph that connects similar images 
together and a column graph that ignores 
the natural 2D grid geometry and, instead, 
considers a wider geometry in the image 
plane. To set , ,r cc c  we ran each method 
for a range of values and selected the result 
with the best performance. For a compari-
son with single-way graph regularization, we also set 0cc =  
in MCG [31] and FRPCAG [34] to ignore the graph on the fea-
ture (column) space. In general, rc  and cc  induce row and col-
umn smoothness at different levels, and their choice should be 
driven by the tradeoff in the smoothness of the data along the 
two modes and the aspect ratio of the matrix, or the decision 
should be informed by cross validation. We report the relative 
reconstruction error on the missing values, averaged across 10 
realizations. The multiway graph regularized approaches out-
performed their corresponding single-way versions ( )0cc =  
in all cases. Both FRPCAG and MCG always outperformed 
RPCAG, a single-way graph regularized method.

Tensor processing on graphs
A challenge of many well-studied problems in signal pro-
cessing and machine learning is that algorithm complexity 
typically grows exponentially when one considers tensors 
with three or more modes. Early multiway data analysis ap-
proaches flattened data tensors to matrices and then applied 
classical two-way analysis techniques. Flattening, however, 
obscures higher-order patterns and interactions between the 
different modes of the data. Thus, multilinear tensor decom-
positions have been the main workhorse in tensor signal pro-
cessing and data analysis, generalizing the notion of matrix 
factorizations to higher-order tensors, and they have become 
common in applications such as hyperspectral imaging and 
biomedical imaging.

While there is no single generalization of a spectral decom-
position for tensors, the two most common tensor decomposi-
tions are the CANDECOMP/PARAFAC (CP) (see Figure S1) 
and the Tucker decomposition [8]. Just as the singular-value 
decomposition can be used to construct a lower-dimensional 
approximation to a data matrix, finding a coupled pair of low-
er-dimensional subspaces for the rows and columns, these two 
decompositions can be used to construct lower-dimensional 
approximations to a D-way tensor .RX n n nD1 2! # # #g  Under 
mild conditions, the CP decomposition, which approximates 
X  by a sum of rank-one tensors, is unique up to the scaling 
and the permutations of the columns of its factor matrices [8], 
but the CP factor matrices typically cannot be guaranteed to 
have orthogonal columns. The Tucker decomposition permits 

orthonormal factor matrices but, in general, fails to have 
unique representations [8].

Much of the multiway literature has focused on improving 
and developing new tensor factorizations. Graph-based regular-
izations along modes of the tensor are proving to be versatile for 
developing robust tensor and low-rank decompositions [12]–
[14] as well as new approaches to problems in higher-order 

data processing, such as tensor completion, 
data imputation, recommendation systems, 
feature selection, anomaly detection, and 
coclustering, which is a generalization of 
biclustering to tensors [10], [11], [17]–[20]. 
The generalization of these problems to 
tensors incurs a higher computational cost 
than the equivalent matrix problems. Thus, 

multiway graph-regularized formulations typically combine a 
low-rank tensor factorization with graph-based regularization 
along the rows of the factor matrices; for example, [18] and 
[20] rely on a CP decomposition, while [13] employs a Tuck-
er decomposition. In [38], a Tucker decomposition is used 
within MWGSP to construct wavelets on multislice graphs 
through a two-stage approach.

An example of combining tensor decompositions with 
graph regularization is the following “low-rank + sparse” 
model for anomaly detection in Internet traffic data [20]:
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where Y  is a data tensor and E  is the tensor of sparse outliers. 
The equality constraint on X  requires that X  has a rank-R CP 
decomposition, where a( )

i
d  is the ith column of the dth factor 

matrix ,A R( )d n Rd! #  and % denotes an outer product. Note that 
the graph regularization terms in (12) are applied to the factor 
matrices ,A R( )i n Ri! #  reducing the computational complexity 
of the estimation algorithm. Decomposing a data tensor into 
the sum of low-rank and sparse components is also used in [12], 
[13], and [19]. In [14], the computational complexity is further 
reduced by precalculating P( )

R
i  mode-specific graph Laplacian 

eigenvectors of rank R from the matricization of the tensor 
along each mode and using these in solving tensor-robust PCA. 
The solution relies on projecting the tensor onto a tensor prod-
uct of the graph basis { },P( )

R
i  resulting in a formulation similar 

to the Tucker decomposition.
Coclustering assumes that the observed tensor is the sum 

of a “checkerbox” tensor (under suitable permutations along 
the modes) and additive noise. For example, Chi et al. [10] 
propose estimating a “checkerbox” tensor with the minimizer 
to a convex criterion. In the case of three-way tensors, the cri-
terion is
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This method can 
dramatically improve 
the cost of algorithms 
that depend on matrix 
multiplication.
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where E( )d  is a set of edges for the mode-d graph, c  is a non-
negative tuning parameter, and w( )

ij
d  is a weight encoding the 

similarity between the ith and jth mode-d slices. Minimizing 
the criterion in (13) can be interpreted as simultaneously 
denoising all modes of the tensor via vector-valued-graph to-
tal variation.

Manifold learning on multiway data
Tensor factorization can fail to recover meaningful latent vari-
ables when nonlinear relationships exist among slices along 
each of the modes. Manifold learning overcomes such limita-
tions by estimating nonlinear mappings from high-dimensional 
data to low-dimensional representations (embeddings). While 
GSP uses the eigenvectors of the graph Laplacian as a basis to 
linearly expand graph signals (1), manifold learning uses the 
eigenvectors },  themselves as a nonlinear d-dimensional map 
W  for the datapoints { }xi i  as : ( ( ), , ( )).i ixi d1" f} }W

A naïve strategy to apply manifold learn-
ing to the multiway data is to take the D 
different matricizations of a D-way ten-
sor and construct a graph Laplacian using 
a generic metric on each of the D modes 
independently, thereby ignoring the higher-
order coupled structure in the tensor. Recent 
work [6], [9], [32], however, incorporates a 
higher-order tensor structure in manifold 
learning by thoughtfully designing the similarity measures 
used to construct the mode-k graph weights .W( )k  The 
comanifold learning framework can be viewed as blending 
GSP and manifold learning and has most recently extended 
to tensors and the missing-data setting [9], [32].

From an MWGSP perspective, the key contribution of this 
line of work is a new metric that is defined between tensor 
slices as the difference between a graph-based multiscale 
decomposition of each slice along its remaining modes; for 
example, the distance between two horizontal slices in a three-
way tensor is
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where M( )k  is a multiscale transform in the kth mode. This 
metric was shown to be a tree-based Earth mover’s distance 
in the 2D setting [39]. The resulting similarity depends on 
a multiway, multiscale difference between slices and has 
been successfully used, in practice, to construct weighted 
graphs in multiway data. The multiscale decompositions 
are constructed either from data-adaptive tree transforms 
[6] or through a series of multiway, graph-based cocluster-
ing solutions [32].

Future outlook
Although multiway signal processing frameworks continue to 
mature, several challenges remain ahead. While novel tech-
niques are continually introduced into single-way GSP, one 
approach to developing multiway techniques is to identify, 

extend, and adapt techniques that are particularly useful for 
multiway signals. For instance, multiway analysis on directed 
graphs will greatly broaden the versatility of MWGSP. From a 
computational perspective, it is clear that the efficiency gains 
offered by the march of single-way GSP toward fast transforms 
[27] are compounded in the multiway setting.

From a theoretical perspective, open questions include the 
following:

■■ What additional advantages can be gained by treating clas-
sical domains as lying on graphs?

■■ How do we learn mode-specific and coupled graphs from 
data, in general, and in dynamical settings?

■■ Are such tensor data sets typically low or high rank?
■■ How do we process data whose generative model is nonlin-

ear across the different modes?
From a practical perspective, the ongoing growth in compu-

tational power and parallel computing has enabled large-scale 
analyses. The MWGSP framework can 
leverage these recent advances in computa-
tional building blocks. Nonetheless, there are 
existing computational challenges, such as 
applications requiring online real-time pro-
cessing. Thus, future directions include 
developing online and distributed versions 
of MWGSP, especially in the presence of 
large-scale data, where streaming solutions 

are necessary (the data does not fit in memory). In addition, 
there is need for new optimization techniques to efficiently 
solve problems that combine tensors with graph-based penal-
ties. Deep learning is also emerging as a framework to learn, 
rather than design, wavelet-type filter banks in signal process-
ing, and these approaches can be extended to the graph and 
multiway settings to learn joint multiscale decompositions. 
Finally, as the GSP community continues to address real-
world data domains, such as climate, traffic, and biomedical 
research, interdisciplinary collaboration is essential to define 
relevant problems and demonstrate the significant utility of these 
approaches within a domain.

Acknowledgments
This research was supported by the National Institutes of Health, 
under grants R01RGM131642, P50CA121974, R01HG008383, 
R01GM135928, and R01EB026936, and the National Science 
Foundation, under grant DMS-1752692.

Authors
Jay S. Stanley III (jay.stanley@yale.edu) received his B.A. 
degree in biology from Hendrix College, Conway, Arkansas, in 
2016 and his Ph.D. degree in computational biology and bioinfor-
matics from Yale University, New Haven, Connecticut, in 2020. 
He is a postdoctoral associate in the Department of Mathematics, 
Yale University. His research interests include graph signal pro-
cessing and applied harmonic analysis.

Eric C. Chi (ecchi@ncsu.edu) received his B.A. degree 
in physics from Rice University, Houston, Texas; his M.S. 
degree in electrical engineering from the University of 

Deep learning is also 
emerging as a framework 
to learn, rather than 
design, wavelet-type 
filter banks in signal 
processing.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on November 02,2020 at 13:38:29 UTC from IEEE Xplore.  Restrictions apply. 



173IEEE SIGNAL PROCESSING MAGAZINE   |   November 2020   |

California, Berkeley; and his Ph.D. degree in statistics from 
Rice University. He is an assistant professor of statistics 
at North Carolina State University, Raleigh. His research 
interests include statistical learning and numerical opti-
mization and their application to analyzing large and 
complicated modern data in biological science and engi-
neering applications.

Gal Mishne (gmishne@ucsd.edu) received her B.Sc. 
degrees (summa cum laude) in electrical engineering and 
physics and her Ph.D. degree in electrical engineering from 
Technion–Israel Institute of Technology, Haifa, in 2009 and 
2017, respectively. She is an assistant professor at the 
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