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NOISY MATRIX COMPLETION: UNDERSTANDING STATISTICAL
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Abstract. This paper studies noisy low-rank matrix completion: given partial and noisy entries
of a large low-rank matrix, the goal is to estimate the underlying matrix faithfully and efficiently.
Arguably one of the most popular paradigms to tackle this problem is convex relaxation, which
achieves remarkable efficacy in practice. However, the theoretical support of this approach is still far
from optimal in the noisy setting, falling short of explaining its empirical success. We make progress
towards demystifying the practical efficacy of convex relaxation vis-a-vis random noise. When the
rank and the condition number of the unknown matrix are bounded by a constant, we demonstrate
that the convex programming approach achieves near-optimal estimation errors—in terms of the
Euclidean loss, the entrywise loss, and the spectral norm loss—for a wide range of noise levels. All
of this is enabled by bridging convex relaxation with the nonconvex Burer—-Monteiro approach, a
seemingly distinct algorithmic paradigm that is provably robust against noise. More specifically, we
show that an approximate critical point of the nonconvex formulation serves as an extremely tight
approximation of the convex solution, thus allowing us to transfer the desired statistical guarantees
of the nonconvex approach to its convex counterpart.

Key words. matrix completion, minimaxity, stability, convex relaxation, nonconvex optimiza-
tion, Burer-Monteiro approach

AMS subject classifications. 90C25, 90C26

DOI. 10.1137/19M1290000

1. Introduction. Suppose we are interested in a large low-rank data matrix,
but only get to observe a highly incomplete subset of its entries. Can we hope to es-
timate the underlying data matrix in a reliable manner? This problem, often dubbed
as low-rank matriz completion, spans a diverse array of science and engineering ap-
plications (e.g., collaborative filtering [81], localization [85], system identification [70],
magnetic resonance parameter mapping [98], joint alignment [21]), and has inspired
a flurry of research activities in the past decade. In the statistics literature, matrix
completion also falls under the category of factor models with a large amount of
missing data, which finds numerous statistical applications such as controlling false
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discovery rates for dependence data [36, 37, 39, 40], factor-adjusted variable selec-
tion [41, 63], principal component regression [3, 44, 58, 78|, and large covariance
matrix estimation [42, 43]. Recent years have witnessed the development of many
tractable algorithms that come with statistical guarantees, with convex relaxation
being one of the most popular paradigms [14, 15, 46]. See [25, 34] for an overview of
this topic.

This paper focuses on noisy low-rank matrix completion, assuming that the re-
vealed entries are corrupted by a certain amount of noise. Setting the stage, consider
the task of estimating a rank-r data matrix M™* = [M}]1<; j<n € R™*". 1 and suppose
that this needs to be performed on the basis of a subset of noisy entries

(1) M;; = M5 + Eyj, (i,7) € Q,

where @ C {1,...,n} x {1,...,n} denotes a set of indices, and E;; stands for the
additive noise at the location (7, 7). As we shall elaborate shortly, solving noisy ma-
trix completion via convex relaxation, while practically exhibiting excellent stability
(in terms of the estimation errors against noise), is far less understood theoretically
compared to the noiseless setting.

1.1. Convex relaxation: Limitations of prior results. Naturally, one would
search for a low-rank solution that best fits the observed entries. One choice is the
regularized least-squares formulation given by

o 1 2
(2) minimize 3 (';g) (Zij — Mi;)” + Arank(Z),
i

where A > 0 is some regularization parameter. In words, this approach optimizes
certain trade-offs between the goodness of fit (through the squared loss expressed in
the first term of (2)) and the low-rank structure (through the rank function in the
second term of (2)). Due to computational intractability of rank minimization, we
often resort to convex relaxation in order to obtain computationally feasible solutions.
One notable example is the following convex program:

. 1 2
(3) minimize 9(2) & = Z (Zij — Mi;)" + X Z],
(i,5)€2

where || Z]|« denotes the nuclear norm (i.e., the sum of singular values) of Z—a convex
surrogate for the rank function. A significant portion of existing theory supports the
use of this paradigm in the noiseless setting: when F;; vanishes for all (z,j) € €, the
solution to (3) is known to be faithful (i.e., the estimation error becomes zero) even
under near-minimal sample complexity [13, 14, 15, 20, 51, 79].

By contrast, the performance of convex relaxation remains largely unclear when
it comes to noisy settings (which are often more practically relevant). Candés and
Plan [13] first studied the stability of an equivalent variant? of (3) against noise. The
estimation error ||Z.x — M*|r derived therein, of the solution Z. to (3), is signifi-
cantly larger than the oracle lower bound. This does not explain well the effectiveness

11t is straightforward to rephrase our discussions to a general rectangular matrix of size ny X na.
The current paper sets n = n; = na throughout for simplicity of presentation.

2Technically, [13] deals with the constrained version of (3), which is equivalent to the Lagrangian
form as in (3) with a proper choice of the regularization parameter.
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of (3) in practice. In fact, the numerical experiments reported in [13] already indi-
cated that the performance of convex relaxation is far better than their theoretical
bounds. This discrepancy between numerical performance and existing theoretical
bounds gives rise to the following natural yet challenging questions: Where does the
convex program (3) stand in terms of its stability vis-a-vis additive noise? Can we
establish statistical performance guarantees that match its practical effectiveness?

We note in passing that several other convex relaxation formulations have been
thoroughly analyzed for noisy matrix completion, most notably by Negahban and
Wainwright [74] and by Koltchinskii, Lounici, and Tsybakov [64]. These works have
significantly advanced our understanding of the power of convex relaxation. However,
the estimators studied therein, particularly the one in [64], are quite different from
the one (3) considered here; as a consequence, the analysis therein does not lead to
improved statistical guarantees of (3). Moreover, the performance guarantees provided
for these variants are also suboptimal when restricted to the class of “incoherent”
or “delocalized” matrices, unless the magnitudes of the noise are fairly large. See
section 1.4 for more detailed discussions as well as numerical comparisons of these
algorithms.

1.2. A detour: Nonconvex optimization. While the focus of the current
paper is convex relaxation, we take a moment to discuss a seemingly distinct algorith-
mic paradigm: nonconvex optimization, which turns out to be remarkably helpful in
understanding convex relaxation. Inspired by the Burer—-Monteiro approach [7], the
nonconvex scheme starts by representing the rank-r decision matrix (or parameters)
Z as Z = XY via low-rank factors X,Y € R"*", and proceeds by solving the
following nonconvex (regularized) least-squares problem [60]

o 1 2
(4) &ngr/ugﬂgger 3 (,Z);Q [(XYT)” — M;;]” +reg(X,Y).
i

Here, reg(-, -) denotes a certain regularization term that promotes additional structural
properties.

To see its intimate connection with the convex program (3), we make the following
observation: if the solution to (3) has rank r, then it must coincide with the solution
to

o 1 T 2 A 2 A 2
(5) minimize 2(_2)29[(XY )iy = Mis]" + SIXIE + S 1Y IR
2,7

reg(X,Y)
This can be easily verified by recognizing the elementary fact that

_ : 1 2 1 2
(6) 12 = it GIXIR+ I

for any rank-r matrix Z [73, 86]. Note, however, that it is very challenging to predict
when the key assumption in establishing this connection—namely, the rank-r assump-
tion of the solution to the convex program (3)—can possibly hold (and, in particular,
whether it can hold under minimal sample complexity requirement).

Despite the nonconvexity of (4), simple first-order optimization methods, in con-
junction with proper initialization, are often effective in solving (4). Partial examples
include gradient descent on manifold [60, 61, 95], gradient descent [71, 87], and pro-
jected gradient descent [31, 100]. Apart from their practical efficiency, the nonconvex
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Fic. 1. The relative estimation errors of both Z.x (the estimate of the convex program (3))
and Zneux (the estimate returned by the nonconvex approach tailored to (5)) and the relative distance
between them versus the standard deviation o of the noise. The results are reported for n = 1000,
r=25,p=0.2, A\ =>50,/np, and are averaged over 20 independent trials.

optimization approach is also appealing in theory. To begin with, algorithms tailored
to (4) often enable exact recovery in the noiseless setting. Perhaps more importantly,
for a wide range of noise settings, the nonconvex approach achieves appealing estima-
tion accuracy [31, 71], which could be significantly better than those bounds derived
for convex relaxation discussed earlier. See [25, 33] for a summary of recent results.
The appealing estimation accuracy together with the lower computational cost makes
nonconvex approaches suitable for large-scale problems. Having said that, the convex
approach is also widely used in practice. The convex programming is often observed
to enjoy better stability against model mismatch (e.g., nonuniform sampling of the
matrix entries [32]), which makes it appealing for moderate-size problems. In con-
trast, the theoretical understanding of the effectiveness of the convex method does
not explain well its empirical performance; see section 1.1. This motivates us to take
a closer inspection of the underlying connection between the two contrasting algorith-
mic frameworks in the hope that one can utilize the existing theory for the nonconvex
approach to improve the stability analysis of the convex relaxation approach.

1.3. Empirical evidence: Convex and nonconvex solutions are often
close. In order to obtain a better sense of the relationships between convex and
nonconvex approaches, we begin by comparing the estimates returned by the two
approaches via numerical experiments. Fix n = 1000 and r = 5. We generate
M* = X*Y*T, where X*,Y* € R"*" are random orthonormal matrices. Each entry
M of M™ is observed with probability p = 0.2 independently, and then corrupted by
an independent Gaussian noise E;; ~ N(0,0?). Throughout the experiments, we set
A = 50/np. The convex program (3) is solved by the proximal gradient method [76],
whereas we attempt solving the nonconvex formulation (5) by gradient descent with
spectral initialization (see [33] for details). Let Zeyx (resp., Zncx = Xnew Yare) b€ the
solution returned by the convex program (3) (resp., the nonconvex program (5)). Fig-
ure 1 displays the relative estimation errors of both methods (|| Zcyx — M*||r /|| M*||¢
and || Znox — M*||r/||M*||r) as well as the relative distance || Zeyx — Znewx||r /|| M * |7
between the two estimates. The results are averaged over 20 independent trials.
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Interestingly, the distance between the convex and the nonconvex solutions seems
extremely small (e.g., || Zeyx — Znew||r /|| M *||F is typically below 10~7); in comparison,
the relative estimation errors of both Z.x and Z,.x are substantially larger. In
other words, the estimate returned by the nonconvex approach serves as a remarkably
accurate approximation of the convex solution. Given that the nonconvex approach
is often guaranteed to achieve intriguing statistical guarantees vis-a-vis random noise
[71], this suggests that the convex program is equally stable—a phenomenon that was
not captured by prior theory [13]. Can we leverage existing theory for the nonconvex
scheme to improve the statistical analysis of the convex relaxation approach?

Before continuing, we remark that the above numerical connection between convex
relaxation (3) and nonconvex optimization (5) has already been observed multiple
times in prior literature [45, 61, 73, 80, 86]. Nevertheless, all prior observations on
this connection were either completely empirical, or provided in a way that does not
lead to improved statistical error bounds of the convex paradigm (3). In fact, the
difficulty in rigorously justifying the above numerical observations has been noted in
the literature; see, e.g., [61].3

1.4. Models and main results. The numerical experiments reported in sec-
tion 1.3 suggest an alternative route for analyzing convex relaxation for noisy matrix
completion. If one can formally justify the proximity between the convex and the
nonconvex solutions, then it is possible to propagate the appealing stability guaran-
tees from the nonconvex scheme to the convex approach. As it turns out, this simple
idea leads to significantly enhanced statistical guarantees for the convex program (3),
which we formally present in this subsection.

1.4.1. Models and assumptions. Before proceeding, we introduce a few model
assumptions that play a crucial role in our theory.

Assumption 1.

(a) Random sampling: Each index (i, j) belongs to the index set €2 independently
with probability p.

(b) Random noise: The noise matrix E = [E;j]1<i j<n is composed of indepen-
dent and identically distributed (i.i.d.) zero-mean sub-Gaussian random vari-
ables with sub-Gaussian norm at most o > 0, i.e., ||Eyj||y, < o (see [93, Def-
inition 5.7]).

In addition, let M* = U*E*V*T be the singular value decomposition (SVD)
of M*, where U*,V* € R"™" consist of orthonormal columns and X* =
diag(ot,0%,...,0%) € R™" is a diagonal matrix obeying oyax = o7 > 05 > --- >
or £ 5. Denote by &k £ Omax/Omin the condition number of M*. We impose
the following incoherence condition on M™, which is known to be crucial for reliable
recovery of M™* [14, 20].

DEFINITION 1.1. A rank-r matriz M* € R™" with SVD M* = U*3*V*T s
said to be p-incoherent if

[ pr 0 pr
* < H * _ " * < H * — =
10 e < (EN0 e = /55 and [Vl < IV =

Here, ||U||2,00 denotes the largest £o norm of all rows of a matriz U.

3The seminal work [61] by Keshavan, Montanari and Oh stated that “In view of the identity (6)

it might be possible to use the results in this paper to prove stronger guarantees on the nuclear norm
minimization approach. Unfortunately this implication is not immediate ... Trying to establish such
an implication, and clarifying the relation between the two approaches is nevertheless a promising
research direction.”
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Remark 1.2. It is worth noting that several other conditions on the low-rank
matrix have been proposed in the noisy setting. Examples include the spikiness con-
dition [74] and the bounded ¢, norm condition [64]. However, these conditions alone
are often unable to ensure identifiability of the true matrix even in the absence of
noise.

1.4.2. Theoretical guarantees: When both the rank and the condition
number are constants. With these in place, we are positioned to present our im-
proved statistical guarantees for convex relaxation. For convenience of presentation,
we shall begin with a simple yet fundamentally important class of settings when the
rank r and the condition number x are both fixed constants. As it turns out, this
class of problems arises in a variety of engineering applications. For example, in a
fundamental problem in cryo-EM called angular synchronization [84], one needs to
deal with rank-2 or rank-3 matrices with k = 1; in a joint shape mapping problem
that arises in computer graphics [29, 54], the matrix under consideration has low
rank and a condition number equal to 1; and in structure, from motion in computer
vision [90], one often seeks to estimate a matrix with » < 3 and a small condition
number. Encouragingly, our theory delivers near-optimal statistical guarantees for
such practically important scenarios.

THEOREM 1.3. Let M™* be rank-r and p-incoherent with a condition number k,
where the rank and the condition number satisfy r,x = O(1).* Suppose that Assump-
tion 1 holds and take N = Cyo/np in (3) for some large enough constant Cy > 0.

Assume the sample size obeys n2p > Cu2nlog®n for some sufficiently large constant

C >0, and the noise satisfies 0 S | [ 7z1b [ M| for some sufficiently small con-

stant ¢ > 0. Then with probability exceeding 1 — O(n=3),
1. any minimizer Zqy of (3) obeys

(7a)

g n g n
|Zeoi= M7l 5 55 [ s 2= 2 5 S5 [

(7b)

)

| Zewe — M| S =2 [HBT g

oo N~ . oo’
Omin p

2. letting Zey,r = arg Minz.rank(z)<r | £ — Zewx||F e the best rank-r approzimation
of Ze, we have®

1
(8) ||ch><,r - cvaF S E . Ur:m\/ZHM*‘

and the error bounds in (7) continue to hold if Z.y is replaced by Zeyx -

)

To explain the applicability of the above theorem, we first remark on the condi-
tions required for this theorem to hold; for simplicity, we assume that u = O(1).

4Here and throughout, f(n) < g(n) or f(n) = O(g(n)) means | f(n)|/|g(n)| < C for some constant

C > 0 when n is sufficiently large; f(n) 2 g(n) means |f(n)|/|g(n)| > C for some constant C > 0
when n is sufficiently large; and f(n) < g(n) if and only if f(n) < g(n) and f(n) 2 g(n). In addition,
|| - lloo denotes the entrywise oo norm, whereas || - || is the spectral norm.

5The factor 1/n3 in (8) can be replaced by 1/n° for an arbitrarily large fixed constant ¢ > 0
(e.g., ¢ =100).
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o Sample complexity. To begin with, the sample size needs to exceed the order of

npoly log n, which is information-theoretically optimal up to some logarithmic
term [15].
Noise size. We then turn attention to the noise requirement, i.e.,

o S vnp/(logn) [ M*| -

Note that under the sample size condition n2p > Cnlog® n, the size of the noise
in each entry is allowed to be substantially larger than the maximum entry in
the matrix. In other words, the signal-to-noise ratio w.r.t. each observed entry
could be very small. According to prior literature (e.g., [61, Theorem 1.1]
and [71, Theorem 2]), such noise conditions are typically required for spectral
methods to perform noticeably better than random guessing.

Regularization parameter. In the end, we remark on the choice of the regular-
ization parameter A. As in most regularized estimators, we need to pick the
regularization parameter \ large enough so as to suppress the noise E (which
controls the variance), and small enough so as not to shrink the signal M* too
much (which controls the estimation bias). It turns out that setting A < o,/np
achieves the desired bias-variance trade-off; see Lemma 3.

Further, Theorem 1.3 has several important implications about the power of con-
vex relaxation. The discussions below again concentrate on the case where p = O(1).

e Near-optimal stability guarantees. Our results reveal that the Euclidean error

of any convex optimizer Z., of (3) obeys
(9) ||ZCVX_M*HF SO’ n/pa

implying that the performance of convex relaxation degrades gracefully as the
signal-to-noise ratio decreases. This result matches the oracle lower bound
derived in [13, eq. (IT1.13)], which also improves upon their statistical guar-
antee. Specifically, Candés and Plan [13] provided a stability guarantee in
the presence of arbitrary bounded noise. When applied to the random noise
model assumed here, their results yield Hchx - M *HF < on3/ 2. which could

be O(y/n?p) times more conservative than our bound (9).

Nearly low-rank structure of the convex solution. In light of (8), the optimizer
of the convex program (3) is almost, if not exactly, rank-r. When the true
rank 7 is known a priori, it is not uncommon for practitioners to return the
rank-r approximation of Zgy. Our theorem formally justifies that there is no
loss of statistical accuracy—measured in terms of either || - ||p or || - || ,oc—when
performing the rank-r projection operation.

Entrywise and spectral norm error control. Moving beyond the Euclidean loss,
our theory uncovers that the estimation errors of the convex optimizer are
fairly spread out across all entries, thus implying near-optimal entrywise error
control. This is a stronger form of error bounds, as an optimal Euclidean
estimation accuracy alone does not preclude the possibility of the estimation
errors being spiky and localized. Furthermore, the spectral norm error of the
convex optimizer is also well-controlled. See Figure 2 for the numerical support.
Implicit reqularization. As a byproduct of the entrywise error control, this
result indicates that the additional constraint || Z]|. < « suggested by [74] is
automatically satisfied and is hence unnecessary. In other words, the convex
approach implicitly controls the spikiness of its entries, without resorting to
explicit regularization. This is also confirmed by the numerical experiments
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Fic. 3. The relative estimation errors of Z, measured in terms of g and loo, versus the
standard deviation o of the noise. Here Z can be either the modified convexr estimator in [64], the
constrained conver estimator in [T4], or the vanilla convez estimator (3).
n = 1000, » = 5, p = 0.2, and are averaged over 20 Monte Carlo trials. For the modified convex esti-
mator in [64], we choose the regularization parameter X therein to be 1.5 max{c, || M*||s}1/1/(n3p),
as suggested by their theory. For the constrained one in [74], the regularization parameter X is set
to be 50/np and the constraint « is set to be | M*||o. Both choices are recommended by [74]. As

for (3), we set X\ = 50/np.

The results are reported for

reported in Figure 3, where we see that the estimation error of (3) and that of
the constrained version considered in [74] are nearly identical.
o Statistical guarantees for fast iterative optimization methods. Various iterative
algorithms have been developed to solve the nuclear norm regularized least-
squares problem (3) up to an arbitrarily prescribed accuracy, examples includ-
ing SVT (or proximal gradient methods) [8], FPC [72], SOFT-IMPUTE (73],
FISTA [5, 89], to name just a few. Our theory immediately provides statistical
guarantees for these algorithms. As we shall make precise in section 2, any
point Z with g(Z) < g(Zex) + € (where g(+) is defined in (3)) enjoys the same
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error bounds as in (7) (with Z.x replaced by Z in (7)), provided that € > 0 is
sufficiently small. In other words, when these convex optimization algorithms
converge w.r.t. the objective value, they are guaranteed to return a statistically
reliable estimate.

To better understand our contributions, we take a moment to discuss two im-
portant but different convex programs studied in [74] and [64]. To begin with, under
a spikiness assumption on the low-rank matrix, Negahban and Wainwright [74] pro-
posed to enforce an extra entrywise constraint || Z||oc < o when solving (3), in order
to explicitly control the spikiness of the estimate. When applied to our model with
ry K, < 1, their results read (up to some logarithmic factor)

(10)

Z — M*||, S max {0, [|M*||lc} \/n/p,

where Z is the estimate returned by their modified convex algorithm. While this
matches the optimal bound when o 2 ||[M*||, it becomes suboptimal when o <
[M*|| (under our models). Moreover, as we have already discussed, the extra
spikiness constraint becomes unnecessary in the regime considered herein. This also
means that our result complements existing theory about the convex program in [74]
by demonstrating its minimaxity for an additional range of noise. Another work by
Koltchinskii, Lounici, and Tsybakov [64] investigated a completely different convex
algorithm, which is effectively a spectral method (namely, one round of soft singular
value thresholding on a rescaled zero-padded data matrix). The algorithm is shown to
be minimax optimal over the class of low-rank matrices with bounded ¢, norm (note
that this is very different from the set of incoherent matrices studied here). When
specialized to our model, their error bound is the same as (10) (modulo some log
factor), which also becomes suboptimal as o decreases. The advantage of the convex
program (3) is shown in Figure 3.

1.4.3. Theoretical guarantees: Extensions to more general settings. So
far we have presented results when the true matrix has bounded rank and condition
number, i.e., r, kK = O(1). Our theory actually accommodates a significantly broader
range of scenarios, where the rank and the condition number are both allowed to grow
with the dimension n.

THEOREM 1.4. Let M* be rank-r and p-incoherent with a condition number k.
Suppose Assumption 1 holds and take A = Cxo\/np in (3) for some large enough
constant Cy > 0. Assume the sample size obeys n’p > C’/<c4p2r2n10g3n for some

sufficiently large constant C > 0, and the noise satisfies U\/E < c—=2min_— for
p r4urlogn

some sufficiently small constant ¢ > 0. Then with probability exceeding 1 — O(n=3),
1. any minimizer Zey of (3) obeys

o [n
T -
1
(11b) ||ch><7M*HoofS HSPJT.i n(;#HM*HOO’
(11c) | Zew — M™|| Sazm\/zHM*H?
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Fi1G. 4. The estimation errors of Zeyx and Zneyx, measured in terms of £y, versus the rescaled
sample complexity n2p/(2nr logn). The results are reported for n = 1000, p = 0.2, o = 10~%, and
are averaged over 20 Monte Carlo trials. The rank r is varied from 1 to 25 and the condition number
K s chosen from {1,10,100}.

2. letting Zeyx r £ arg Mingz.rank(z)<r [|Z — Zewx||F be the best rank-r approzimation
of Zeyx, we have

1
(12) ”chx,r — ZCVXHF < m . i\/gHM*”,

and the error bounds in (11) continue to hold if Zey is replaced by Zeyy r.

Remark 1.5 (the noise condition). The incoherence condition (cf. Definition 1.1)
guarantees that the largest entry || M*||s of the matrix M* is no larger than xuromi, /n.
As a result, the noise condition stated in Theorem 1.4 covers all scenarios obeying

np

oSy IIM

*
~\ kSu3ri3logn I

oo *

Therefore, the typical size of the noise is allowed to be much larger than the size of the
6,3,.3

largest entry of M*, provided that p > ”—“rnﬂ. In particular, when r, k = O(1),

this recovers the noise condition in Theorem 1.3.

Notably, the sample size condition for noisy matrix completion (i.e., n?p >
Cr*p2r2nlog® n) is more stringent than that in the noiseless setting (i.e., n?p =<
nrlog? n), and our statistical guarantees are likely suboptimal with respect to the
dependency on r and k. It turns out that both convex and nonconvex methods work
well numerically even when the number of samples n?p is on the order of nrlogn,
which is much smaller than the required sample complexity f<;4r2nlog3n in Theo-
rem 1.4; see Figure 4 for an illustration. From a technical point of view, this sub-
optimality is mainly due to the analysis of nonconvex optimization, a key ingredient
of our analysis of convex relaxation. In fact, the state-of-the-art nonconvex analy-
sis [31, 61, 71] requires the sample size to be much larger than the optimal one
(e.g., n?p > npoly(r)poly(x)) even in the noiseless setting. It would certainly be in-
teresting, and in fact important, to see whether it is possible to develop a theory with
optimal dependency on r and k. We leave this for future investigation.

It is also instrumental to compare our sample complexity and error bounds with
those in the prior literature [10, 62, 64, 74]. See Table 1 for a comparison when the
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TABLE 1
Comparisons of sample complezities and Euclidean estimation errors when p = O(1).

Sample complexity Euclidean estimation error
[64] nlog?n max (o, || M*||,.) v/(nrlogn)/p
[74] nlogn max (o, 1/n) a*/(nrlogn)/p
[62] nlog®n max (o, || M*||,.) v/(nrlogn)/p
[10] n max (3, M 0) M7 s 78/ /pH/4
Ours k4r2nlogd3n HQUW

incoherence parameter p is O(1). Here

M| s
n M, and M7 o = P 1Ul2,00 1V 2,00 -

A
oF =

Indeed, all the papers [10, 62, 64, 74] studied convex relaxation approaches for noisy
matrix completion. However, there are two main differences from our analysis here.
The first is regarding the convex method itself. All four papers [10, 62, 64, 74]
require extra knowledge about the underlying low-rank matrix for the convex ap-
proach, e.g., the £, norm of the low-rank matrix in [10, 62, 74] and the sharpness
constant in [74]. This results in different convex formulations from what we analyze
here. The second major difference lies in the performance guarantees. In both the
well-conditioned and the highly ill-conditioned regimes, the estimation error provided
in [10, 62, 64, 74] does not vanish as the size of the noise decreases to zero. This is in
stark contrast to our theory that guarantees the stability of the convex approach for
noisy matrix completion.

Despite the above suboptimality issue, implications similar to those of Theo-
rem 1.3 hold for this general setting. To begin with, the nearly low-rank structure
of the convex solution is preserved (cf. (12)). In addition, the estimation error of the
convex estimate is spread out across entries (cf. (11b)), thus uncovering an implicit
regularization phenomenon underlying convex relaxation (which implicitly regularizes
the spikiness constraint on the solution). Last but not least, the upper bounds (11)
and (12) continue to hold for approximate minimizers of the convex program (3),
thus yielding statistical guarantees for numerous iterative algorithms aimed at mini-
mizing (3).

1.5. Numerical experiments. This subsection collects numerical supports for
our theoretical findings in section 1.4.

Entrywise and spectral norm error of the convex approach. The experimental
setting is similar to that in producing Figure 1. For completeness, we repeat it
here. Fix n = 1000 and r = 5. We generate M* = X*Y*', where X*,Y* €
R™ " are random orthonormal matrices. Fach entry M of M™ is observed with
probability p = 0.2 independently, and then corrupted by an independent Gaussian
noise E;; ~ N (0, o?). Throughout the experiments, we set A = 50,/np. The convex
program (3) is solved by the proximal gradient method [76]. Figure 2 displays the
relative estimation errors of the convex approach (3) in both the ¢, norm and the
spectral norm. As can be seen, both forms of estimation errors scale linearly with the
noise level, corroborating our theory.
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Comparisons with other convex approaches. Utilizing the same experimental set-
ting as before, we compare the numerical performance of (3) with two important
but different convex programs studied in [74] and [64]. For the modified convex estima-
tor in [64], we choose the regularization parameter A therein to be 1.5 max{c, || M*||o }

1/(n3p), as suggested by their theory. For the constrained one in [74], the regular-
ization parameter \ is set to be 50/np and the constraint « is set to be ||M*| .
Both choices are recommended by [74]. Figure 3 displays the relative Euclidean and
entrywise estimation error of the three convex programs. As can be seen, the esti-
mation error of this thresholding-based spectral algorithm [64] does not decrease as
the noise shrinks, and its performance seems uniformly outperformed by that of con-
vex relaxation (3) and the constrained estimator in [74]. In fact, this is part of our
motivation to pursue an improved theoretical understanding of the formulation (3).

Numerical sample complexity of both convex and nonconvex methods.. Theorem 1.4
requires the sample complexity n2p to exceed k*r?nlog® n, which we believe could be
improved. To justify this, under a similar setting to that of Figure 1, we plot the esti-
mation errors of Ze, and Zex versus the rescaled sample complexity n?p/(2nrlogn)
in Figure 4. It can be seen that the estimation errors degrade gracefully as the
rescaled sample size gets smaller and the performance does not change w.r.t. the
condition number x.

2. Strategy and novelty. In this section, we introduce the strategy for proving
our main theorem, i.e., Theorem 1.4. Theorem 1.3 follows immediately. Informally,
the main technical difficulty stems from the lack of closed-form expressions for the
primal solution to (3), which in turn makes it difficult to construct a dual certificate.
This is in stark contrast to the noiseless setting, where one clearly anticipates the
ground truth M* to be the primal solution; in fact, this is precisely why the analysis
for the noisy case is significantly more challenging. Our strategy, as we shall detail
below, mainly entails invoking an iterative nonconvex algorithm to “approximate”
such a primal solution.

Before continuing, we introduce a few more notations. Let Pg(-) : R®*" — R?*"
represent the projection onto the subspace of matrices supported on €2, namely,

Z;; for (i,7) € Q,
0 otherwise

(13) [Pa (Z)]ij = {
for any matrix Z € R"*". For a rank-r matrix M with SVD UXV ", denote by T
the tangent space of the rank-r manifold at M, i.e.,

(14) T={UA"+BV' |A,BeR"™}.

Correspondingly, let Pr(+) be the orthogonal projection onto the subspace T, that is,
(15) Pr(Z)=UU"Z+2ZVV' -UU"'ZVV'

for any matrix Z € R™*". In addition, let 7+ and Pz.(-) denote the orthogonal
complement of 7" and the projection onto T, respectively. Regarding the ground
truth, we denote

(16) X*=U*ZH)Y?  and Y*=V*EH)V2

The nonconvex problem (5) is equivalent to

... a 1 T 2 A 2 A 2
(17) winimize f[(X,Y)= %HPQ (XY' —M) |, + %HXHF + %”YHFH
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where we have inserted an extra factor 1/p (compared to (5)) to simplify the presen-
tation of the analysis later on.

2.1. Exact duality. In order to analyze the convex program (3), it is natural to
start with the first-order optimality condition. Specifically, suppose that Z € R"*"
is a (primal) solution to (3) with SVD Z = UXV T.5 As before, let T be the tangent
space of Z, and let T be the orthogonal complement of 7. Then the first-order
optimality condition for (3) reads there exists a matrix W € T+ (called a dual
certificate) such that

(18a) %PQ (M-2z)=UV'+W,
(18b) W] <1

This condition is not only necessary to certify the optimality of Z, but also “almost
sufficient” in guaranteeing the uniqueness of the solution Z; see https://arxiv.org/
pdf/1902.07698.pdf for in-depth discussions.

The challenge then boils down to identifying such a primal-dual pair (Z, W)
satisfying the optimality condition (18). For the noise-free case, the primal solution
is clearly Z = M™ if exact recovery is to be expected; the dual certificate can then be
either constructed exactly by the least-squares solution to a certain underdetermined
linear system [14, 15], or produced approximately via a clever golfing scheme pioneered
by Gross [51]. For the noisy case, however, it is often difficult to hypothesize on the
primal solution Z, as it depends on the random noise in a complicated way. In fact,
the lack of a suitable guess of Z (and hence W) was the major hurdle that prior
works faced when carrying out the duality analysis.

2.2. A candidate primal solution via nonconvex optimization. Motivated
by the numerical experiment in section 1.3, we propose to examine whether the op-
timizer of the nonconvex problem (5) stays close to the solution to the convex pro-
gram (3). Towards this, suppose that X,Y € R™*" form a critical point of (5) with
rank(X) = rank(Y") = r.” Then the first-order condition reads

(19a) %PQ (M-XY")Y =X,
(19b) % Po(M-XYT)] X =Y.

To develop some intuition about the connection between (18) and (19), let us
take a look at the case with r = 1. Denote X = x and Y = y and assume that
the two rank-1 factors are “balanced,” namely, ||z||2 = |ly||2 # 0. It then follows
from (19) that A™'Pq(M — xy") has a singular value 1, whose corresponding left
and right singular vectors are x/||z||2 and y/[|y||2, respectively. In other words, one
can express

1 T T
(20) “PoM—-—z2y' )= ——xy +W
3P =) = T |
where W is orthogonal to the tangent space of xy'; this is precisely the condi-
tion (18a). It remains to argue that (18b) is valid as well. Towards this end, the

SHere and below, we use Z (rather than Zc) for notational simplicity, whenever it is clear from
the context.

7Once again, we abuse the notation (X,Y") (instead of using (Xnewx, Ynevx)) for notational sim-
plicity, whenever it is clear from the context.
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first-order condition (19) alone is insufficient, as there might be nonglobal critical
points (e.g., saddle points) that are unable to approximate the convex solution well.
Fortunately, as long as the candidate 2y is not far away from the ground truth M*,
one can guarantee |[W|| < 1 as required in (18b).

The above informal argument about the link between the convex and the noncon-
vex problems can be formalized. To begin with, we introduce the following conditions
on the regularization parameter .

Condition 1 (regularization parameter). The regularization parameter A satisfies
(a) (Relative to noise) ||Pq (E) || < A/8;
(b) (Relative to nonconvex solution) |Po(XY T —M*)—p(XY T —M*)|| < \/8.

Remark 2.1. Condition 1 requires that the regularization parameter A should
dominate a certain norm of the noise, as well as of the deviation of XY T — M*
from its mean p(XY " — M*); as will be seen shortly, the latter condition can be met
when (X,Y) is sufficiently close to (X*,Y™).

With the above condition in place, the following result demonstrates that a critical
point (X,Y") of the nonconvex problem (5) readily translates to the unique minimizer
of the convex program (3). This lemma is established in https://arxiv.org/pdf/1902.
07698.pdf.

LEMMA 2.2 (exact nonconvex versus convex optimizers). Suppose that (X,Y) is
a critical point of (5) satisfying rank(X) = rank(Y') = r, and the sampling opera-
tor Pq is injective when restricted to the elements of the tangent space T of XY T,
namely,

(21) Pao(H)=0 <= H=0 forallHEeT.
Under Condition 1, the point Z = XY T is the unique minimizer of (3).

In order to apply Lemma 2.2, one needs to locate a critical point of (5) that is
sufficiently close to the truth, for which one natural candidate is the global optimizer
of (5). The caveat, however, is the lack of theory characterizing directly the properties
of the optimizer of (5). Instead, what is available in prior theory is the characterization
of some iterative sequence (e.g., gradient descent iterates) aimed at solving (5). It is
unclear from prior theory whether the iterative algorithm under study (e.g., gradient
descent) converges to the global optimizer in the presence of noise. This leads to
technical difficulty in justifying the proximity between the nonconvex optimizer and
the convex solution via Lemma 2.2.

2.3. Approximate nonconvex optimizers. Fortunately, perfect knowledge
of the nonconvex optimizer is not pivotal. Instead, an approximate solution to the
nonconvex problem (5) (or equivalently (17)) suffices to serve as a reasonably tight
approximation of the convex solution. More precisely, we desire two factors (X,Y")
that result in nearly zero (rather than exactly zero) gradients:

Vxf(X,Y)~0 and Vyf(X,Y)~0,

where f(-,-) is the nonconvex objective function as defined in (17). This relaxes
the condition discussed in Lemma 2.2 (which only applies to critical points of (5) as
opposed to approximate critical points). As it turns out, such points can be found via
gradient descent tailored to (5). The sufficiency of the near-zero gradient condition
is made possible by slightly strengthening the injectivity assumption (21), which is
stated below.
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Condition 2 (injectivity). Let T be the tangent space of XY . There is a quan-
tity cinj > 0 such that

(22) [ Po (H)|3 > cinj | H |7 for all H € T.

The following lemma states quantitatively how an approximate nonconvex op-
timizer serves as an excellent proxy of the convex solution, which we establish in
https://arxiv.org/pdf/1902.07698.pdf.

LEMMA 2.3 (approximate nonconvex versus convex optimizers). Suppose that
(X,Y) obeys

(23) IV (XY < X S

for some sufficiently small constant ¢ > 0. Further assume that any singular value of
X andY lies in [\/Omin/2, V20max)- Then under Conditions 1 and 2, any minimizer
Zewx of (3) satisfies

1
(24) XY T = Zewdle 5

— IV (XY

Remark 2.4. In fact, this lemma continues to hold if Z. is replaced by any Z
obeying g(Z) < g(XY 1), where g(-) is the objective function defined in (3) and X
and Y are low-rank factors obeying conditions of Lemma 2.3. This is important in
providing statistical guarantees for iterative methods like SVT [8], FPC [72], SOFT-
IMPUTE [73], FISTA [5], etc. To be more specific, suppose that (X,Y) results in
an approximate optimizer of (3), namely, (XY ") = g(Z.,) + ¢ for some sufficiently
small € > 0. Then for any Z obeying ¢(Z) < g(XY ") = g(Z.x) + ¢, one has

1

(25) |xYT-z|, s~

inj min

V(XY )

As a result, as long as the above-mentioned algorithms converge in terms of the
objective value, they must return a solution obeying (25), which is exceedingly close
to XY T if [VF(X,Y)||r is small.

It is clear from Lemma 2.3 that, as the size of the gradient Vf(X,Y) gets
smaller, the nonconvex estimate XY T becomes an increasingly tighter approxima-
tion of any convex optimizer of (3), which is consistent with Lemma 2.2. In contrast
to Lemma 2.2, due to the lack of strong convexity, a nonconvex estimate with a
near-zero gradient does not imply the uniqueness of the optimizer of the convex pro-
gram (3); rather, it indicates that any minimizer of (3) lies within a sufficiently small
neighborhood surrounding XY T (cf. (24)).

2.4. Construction of an approximate nonconvex optimizer. So far, Lem-
mas 2.2-2.3 are both deterministic results based on Condition 1. As we will soon see,
under Assumption 1, we can derive simpler conditions that—with high probability—
guarantee Condition 1. We start with Condition 1(a).

LEMMA 2.5. Suppose n?p > Cnlog®n for some sufficiently large constant C > 0.
Then with probability at least 1 — O(n~'°), one has ||Pq (E)|| S o\/np. As a result,
Condition 1 holds (i.e., |Pa(E)| < A/8) as long as X\ = Cxo\/np for some sufficiently
large constant Cy > 0.
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Proof. This follows from [31, Lemma 11] with a slight and direct modification to
accommodate the asymmetric noise here. For brevity, we omit the proof. 0

Turning attention to Condition 1(b) and Condition 2, we have the following
lemma, the proof of which is deferred to https://arxiv.org/pdf/1902.07698.pdf.

LEMMA 2.6. Under the assumptions of Theorem 1.4, with probability exceeding
1 —O(n=1%) we have

|Po(XY T — M*) —p(XY'" — M*)| <\/8  (Condition 1(b)),
1 2 1 2 ol . —1
» |Po (H)||p > oy |H||z forallHeT (Condition 2 with ¢in; = (32k)77)

hold simultaneously for all (X,Y) obeying

max {1 X = X" o 1Y = Y7l }

o nlogn A N N
(26) scoon< — [ BT ,>max{x oo 1Yl } -
Jmm p pamln

Here, T denotes the tangent space of XY T, and Cs > 0 is some absolute constant.

This lemma is a uniform result, namely, the bounds hold irrespective of the sta-
tistical dependency between (X,Y’) and Q. As a consequence, to demonstrate the
proximity between the convex and the nonconvex solutions (cf. (24)), it remains to
identify a point (X,Y’) with vanishingly small gradient (cf. (23)) that is sufficiently
close to the truth (cf. (26)).

As we already alluded to previously, a simple gradient descent algorithm aimed at
solving the nonconvex problem (5) might help us produce an approximate nonconvex
optimizer. This procedure is summarized in Algorithm 1. Our hope is this: when
initialized at the ground truth and run for sufficiently many iterations, the gradient
descent (GD) trajectory produced by Algorithm 1 will contain at least one approxi-
mate stationary point of (5) with the desired properties (23) and (26). We shall note
that Algorithm 1 is not practical since it starts from the ground truth (X™*,Y™); this
is an auxiliary step mainly to simplify the theoretical analysis. While we can certainly
make it practical by adopting spectral initialization as in [19, 71], it requires more
lengthy proofs without further improving our statistical guarantees.

Algorithm 1 Construction of an approximate primal solution.

Initialization: X? = X*; Y°=Y".
Gradient updates: for t =0,1,...,tp — 1 do

(27a)
XU =X VX f(X YY) = X' = L (P (X'Y'T - M) Y 4+ 2X");
p

(27b)
yi+l —yt _ nVyf(Xt,Yt) —yt_ g( [739 (XthT _ M)]T Xty )\Yt).

Here, n > 0 is the step size.
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2.5. Properties of the nonconvex iterates. In this subsection, we will build
upon the literature on nonconvex low-rank matrix completion to justify that the
estimates returned by Algorithm 1 satisfy the requirement stated in (26). Our theory
will be largely established upon the leave-one-out strategy introduced by Ma et al. [71],
which is an effective analysis technique to control the {5 , error of the estimates. This
strategy has recently been extended by Chen, Liu, and Li [19] to the more general
rectangular case with an improved sample complexity bound.

Before continuing, we introduce several useful notations. Notice that the matrix
product of X* and Y* T is invariant under global orthonormal transformation, namely,
for any orthonormal matrix R € R™" one has X*R(Y*R)" = X*Y*T. Viewed in
this light, we shall consider distance metrics modulo global rotation. In particular,
the theory relies heavily on a specific global rotation matrix defined as follows

. /
e H 2ag i ([XR-X+[VR-YD)

where O"*" is the set of r X r orthonormal matrices.
We are now ready to present the performance guarantees for Algorithm 1.

LEMMA 2.7 (quality of the nonconvex estimates). Instate the notation and hy-
potheses of Theorem 1.4.  With probability at least 1 — O(n_3), the iterates
{(X", Y }o<t<t, of Algorithm 1 satisfy

(29a)
o n A

—+
Omin p P Omin

max {|| X H' — X*|| .,

Yth_Y*HF}SCF( ) ||X*HF7

(29b) max{HXth—X*H,HYth—Y*H}SCOP( Ay T )X*||,

Omin p P Omin

mas {| X H =X, Y E -y, )

1 A
(20¢) <cmn( TR+ )max{nX*nWHY*
Omin p P Omin ’

(30) min ||V f (X", Y")|, < ié\/iamim

0<t<to n® p

2,00}’

where Cp, Cop, Coo > 0 are some absolute constants, provided that n < 1/(nk3omax)
and that to = n's.

This lemma, which we establish in https://arxiv.org/pdf/1902.07698.pdf, reveals
that for a polynomially large number of iterations, all iterates of the GD sequence—
when initialized at the ground truth—remain fairly close to the true low-rank factors.
This holds in terms of the estimation errors measured by the Frobenius norm, the
spectral norm, and the ¢3 o, norm. In particular, the proximity in terms of the 5 o
norm error plays a pivotal role in implementing our analysis strategy (particularly
Lemmas 2.3-2.6) described previously. In addition, this lemma (cf. (30)) guarantees
the existence of a small-gradient point within this sequence {(X*,Y*)}o<t<t,, & Some-
what straightforward property of GD tailored to smooth problems [75]. This in turn
enables us to invoke Lemma 2.3.
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As immediate consequences of Lemma 2.7, with high probability we have

n A

M*||..,
Omin D pamin) H HF

(310) ||XtY”—M*HOO<3coo\/n3m<a”_ R >||M*||oo,

(3lc) || X'Y'T — M| g3cop< 7 Ity A >||M*||
Omin p P Omin

(3la) || X'Y'" — M*||, <3kCr (

for all 0 <t < tg. The proof is deferred to https://arxiv.org/pdf/1902.07698.pdf.

2.6. Proof of Theorem 1.4. Let t, = argminp<i<¢, |V f (X', Y?)||p, and take
(Xnewo Yoox) = (X H Yt H'™) (cf. (28)). It is straightforward to verify that
(X nevx, Yoewx) obeys (i) the small-gradient condition (23), and (ii) the proximity con-
dition (26). We are now positioned to invoke Lemma 2.3: for any optimizer Z
of (3), one has

K K2\
||ch>< XnCVXchx”F CmJ \/m ||Vf( ncvx; ncvx)HF ~ ﬁ;
KA K
= — K H = M*
nd P Omin ( Umm) n5 P Omin ” ”
1 A
(32) S [RZag1F
1" P Omin

The last line arises since n > k—a consequence of the sample complexity condition
np 2> kAp2r? log®n (and hence n > np > k*pu?r? log®n > k*). This taken collectively
with the property (31) implies that

HZCVX7M*HF Hchx chvxn—(l;—vx”F“i’ Hchvx nevx M*HF
1 A

n4 P Omin

o n A N
||M*||+n( o )HMHF

min p P Omin

o n A N
< my )|M e

Omin p P Omin

A

X

In other words, since chvanc\,x and Z,.x are exceedingly close, the error Z.,, — M*

is mainly accredited t0 Xpex Yo — M*. Similar arguments lead to

HZCVX_M*H 5 < 7 2 + )\ > ||M*||7

min p Omin

« - o [nlogn A N
Hchx - M ||oo ,S HS/J’T < . + . > ||M ||oo
Umm p pamm
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We are left with proving the properties of Zcx . Since Z.,, is defined to be the
best rank-r approximation of Z., one can invoke (32) to derive
1 A
Hchx - chx,rHF S Hchx - chvxKJ;—VXHF ~ 1

Tl4 P Omin

[z

from which (12) follows. Repeating the above calculations implies that (11) holds if
Zy is replaced by Zx r, thus concluding the proof.

3. Prior art. Nuclear norm minimization, pioneered by the seminal works [14,
15, 45, 80], has been a popular and principled approach to low-rank matrix recovery.
In the noiseless setting, i.e., E = 0, it amounts to solving the following constrained
convex program

(33) minimize zegnxn || Z||, subject to  Pq (Z) = P (M™),

which enjoys great theoretical success. Informally, this approach enables exact recov-
ery of a rank-r matrix M* € R™*" as soon as the sample size is about the order
of nr—the intrinsic degrees of freedom of a rank-r matrix [20, 51, 79]. In partic-
ular, Gross [51] blazed a trail by developing an ingenious golfing scheme for dual
construction—an analysis technique that has found applications far beyond matrix
completion. When it comes to the noisy case, Candés and Plan [13] first studied the
stability of convex programming when the noise is bounded and possibly adversarial,
followed by [74] and [64] using two modified convex programs. As we have already
discussed, none of these papers provide optimal statistical guarantees under our model
when r = O(1). Other related papers such as [10, 62] include similar estimation error
bounds and suffer from similar suboptimality issues.

Turning to nonconvex optimization, we note that this approach has recently re-
ceived much attention for various low-rank matrix factorization problems, owing to
its superior computational advantage compared to convex programming (e.g., [12,
22, 56, 60, 91, 97]). The convergence guarantees for matrix completion have been
established for various algorithms such as GD on manifold [60, 61], alternating min-
imization [53, 56], GD [19, 71, 87, 94], and projected GD [31], provided that a
suitable initialization (like spectral initialization) is available [23, 56, 60, 71, 87].
Our work is mostly related to [19, 71], which studied (vanilla) GD for noncon-
vex matrix completion. This algorithm was first analyzed by [71] via a leave-one-
out argument—a technique that proves useful in analyzing various statistical algo-
rithms [1, 26, 27, 35, 38, 67, 88, 101]. In the absence of noise and omitting logarithmic
factors, [71] showed that O(nr®) samples are sufficient for vanilla GD to yield € accu-
racy in O(log 1) iterations (without the need of extra regularization procedures); the
sample complexity was further improved to O(nr?) by [19]. Apart from GD, other
nonconvex methods (e.g., [16, 35, 48, 52, 53, 55, 56, 57, 65, 81, 82, 92, 95, 96, 99])
and landscape / geometry properties have been investigated [18, 49, 50, 77, 83]; these
are, however, beyond the scope of the current paper.

Another line of works asserted that a large family of semidefinite programs (SDPs)
admits low-rank solutions [4], which in turn motivates the Burer—-Monteiro approach
[6, 7]. When applied to matrix completion, however, the generic theoretical guarantees
therein lead to conservative results. Take the noiseless case (33) for instance: these
results revealed the existence of a solution of rank at most O(1/n2p), which, however,
is often much larger than the true rank (e.g., when r < 1 and p < polylog(n)/n, one
has \/n?p > /n > r). Moreover, this line of works does not imply that all solutions
to the SDP of interest are (approximately) low rank.
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Finally, the connection between convex and nonconvex optimization has also been
explored in line spectral estimation [66], although the context therein is drastically
different from ours.

4.

Discussion. This paper provides an improved statistical analysis for the nat-

ural convex program (3), without the need of enforcing additional spikiness constraint.
Our theoretical analysis uncovers an intriguing connection between convex relaxation
and nonconvex optimization, which we believe is applicable to many other problems
beyond matrix completion. Having said that, our current theory leaves open a vari-
ety of important directions for future exploration. Here we sample a few interesting

ones.
[ ]

Improving dependency on r and . While our theory is optimal when r and &
are both constants, it becomes increasingly looser as either r or x grows. For
instance, in the noiseless setting, it has been shown that the sample complexity
for convex relaxation scales as O(nr)—linear in r and independent of k—which
is better than the current results. It is worth noting that existing theory for
nonconvex matrix factorization typically falls short of providing optimal scaling
in r and & [19, 31, 60, 71, 87]. Thus, tightening the dependency of sample
complexity on r and k might call for new analysis tools.

Approzimate low rank structure. So far our theory is built upon the assumption
that the ground-truth matrix M™ is exactly low-rank, which falls short of
accommodating the more realistic scenario where M™ is only approximately
low rank. For the approximate low-rank case, it is not yet clear whether the
nonconvex factorization approach can still serve as a tight proxy. In addition,
the landscape of nonconvex optimization for the approximately low-rank case
[18] might shed light on how to handle this case.

Ezxtension to deterministic noise. Our current theory—in particular, the leave-
one-out analysis for the nonconvex approach—relies heavily on the randomness
assumption (i.e., i.i.d. sub-Gaussian) of the noise. In order to justify the broad
applicability of convex relaxation, it would be interesting to see whether one can
generalize the theory to cover deterministic noise with bounded magnitudes.
Ezxtension to structured matriz completion. Many applications involve low-rank
matrices that exhibit additional structures, enabling a further reduction of the
sample complexity [9, 24, 47]. For instance, if a matrix is Hankel and low
rank, then the sample complexity can be O(n) times smaller than the generic
low-rank case. The existing stability guarantee of Hankel matrix completion,
however, is overly pessimistic compared to practical performance [24]. The
analysis framework herein might be amenable to the study of Hankel matrix
completion and help close the theory-practice gap.

FEaxtension to robust principal component analysis and blind deconvolution. Mov-
ing beyond matrix completion, there are other problems that are concerned
with recovering low-rank matrices. Notable examples include robust principal
component analysis [11, 17, 30], blind deconvolution [2, 68], and blind demix-
ing [59, 69]. The stability analyses of the convex relaxation approaches for
these problems [2, 69, 102] often adopt a similar approach as [13], and conse-
quently are sub-optimal. The insights from the present paper might promise
tighter statistical guarantees for such problems.

Finally, we remark that the intimate link between convex and nonconvex op-
timization enables statistically optimal inference and uncertainty quantification for
noisy matrix completion (e.g., construction of optimal confidence intervals for each
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missing entry). The interested readers are referred to our companion paper [28] for
in-depth discussions.

Acknowledgments. Y. Chen thanks Emmanuel Candes for motivating discus-
sions about noisy matrix completion.
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