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raph signal processing (GSP) is an important methodology

for studying data residing on irregular structures. Because

acquired data are increasingly taking the form of multiway
tensors, new signal processing tools are needed to maximally
utilize the multiway structure within the data. In this article,
we review modern signal processing frameworks that general-
ize GSP to multiway data, starting from graph signals coupled
to familiar regular axes, such as time in sensor networks, and
then extending to general graphs across all tensor modes. This
widely applicable paradigm motivates reformulating and im-
proving classical problems and approaches to creatively address
the challenges in tensor-based data. We synthesize common
themes arising from current efforts to combine GSP with tensor
analysis and highlight future directions in extending GSP to the
multiway paradigm.

Introduction

During the past decade, GSP [1] has laid the foundation for
generalizing classical Fourier theory as defined on a regular
grid, such as time, to handle signals on irregular structures,
such as networks. GSP, however, is currently limited to sin-
gle-way analysis: graph signals are processed independently
of one another, thus ignoring the geometry between multiple
graph signals. Through the coming decade, generalizing GSP
to handle multiway data, which are represented by multidi-
mensional arrays and tensors, with graphs underlying each
axis of the data will be essential for modern signal processing.
This survey discusses the burgeoning family of multiway GSP
(MWGSP) methods for analyzing data tensors as a dependent
collection of axes.

To introduce the concept of way, consider a network of N
sensors, each measuring a signal sampled at 7" time points. On
the one hand, classic signal processing treats these signals as a
collection of N independent, 1D time series, ignoring the rela-
tion structure of the graph. On the other hand, the standard GSP
perspective treats the data as a collection of 7 independent, 1D
graph signals that describe the state of all sensors for a given
time point ¢; € T. Both are single-way perspectives that ignore
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the underlying geometry of the other way (also referred to
as a mode). The recent time—vertex (T-V) framework [2],
[3] unifies these perspectives to form a dual-way framework
that processes graph signals that are time-varying (note that
the graph itself is static, while the signals are time-varying),
thus bridging the gap between classical

on work from both communities to develop a framework for the
higher-order signal processing of tensor data, and we explore
the challenges and algorithms that result when one imposes
relational structure along all axes of data tensors. At the heart of
this framework is the graph Laplacian, which provides a basis

for the harmonic analysis of datain MWGSP

signal processing and GSP. While one of New signal processing and an important regularizer in the model-
the axes of a T-V signal is a regular grid tools are needed 1o ing and recovery of multiway graph signals.
(time), in general, a regular geometry may maximally utilize the We illustrate the breadth of MWGSP by

not underlie any of the ways of the data,
e.g., genes and cells in sequencing data
and users and items in recommendation
systems [4]—[6]. Thus, the T-V framework
is a subset of a more general MWGSP framework that con-
siders the coupling of multiple geometries, whether they are
predefined temporal or spatial axes or irregular graph-based
axes. MWGSP is, by definition, more versatile, and it is our
main focus.

Classical signal processing and GSP typically address 1D
and 2D signals [1]-[3], [7] and do not address data sets of
higher dimensions. However, such data sets, given as multi-
way tensors, are becoming increasingly common in many
domains. Mathematically, tensors generalize matrices to
higher dimensions [8], and, in this article, the term tensors
includes matrices (as they are order-two tensors). Examples of
tensors include video, hyperspectral imaging, magnetic reso-
nance imaging (MRI) scans, multisubject functional MRI
data, chemometrics, epigenetics, trial-based neural data, and
higher-order sparse tensor data, such as databases of crime
incident reports, taxi rides, and ad-click information [9]—
[14]. While tensors are the primary structure for represent-
ing D-dimensional signals, research on tensors and signal
processing on tensors has primarily focused on factorization
methods [8], [15], devoting less attention to leveraging the
underlying geometry on the tensor modes. Recent MWGSP
approaches incorporate graph smoothness in multiway tensor
analysis for both robust tensor factorization [12]-[14] and the
direct data analysis of tensors [9], [10].

In this overview of multiway data analysis, we present a
broad viewpoint to simultaneously consider the general graphs
underlying all modes of a tensor. Thus, we interpret multiway
analyses in light of graph-based signal processing to consid-
er tensors as multiway graph signals defined on multiway
graphs. GSP is a powerful framework in the multiway set-
ting, leading to intuitive and uniform interpretations of
operations on irregular geometry. Thus, MWGSP is a non-
trivial departure from classical signal processing, producing
an opportunity to exploit joint structures and correlations
across modes to more accurately model and process signals
in real-world applications of current societal importance: the
climate, the spread of epidemics and traffic, and complex
systems in biology.

Both the GSP and tensor analysis communities have been
developing methods for multiway data analysis and taken differ-
ent but complementary strategies to solving common problems.
We lay the mathematical and theoretical foundations, drawing

multiway structure within

reinterpreting classic techniques, such as
the 2D discrete Fourier transform (DFT), as
a special case of MWGSP and introduce a
general multiway graph Fourier transform
(MWGEFT). Further, we review novel multiway regularizations
that are not immediately obvious by viewing the data purely as
a tensor. Thus, we synthesize into a coherent family a spectrum
of recent and novel MWGSP methods across varied applica-
tions in inpainting, denoising, data completion, factor analysis,
dictionary learning, and graph learning [4], [10], [11], [16]-[21].

Single-way GSP

GSP generalizes classical signal processing from regular Eu-
clidean geometries, such as time and space, to irregular and
non-Euclidean geometries represented discretely by a graph.
In this section, we review basic concepts. A complete survey
of GSP is provided in [1].

Graphs

This tutorial considers undirected, connected, and weight-
ed graphs G={V,E W} consisting of a finite vertex set
V, an edge set £, and a weighted adjacency matrix W.
If two vertices vi, v; are connected, then (v, v;)€E and
Wij=W;;>0; otherwise, W;;=W;;=0. We employ a
superscript parenthetical index to reference graphs and their
accompanying characteristics from a set of graphs G%; i.e.,
G={G"=(V?, €D W)}, Contextually, we will refer to
the cardinality of the vertex set of a graph G? as [ V?|= n..
When parenthetical indexing is not used, we refer to a general
graph G on n nodes.

Graph signals

Asignal f:)V — R" on the vertices of a graph on n nodes may
be represented as a vector f € R", where fi = f(i) is the sig-
nal value at vertex v; € V. The graph Fourier transform (GFT)
decomposes a graph signal in terms of the eigenvectors of a
graph shift operator. Many choices have been proposed for
graph shifts, including the adjacency matrix W and various
forms of the graph Laplacian £, which is a second-order dif-
ference operator across the edge set of the graph. In this article,
we use the popular combinatorial graph Laplacian defined as
L =D — W, where the degree matrix D is diagonal, with el-
ements D; =3 ; W;. This matrix is real and symmetric. Its
eigendecomposition is £ = WA ¢¥", where the columns of ¥
are a complete set of orthonormal eigenvectors {wa};’;é, b &
is the conjugate transpose of ¥, and the diagonal of Ag con-
stitutes the real eigenvalues { A¢};— é.
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Graph Fourier analysis
The GFT and its inverse are

- N N=1
FA) =2 fyik) and fk)=Y. fAowuk), (1)
k=1 =0

or, in matrix form, GFT{f}=W'f. The GFT generalizes
the classical Fourier transform since the former is the spec-
tral expansion of a vector in the discrete graph Laplacian
eigensystem, while the latter is the spectral expansion of a
function in the eigensystem of the continuous Laplacian op-
erator. Indeed, the GFT is synonymous with the DFT when
the graph Laplacian is built on a cyclic path or a ring graph.
It is typical to reinforce the classical Fourier analogy by
referring to the eigenvectors of L as graph harmonics and
the eigenvalues as graph frequencies and indexing the har-
monics in ascending order of the eigenvalues such that the
lowest indexed harmonics are the smoothest elements of the
graph eigenbasis.

Despite these analogies, it is nontrivial to directly extend
classical tools to signals on graphs. For example, there is no
straightforward analog of convolution in the time domain to
convolution in the vertex domain. Instead, filtering signals
in the GFT domain is defined analogously to filtering in the
frequency domain, with a filtering function h() applied to
the eigenvalues A, that take the place of the frequencies

~ N1 ~ ~

fl) = BZ;) A0 fAy k), @
where f is the result of filtering f with the graph spectral filter
h(L). This spectral analogy is a common approach for gener-
alizing classical notions that lack clear vertex interpretations.

Extending GSP to multiway spuces

Classical D-dimensional Fourier analysis provides a template
for constructing unified geometries from various data sources.
The D-dimensional Fourier transform sequentially applies a
1D Fourier transform to each axis of the data. For example, a
2D DFT applied to an n1 X n2 real image X is

2D-DFT{X} = DFT.(DFT, (X)) = DFT,(DFT.(X))

=U. XUy, (3)
where DFT, (DFT.) applies the DFT to the rows (columns)
of X and U, denotes a normalized n-point DFT matrix:
U..(t,k) = (1/v/n)exp{—2zji(k—1) /n} fort, k=1,...,n. This
2D transform decomposes the input into a set of plane waves.
The 2D GFT is algebraically analogous to the 2D DFT. For two
graphs GV and G® on ni and n» vertices, the 2D DFT of
X c Rmxnz iS

2D-GFT(X) = GFT,,(GFT..(X)) = GFT,..,(GFT.(X)), (4)
and it was presented in [7] as a method for efficiently process-
ing big data. Note that when G =P" and G® =P™, ie.,

they are cyclic path graphs on n; and n, vertices, this transform
is equivalent to a 2D DFT [7].

In this section, we present the MWGSP framework for gen-
eral D-dimensional signal processing on coupled and irregular
domains, which enables holistic data analysis by considering
relational structures on potentially all modes of a multiway
signal. MWGSP encompasses standard GSP while extending
fundamental GSP tools, such as graph filters to D dimensions.
Furthermore, because graphs can be used to model discrete
structures from classical signal processing, MWGSP forms an
intuitive superset of discrete signal processing in domains such
as images and video.

Tensors

Tensors are a data structure representing D-dimensional sig-
nals as well as a mathematical tool for analyzing multilinear
spaces. We use both perspectives to formulate MWGSP. In
this article, we adopt the tensor terminology and notation used
by [8].

Tensors as a D-dimensional array

The number of ways or modes of a tensor is its order. Vectors
are tensors of order one and denoted by boldface lowercase let-
ters, e.g., a. Matrices are tensors of order two and represented
by boldface capital letters, e.g., A. Tensors of higher orders,
namely, order three and greater (see “Order-Three Tensors”),
are indicated by boldface Euler script letters, e.g., A. If A is
a D-way data array of size n1 X --- X np, we say A is a tensor
of order D.

There are multiple operations to reshape tensors and that
are used for convenient calculations. Vectorization maps the
elements of a matrix into a vector in column-major order. That
is, for X € R"*"™,

vee(X) = [X1 1 eves X1 X125 000s Xoni2s oer Xt oves Xm,nz]T.

A tensor mode-{ vectorization operator, vece(X), is simi-
larly defined by stacking the elements of X in mode-d major
order. Let ten(x, (, {n1, ..., np} ) = X be the (th tensorization of
x, which is the inverse of the ¢-major vectorization of X. Denote
by n\l= Hf;%niH]D:Hlnj the product of all factor sizes
except for the (th factor. Then, let mat(X, ()=X" & Rrexm\e
be the mode-{ matricization of X formed by setting the
th mode of X to the rows of X, vectorizing the remaining
modes to form the columns of X, as in Figure S1.

Tensor products
Up to this point, we have explicitly avoided constructing
D-dimensional transforms. In the 2D case, applying a 2D
transform is calculated via linear operators, as in (3); gener-
alizing to higher-order tensors requires multilinear operators.
Therefore, we introduce the tensor product and its discrete
form, which is known as the Kronecker product. These prod-
ucts are powerful tools for succinctly describing D-dimen-
sional transforms.

The great utility of the tensor product is that it simul-
taneously transforms spaces alongside their linear opera-
tors. This is the so-called universal property of the tensor
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Order-Three Tensors

For simplicity, we briefly review some tensor terminology for
the three-way tensor X € C"">*. The size of each mode is
denoted by 7., with n, being the number of columns, n.
the number of rows, and 7, the number of tubes [8]. Video
and the time-series recording of matrix-valued signals are

common applications for tensors of this form (Figure S1).
In videos, the first and second modes of the tensor encode
pixel values for each frame, while the third mode indexes
the frames in time. We can slice a video tensor to produce
different views of the data, as presented in Figure S1.

CANDECOMP/
PARAFAC
Decomposition

(b)

(d)

FIGURE S1. Tensor terminology. (a) A time-lapse video is an order-three tensor. (b) Tensor slices (left to right): A frontal slice is the matrix X, that
is formed by selecting the kth frame of the video. The lateral slice, X, is a matrix (viewable as an image) that shows the time evolution of the jth
column of pixels in the input. The horizontal slice, X, similarly contains the time evolution of one row of pixels. (c) The 2D indexing of third-order
tensors yields a 1D fiber. For example, the tubular fiber X, is an n:-dimensional time series of the i, jth pixel across all frames; the two tubular fibers
correspond to the highlighted pixels in the tensor. (d) Mode 1 matricization concatenates all frontal slices side by side. (e) Canonical decomposition/
parallel factor analysis decomposition (CANDECOMP/PARAFAC) is a sum of the rank-one tensors. (Video source: Stock footage provided by
peacezxp, downloaded from https://www.videvo.net/video/timelapse-of-klcc-kuala-lumpur/2654/.)

product. In brief, it states that the tensor product, denoted
by ., of two vector spaces V and W is the unique result of
a bilinear map ¢ :V XW -V ® W. The power in ¢ is that
it uniquely factors any bilinear map on V X W into a lin-
ear map on V ® W. The universal property implies that the
tensor product is symmetric: V® W is a canonical isomor-
phism of W ® V. Although the tensor product is defined in
terms of two vector spaces, it can be repeatedly applied to
combine many domains, so we generically refer to it as a
product of many spaces.

In this article, we are concerned with the tensor product
on Hilbert spaces H® k=1,...,D. These metric spaces
include both continuous and discrete Euclidean domains from
classical signal processing as well as the non-Euclidean ver-
tex domain. Since tensor products on Hilbert spaces produce
Hilbert spaces, we can combine time, space, the vertex, and
other signal processing domains via the tensor product and
remain in a Hilbert space. Under some constraints, an ortho-
normal basis for the product of D Hilbert spaces is directly
admitted by the tensor product of the factor spaces. These
properties of the tensor product are the mathematical founda-
tions for the remainder of this tutorial, in which we construct
a multiway signal processing framework based on unifying
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multiple input spaces and their Fourier operators into a single
linear representation.

Kronecker products

The Kronecker product produces the matrix of a tensor prod-
uct with respect to a standard basis and generalizes the outer
product of vectors xy” for x € C" and y € C". For an anal-
ogy, it is common to use the same notation to denote the Kro-
necker product and the tensor product. The Kronecker product
is associative. Consequently, the matrix M that is the Kro-
necker product of a sequence of D matrices M* € C"*"* for
k=1,...,Dis

D D D—1
M= ®M(/<) =M ® <® M(k)):<® M(k)>® M®
k=1

k=1 k=2
=M"® - ®M?”. )

It is important to note that the Kronecker product is, in gener-
al, noncommutative. For brevity, we will apply a decremental
Kronecker product using the notation

D=1

| é M(k) — ® M(D—k) — M(D) ®---® M(D.
k=1

k=0
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The Kronecker product has many convenient algebra-
ic properties for computing multidimensional transforms.
Vectorization enables one to express bilinear matrix multipli-
cation as a linear transformation

vec(CXB)=(B"® C)vec(X), (6)
assuming that the dimensions of C, X, and B are compatible
such that CXB is a valid operation. This identity is a discrete
realization of the universal property of tensors and shows that
the Kronecker product corresponds to a bilinear operator. We
will use this identity to 1) construct multidimensional discrete
Fourier bases and 2) decompose multiway algorithms for com-
putational efficiency.

Multiway transforms and filters

We now apply (6) to explicitly construct a 2D GFT. If ¥ and
Y are Fourier bases for graph signals on any two graphs G
and G, a 2D GFT basis is Y@ ® Y. This is a single ortho-
normal basis of dimension | V|| V®] x [ VO] [ VP, which
can be used to describe a 2D graph signal X € R"*™ in the
geometry of a single multiway graph by the GFT

x=(P? @ ¥Y") vec(X).

Unlike the DFT, where it is clear that increasing the dimen-
sion yields grids, cubes, and hypercubes, interpreting the ge-
ometry of YO @ WD i less intuitive. For this, we must turn
to a graph product.

Product graphs
MWGSP relies on a graph underlying each mode of the given
tensor data. The question is: What joint geometry arises from
these graphs, and what multilinear operators exist on this joint
graph structure? Our approach is to construct a multiway graph
G={V,E, W} across the entirety of a data X as the product
graph of a set of factor graphs G ={G"", ..., G}. For exam-
ple, if X € R"*"**™ contains the results of an n3 sample lon-
gitudinal survey of n2 genes on a cohort of n; patients, then the
intramodal relationships of X are modeled by separate graphs:
GY, in which each patient is a vertex; G® . in which each gene
is a vertex; and G, which represents time as a path graph on
ns vertices. We will use this example throughout this section,
although our derivation generalizes to tensors of arbitrary order.
While one could treat matrix-valued slices of X as signals
on each individual graph, we use the graph product to model
X as a single graph signal on G. We begin by constructing V),
the vertices of G, which, for all graph products, is performed
by assigning a single vertex to every element in the Cartesian
product of the factor vertex sets; ie, V=V x.. . x VP,
Thus, the cardinality of the vertex set of G is n= H;?: |k
For example, our longitudinal survey will be modeled by the
product graph G on n = nin2n;3 vertices. As a Cartesian prod-
uct, the elements v &) can be expressed as the tuple v =
(patient, gene, time). The experimental observation tensor
can be modeled as a graph signal x = vec(X) in R". [We can

do this because the vectorization vec(X) is isomorphic to X,
which can be shown using (6).]

Our next step is to learn the topology of G by mapping the
edge sets (weights) of the factor graphs into a single set of prod-
uct edges (weights) £. There are a variety of graph products,
each of which differs from the others only in the construction
of this map. We focus on the Cartesian graph product, as it is
the most widely employed in multiway algorithms. However,
other products, such as the tensor and strong graph products,
each induce novel edge topologies that warrant further explora-
tion of MWGSP [7].

Cartesian graph products
We denote the Cartesian product of D graphs as
D
g=0g"=g"o.-0g”. ™

The Cartesian graph product is intuitively an exclusive-or
product since, for any two vertices

=00 v u=, .., uP)}cV, ®)
the edge (v, u) exists if and only if there exists a single i such
that (v?, u®) € £? and v = u® for all ¢ # i. In other words,
the vertices of G are connected if and only if, exclusively, one
pair of factor vertices is adjacent, and the remaining factor ver-
tices are the same. Figure 1(a) illustrates the generation of an
n1 X na 2D grid graph via the product of two path graphs on
n1 and na vertices.

The Cartesian graph product can induce topological prop-
erties, such as regularity, onto a graph. Since the path graph
basis is well characterized as a discrete Fourier basis, it is a
convenient tool for including Euclidean domains in multiway
analysis. For example, we can model time series and longitu-
dinal graph signals as a single vector by using a path graph
product. In the case of our gene expression data X, the prod-
uct of the gene and the patient mode graphs with a path on
ns vertices; i.e., G 0 G® O P™, models the data by treating
the temporal mode as a sequence. One can intuit this opera-
tion as copying G 0 G® n3, times and connecting the edges
between each copy.

Product graph matrices

The Kronecker product links graph shift operators on Car-
tesian product graphs to the corresponding operators on the
factors. The Kronecker sum of D matrices A% € C™*" for
k=1,...,Dis

D D
A:@A(k)Z DLk Q@Lisk,
k=1 k=1

D k=1
where n>r= [] ne, and n<i=[] ne.
0=k+1 =1

The joint adjacency matrix A and the graph Laplacian £
are constructed by the Kronecker sum of their correspond-
ing factor graph matrices. The eigensystem of a Kronecker

IEEE SIGNAL PROCESSING MAGAZINE | November 2020 |

thorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on November 02,2020 at 13:38:29 UTC from IEEE Xplore. Restrictions appl



1 2
exp(-m1A))exp(-7,A?))
71>0 71>0 71=0
A 75> 0 To= 75> 0
999
* 99 G LI ) L 3 W 209009 [ R R ]
LI 3 ) LI N [
L an 2=
90
® o9 L an 4 4 [ 33X ¥ 3 [ 3 I ) 909 o990
[ XX}
[ XX}
LX)
(©)
v':;
: X
- ..».
i 2 )
(b) (d) (e) ()

FIGURE 1. Multiway graphs, signals, and spectral filters. (a) The Cartesian graph product generates a copy of G at each vertex of G®. (b) A multiway
graph formed from a dynamic mesh [2]. This T-V graph (purple =1,; yellow =¢, ) connects each point in the mesh to its counterpart in adjacent frames.
The temporal evolution of the 3D coordinates is a graph signal on this graph. (c) A single column of the joint adjacency matrix of a 2D grid shifts signals
to their neighbors. (d)—(f) Multiway filtering. A multiway signal on a 2D grid (top). This signal can be decomposed into an impulse and a smooth signal;
thus, it is band-limited along one way of the grid. A frame of the dancer mesh (bottom). (e) A separable diffusion filter is the product of domain-specific
heat kernels. Separable filters can filter along both axes in unison (left) or each axis independently (middle/right). (f) A nonseparable filter. For the dy-
namic mesh, filtering along only one mode reveals either the skeleton structure (7.=0) or the averaged (blurred) dynamics of the figure (7,=0), while

joint separable and nonseparable filtering reveals joint dependencies.

sum is generated by the pairwise sum of the eigenvalues of
its factors and the tensor product of the factor eigenbases
[22, Th. 4.4.5]. Thus, the Fourier basis ¥ for the product
graph G is immediate from the factors. For k=1,..., D, let
(Ao, we) be the Octh eigenpair of £® for 0<0r <ni—1.
Then, let Ii=((y,...,lp) E[ni] X...X[np] be a multi-index
to the ¢th eigenpair of £. The product graph Fourier basis
is then

D D
RO ( > A ® wé’?>. )
k=1 =

Thus, the MWGFT of a multiway graph signal X is

&I‘PWCC((\’)Z(l é‘l’(k))*vec(z\’). (10)
k=1

This formulation includes applying a single-way trans-
form along one mode of thg tensor; for example,
DFT, {X} = (l ®,[:=2 L.® U,“> vec(X) applies the DFT
along the first mode of the tensor (see “Multiway Signal
Compression”).

Fffcient MWGSP by graph factorization

On the surface, the computational cost of an MWGFT (and
MWGSP, in general) seems high, as multiway product graphs
are often much larger than their individual factors; the cardi-

nality of the product vertex set is the product of the number of
vertices in each factor. However, the product graph structure
actually yields efficient algorithms. With small adjustments
to fundamental operations, such as matrix multiplication, in
the best case, one can effectively reduce the computational
burden of an order-D tensor with n=] | b ne total elements
to a sequence of problems on n"’? elements. The computa-
tional strategy is to apply (6) and its order-D generalization
to avoid storing and computing large product graph operators.
We introduce the order-D form of (6) via an algorithm. Given
a sequence of operators M®eR"™ ¢=1,..., D, an efficient
algorithm for computing y = =1 M@vec (X) proceeds by
applying each M to the corresponding mode-wise matrici-
zation of X. Algorithm 1 presents pseudocode for computing
this product.

As a sequential product of an n¢X n¢ matrix with an
ne X n\{ matrix, this method can dramatically improve the cost
of algorithms that depend on matrix multiplication. Further,
the number of operations depends only on computations across
smaller factor matrices, enabling one to perform computations
on the product graph without computing and storing expensive
operators. For example, consider the computational cost of
applying an MWGFT for a product graph G on n = I1{~n
nodes. In the worst case, Algorithm 1 is as fast as directly
computing (10). However, in the best-case scenario, n¢ = Dﬁ
for all ¢=1,...,D, and computing D graph Fourier bases of
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A key motivation for MWGSP is the capability of encoding
multiway data in a compact way. Transforms with good
energy compactness summarize the data well and can be
used to construct efficient regularizers for regression prob-
lems. Figure S2 demonstrates energy compression in four
data sets. The dancer mesh [2] shown in Figure 1(b)
couples n,=1,502 points to temporal evolution across
n.= 570 time steps. The Molene weather data set [23]
(n, = 32 weather stations measuring temperatures across
n,= 24 hours across n; =30 days) couples a spatially
determined graph to two temporal scales (hours and days).
The time-lapse video [2] couples a 2D spatial grid
(492 x 853 pixels) to a temporal axis (602 time steps),
while the hyperspectral data set [24] couples a 2D spatial
grid (145 x 145 pixels) to 200 spectral bandwidths (treated
as a graph). All graphs were constructed using k nearest

Normalized Error

—JFT

7 ~e-DFT
GFT

—MWGFT

80

1076 L L L
40 60
Percentile of Removed Entries

(a)

Normalized Error

—-DFT
/ —2D-DFT
/ —3D-DFT
— MWGFT

neighbors with weighted edges that were set using a
Gaussian kernel on the matricized modes of the tensor.

To measure the energy compactness, we compute the rele-
vant transforms among the GFT, DFT (temporal axis), joint
time-vertex Fourier transform (JFT), 2D DFT (spatial grid), 3D
DFT (spatial grid + temporal axis), and MWGFT (all tensor
modes) for each data set. We replace the spectrum coeffi-
cients with magnitudes smaller than the pth percentile with
zeros and perform the corresponding inverse transform on
the resulting coefficients. The normalized compression error
is computed from the signal reconstructed after thresholding
the values of the fransforms below the pth percentile, which is
denoted by X, and given by Il vec(X,— X) I/l vec (X) Il..
MWGFT achieves the best compactness in all data sets, pro-
viding the insight that there are advantages to treating classi-
cal domains (time and space) as themselves lying on graphs.
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FIGURE $2. The compactness of single- and multiway transforms for different data sets: (a) the dancer mesh (Figure 1), (b) the Molene weather
data set, (c) a time-lapse video (Figure S1), and (d) an Airborne Visible/Infrared Imaging Spectrometer Indiana pines hyperspectral image.
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size 2/n x 2/n requires O(n*”) operations. To compute an
MWGEFT using the factor bases, we use ¥'° as the sequence
of operators in Algorithm 1, which costs O(Dn""*') opera-
tions. This improves the standard GFT, which costs O(n?)
operations to obtain an eigenbasis and OQ(n?) operations to
apply. For example, when D =3 and n1 =n2 =ns3 = Vn, we
obtain an asymptotically linear factorization of a graph Fourier
basis for G, and the corresponding MWGFT can be applied in

O(3n'*") operations.

Fdge density

The graph edge density impacts the scalability of signal pro-
cessing algorithms for multiway data. Matrix equations can
be efficiently solved by iteratively computing sparse matrix—
vector products. The computational complexity of such algo-
rithms, which include fundamental techniques, such as Krylov
subspace methods and polynomial approximation, typically
depend linearly on the number of edges in the graphs, e.g.,
[2], [5], and [25]. This dependency suggests using the sparsest
possible graph that still captures the main similarity structure
along each mode. Indeed, a common strategy is to construct
sparse graph Laplacian matrices [25] or edge-incidence ma-
trices [5] using k-nearest-neighbor graphs that produce edge
sets whose cardinality is linear in the number of nodes. Yet,
given a sparse factor graph, there is no guarantee that the

It is natural to define spectral filters for multiway graph sig-
nals on the product G as a function across the product
graph eigenvalues h:A — R as if they are traditional
spectrally defined GSP filters. Since these functions operate
on the product eigenvalues, they directly consider the
edge topology induced by a particular choice of product.
Yet, it is feasible to develop filters for multiway graph sig-
nals on G that are defined by multivariate functions
A" X - x A®  R. These multivariate filters are split
info two classes: separable and nonseparable.

Separable filters have multivariate response functions that
can be written as the product of separate univariate func-
tions. In the D =2 case, a separable filter for the product
graph could be written as (H”®H")x, in which
H =¥ (AP and H® = P2h2(A?)P?. Since
this Kronecker product is permutation-equivalent, we can
treat its operation as an orderindependent unimodal filter-
ing of x (6). If H” and H® are both filters defined in a
Laplacian eigenbasis of their respective factor graph, then
the tensor product (H” ® H") is also diagonalized by the
product eigenbasis. Thus, this filter is merely a reweighting
of the product graph eigenbasis. In Figure 1(e), we demon-
strate the application of a product of mode-wise heat filters
to a graph signal on a grid [Figure 1(d), top] and to a T-V
signal that is a dynamic mesh [Figure 1(d), bottom]. While

Algorithm 1. D-tensor multilinear transformations.

1: Initidlize Y =X

2:for0=1,...,D do

3:  Matricize: Y =mat(Y,()

4:  Facfor update: YO =M"'Y"

5:  Reform fensor: Y = ten(Y?, 0, {ni,...,np})
6: end for

7

: Vectorization: y=vec(Y).

product will be sparse. Thus, major efficiency gains for
multiway algorithms can be made by replacing iterative ma-
trix—vector multiplications (both sparse and dense) with a se-
quence of factor graph sparse matrix—vector multiplications
through Algorithm 1.

Three immediate applications for such a factorization are
multiway filter approximations (see, e.g., [2]), compressive
spectral clustering [26], and fast GFT [27]. We detail the for-
mer while briefly describing future directions for the latter.
For filtering, one could spectrally define and exactly compute
a multiway product graph filter (see “Multiway Filters”) by
using the MWGSP techniques described in the previous section.
Yet, Chebyshev approximations [2] are an efficient, robust, and
accurate technique for approximate filtering. These approaches

there is a choice of 7, and 7. such that certain regions of
this filter can be computed from a heat kernel on the
Cartesian product graph spectrum, such an approach aban-
dons the flexibility of bilinear filtering. By separability, each
mode can be analyzed independently of the others by set-
ting the appropriate T, to zero. This enables independently
analyzing a joint signal along each mode, for example, by
filtering out high-frequency structures along one domain
while preserving the frequency content of the other mode. A
D-way separable filter applied to x = vec(X) is given by

x=Wh(x AV)¥x,

where h(x2-,A®) is a diagonal matrix whose elements
are given by II2,4%(A,), i.e., the product of separate
spectral functions 1* for each factor graph G*.

Nonseparable filters cannot be designed from separate
univariate filters on each mode. This class of filters encom-
passes a broad group of functions that includes many fil-
ters defined in terms of the product graph eigenvalues as
well as multivariate functions [Figure 1(f)]. Indeed, the
authors of [2] find that one cannot, in general, describe
partial differential equations that define diffusion, wave,
and disease propagation with separable filters, as the rela-
tionship between frequencies is not independent.
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approximate spectrally defined filters by applying a recurrently
defined weighted matrix—vector multiplication. Efficient mul-
tiway Chebyshev approximation leverages the Kronecker sum
definition for product graph Laplacians £ . That is, by noting that
Lx=X (1., ® LP®I,.,)x is equivalent to computing

(Lo ® L)X+ (1.9 LOPQ L, )x + ... + (LPOL,.,)x,

it is clear that Chebyshev approximations of functions on £
(such as spectral graph wavelets) can be written as a sum of
sparse matrix vector multiplications; all operations are now
dominated by the densest factor graph.

The efficiency of this approach cannot be understated, as it
facilitates many algorithms, including the compressive spec-
tral algorithm [26]. Indeed, it is increasingly common to esti-
mate geometric and spectral qualities of the graph Laplacian
by applying ideal filter approximations for eigencounting and
coherence estimation. Finally, factor graph sparsity and Algo-
rithm 1 could be combined with recently proposed approaches
for approximate orthogonal decompositions [27] to construct
a fast-product GFT. This algorithm would admit striking simi-
larities to the classical fast Fourier transform (FET).

MWGSP frameworks

Here, we highlight two recent multiway frameworks: the T-V
framework [2] and generalized GSP [28].

T-V framework

The joint T-V framework [2], [3], [23] arose to address the
limitations of GSP in analyzing dynamic data on graphs. This
required generalizing harmonic analysis to a coupled time-
graph setting by connecting a regular axis (time) to an arbi-
trary graph. The central application of these techniques is to
analyze graph signals that are time-varying, for example, a
time series that resides on a sensor graph. Each time point
of this series is itself a graph signal, while each vertex on the
graph maps to a time series of 7 samples. This enables learn-
ing covariate structures from T-V signals, which are bivariate
functions on the vertex and the time domain. Such sequenc-
es of graph signals are commonly collected longitudinally
through sensor networks, video, health data, and social net-
works. The JFT [2] for a T-V signal X € R'"'™T is defined as

JFT{X} =¥'XUr or JFT{vec(X)} = (Ur® %) vec(X),

such that the multiway Fourier transform of a T-V signal
is a tensor product of the DFT basis with a GFT basis (see
Figure S2). Consequently, the JFT admits a fast transform
in which one first performs an FFT along the time mode of
the data before taking the GFT of the result, thus requiring
only one Laplacian diagonalizaiton.

Including the DFT basis in this framework immediately
admits novel joint T-V structures that are based on classi-
cal tools, such as variational norms that combine classical
variation with graph variation [2]. For efficient filter analy-
sis, they also propose an FFT and a Chebyshev-based algo-

rithm for computing fast T-V filters, which applies to both
separable and nonseparable filters; see an example of T-V
filtering in Figure 1. Finally, overcomplete dictionary rep-
resentations are constructed as a tensor-like composition of
graph spectral dictionaries with classical a short-time Fou-
rier transform and wavelet frames. These joint dictionaries
can be constructed to form frames, enabling the analysis
and manipulation of data in terms of time-frequency—ver-
tex-frequency localized atoms. T-V spectral filtering was
also introduced in [3], in addition to a T-V Kalman filter,
with both batch and online function estimators. Further
works have integrated ideas from classical signal process-
ing, such as stationarity to graph and T-V signals [23], [29],
[30]. Thus, recent developments in the T-V framework can
serve as a road map for the future development of general
MWGSP methods.

Generalized GSP

Another recent development is that of the generalized GSP
[28] framework, which extends the notions of MWGSP to
arbitrary, nongraphical geometries. Generalized GSP facili-
tates the multivariate signal processing of interesting signals
in which at least one domain lacks a discrete geometry. This
framework recognizes that the key intuition of GSP is the util-
ity of irregular, non-Euclidean geometries for analyzing sig-
nals. However, where GSP techniques axiomatize a finite rela-
tional structure encoded by a graph shift operator, generalized
GSP extends classical Fourier analogies to arbitrary Hilbert
spaces (i.e., complete inner-product spaces) H € H equipped
with a compact, self-adjoint operator A. This broad class of
geometries contains GSP as the standard space of square sum-
mable graph signals; ie., I2(V) ={f:V— C,|f]2 < oo} is
itself a Hilbert space.

The geometries and corresponding signals that can be
induced by generalized GSP offer an intriguing juxtaposition
of continuous and discrete topologies. As an example, con-
sider the tensor product of a graph G with the space of square
integrable functions on an interval, e.g, G® Lz([— 1,1]).
Graph signals in this space map each vertex to an L* function.
Conversely, L? functions can be mapped to specific vertices.
To generate a Fourier basis for the product space, one simply
takes the tensor product of the factor space eigenbases. This
is a promising future direction for MWGSP, as it implies that
one can, for instance, combine graph Fourier bases with gen-
eralized Fourier bases for innovative signal representations.

The authors of [11] proposed an early example of generalized
GSP, though under a different name. This work modeled vid-
eos and collections of related matrices as matrix-valued graph
signals using matrix convolutional networks. The authors
aimed to solve the challenging missing-data problem of node
undersampling: some matrix slices from the networks are
completely unobserved. When matrices have a low-rank GFT,
the network’s graph structure enables the recovery of miss-
ing slices. In light of the development of generalized GSP, it
is clear that [11] proposed an algorithm for the denoising of
multiway signals on G ® R" ™",
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Signal processing on multiway graphs

In the previous section, we focused on signal processing
through the lens of harmonic analysis, using the graph Lapla-
cian to analyze data in the spectral domain. In this section,
we focus on signal modeling and recovery in the multiway
setting through the lens of optimization, where the graph
Laplacian serves the role of imposing signal smoothness.
Including graph structures along the modes of multiway ma-
trices and higher-order tensors has led to more robust and
efficient approaches for denoising, matrix completion, and
inpainting; collaborative filtering; recommendation systems;
biclustering; factorization; and dictionary learning [4], [10],
[11], [16], [18], [21]. We begin with dual-graph modeling in
the matrix setting and then extend to the higher-order tensor
setting. In the tensor setting, we review the use of multiway
graph regularization in tensor factorization methods and in a
complementary fashion using tensor factorization in signal
modeling and recovering to make graph regularization com-
putationally tractable.

Signal processing on dual graphs
The quadratic form of the graph Laplacian of a graph G
fTLE= D> Wi(fi—f), (11)

G.j)ee

quantifies the smoothness of a signal f with respect to the graph,
where the smoother a signal is, the smaller the value. Conse-
quently, the typical model in the multiway signal recovery set-
ting is to add dual row—column graph regularizers of the form
7, Tr(XT LX)+ y. Tr(XL:X") to classical problem formula-
tions; such a regularization incentivizes the recovered signal to
be smooth with respect to the underlying data graphs (11). The
matrices £, and L. denote the graph Laplacians on the rows
and columns of X, respectively, and the nonnegative tuning pa-
rameters Y, and y. trade off data fitting for smoothness with
respect to the row and column geometries encoded in £, and
L., respectively. The choice of underlying graphs consequently
greatly influences the quality of signal reconstruction. For de-
tails on how to construct a graph, see “Graph Construction.”

A question that arises in graph-based methods is how to
construct the graphs themselves. In some applications,
e.g., social and citation networks, a graph is known a pri-
ori. In transportation and communication networks, verti-
ces represent physical locations (traffic intersections) and
sensors (routers in a Wi-Fi network), and edges encode
connected locations. In other settings, there is no a priori
graph, and the topology must be learned from the data.
We describe common strategies and challenges.
Data-driven graphs

One of the most popular ways fo construct a graph is
from the data itself, for example, using a k-nearest-
neighbor graph with Gaussian kernel weights.
For example, in our simulations, if rows i and j are
k=7 nearest neighbors, their weight is W{=
exp{—II X, =X, lI3/c} with kernel bandwidth o. Other-
wise, their weight is zero. One difficulty that arises is that
in the presence of noise, outliers, and missing entries, con-
structing a graph from the data yields a corrupted graph.
Figure 2(b) compares a “noisy” graph constructed from the
missing data to an “oracle” graph constructed from the
original complete data. The noisy graph along the images
(A®) connects images of different people together, while
the noisy feature graph (A®) loses the local pixel geome-
try. The results in Figure 2(a) demonstrate that, for a higher
percentage of the missing values, the noisy graph
degrades the performance compared fo the oracle graph.
Graphs from side information

Supplementary information can be leveraged to define
the similarity structure among rows and columns for the

purpose of graph construction. In some cases, there
may be a natural geometry that easily translates
into similarity graphs for rows and columns. For
example, in [23], the authors constructed a graph
among weather stations by using the stations’ physi-
cal coordinates. In other cases, various supplemen-
tal data sets may be leveraged to provide similarity
structure among rows and columns. As an example
regarding music recommendation systems, in [36],
the authors used a publicly available playlist cate-
gorization as well as summary statistics extracted
from an audio signal to construct a graph for esti-
mating a latent association matrix between playlists
and songs.

Graph learning

In [16] and [19], the graphs on the feature space are
learned alongside the signal by minimizing over L, in
addition to the signal recovery in the optimization prob-
lem. For a detailed review, see [37].

Dynamically varying graphs

Graphs may not be static, presenting a current challenge
in GSP. This is especially acute in T-V frameworks, which
admit time as one of components in the analysis. The diffi-
culties include determining how fo identify when a graph
needs to be updated, i.e., when the underlying topology
has changed. The task of accounting for dynamically vary-
ing graphs also poses computational questions, namely,
finding computationally efficient ways to update graphs
within the processing framework that will minimally spawn
artifacts at transitions.
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Table 1 presents formulations of these different algorithms;
multiple extensions and other methods exist in the literature.
For the T-V framework [2], the graph on the columns is a tem-
poral graph modeled explicitly with a ring graph Laplacian
Lr. The mapping Po is a projection operator on the set of
observed entries © in missing-data scenarios. The methods
may differ in their fidelity term, minimizing the Frobenius
norm for denoising and the one-norm to impart robustness to
outliers [25], and several methods assume a low-rank struc-
ture, either with a nuclear norm penalty [31] or with an explicit
low-rank factorization of the data matrix Y as DX, sometimes
with additional constraints on the factor matrices (nonnega-
tivity [33] and sparsity [16]). A few methods aim to solve a
matrix completion problem (see Figure 2). Finally, while most
instances of graph regularization rely on the quadratic penalty
term Tr(X" £, X) = Zijee wij | Xi. — X |3, the biclustering
formulation in [5] and [32] employs a penalty that is either lin-

ear in the />-norm or concave and continuously differentiable,
relying on the mapping Q (| Xi. — X.|,). The motivation there
is that convex penalties, when € is either linear or quadratic,
do not introduce enough smoothing for small differences and
too much smoothing for large differences, resulting in poorer
clustering results.

Typically, an alternating optimization algorithm is used to
solve the various problems in Table 1. The T-V regularization
problem is the only one with a closed-form solution given by a
joint nonseparable low-pass filter (generalizing Tikhonov reg-
ularization to the T-V case). The graph DNMF [33] relies on
an alternating optimization scheme for the nonnegative factor
matrices. Other solutions are computed with proximal meth-
ods, such as the alternating-direction method of multipliers
to handle multiple regularization terms via variable splitting.
Dual-graph regularized approaches have been shown to con-
sistently outperform their nonregularized and single-graph

Table 1. Multiway graph regularization formulations.

Fidelity Term Graph Regularizers Additional Constraints and Regularizers
MCG [31] I Po(Y —X) IE Y TrX LX)+ 7. Tr(XLXT) Y. IXIL
CFGI [4] I Po(Y — DX) I Y(Tr(D"£L,D)+ Tr(XL.X")) alIDIE+BIXIE
DGRDL [16] I'Y — DX II? Y. Te(D"LD)+y. Tr(XLX)  lxl
T-V regularization [2] Y =X Y. Tr(X" LX) + 7. Tr(XL,X")
T-V inpainting [2] 1 Pe(Y — X) I Y Tr(X LX) + 7. Tr(XL,X")
Cvx biclustering [5] Yy —XI; Y > wiull Xo =X I+
)EES
Ye >0 Wil X=Xl
(i)EE
Comani missing [32] Il Po(Y —X) IIZ Y. > QUX =X, I+
(i)EE:s
Yo > QUX =Xl Il
(i)EE
FRPCAG [25] 1y — X1, Y. Tr (X" LX) + 7. Tr(XL.XT)
DNMF [33] Y — DX II2 Y. T LD)+y. Tr(XLX)  D=20X=20

CFGl: collaborative filtering with graph information; Cvx: convex; DGDRL: dual graph regularized dictionary learning; DNMF: dual regularization nonnegative matrix factorization;
FRPCAG: fast robust PCA on graphs; MCG: matrix completion on graphs.

I VCG [ MCG (7, = 0) [ RPCAG Il FRPCAG [ FRPCAG (7, = 0)

1 T T T T A(1) 57 ' &

0.5

A®

10% Missing,
Noisy Graph

10% Missing,
Oracle Graph

(a)

50% Missing,
Noisy Graph

50% Missing,
Oracle Graph

(b)

FIGURE 2. Matrix completion on the Olivetti Research Laboratory data set. (a) The relative error for 10 and 50% missing values, using noisy and oracle
graphs. (b) The adjacency matrix of row A, and column A. graphs for complete data (“oracle”) and 50% missing data (“noisy”).
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regularized counterparts across a wide range of applications
and domains.

In Figure 2(a), we compare several approaches for matrix
completion [25], [31], [34] with single- and multiway graph reg-
ularization on the ORL data set with 10 or 50% of the entries
missing at random. The ORL [35] data set consists of 300
images of faces (30 people, with 10 images per person), which
are flattened into 2,576 features. We used

orthonormal factor matrices but, in general, fails to have
unique representations [8].

Much of the multiway literature has focused on improving
and developing new tensor factorizations. Graph-based regular-
izations along modes of the tensor are proving to be versatile for
developing robust tensor and low-rank decompositions [12]—
[14] as well as new approaches to problems in higher-order

data processing, such as tensor completion,

a row graph that connects similar images This method can data imputation, recommendation systems,
together and a column graph that ignores dramatically improve feature selection, anomaly detection, and
the gatural 2D. grid geometry.and, 1n.stead, the cost of algorithms Cf)clustelTlng, which is a generalization of
considers a wider geometry in the image _ biclustering to tensors [10], [11], [17]-[20].
plane. To set y,,y., we ran each method that depend on matrix The generalization of these problems to
for a range of values and selected the result multiplication. tensors incurs a higher computational cost

with the best performance. For a compari-

son with single-way graph regularization, we also set y. =0
in MCG [31] and FRPCAG [34] to ignore the graph on the fea-
ture (column) space. In general, ¥, and y. induce row and col-
umn smoothness at different levels, and their choice should be
driven by the tradeoff in the smoothness of the data along the
two modes and the aspect ratio of the matrix, or the decision
should be informed by cross validation. We report the relative
reconstruction error on the missing values, averaged across 10
realizations. The multiway graph regularized approaches out-
performed their corresponding single-way versions (y. = 0)
in all cases. Both FRPCAG and MCG always outperformed
RPCAG, a single-way graph regularized method.

Tensor processing on graphs

A challenge of many well-studied problems in signal pro-
cessing and machine learning is that algorithm complexity
typically grows exponentially when one considers tensors
with three or more modes. Early multiway data analysis ap-
proaches flattened data tensors to matrices and then applied
classical two-way analysis techniques. Flattening, however,
obscures higher-order patterns and interactions between the
different modes of the data. Thus, multilinear tensor decom-
positions have been the main workhorse in tensor signal pro-
cessing and data analysis, generalizing the notion of matrix
factorizations to higher-order tensors, and they have become
common in applications such as hyperspectral imaging and
biomedical imaging.

While there is no single generalization of a spectral decom-
position for tensors, the two most common tensor decomposi-
tions are the CANDECOMP/PARAFAC (CP) (see Figure S1)
and the Tucker decomposition [8]. Just as the singular-value
decomposition can be used to construct a lower-dimensional
approximation to a data matrix, finding a coupled pair of low-
er-dimensional subspaces for the rows and columns, these two
decompositions can be used to construct lower-dimensional
approximations to a D-way tensor X € R"™"***" Under
mild conditions, the CP decomposition, which approximates
X by a sum of rank-one tensors, is unique up to the scaling
and the permutations of the columns of its factor matrices [8],
but the CP factor matrices typically cannot be guaranteed to
have orthogonal columns. The Tucker decomposition permits
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than the equivalent matrix problems. Thus,
multiway graph-regularized formulations typically combine a
low-rank tensor factorization with graph-based regularization
along the rows of the factor matrices; for example, [18] and
[20] rely on a CP decomposition, while [13] employs a Tuck-
er decomposition. In [38], a Tucker decomposition is used
within MWGSP to construct wavelets on multislice graphs
through a two-stage approach.
An example of combining tensor decompositions with
graph regularization is the following “low-rank + sparse”
model for anomaly detection in Internet traffic data [20]:

d . .
min [(Y—&)— X[+ viTr(A?) L£;AD)
X, E{ADY};

i=1

R
st X=> alea®.a® |8l <e, (12)

i=1

where Y is a data tensor and & is the tensor of sparse outliers.
The equality constraint on X requires that X has a rank-R CP
decomposition, where a,(-d) is the ith column of the dth factor
matrix A € R™*R and - denotes an outer product. Note that
the graph regularization terms in (12) are applied to the factor
matrices A? € R"*F, reducing the computational complexity
of the estimation algorithm. Decomposing a data tensor into
the sum of low-rank and sparse components is also used in [12],
[13], and [19]. In [14], the computational complexity is further
reduced by precalculating Py mode-specific graph Laplacian
eigenvectors of rank R from the matricization of the tensor
along each mode and using these in solving tensor-robust PCA.
The solution relies on projecting the tensor onto a tensor prod-
uct of the graph basis (PP}, resulting in a formulation similar
to the Tucker decomposition.

Coclustering assumes that the observed tensor is the sum
of a “checkerbox” tensor (under suitable permutations along
the modes) and additive noise. For example, Chi et al. [10]
propose estimating a “checkerbox” tensor with the minimizer
to a convex criterion. In the case of three-way tensors, the cri-
terion is

%Hy—XII%w[ Y Wil Xe— Xl X wiP X=X
i,ye&" (i,j))e&?

+ Z ng)HX::i_X::j|

(I

F|>
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where & is a set of edges for the mode-d graph, y is a non-

. . @ - . .
negative tuning parameter, and w;;" is a weight encoding the
similarity between the ith and jth mode-d slices. Minimizing
the criterion in (13) can be interpreted as simultaneously
denoising all modes of the tensor via vector-valued-graph to-
tal variation.

Manifold learning on multiway data

Tensor factorization can fail to recover meaningful latent vari-
ables when nonlinear relationships exist among slices along
each of the modes. Manifold learning overcomes such limita-
tions by estimating nonlinear mappings from high-dimensional
data to low-dimensional representations (embeddings). While
GSP uses the eigenvectors of the graph Laplacian as a basis to
linearly expand graph signals (1), manifold learning uses the
eigenvectors y ¢ themselves as a nonlinear d-dimensional map
W for the datapoints {x;}; as ¥:x; — (y1(i),...,wa(i)).

A naive strategy to apply manifold learn-

extend, and adapt techniques that are particularly useful for
multiway signals. For instance, multiway analysis on directed
graphs will greatly broaden the versatility of MWGSP. From a
computational perspective, it is clear that the efficiency gains
offered by the march of single-way GSP toward fast transforms
[27] are compounded in the multiway setting.
From a theoretical perspective, open questions include the
following:
® What additional advantages can be gained by treating clas-
sical domains as lying on graphs?
® How do we learn mode-specific and coupled graphs from
data, in general, and in dynamical settings?
m Are such tensor data sets typically low or high rank?
m How do we process data whose generative model is nonlin-
ear across the different modes?
From a practical perspective, the ongoing growth in compu-
tational power and parallel computing has enabled large-scale
analyses. The MWGSP framework can

ing to the multiway data is to take the D Deep learning is also leverage these recent advances in computa-
different matricizations of a D—.way t.en— emerging as a framework tio.nall building blocl:ks. Nonetheless, there are
sor and.constrlllct a graph Laplacian using to learn, rather than ex1st.1ng.computa.t1(.)nal ch.allenges,. such as
a generic metric on each of the D modes _ applications requiring online real-time pro-
independently, thereby ignoring the higher- design, wavelet-type cessing. Thus, future directions include
order coupled structure in the tensor. Recent filter banks in signal developing online and distributed versions
work [6], [9], [32], however, incorporates a processing. of MWGSP, especially in the presence of

higher-order tensor structure in manifold

learning by thoughtfully designing the similarity measures
used to construct the mode-k graph weights W®. The
comanifold learning framework can be viewed as blending
GSP and manifold learning and has most recently extended
to tensors and the missing-data setting [9], [32].

From an MWGSP perspective, the key contribution of this
line of work is a new metric that is defined between tensor
slices as the difference between a graph-based multiscale
decomposition of each slice along its remaining modes; for
example, the distance between two horizontal slices in a three-
way tensor is

d(Xl’X]) = H (M(S) ® M(z))vec (Xi:: - Xj::) ”1
=[vec(M?(X;. — Xj::)(M(3)>T)

o (13)

where M® is a multiscale transform in the kth mode. This
metric was shown to be a tree-based Earth mover’s distance
in the 2D setting [39]. The resulting similarity depends on
a multiway, multiscale difference between slices and has
been successfully used, in practice, to construct weighted
graphs in multiway data. The multiscale decompositions
are constructed either from data-adaptive tree transforms
[6] or through a series of multiway, graph-based cocluster-
ing solutions [32].

Future outlook

Although multiway signal processing frameworks continue to
mature, several challenges remain ahead. While novel tech-
niques are continually introduced into single-way GSP, one
approach to developing multiway techniques is to identify,

large-scale data, where streaming solutions
are necessary (the data does not fit in memory). In addition,
there is need for new optimization techniques to efficiently
solve problems that combine tensors with graph-based penal-
ties. Deep learning is also emerging as a framework to learn,
rather than design, wavelet-type filter banks in signal process-
ing, and these approaches can be extended to the graph and
multiway settings to learn joint multiscale decompositions.
Finally, as the GSP community continues to address real-
world data domains, such as climate, traffic, and biomedical
research, interdisciplinary collaboration is essential to define
relevant problems and demonstrate the significant utility of these
approaches within a domain.
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