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Visual Analysis of Class Separations with
Locally Linear Segments

Yuxin Ma and Ross Maciejewski, Senior Member, IEEE

Abstract—High-dimensional labeled data widely exists in many real-world applications such as classification and clustering. One main
task in analyzing such datasets is to explore class separations and class boundaries derived from machine learning models.
Dimension reduction techniques are commonly applied to support analysts in exploring the underlying decision boundary structures by
depicting a low-dimensional representation of the data distributions from multiple classes. However, such projection-based analyses
are limited due to their lack of ability to show separations in complex non-linear decision boundary structures and can suffer from heavy
distortion and low interpretability. To overcome these issues of separability and interpretability, we propose a visual analysis approach
that utilizes the power of explainability from linear projections to support analysts when exploring non-linear separation structures. Our
approach is to extract a set of locally linear segments that approximate the original non-linear separations. Unlike traditional
projection-based analysis where the data instances are mapped to a single scatterplot, our approach supports the exploration of
complex class separations through multiple local projection results. We conduct case studies on two labeled datasets to demonstrate
the effectiveness of our approach.

Index Terms—Visual analysis, dimension reduction, class separation
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1 INTRODUCTION

H IGH dimensional data visualization is utilized in vari-
ous fields such as machine learning [1], [2], biology [3],

and physics [4]. One of the main goals for analyzing high-
dimensional datasets is to reveal hidden patterns and rela-
tionships. In this paper, we focus on analyzing class separa-
tions of high-dimensional labeled data. The concept of labels
is a fundamental building block, widely adopted in machine
learning tasks including classification and clustering. Class
labels are used for specifying categories or partitions of
data instances and are usually tagged by human annota-
tors or predicted by models [5], [6]. When analyzing high-
dimensional data, analysts often explore how the classes
of instances are distributed or separated from each other,
which can support model selection, result evaluation and
parameter tuning.

To visualize high-dimensional patterns with labels, di-
mension reduction is an essential approach used to preserve
the intrinsic structures in the data while providing a low
dimensional representation. Colored scatterplots generated
by dimension reduction algorithms are a natural form for
presenting class structures. Two properties are typically
considered when applying an algorithm to visualize labeled
data instances: linearity and capability of supervision [7]:
• In linear projections, the data characteristics, such as

covariance, correlations, input-output relations, and mar-
gins between classes, can be easily illustrated [2]. Nev-
ertheless, they lack the ability to extract non-linear man-
ifolds [8]. In this situation, the linear projection results
in a colored scatterplot with heavily-overlapped points
in different colors. The non-linear methods are able to
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present non-linear manifolds in a 2-D scatterplot. How-
ever, the embedding results can be “extremely difficult to
interpret” [9] and may cause distortions and errors, such
as missing or false neighboring relationships, deformation
of distances, and loss of feature importance [7].

• The capability of supervision decides whether a method
can make use of the class labels. Supervised dimension
reduction algorithms tend to increase the similarities of
instances in the same class, which is reflected by closer
distances between dots with the same color. Generally,
supervised methods outperform their unsupervised coun-
terparts in illustrating within class distributions by modi-
fying the distance measures, resulting in shorter distances
between instances in the same class and longer distances
for instances in distinct classes [7], [10]. However, the dis-
tortion may increase the uncertainty and errors between
instances from different classes and affect the understand-
ing of intra-class relationships, especially when inspecting
data distributions near the class separations.

These limitations are illustrated using a synthetic dataset
in Figure 1. Here, we show a synthetic dataset in three-
dimensional space (A) where two C-shaped groups of in-
stances are colored in red and blue and placed face-to-face in
an orthogonal way. Since the two entangled classes are not
linearly separable, it is difficult to find a linear projection
matrix that depicts a clear class boundary, indicating the
limited capability of linear dimension reduction methods to
handle non-linear structures. For non-linear methods, both
(B) the unsupervised t-SNE [11] and (C) the supervised S-
Isomap [10] algorithms lose the original axis information
and distort the spatial relationships between instances in
the 3-D feature space. Although the class structures can
be perceived, it loses useful information to interpret how
and why the two classes are separated, such as determining
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(A) 3D (B) t-SNE (C)S-Isomap

Fig. 1. An example of linear and non-linear projections for a 3D synthetic
dataset. (A) Two classes of C-shaped data points face each other. (B)
There is a clear separation in the t-SNE result; however, the relation-
ships of spatial distances are heavily distorted. (C) The two classes
cannot be separated in the S-Isomap projection result.

features to separate the classes, distances between classes,
and fuzziness near the separation. As such, new approaches
are needed to support the investigation of class boundaries.

As such, we propose a visual analysis approach that
enables the exploration and investigation of complex class
separation structures. The core idea of our approach is
inspired by the development of locally-linear models in
classification analysis [12], [13], [14], [15], [16], [17]. We char-
acterize the complex class separation on the basis of locally
linear segments that approximate the original separation.
Notably, we detect potential linearly-separable regions near
the class separation boundaries and build the classification
boundary with locally linear segments by utilizing neigh-
borhood graphs as a description of segment connectivity.
We employ a multi-level visualization method consisting of
a glyph-based segment relation view, a segment detail view, a
projection view, and a path exploration view. The glyph-based
segment relation and detail view summarize the detected
locally linear segments as well as their relationships. The
projection view is used for visualizing details of critical
patterns including data distributions and clusters. Addition-
ally, we design a set of affiliated views and interactions to
support the visual exploration of locally linear segments.
Our contributions include:
• A novel approach for detecting locally linear separations

in high-dimensional labeled datasets with complex class
boundary structures, and;

• A visual analysis framework that facilitates the explo-
ration and diagnosis of complex class boundaries.

2 RELATED WORK

High-dimensional data visualization is a broad topic that
has been explored for decades [9]. We review related
existing work in dimension reduction techniques, visual
analysis in dimension reduction, and the analysis of high-
dimensional labeled data.

2.1 Dimension Reduction Techniques
Dimension reduction techniques are often used to transform
data instances from high-dimensional feature space into a
low-dimensional space. Nonato and Aupetit [7] proposed
a comprehensive survey and classification scheme of di-
mension reduction techniques in the context of visualiza-
tion and visual analytics. Among the properties surveyed,
we mainly focus on the property of “Linearity” which is
based on the assumption of underlying structures in the

projection algorithms. Linear projection techniques apply
linear transformations to the high-dimensional data while
preserving patterns and information hidden in the data [2],
including Principal Component Analysis (PCA) for highest
variances and Linear Discriminant Analysis (LDA) for max-
imizing class separations. Non-linear projection techniques,
on the other hand, assume that the high-dimensional data
instances are distributed in latent manifolds [8] and utilize
neighborhood structure to preserve the patterns [9], [18],
such as neighborhood graphs [19], [20], [21] and joint distri-
butions of neighborhoods in the input and the embedding
spaces [11], [22].

There are trade-offs between the two categories of pro-
jection techniques [7], [9]. Non-linear techniques are adept
at maintaining intrinsic manifold structures in the high-
dimensional data; however, the results are difficult to inter-
pret because of heavily-distorted original axes. The output
of linear projections provides better interpretability of data
distributions and class separations [2], [9]; however, non-
linear structures are lost [7]. In our visual analysis approach,
we utilize the interpretability from linear techniques and
enhance their ability to present complex separation struc-
tures with a suite of coordinated views. Recent work by
Wang et al. [6] is the closest in spirit to our work, where
a perception-driven linear dimension reduction approach is
designed to maximize visual separation measures [23], [24],
[25]. Similar to all other linear methods, this approach still
suffers from a less-optimal solution for complex separation
structures distributed on the separations.

2.2 Visual Analysis in Dimension Reduction
Interactive steering and exploration of latent structures are
often integrated into dimension reduction techniques. Sacha
et al. [26] propose seven categories of scenarios adopted in
existing dimension reduction visualization systems. Here,
we summarize the techniques closely related to our work.

Pattern Exploration: For revealing the hidden patterns and
manifolds, a novel structure-based metric [27] is proposed to
characterize the manifolds effectively. Approaches designed
in Liu et al. [28], Xia et al. [29], Zhou et al. [30], and
Xia et al. [8] are dedicated to the preliminary analysis of
correlations, clusters, or manifolds hidden in subspaces. Our
framework supports preliminary analysis specifically for
characterizing decision boundary manifolds by enhancing
existing linear projection methods [31] with multiple coor-
dinated views.

Optimization: Finding optimal projection results is one of
the main topics in dimension reduction. Automated meth-
ods (including Grand Tour [32], Projection Pursuit [33], and
Koren et al. [5]) find projections that maximize specific
optimization goals such as pursuit indices, data coordinates,
pairwise similarities, and clusters. Recently, Liu et al. [4] in-
troduce the Grassmannian Atlas, a framework that supports
the exploration of all informative linear projections, and
Wenskovitch et al. [34] discuss the design decisions when
combining dimension reduction and clustering algorithms
in visualizing clusters. For interactive adjustment of pro-
jection viewports, TripAdvisorN−D [35] utilizes the concept
of “touring in high-dimensional space” and supports the
users’ identification and planning of navigation paths. A
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follow-up work by Wang et al. [36] enhances the navigation
scheme with generalized 3D subspaces. Unlike the existing
techniques that optimize and interact with the projections
globally, our approach adopts a pattern extraction algorithm
that summarizes the decision boundaries by utilizing a se-
ries of optimal projections on important local regions as well
as interactions for inspecting local regions and transitions
between regions.

2.3 Analysis of High-Dimensional Labeled Data
Along with dimension reduction methods, related research
focuses on the analysis of labeled high-dimensional data.

Model Assistance: Classifiers are useful for characterizing
class separations in labeled datasets. Rodrigues et al. [37]
present an image-based approach that maps the high-
dimensional decision boundaries onto a 2-D plane high-
lighting determined and confused regions. The trustwor-
thiness of the maps under various dimensional reduction
methods is further evaluated [38]. In our approach, we use
support vector machine models to support the extraction of
linearly-separable regions near the decision boundary.

Topological Analysis: The topological-based approaches
tend to describe core structures with summarized repre-
sentations [39], such as topology representing graphs [40],
generative Gaussian graphs [41], [42], and principal com-
plex graphs [43]. Concerning decision boundary analysis,
Melnik [44] utilizes connectivity graphs [45] to analyze
decision region structures extracted from trained classifiers,
and Ramamurthy et al. [46] adopt persistent homology
inference of decision boundaries to characterize the com-
plexity of decision boundaries. Inspired by the topological
analysis approaches, we establish neighboring relationships
between locally linear regions as a summarization of the en-
tire decision boundary and support interactive exploration
to disclose the relationships between linear projections to
present the complex structure of non-linear separations.

3 LOCALLY LINEAR SEGMENT EXTRACTION

Before illustrating the visual analysis framework, we first
introduce the locally linear segment extraction algorithm
which acts as a foundation for further visual exploration.

3.1 Motivation
Our approach is to characterize class separations in labeled
datasets. In the field of machine learning, class separations
have been intensively studied to optimize model building
and evaluation in classification analysis [44], [46], [47].
When a classification model is trained on a specific training
dataset, the decision boundary of this model can be outlined,
which defines two or more distinct regions associated with
different class labels in the input feature space. Although the
classification models and decision boundaries are generally
used for predicting class labels of unlabeled data, we utilize
the concept of decision boundaries as a descriptive tool [44],
[47], [48] in order to characterize the class separations that
exist in the original training dataset.

We distinguish between linear and non-linear decision
boundaries based on their geometric properties. A decision

boundary with the shape of a hyperplane forms a linear
boundary which can be extracted by linear classifiers. A
hypersurface in the input feature space forms a non-linear
boundary that can describe complex class separations. For
the non-linear boundaries, our approach approximates the
non-linear boundaries with a set of locally linear ones,
which is inspired by previous works on local linearity
analysis [12]. Instead of using a single non-linear hypersur-
face to segregate the feature space, locally linear methods
build a set of linear hyperplanes that approximates the
original non-linear separations between classes. Regarding
the effective regions, the methods roughly fall into two
categories: 1) global methods [14], [15], [16], [17], [49] where
the proposed models work on the entire feature space, and
2) instance-based methods [13], [50] that build classifiers
on individual data instances. Different from the predictive
purpose across the existing works, our approach focuses on
generating interpretations for describing the patterns in the
datasets. For descriptive analysis, the LIME [51] method
utilizes explainable models (e.g., linear classifiers) as local
surrogates to interpret predictions on individual instances.
Our approach goes beyond the instance-based local expla-
nations by providing a global description of all the instances
in the dataset to provide a comprehensive explanation of
the class separation criteria on the entire dataset. In our
paper, we use “locally linear segments” to represent the set of
linear approximations extracted from the original decision
boundary. A formal definition of locally linear segments will
be introduced in the extraction algorithm.

3.2 Extraction Algorithm
The extraction of locally linear segments (Figure 2) consists
of four steps: (1) extract seeds near the decision boundary,
(2) generate locally linear segments, (3) merge similar seg-
ments, and (4) compute the coverage of segments.

Extract Seeds Near the Decision Boundary (Figure 2 (a)):
First, we use classification models to find the data instances
that are near the potential decision boundary. We refer to
such instances as seeds. We choose the non-linear support
vector machine classifier (non-linear SVM) as the model.
The rationale is that, after the SVM model is trained, the set
of data instances marked as support vectors are the ones
closest to the decision boundary based on the definition
of SVM. Thus, these support vectors can depict the entire
non-linear decision boundary and serve as a set of seeds
for constructing locally linear segments. It should be noted
that it is possible to use other types of classifiers, e.g.,
random forests, naive Bayes classifiers, etc., to characterize
the decision boundaries. In this case, we can build an SVM
or multiple SVM models as surrogate models of the desired
alternative classifier, which are then used to support the
following steps.

The procedure for harvesting the seeds in each class is
described in Figure 2 (a). For each class label li inm different
classes L = l1, l2, ..., lm, the data instances Xli of class li are
separated from the rest of the dataset Xc

li
(the complement

of Xli ). Then, a corresponding gaussian-kernel SVM Sli is
trained. Data instances within Xli are the positive training
samples andXc

li
are the negative samples. Thus, the support

vectors in the trained Sli can be used to model the decision
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(a) Extract Seeds Near the Decision Boundary (b) Generate Locally Linear Segments
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segments

Assigning data instances
to their nearest segment

Expanded Seed Set SDi

Fig. 2. The extraction process of locally-linear segments. (a) A number of data instances near the decision boundaries are filtered out as seeds.
(b) For each seed, a linear SVM is trained on instances in the neighboring local region of the seed to generate a locally linear segment. (c) Similar
segments are merged together. (d) The regions of the influence of the segments are computed.

boundary between the corresponding class and the rest of
the data, and the support vectors in Sli are passed to the
next step as seeds for generating locally linear segments.
It should be noted that due to the soft-margin condition
in SVMs, some of the support vectors may be assigned to
the wrong class [52]. These misclassified support vectors are
filtered out from the seeds.

Generate the Locally Linear Segments (Figure 2 (b)): In
our algorithm, a locally linear segment is defined as a
separating hyperplane that classifies instances in a certain
region based on labels of the instances. Usually, the mathe-
matical definition of a hyperplane implies that it expands
indefinitely. However, here we address that its ability to
properly classify labeled instances are limited to the local
region near the corresponding seeds since it is only used as
a local approximation of a complex decision hypersurface.

The segment generation process is inspired by the “local
learning” strategy from Bottou et al. [53]. For each seed sd,
we create an expanded seed set (SD) by selecting a number
of surrounding data instances that covers a surrounding
region. For each seed in class li, we select the k − 1 nearest
neighbors whose class label is li and another k nearest
neighbors in classes other than li, resulting in an expanded
seed set with 1 + (k − 1) + k = 2k instances. A linear SVM
is then trained on SD to find a separating hyperplane that
can classify the data instances in the seed class and other
classes. The hyperplane is used as the locally linear segment
in the seed region.

Merge Similar Segments (Figure 2 (c)): After all the locally
linear segments for all seeds are generated, another issue
that comes from the properties of support vectors is that
the density of seeds varies in different regions on the de-
cision boundary. For those high-density regions, there may
be redundant segments with nearly overlapped separating
hyperplanes. To overcome this issue, we adopt a bottom-up
scheme to merge redundant segments:

1) For each seed sd in class l and its expanded seed set SD,
find the top-t nearest seeds sd′j where l′j = l and j ∈

[1, t] by measuring the average between-wise euclidean
distances of data instances between their corresponding
expanded seed sets.

2) With j from 1 to t, train a linear SVM on the set of data
instances combined with SD′j and SD, i.e., SD′j

⋃
SD.

3) Calculate the training accuracy of the new linear SVM
train accj .

4) If train accj is larger than a threshold θ, the two seg-
ments generated by SD and SD′j are considered to be
overlapped and should be combined. The original sd and
sd′j will be replaced by {sdj}

⋃
{sd} whose expanded

seed set is SD′j
⋃
SD. The hyperplane associated with

this new segment is updated to the separating plane from
the new linear SVM. If train accj < θ, the procedure
will go back to step 2 by considering the next nearest
segment, i.e., j ← j + 1.

After all the t neighbors have been tried, the final SD with
its derived separating hyperplane will be added to the final
segment list.

Compute the Coverage of Segments (Figure 2 (d)): After
the segments are extracted, we calculate the influence of the
extracted segments on the surrounding instances. For each
data instance that is not selected by any of the locally linear
segments, we calculate the distance from the instance to the
closest seeds in all seed sets of the segments. The instance is
assigned to the closest segment. An accuracy value acccover
is computed by counting the ratio of covered instances that
can be correctly classified by the hyperplane of the segment,
which reflects the fuzziness of the local separation.

4 DESIGN OVERVIEW

Apart from the extraction algorithm, we performed a com-
prehensive survey of existing works on class separation and
decision boundary analysis in machine learning, topological
data analysis, and visualization. The main research chal-
lenges in the works can be summarized into two main cat-
egories: 1) macroscopic analysis of all decision boundaries
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(D) Path Exploration View (Sec. 5.4)
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Fig. 3. (Top) An illustration of our visual analysis framework. (Bottom) The interface consists of four main views: (A) Segment Relation View. (B)
Segment Detail View. (C) Projection View. (D) Path Exploration View.

and class partitions that provides an overview of the class
structures [15], [16], [17], [44], [49], [54], and 2) microscopic
analysis of individual instances, regions, or part of the
decision boundaries to conduct local interpretation of how
the classes are separated [13], [14], [48], [50], [54]. Based on
our survey, we derived a list of tasks to be addressed when
analyzing locally linear segments.

T1 Macroscopic Analysis: Overview of the locally linear
segments:

• T1.1: Show the number of segments and highlight the
major ones: Similar to the number of partitioned local
class regions that characterize the complexity of the class
structure [15], [16], [17], [49], [54], the number of detected
segments is a significant indication of how complex the
class separations can be. The major segments can be
regarded as interesting entry points for further analysis.

• T1.2: Reveal the coverage of data instances under each
segment: Inspired by the Melnik’s questions on describing
decision region structures of classifiers [44], various at-
tributes should be summarized to identify the significance
and influence for each segment, including how large
the influenced region is, how many data instances are
covered, and where the region is located in feature space.

• T1.3: Depict the locations of the segments as well as rela-
tionships among different segments: Multiple segments
may share common data instances, intersect with each
other, be close to neighboring segments in specific dis-
tance metrics, or be far-away from each other. Automated

detection and explicit representation of the connections
can facilitate analysts when exploring distances between
segments and neighborhood relationships [44], [50].

T2 Microscopic analysis: Detailed analysis of specific locally
linear segments:

• T2.1: Examine the data distribution and separation
near a segment: How the data instances are distributed
near the boundary segments should be provided as an
overview that supports standard pattern finding tasks,
such as discovering trends, clusters, class purity, and
outliers [13], [14], [48]. Another critical requirement is to
show how the data instances near segments are separated.
Related tasks include identifying how close the adjacent
classes are, and how separable the different classes are in
this segment region.

• T2.2: Show the primary features used for determining
class separation: Feature importance provides insight into
which data feature(s) are driving class separations [50],
[54]. Important features may vary between segment re-
gions in a non-linear decision boundary, and visualization
can facilitate the comparison of dominant features.

• T2.3: Exploring the neighboring segments: Acting as
the counterpart of T1.3 under the “overview + detail”
guideline, detailed and instance-level investigation of
how neighboring segments is needed.

• T2.4: Trace a path between segments along decision
boundaries: Tracking the connections between two seg-
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ments is helpful for understanding class distributions and
relationships between discriminant features. Interactive
transitions on the exploration path can provide rich con-
textual information in an intuitive way [35], [36].

5 VISUAL ANALYSIS FRAMEWORK

Based on the identified tasks, we have developed a visual
analysis framework, shown in Figure 3 (top), for analyzing
class separations with locally linear segments. By using
the extracted locally linear segments as the input, the vi-
sual analysis framework employs three main visualization
components to support the exploration of class separations
illustrated in Figure 3 (bottom):
1) The Segment Relation View and Segment Detail View

assist users in understanding detected locally linear seg-
ments in an “overview+detail” manner. Users can inter-
actively explore the neighboring structures of segments
as well as detailed information of individual segments in
the segment detail view.

2) The Projection View utilizes linear and t-SNE projec-
tion methods to support visual exploration at the data-
instance level. Interactive manipulation of projections is
supported and coordinated with the other views.

3) The Path Exploration View presents how the class sepa-
rations in segments are connected. A touring interaction
supports the dynamic exploration of the traverse path.

5.1 Segment Relation View

The segment relation view is designed for macroscopic
analysis (T1.1 - T1.4). By following the visual information
seeking mantra [55], this view offers a useful summary of
the extracted locally linear segments and their properties,
showing the topological structures among the segments. A
node-link-based design is applied with segment glyphs as
nodes indicating several key characteristics of the segments.
Users can easily find critical segments, explore their rela-
tionships, and compare different segments.

Segment Glyph: Figure 4, we use a circular design to rep-
resent locally linear segments comprised of three elements:
an inner circle, a donut chart, and an outer arc.
• The inner circle provides information about the seeds. The

area of the inner circle encodes the number of seeds, while
the color represents the seed class.

• The donut chart shows the percentages of classes in the
corresponding data. Each class is mapped to an arc in the
donut chart. The diameter represents the coverage of the
segment.

• The outer arc shows the classification accuracy of the
separating hyperplane associated with the segment on
all the covered data instances, i.e., the acccover computed
in the last step of the extracting algorithm. The accuracy
value is mapped to the angle of the arc which starts from
12 o-clock and grows clockwise.

Edge: Additionally, we use edges, described in Figure 4
(b), to highlight the connections between a segment and its
nearest neighbors (T2.3).

Size of the coverage

Number of Seeds
Arcs: Percentages
of data instances
in different classes  

Outer Ring: Classification 
accuracy of all covered data  

Color: Class Label

(a) Visual Encoding of Segment Glyphs

(b) Edges for Connecting Neighboring Segments

Segment A

Segment B
(1st NN of A)

Segment C
(2nd NN of A)

length 0

cosine(A, B)

0.25

0.5

0.75
1

Cubic Spline
<n  , n  > * length1

2 A

Near

Far

distance(A, B)
Solid: Share data 
instances between 
the two seed sets

Dashed: Otherwise

Line Style

0% 100%75%50%25%

(c) Feature ranking histograms

Rankings for Feature S1

Segment A
Segment B
Segment C

...
Segment n

Segment ID Ranking in the 
feature weight

1st
5th
6th

11th
...

B

Fig. 4. The visual encodings of segment glyphs and the edges. (a) The
segment glyph consists of three parts: an inner circle, a set of arcs, and
an outer ring. (b) The edges are represented by elbow-shaped cubic
spline curves. (c) The feature ranking histograms shows the importance
of features among all the segments.

• If two segments share common data instances in their
expanded seed sets, i.e., connect to each other, the color
is mapped to the class with the maximum number of
shared data instances. A gray dashed curve is used when
segments do not share any common instances.

• We measure the distance between segments and their
nearest neighbors by using the mean value of all paired
distances between their corresponding expanded seed
sets. The thicknesses of the curves are proportional to the
distances to the nearest neighbors where a thicker stroke
implies a closer segment in terms of the distance, i.e., a
stronger connection.

• Another essential attribute between segments is the angle
between the normal vectors of their corresponding sep-
arating hyperplanes. To represent the angles, an elbow-
shaped curvature is applied to the edges where the an-
gularities depict the cosine value of two normal vectors.
A straight line denotes the same direction of the normal
vectors, while a nearly 90-degree elbow indicates orthog-
onality of the two separating hyperplanes.

One issue in the visual design of the edges is that this design
may result in visual clutter if all the curves are displayed
simultaneously on the canvas. Thus, we only initialize the
edges with thin gray lines as an overview of the connections.
Once the user hovers the mouse pointer over a segment
glyph, its corresponding edges are shown, providing details
on the neighborhood structure.
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Layout: The layout of the segment glyphs visualizes the
distribution of segments in the data feature space. The
force-directed layout [56] is applied to the established edges
between neighboring segments to compute the coordinates
of segment glyphs. The reciprocals of distances between
segments are used as edge weights in the layout algorithm.

Feature Ranking Histogram: As shown in Figure 4 (c),
for each feature, we draw the distributions of the feature
rankings among all segments by using the feature weight
of the separating hyperplanes as measures. In this way,
the distributions depicted in the histograms indicate how
valuable a feature is in different segments (T2.2).

Filters and Interactions: We employ two filters for hiding
insignificant segment glyphs. Users can use the checkboxes
in the control panel on the left side to show or hide glyphs.
To filter out segments based on the size of coverage, a
histogram of the number of covered instances is adopted
where users can brush the horizontal axis to select segments
displayed on the canvas. Hovering on a segment glyph
toggles the appearance of the connected edges. The covered
data instances in the projection view will be highlighted
while other instances are dimmed.

5.2 Segment Detail View

The segment detail view is used for presenting details of
a selected segment (T2.2), Figure 3 (B). When users hover
over a specific segment glyph in the segment relation view,
detailed information of the segment is illustrated including
covered data instances and feature weights. On the left
side, a horizontal bar chart shows the five most important
features and their weights. We use a parallel coordinates
plot (PCP) to show the distribution of data for the five
features. Brushing on the axes highlights edges in the PCP.

5.3 Projection View

Along with the two segment-related views, our framework
instance-level exploration contributes to in-depth analysis
of separations with respect to data instances (T2.1, T2.2).

Projection Methods: Figure 3, View (C), the projection
results of all data instances are presented in scatterplots. We
adopt two alternative projection methods for exploration: 1)
orthographic linear projection, and; 2) t-SNE projection.
• The linear projection results are primarily used for show-

ing linear separations conveyed by the locally linear seg-
ments. Given a segment Segi, we define the side-view
projection matrix as:

Pi = [−→n i,
−−→pcai] ∈ Rq×2

where −→n i in the first column is the normal vector of
the corresponding separating hyperplane for Segi, and
−−→pcai the first principal component of all the covered data
instances under Segi. In the projection with the side-view
matrix, a vertical gap orthogonal to the horizontal axis
can be observed between the instances in the class of
seeds and those in other classes. Additionally, with the
1-dimensional PCA deployed on the vertical coordinates,
the underlying patterns along the decision boundaries can
be revealed, including clusters and outliers. Note that we
further adopt the Gram-Schmidt process on Pi to obtain

For a segment Segi

1-D PCA

Normal Vector of the
Separating Hyperplane

Separation in the projection result

Clusters revealed
by 1-D PCA

Fig. 5. The design of the linear projections. In the scatterplot, the x
axis indicates the direction of the normal vector that represents the
separating hyperplane, while the y coordinates are decided by the 1-
dimensional PCA on all the covered data instances.

the orthographic projection matrix. The normal vector
−→n i in the first column is not changed and hence leads
the projection result, while the second column is a linear
combination of −→n i and −−→pcai. Figure 5 shows an example
of the side-view projection where the red instances are
separated from the other classes.

• The t-SNE projection provides an overview of the data
since it does not require any prior knowledge of the un-
derlying patterns and structures, which is suitable for pro-
viding an initial impression of how the data is distributed.
Due to its ability to extract densely-distributed clusters,
the t-SNE projection view can also be used to diagnose
how well the original data classes can be separated in an
unsupervised manner.

Interactions: When hovering on the points in the scatterplot,
a tooltip is enabled to show the corresponding information
of the data instance including its instance ID and label. To
control the viewport in the linear projection, we use the
optimization method by Lehmann et al. [57] to provide
an interactive manual tour in the high-dimensional feature
space. As shown in Figure 3 (C), once the user drags a
gray endpoint, which represents the corresponding row in
the projection matrix, the other rows are simultaneously
adjusted via an energy optimization procedure to preserve
the orthogonality of the projection matrix. The values of the
projection matrix are listed in a table.

5.4 Path Exploration View

The path exploration view is used to discover an optimized
exploration path between multiple segments and allows for
flexible traverse between any segments (T2.3, T2.4).

Selecting Segments: Users can select a series of segment
glyphs in the segment relation view as an entry point for
creating a traverse path. By clicking on the glyphs, the
corresponding segments are added into a list depicted in
the top left corner of the view. The orders of the segments in
the sequence are highlighted by the right side of the glyphs,
and the existing edges are displayed to indicate shared seeds
between segments. The list of selected segments can be
submitted to generate a traverse path by clicking on the
“Create a Path” button.

Building an Optimized Traverse Path: Figure 6 (A) illus-
trates the process of building an optimized traverse path
between two consecutive segments. For two segments that
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Extracted Segments
(1), (2), and (3)
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3

(a) Path: (1)→(2)

Shared seeds
between (1) and (2)

Scatterplot Series

1

2

1-D PCA

Normal Vector of the
Separating Hyperplane

1 2

Find the shortest path
between seeds in (1) and (3)

on the k-NN graph 

1

3

No shared seed
between (1) and (3)

1

3

Build the expanded seed sets for the two intermediate seeds

Scatterplot Series

1-D PCA

Normal Vector of the
Separating Hyperplane

1 1-1 1-2

1-1 1-2

3

(b) Path: (1)→(3)

(A) Building an Optimized Exploration Path

Build a k-NN graph
on all seed instances
(k = 2 in this example)

1

3

Seeds

Example: (5) → (7) → (6)→ (4)

pca1

pca2

n1
n2

n  , n  1 2

n2

Bars: Feature importance
of the separating hyperplane

Angle: The original angle
between n1 and n2

Edges: The amount of shared instances,
and the class label with the most onesConnection

Scatterplot

n1

Ortho(n )1

(B) Visual Design of Scatterplot Flows

Orange Region

Joints between
Two Segments

(C) Patterns in Scatterplots

Skewed
Distribution

Orange Region

Seg. 4
Seg. 6

Eg. S12 > a & S18 > b & S16 > c & S15 > d 

(C.1)

(C.2)

Fig. 6. Planning an exploration path between two locally linear segments. (A) For two segments sharing some seeds such as Segment 1 and 2,
the series of scatterplots only consists of the two segments. If the two segments have no shared seeds (Path 1 to 3), a list of intermediate seeds
are selected to provide a smooth transition along the decision boundaries. (B) The scatterplots are concatenated in a zig-zag manner. (C) Skewed
distributions are found in Segment 6 and 7. An example of the joint of two connected separations (Segment 4 and 6) is illustrated, which can be
described as a classification rule.

d1 d2

P2P1

P'

Linear Projection with P' Slider 
d1 d2

Fig. 7. The touring interaction in the path exploration view. The slider
indicates the current location between two projection matrices.

share common seeds, e.g., Path (1)→(2) in Figure 6 (A),
we consider the segments to be connected and need no
additional bridging transitions. However, if the two seg-
ments have no common seeds that connect them, it will be
difficult to perceive how the two local separations are joined
together. To resolve this issue, we apply an interpolation-
based method to provide a smooth transition between the
two segments:
1) In the example of Path (1)→(3) in Figure 6 (A), we first

build an k-NN graph among all the seed instances in
all locally linear segments. The k is set as the minimum
value that the seeds are connected.

2) Then, we find the shortest path between the expanded
seed sets of Segment (1) and (3) in the k-NN graph.

3) Next, temporary locally linear segments on the inter-
mediate instances (1-1 and 1-2) in the shortest path are
generated with the method described in Figure 2 (b).

4) Finally, these new segments built on the intermediate
instances are inserted between the original segments.
If there are more than two segments selected by users,

the interpolation process will be repeated on every two
consecutive segments. We build a traverse path which can

depict class separations at every position in the path and
provide a continuous transition between segments.

Visualizing the Segment Series: After the traverse path
is built, the series of segments are visualized in the path
exploration view illustrated in Figure 3 (D). The sequence
of originally selected segments is listed on the left side.
When clicking on the title of the sequence, the details are
represented as a list of scatterplots on the right side (Figure 6
(B)). For the segments in the traverse path, including the
newly-inserted intermediate ones, we juxtapose the scatter-
plots of projections with corresponding side-view projection
matrices. A shaded area is drawn under the dots with the
color assigned to the corresponding seed class in order
to show the class boundary derived from the separating
hyperplane. However, one problem of simple juxtaposition
is that the connections of separations between consecutive
segments are not emphasized. To address this issue, we
adopt a concatenation method to highlight the relationship
between segments. Between each pair of two consecutive
scatterplots, a new connection scatterplot is inserted, which
contains all the data instances of the two neighboring scat-
terplots. The coordinates of the instances are assigned to a
projection matrix consisting of two normal vectors from the
two scatterplots to simultaneously show the separations in
the two corresponding segments. It should be noted that
the normal vectors may not be orthogonal to each other and
cannot be directly used as a basis of an orthogonal linear
projection. We use the Gram-Schmidt process to create an
orthogonal basis on the same 2-D plane for the connection
scatterplot. Similar to the curved edges in the segment
relation view, a triangular layout is adopted to present the
actual angle between normal vectors and link the entire
series in a zig-zag way.

Interactive Traverse Between Scatterplots: The scatterplots
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in the path exploration view provide a static represen-
tation of how the separations are distributed and con-
nected. Inspired by the existing traveling methods in high-
dimensional space [35], [36], [58], we use a touring in-
teraction with dynamic transitions between locally linear
segments. As shown in Figure 7, at the top of the path
exploration view, a horizontal slider is employed ranging
from the first scatterplot to the last. When the handle is
placed between two scatterplots, we compute the current
projection matrix P ′ based on the two side-view projection
matrices P1 and P2 of the two scatterplots:

P ′ = GramSchmidt(P1 +
d1

d1 + d2
(P2 − P1))

where d1 and d2 are the horizontal distances from the
handle to the center of the left and right scatterplots, respec-
tively. P ′ is then applied to the linear projection view where
the instances from the two scatterplots are highlighted.
The opacity values of instances from the left and the right
scatterplots are set as d1

d1+d2
and d2

d1+d2
.

6 CASE STUDY AND EXPERT INTERVIEW

In this section, we describe how our approach facilitates the
exploration and diagnosis of class separations through two
case studies using real-world high-dimensional datasets. We
also summarize feedback from two expert users.

6.1 Shuttle Statlog Dataset
In this case study, we explore the space shuttle statlog
dataset1 which contains 8 numerical features and 7 classes.
The classes 2 (Fpv Close), 3 (Fpv Open), 6 (Bpv Close),
and 7 (Bpv Open) are known outliers with only a few data
instances. For purposes of this case study, we have removed
these classes from the original dataset. Since the original
dataset is too large (58000 instances), we then randomly
sampled 400 instances from each of the remaining 3 classes
(Rad Flow, High, Bypass), resulting in a dataset with 1200
instances in total. Downsampling was done to improve
computation time and reduce clutter in the scatterplots.
These limitations are discussed in the conclusion.

Overview of the Separations: After the dataset is loaded
into our system, the locally linear segments are automati-
cally extracted from the dataset. We first check the t-SNE
and linear projections to get an overall impression of how
the classes are distributed (T2.1). In the t-SNE projection
result, Figure 3 (1), we see that the two green clusters are
clearly split from the blue and the orange class, while the
other two classes have overlapping regions. The separation
pattern is further illustrated in the initial PCA projection
result in Figure 3 (2), where a clear linear boundary can
be drawn between the green clusters and other instances.
Moreover, the boundary between the blue and the orange
classes is not strictly linear and consists of two significant
linear separations. This indicates that the relationships be-
tween the blue/orange classes should be further examined.

Segment Relationships: Next, we inspect the segment
relation view to explore the extracted segments and their
relationships. In Figure 3 (3), the graph structure shows

1. https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)

two communities of segments (T1.1, T1.2, T1.3). The green
instances are mainly in community (a), while the orange and
blue instances lie in community (b) (T2.3). The community
structure confirms the relationships identified in the t-SNE
projection. We discover that the green segments mostly
consist of green and orange instances (T1.3, T2.1). This
indicates that the green class is near the orange class but
not close to the blue one, which is different from the t-
SNE projection result where part of the green instances is
near the blue class. Additionally, there is a green segment
far away from the central community of green segments,
Figure 3 (4). By hovering on the glyph, we find that the
corresponding instances are a group of outliers from the
larger green cluster (T2.1), which may partially be the reason
of non-connectivity in the segment graph.

Investigation of Specific Classes: Based on the segments
and their relationships, we further investigate how each
class or class pair is separated. Specifically, we address the
question that, for a class, are there any decisive features that
influence separations in different local regions (T2.2)?
• First, for the green classes in community (a), we examine

the most important features for each segment by hovering
the mouse cursor on each glyph and check the details in
the segment detail view, Figure 3 (5). From the feature
lists, it can be found that F5, F6, and F7 are the top fea-
tures, suggesting that these features should be considered
when separating green instances with others.

• Next, to explore the relationships between the blue and
the orange class, we discover two subgroups in the com-
munity (b) that have different essential features: (b.1)
where F5 dominates the separation, and (b.2) has the
highest weight on F7 (Figure 3 (6)). The pattern of dom-
inant features can be used to summarize classification
rules in two different regions. For example, for unlabeled
instances in the regions covered by segments in (b.1), we
may predict their class labels with the values on F5.

• Furthermore, we explore the transitions between the two
subgroups. In Figure 3 (7), the curved link between
Segment 2 and 9 indicates an angle between the corre-
sponding separations in two segments. After creating an
exploration path from Segment 2 to 9, the scatterplot in
the middle shows the joint of two separations where a
clear angled transition is depicted from left to right. In
practice, when an unlabeled instance falls into the joint
region, the dominant features for both separations should
be considered to judge the label.

6.2 Wall-following Robot Navigation Dataset

Our second case study explores the wall-following robot
navigation dataset [59] that comprises measurements from
24 ultrasound sensors deployed on a robot, Figure 9. The la-
bels of the sensor readings correspond to four commands to
the robot, including “Move-Forward”, “Slight-Right-Turn”,
“Sharp-Right-Turn”, and “Slight-Left-Turn”. As described
by Freire et al. [59], the dataset was designed to test whether
the navigation task is non-linearly separable. Thus, it is
impossible to learn the classification task with a single linear
classifier. To further assess our framework, a domain expert
in machine learning and robotics was invited to explore the
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(2) Segment Relations(1) t-SNE and Linear Projections 

(4) Exploration Paths

Orange segments 
are close to each 
other.

Main blue 
segments are 
close to each 
other as well.

Most of the green instances are grouped together. (3) Side-View of the Green Segment

Other two colors
are skewed.
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distributed along the 
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First two transitions are 
not heavily twisted.

Almost orthogonal.
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(4.1)

Segment 4 Segment 6

(4.2) Parallel Coordinates

(3.1) (3.2)

Fig. 8. The result of the wall-following robot sensor data. (1) The two projection results show heavy overlaps between the red, the blue, and the
orange classes, while the green instances are roughly grouped together. (2) In the segment relation view, the segments in the blue class and the
orange class are relatively close to each other. Only one green segment is constructed, which matches the grouping patterns found in the linear
and the t-SNE projection results. (3) The side-view of the green segment is presented, showing the relationships between the green instances and
the other classes. The data distribution of the green segment is shown in (3.1) and (3.2). (4) Two paths are selected from the blue and the orange
classes, respectively. The corresponding details of the path and two parallel coordinates are presented in (4.1) and (4.2).

dataset with our framework. In the data exploration process,
we first introduced the background and the design goals of
our framework to the expert, followed by an illustration of
the interactive interface and the analytical workflow with
the dataset in the first case study. Next, we presented some
patterns we have discovered while building the framework
to get the expert’s verification and explanations. The expert
was allowed to explore the datasets freely during the inter-
view process.

Initial Linear and t-SNE Projection Results: Shown in
Figure 8 (1), we find that the two projection results show
significant overlaps in all four classes of instances (T2.1).
Notably, there is no clear cluster structure for a specific class
shown in the t-SNE projection. The expert confirmed that
the heavily overlapped points in the projection results indi-
cate a complex class separations between the four classes.
Thus, we need to use the extracted locally linear segments
to explore separations from the perspective of local regions.

Segment Relationships: In the segment relation view, Fig-
ure 8 (2), there is no salient community structure in the
segment graph, which matches the overlapped distributions
among all classes depicted in the t-SNE projection (T1.1).
For the blue and the orange class, their segments in the
same class are relatively close to each other and linked with
solid edges, i.e., the four orange segments and the three
blue segments in Figure 8 (2) (T1.2, T1.3). Meanwhile, there
is only one segment associated with the green class. The
expert commented that the segment layout for the blue and
the orange classes might indicate that separations are linked
together for each class. In addition, the grouping patterns

for the green instances in the t-SNE and the linear projection
results may be the reason of why there is only one green
segment.

Investigation of Specific Classes: Based on the segment
relationships found above, the expert was interested in ex-
ploring the detailed patterns of the separations in the three
classes, respectively. After the green segment is activated by
double-clicking on the glyph, Figure 8 (3), the linear pro-
jection result shows a fuzzy separation between the green
instances on the left and others on the right (T2.1). It can also
be observed that the blue instances are evenly distributed
along the entire boundary, while orange ones are mainly
located at the bottom side. This indicates that the green class
is connected with the blue class in a wide range, and the
orange and the red classes only attach the green instances
in a restricted region of the segment. The expert further
recommended exploring the data distribution of the green
segment in the parallel coordinates to explore whether the
green instances in the green segment are grouped together.
When hovering the mouse pointer on the green segment to
activate its details in the segment detail view, two batches
of green edges, Figure 8 (3.1) and (3.2), can be highlighted
by brushing on the axes, indicating two major clusters in
the green class. In addition, the corresponding sensors of
the five most important features suggest the front left (S20,
S21) and the rear right sensors (S9, S10, S12) are mainly
considered when making a “Slight-Left-Turn”. The expert
suggested that this clue may enlighten the robot designers
to further investigate why these two directions are essential
for moving left.

Next, we explore the two segment groups in blue and or-
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Fig. 9. An illustration of the wall-following robot. (Left) The sensors
corresponding to the features S1-S24 are mounted around the robot.
(Right) The task of the robot is to follow the wall in a room in a clockwise
direction.

ange colors, respectively, Figure 8 (2) (4). When highlighting
the edges between the four orange segments, we find that
the connections between Segment 5, 7, and 6 are not heavily
twisted, while Segment 4 is rotated to another direction.
However, it is not the same for the blue group where the top
features vary among all the segments (Figure 8 (4.1)). The
expert mentioned that the shared top features (S15, S18, S12)
among Segment 5, 7, and 6 should be specifically considered
for the orange class (T2.2), while there are no common
important features in the blue class. Different feature groups
should be considered for the local regions covered by the
blue segments.

The details of the data distributions near separations
and transitions in the two groups can be observed in the
corresponding exploration paths (T2.1, T2.3, T2.4). In the
path of the orange segments, Figure 6 (C.1), blue and red
instances in Segment 7 and 6 are skewed to one side and
the remaining green instances on the other side, showing
that in these two local regions the major adjacent classes
are blue and red which only connect to a part of the
instances in the two segments. The skewness does not exist
in Segment 5 and 4, where the blue and red instances are
evenly distributed along the boundary. However, there is
no significant pattern in distributions of non-blue instances
but noise-like clutters in the path of the blue segments,
Figure 8 (4). Concerning the transitions, the joints in the
first two connection scatterplots in the orange path, Figure 6
(B), are relatively flat with the dominant features of S15,
S18, and S12. The separations become nearly orthogonal
in the third one. The expert discovered that S12, S18, S15,
S16, and S21 receive high importance values in identify-
ing orange instances on the bottom side in the local joint
region, Figure 6 (C.2). Furthermore, the expert examined
the parallel coordinates of Segment 4 and 6 and observed
that most of the yellow edges receive relatively low values
on the top features. After checking the sensor layout, the
expert commented that the local joint region may indicate
a situation where the robot is very close to the wall on the
left side, i.e., the readings are low from the sensors on the
left side. Since the robot is set to follow the wall in a room
in a clockwise direction, a “Sharp-Right-Turn” is required to
keep the robot away from the wall on the left side.

7 DISCUSSION AND CONCLUSION

In this paper, we present a visual analytics approach for
exploring complex non-linear class separations in labeled
high-dimensional datasets. In order to achieve a balance
between interpretability of the projection results and the
ability to describe complex decision boundaries, we use

locally linear segments that are automatically extracted
from the dataset to represent the class separations. In the
visualization stage, the relationships and details of locally
linear segments are presented in order to support explo-
ration and investigation of how instances from a specific
class are separated from other classes. Users are allowed to
check projection results, view the detailed information of
segments, and build exploration paths to traverse along the
class separation boundaries to observe the transitions be-
tween different local regions. We demonstrate the usability
of our visual analytics framework through two case studies
and domain expert reviews.

Parameter Tuning: When employing the locally linear ex-
traction algorithm, users need to set a few parameters,
including the size k of the expanded seed sets, the threshold
θ to accept a separating hyperplane found by a linear SVM,
and the size t to control the upper limit of possible merges.
In general, k and t are responsible for the granularity of
segments, and θ presents the tolerance to abandon some less
important instances when searching for hyperplanes. We
used default settings of k = 10, θ = 0.9, and t = 20 in the
two datasets presented in Section 6. A future extension will
be to find optimal parameter settings with hyper-parameter
tuning methods widely used in machine learning, such
as minimizing the accuracies of covered instances for all
segments by grid searching and cross-validation. Fast visual
examination methods to check the algorithm output can also
speed up the parameter tuning procedure. In the segment
relation view, the number of nearest neighbors for segment
glyphs may influence the pattern extraction based on the
edge structures. We set the number to 5 in the two cases
presented in Section 6. In the future, we plan to provide a
control widget for adjusting the number of visible edges.

Scalability: One limitation in our visual analytics approach
is the scalability with respect to the extraction of the locally
linear segments and visual presentation of the elements.

Extraction of the Locally Linear Segments: The performance of
the extraction algorithm has two limitations. First, since we
utilize the support vectors of non-linear SVMs as the initial
seed instances, performance speeds can be limited if there
are too many support vectors selected by the SVM model.
In the two case studies, it took about 4 minutes and 12
minutes respectively to finish the extraction procedure. A
potential solution is to deploy filtering procedures before
running the segment extraction algorithm, such as sampling
methods to reduce the number of seed instances, or feature
selection methods to remove redundant features. Second,
the run time to train numerous linear SVM models can be a
bottleneck once a large number of seeds are considered. For
this issue, we can parallelize the model training process by
distributing multiple SVM fitting tasks to different cores or
machines.

Visual Design: In our design, a common issue for the scatter-
plots is the visual clutter caused by large numbers of dots
plotted in the view. A similar issue also exists in the segment
graph view where the glyphs may be overlapped once too
many segments are extracted. To mitigate the visual clutter
in the segment graph, we have employed filtering methods
in the segment graph view to hide irrelevant glyphs and
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edges. In the future, a feasible way to further scale our
design in the scatterplots in the projection views is to adopt
sampling and abstraction methods to reduce the number of
visible dots [60], [61], [62].

Future Work: In the future, we expect to accelerate the
implementation of the segment extraction process in or-
der to support real-time exploration of large-scale datasets.
By utilizing the topology graphs extracted with existing
works [40], [42], [44], we also plan to explore different seed
generation methods in the extraction algorithms. Another
promising extension is to integrate our approach in the pro-
cess of diagnosing classification and clustering models. By
checking the quality of decision boundaries, users can gain
insight into how the models separate instances into different
classes (or clusters), how the data instances distribute near
decision boundaries, and how separable it is between two or
more classes. The insights can further assist the adjustment
of the training processes including the selection of proper
model types and informative features in order to get better
prediction performance.
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